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Abstract 

We present an algorithm for determining the connectivity of a set of N rectangles 
in the plane, a problem central to avoiding aliasing in VLSI design rule checkers. 
Previous algorithms for this problem either worked slowly with a small amount of 
primary memory space, or worked quickly but used more space. Our algorithm uses 
O(W) primary memory space, where W, the scan width, is the maximum number 
of rectangles to cross any vertical cut. The algorithm runs in O ( N lg N ) time and 
requires no more than O (.V) transfers between primary and secondary memory. 

Keywords: computational geometry, design rule checking, VLSI, algorithms, rectan
gles, connected components, scanning. 

1 Introduction 

For a VLSI design to be reliably produced as a working chip, various features on the chip 
must be separated by minimum distances to ensure t he proper operation of transistors 
and interconnections. The design rule checker program verifies that these and other 
geometric constraints are satisfied and signals an error if it finds two features that violate 
the design rules. For a chip composed of millions of rectangles, design rule checking is 
a time-consuming process which cannot be done entirely within the primary memory of 
many computers. 

This research was supported in part by the Defense Advanced Research Projects Agency under Con
tract !\00014-80-C-0622. 
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Figure 1: A set of rectangles with connected components {A, B , D , E , G}, { C, F} , and 
{H}. On the the right is shown a scan set at the time rectangle E enters. Only active 
rectangles ( those crossed by the scanline) have an interval in the scan set. The interval 
for E will be entered in the scan set S after all processing for its enter event is complete. 

This paper presents an efficient algorithm for finding the connected components of 
rectangles in the plane using a machine model that incorporates the secondary disk 
memory where the VLSI design is stored. By running this algorithm simultaneously on 
each layer of a VLSI chip design, a design rule checker can determine which features of 
a chip design are electrically equivalent, i.e., are effectively part of the same wire. The 
determination of electrical equivalence allows the design rule checker to avoid reporting 
the many alia.sing errors that occur when two electrically equivalent features are mistaken 
for electrically distinct features . For example, two wires might be too close together, but 
if they are actually the same wire, it does not matter. 

Many VLSI design systems use rectilinearly oriented rectangles to represent the design 
features. Two rectangles are electrically equivalent if they are connected by a path of 
intersecting rectangles. The connected components problem is to label each rectangle 
in a design such that two rectangles have the same label if and only if they are in the 
same connected component. The set of rectangles in Figure 1, for instance, has three 
connected components: {A,B,D,E , G}, {C,F}, and {H}. 
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Figure 2: The computer model includes a secondary disk memory as well as primary 
memory. The connected components algorithm, which assumes the rectangle database 
is on disk, uses 0 (N ) references to sequential files, 0 (W ) primary memory space, and 
0 ( N lg N ) CPU time. 

The connected components of N rectangles in the plane can be determined by an 
algorithm due to Guibas and Saxe [4] in 0 (N lg N) time, which is remarkable in that 
there may be as many as order N 2 rectangle intersections.1 Their algorithm uses t he 
technique of Jcanning, introduced by Shamos and Hoey [8] , which assumes t hat the 
vertical edges of rectangles are initially sorted by x-coordinate. Scanning algorithms 
work by sweeping a scanline over a set of geometric objects in the plane and then working 
primarily with the objects crossed by the scanline. In the Guibas-Saxe algorithm, the 
scanline is a vertical line that sweeps from left to right over the rectangles. Unfortunately, 
the Guibas-Saxe algorithm is designed to run entirely within primary memory, and it 
may cause disk thrashing for a large VLSI chip. 

In this paper, we abandon the simple primary memory model, and instead use a 
machine model that includes a secondary disk memory as well as primary memory. 
The con.figuration is shown in Figure 2. We assume that the primary memory is a 
fast , random-access memory of limited size. The set of rectangles is kept in a file in 
secondary disk storage. Accesses to the file are presumed to be sequential, either forward 
or backward. More general random accesses to disk blocks are unnecessary for our 
algorithm. 

This model is used by Szymanski and Van W yk [9] for a connected components 
algorithm which is more suitable for large rectangle databases than the Guibas-Saxe 
algorithm. The Szymanski-Van Wyk algorithm uses less primary memory than the 
Guibas-Saxe algorithm and has locality of reference for secondary memory. The amount 
of primary memory space used by the algorithm is 0 (W ), where W , the Jean width, is 
t he largest number of rectangles cut by any scanline. In practice, Szymanski and Van 
Wyk comment, the size of Wis about 0 ( '1N). Unfortunately, their algorithm is based 
on rectangle intersections, and the running time can be as large as 0 ( N W ). 

This paper presents a connected components algorithm that combines and optimizes 

1 Imai and Asano [5] also have an 0 ( N lg N) connected components algorithm for the primary memory 
model which is not based on scanning. 
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the Szymanski and Van Wyk and the Guibas and Saxe algorithms. It uses O(W) (pri
mary memory) space and runs in 0 ( N lg N) time in the worst case. 

The algorithm consists of a two-pass scan over the set of rectangles. Most of the work 
is done in the first , forward scan. A backward scan is then used to produce the labeling 
of rectangles such that two rectangles have the same label if and only if they are in the 
same connected component. The algorithm maintains four data structures of size O(W) 
during its forward scan. 

The remainder of this paper presents the connected components algorithm and its 
analysis. Sections 2.1, 2.2, 2.3, and 2.4 describe the four data structures used during the 
forward scan. Section 3 gives the algorithm, section 4 proves its correctness, and section 5 
analyzes its time and space requirements. Finally Section 6 offers some concluding 
remarks. 

2 Data Structures 

In scanning algorithms an event is a geometric phenomenon that causes some computa
tion at the time when it occurs. There are two types of events for a left-to-right scan: 
a start event when the scanline crosses the left boundary of a rectangle ( the rectangle 
becomes active, or enters) and an end event when the scanline crosses the right bound
ary of a rectangle (the rectangle becomes inactive, or leaves). Each rectangle has an 
associated start event and end event. The four data structures given in this section are 
used by the connected components algorithm during scanning. 

2.1 The rectangle set 

The rectangle set R is a dynamic set that contains the active rectangles at any point 
during the scan. We assume that each rectangle in the disk file has a unique identification 
number. When a rectangle enters primary memory, it is stored in the set R with the 
identification number as a key. The rectangle set can be maintained as a balanced search 
tree, using O(W ) space. Each insertion, deletion, or search takes O(lg W ) = O(lg N) 
time. 

2.2 The scan set 

The data structure that maintains the scanline for the connected components algorithm 
is called the scan set. At any point during the forward scan, the active rectangles can 
be represented as a set of vertical intervals, i.e., an interval in y. For example, Figure 1 
shows the intervals of the active rectangles at the time rectangle E enters. The scan set 
S maintains the dynamic set of intervals that represents the active rectangles. 

The scan set allows the connected components algorithm to determine rectangle in
tersections easily. Two rectangles intersect if and only if there is a scanline that crosses 
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both rectangles, and their intervals overlap in the scan set corresponding to the scan
line. This technique for determining rectangle intersections is well known and is used 
in previous scan-based algorithms for determining rectangle intersections or connected 
components [3,4,9]. 

To be precise, a scan set S supports the following operations: 

S-INSERT!(A): Add rectangle A. to the scan set. 

S-DELETE!(A): Remove rectangle A from the scan set. 

S-FIND(I): Return a rectangle in the scan set S that overlaps interval I in some way, 
and NIL if no rectangles overlap I. 

The number of rectangles stored in Sat any given time during a scan is at most the 
scan width W. We use an interval tree [7], a simple, sparse variation on a balanced tree, to 
implement each of the three operations in time O(lg W ) and space O(W). Alternatively 
we can achieve the same assymptotic space and time bounds for the above operations 
by using McCreight 's priority search trees [6] to store rectangles keyed on interval. 

2.3 Component set 

During the forward scan, the connected components algorithm maintains a component 
set Q that reflects our current knowledge of the connectivity of the active rectangles. 
Each component is designated by a color, which for convenience is represented as an 
integer.2 

The rectangle colorings within the component set Q may change with a start event. 
If a new rectangle connects two previously unconnected components, we merge them 
within the component set Q by recoloring active rectangles in the smaller of the two. 

The component set Q supports the following operations: 

COLOR!(A): Assigns rectangle A a new (unused) color. 

UNCOLOR!(A): Dissociates rectangle A from others of its color. If A is the last of its 
color, the color is destroyed (made available for reuse). 

COLOR(A): Returns A's color. 

REPRESENTATIVE(q): Returns any rectangle having color q E Q. If there is no such 
rectangle, return NIL. 

RECOLOR!( q1 , q2 ): Takes all rectangles of color q1 and color q2 and makes them all either 
color q1 or color q2 • The other color is destroyed. 

2The letter Q is mnemonic for "qonnected qomponents" a.nd "qolor." The first letters of the alpha.bet 
are reserved for rectangles. 
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We implement the component set Q using a vector in which each color is represented 
as an index in the vector. Each slot in the vector contains a pointer to the first rectangle 
in a doubly linked list of all rectangles of that color, and the number of rectangles in the 
list . The pointers to implement the linked lists can be stored with the actual rectangles. 
Each rectangle also stores the index of its color. If the number field is zero, the color is 
unused, and we then use the pointer field to implement a free list of the unused colors. 
An extra variable is needed to store the head of the free list. 

All operations except RECOLOR! can be implemented in constant time. If we always 
merge the color with the smaller number of rectangles into the one with the larger 
number, then we can do 0( N) recolorings in 0( N lg N) time. There are at most W 
rectangles in the component set Q at any given time so the data structure need only be 
size O(W). 

2 .4 Territory set 

To achieve an O(N lg N) worst case running time for the connected components algo
rithm, we must find a way to maintain the component set Q without looking at every 
intersection. Figure 3 shows the basic idea. The active rectangles B, C , and D have the 
same color, say 1. The new rectangle E intersects all three of these rectangles, which 
tells us that rectangle E should be given the same color as rectangle B, all rectangles 
with B's color should be merged with rectangles of rectangle C's color, etc. We would 
get the same result, however, if we just noticed that rectangle E intersects some rectan
gle( s ), all of color 1. That is, instead of asking, "What other rectangles does rectangle 
E intersect?" we would like to be able to ask, "Is there a color q in the component set 
Q such that rectangle E intersects at least one rectangle colored q?" We now describe a 
new data structure called a territory set T that allows us to answer this question using 
small space and time. 

The territory set Tis a refinement of the illuminator data structure used by Guibas 
and Saxe in their algorithm for the connected components problem [4]. The territory set 
is essentially a colored partition { ti} of the scanline. Conceptually, each territory has 
two fields: its interval and its color. The interval is a closed interval in y. We implement 
the color indirectly by associating with each territory a representative rectangle which is 
in the territory, and therefore has the same color as the territory. Each territory t in T 
obeys the following rules: 

1. Each active rectangle is covered by exactly one territory. 

2. Each territory covers at least one active rectangle. To ensure that the territory set 
is never empty, we assume there is a dummy rectangle above all rectangles in the 
data base that extends the full length of the design. 

3. All active rectangles covered by territory t have the same color as t. 
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Figure 3: The inefficiencies that can arise from intersection-based connectivity algo
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E enters we would like to know it should have the same color as each rectangle colored 
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Figure 4: The territory set (right) for a collection of rectangles (left) is essentially a col
ored partition of the scanline. Colors of active rectangles and territories are represented 
as circled numbers. 

For example, in Figure 4 no rectangles go across the boundary between territories t 1 

and t 2 • Each territory covers at least one active rectangle. Each active rectangle's color 
corresponds to the color of the territory that covers it. Here, rectangles A, E and G and 
territory t 1 that covers them are colored 17. Rectangles C and F and territory t2 are 
colored 42. 

The territory set T supports the following operations: 

T-INSERT!(t): Add territory t to the territory set. 

T-DELETE!(t): Delete territory t from the territory set. 

LOCATE(y): Return the territory that includes they-coordinate y. If the point y falls 
on the boundary between two territories, the lower of the two is returned. 

NEXT( t): Return the territory immediately above territory t . 
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COLOR(t): Return the color of territory t. This operation involves getting t's represen
tative rectangle and getting the color from the rectangle. 

The territory set T can be implemented as a standard height-balanced tree using 
O(W) space. The operations T-INSERT!, T-DELETE!, LOCATE, and NEXT can each be 
implemented in O(lg W) = O(lg N) time. As a simple optimization, the territories can 
be linked in order, which allows NEXT to run in constant time. 

3 The Connecte d Compone nts Algorithm 

This section presents the connected components algorithm which operates in two phases. 
The first phase is a forward scan over the rectangles during which connectivity informa
tion is prepared that is written out to an intermediate sequential file on disk. The second 
phase is a backward scan over the intermediate file during which component labels are 
assigned to each rectangle. 

The algorithm assumes that the events, which correspond to the scanline crossing 
left or right edges of rectangles, are sorted by x-coordinate. If not, the.events must first 
be sorted, which takes O(N lg N) time in the worst case. (As a practical matter, we 
can often do much better because many VLSI databases already keep rectangles sorted 
by left edge.) Given a file sorted by left edge alone, we can sort it into start and end 
events in O(N lg N) time and O(W) space using an idea due to Szymanski and Van Wyk 
[9]. The idea is to keep a priority queue, such as a heap [l , pp. 147-152] , in primary 
memory. During the operation of the algorithm, the priority queue holds at most W + 1 
rectangles sorted by right endpoint. When a new rectangle is read in, its right endpoint 
is stored in the priority queue. Then the priority queue is emptied of all rectangles with 
right endpoint smaller than the left endpoint of the new rectangle. For each of these 
rectangles, the right endpoint is written out in order as an end event. Then the left 
endpoint of the new rectangle is written out as a start event. Thus, without loss of 
generality, we can assume the start and end events are presorted. 

There are other, more mundane data management issues to be faced in the course of 
programming the connected components algorithm described here. Most of these can be 
resolved using simple pointer associations, but the more complicated will be addressed 
directly in the sections to come. 

3.1 The forward scan 

The data structures used by the forward scan contain only those rectangles that are 
active, which ensures that the O(W) space bound is met, but which also leads to problems 
maintaining connectivity across the entire database. When we see an end event for a 
rectangle A signaling that A is to become inactive, we are not prepared to give A a final 
label, yet we must purge A from our internal data structures. For example, at the time 
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Figure 5: Each rectangle A picks a friend that is active at the time A leaves and is known 
to be in the same connected component. 

rectangles A and C in Figure 5 become inactive, there is no way to guess that they are 
in the same connected component. \Vere we to give them final labels now, we would 
incorrectly give them distinct labels. 

Since we cannot give each rectangle A a final label in the forward scan, we give it a 
friend. Rectangle A's friend is another rectangle which (1) is active at the time rectangle 
A leaves, and (2) is known to be in the same connected component as rectangle A. If 
there is no such rectangle at the time rectangle A leaves, then its friend is NIL. Figure 5 
shows a possible assignment of friends. 

At the end of the forward pass, each connected component is linked together by a 
tree of friend arrows. From this friend information, the back pass can construct final 
component labels. The idea is that each friend arrow points from left to right if the 
source and destination rectangles are sorted by right edge, or equivalently, by time of 
exit . Thus, a component label assigned to the root of the tree will propagate right to 
left through the tree during the back scan. 

The start event 

Processing a start event for rectangle A during the forward scan involves four steps: 
setting up, handling top and bottom boundary conditions, recoloring affected rectangles, 
and cleaning up. 

Set up. Figure 6 shows the important y-coordinates and intervals for the general 
case. The bottom and top coordinates of A 's interval are designated Ybot and Ytop• The 
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Figure 6: The territory set is shown on the left and the rectangles on the right for the 
case when k > l. The colors of territories t 1, t 2 , ... , tk are a first guess at the colors to 
merge because of rectangle A 's entrance. 

endpoints of the k territories in the territory set T that A overlaps are y0 , y1 , .•. , Yk· The 
k territories are gathered into a list L by first using LOCATEto find the territory that 
includes Ybot, and then using NEXT to gather the remaining territories that overlap A's 
interval [Ybot, Ytoi,]- All the territories in L are then removed from T, which leaves a gap 
in T from Yo to Yk• This gap will be repaired in subsequent steps. 

Intuitively, the colors of the territories in list L represent our first guess at which 
colors must be merged due to the entrance of rectangle A. Since each territory contains 
at least one active rectangle, the territories in the middle of the list will necessarily 
contain a rectangle that intersects A. 

Handle boundary conditions. Rectangle A extends only partially into the top and 
bottom territories, so we must explicitly reference the scan set S to determine whether 
there are active rectangles in these two territories that intersect A. We describe only 
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the handling of the top boundary condition since the bottom boundary condition is 
symmetric. Also, for simplicity, we shall consider the special case k = l (Figure 7) after 
we deal with the general case k 2: 2 (Figure 6). 

Handling the top boundary condition fork 2: 2 involves determining whether the top 
territory should be kept in list L. The first case is when there is some active rectangle B 
that intersects the interval [Yk-i, Ytop] . The interval of the rectangle B falls entirely within 
the top territory, so it follows that A, B, and every other active rectangle covered by the 
top territory must have the same color by the time we finish processing the entrance of 
A. Therefore, we leave the top territory in the list L, and nothing is to be done. 

Otherwise, no active rectangle intersects A in the top territory, and the top territory 
is removed from L. Since k is at least 2, there must be an active rectangle in the interval 
[Ytop, Yk] because the top territory must contain at least one rectangle, and the interval 
[Yk- i, Ytop] contains none. Therefore, we can return the top territory to the territory set 
with the shortened interval [Ytop, Yk] without violating any of the properties a territory 
must have. In other words, chopping off empty space does not hurt. 

We now discuss the processing of the top boundary condition for the special case 
when k = l (Figure 7), since once again, the bottom boundary condition is symmetric. 
If rectangle A intersects some active rectangle, then we are done. If rectangle A does not 
intersect any active rectangle, it is possible that the rectangle that justified the existence 
of the single territory in list L is below rectangle A, instead of above. In this case, we 
must explicitly query the scan set S with the interval [Ytop, y1 ] to determine whether 
there is an active rectangle to justify putting a territory over the interval. If there is 
an active rectangle, we must enter a new territory into T with the shortened interval 
[Ytop, Y1] using the color of the old territory. 

Recolor. Now, the colors of the territories in list Lare exactly the colors that must be 
merged because of rectangle A's entrance. We first color rectangle A with a new color. We 
then merge A's color with the color of each territory in L. The colors are automatically 
garbage collected by the component set Q. Because of our pointer implementation of 
territory colors, no territory is ever colored with a garbage-collected color. 

Clean up. We finish the servicing of rectangle A's entrance by repairing the territory 
set T and making A active. The gap left after handling boundary conditions becomes 
the interval of a new territory with the color of rectangle A. We insert Rectangle A into 
the rectangle set R and the scan set S. Since the left side of a rectangle indicates an 
end event in the back scan, we enter an end event for rectangle A in the intermediate 
file that will serve as input to the back scan. 

The end event 

Servicing an end event for rectangle A requires us first to find the associated rectangle 
object for A in the rectangle set R. Then, we must output a start event for A in the 
back pass and fix up the internal data structures. We accomplish this processing in three 

12 



• Scan line 

Y1 :/ 
• • 
• 
• B • 
• 
• 
• 

It 

u A 
1 • 

u 

• 
• 

C • 
• 
• Yo • 
• 

Figure 7: The territory set for the case when k = 1. Since rectangle A falls in only one 
territory, the intervals above and below rectangle A must be checked explicitly. 
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steps: making rectangle A inactive, associating A with a friend, and fixing the territory 
set T. 

Make A inactive. Let q be rectangle A's color before processing the end event. We 
uncolor rectangle A, and remove it from the scan set S and the rectangle set R. 

Find a friend. We query the component set Q for a representative of color q and 
associate this representative rectangle (possibly NIL) with rectangle A so that A can now 
tell its friend when asked. We write out this information as a start event for rectangle A 
for use in the back scan. We shall say that rectangles that receive NIL as a friend have 
no friend or are friendless. 

Fix the territory set. We pick any point on rectangle A's interval, and use LOCATEto 
find the one territory t that covers rectangle A. We then find a rectangle B in the 
scan set S that intersects t's interval to see if there is some active rectangle to justify 
t's existence. (Recall that a territory must cover at least one active rectangle.) If no 
rectangle exists, then A is the last active rectangle in t's interval, and territory t can be 
eliminated by extending the interval of the next territory above t to include t's interval. 

If the existence of territory t is justified by some active rectangle B , and A is serving 
as the representative for territory t, then we make rectangle B the representative of 
territory t. 

3.2 The back scan 

The second phase, the back scan, passes backwards through the intermediate file of 
rectangle-friend information created in the forward scan, and produces a final file of 
rectangle-label pairs which will be sorted by left edge. During this right-to-left scan, 
each rectangle receives its final labeling from its friend. The back scan uses only one 
data structure, the rectangle set R. It also requires a counter initialized to 0. 

During the back scan, the rectangle set R holds all active rectangles, and each active 
rectangle knows its final component label. Labels are assigned sequentially during the 
back scan, and the counter holds the value of the next label to be assigned. 

The start event 

The first step in servicing a start event for rectangle A is to assign a final label to A. If 
A has no friend, it is the rightmost rectangle in its component, and so a new label must 
be assigned from the counter. We store this label into A and increment the counter. 

Otherwise, find rectangle A's friend in the rectangle set R, and give A the same 
label as its friend. Rectangle A 's friend must be active since A and its friend were 
simultaneously active in the forward scan. Rectangle A left first in the forward scan so it 
must enter after its friend in the back scan. Finally, we add rectangle A to the rectangle 
set R. 
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The end event 

Processing an end event for a rectangle A consists of simply removing A from the rect
angle set R and writing out rectangle A with its label to a final file. No rectangle that 
subsequently enters has A as a friend because the two rectangles are not simultaneously 
active. Thus, no other rectangle will need to get a label from A, and hence, it is safe to 
remove A. The final file is sorted by left edge from right to left. Reversing the file leaves 
it sorted left to right by left edge as was the original input file. 

4 Proof of corre ctness 

This section shows that two rectangles get the same label if and only if they are in the 
same connected component. 

( =}) We first show that if two rectangles are given the same label, then they are in the 
same connected component. We prove this by induction on the number of rectangles 
given the same label. Suppose rectangle A is the first rectangle given label l. Then 
at the time we process rectangle A's start event during the back scan, rectangle A is 
friendless and the value of the counter isl. If rectangle A had a friend, it would be given 
the same label as its friend contradicting our assumption that rectangle A was the first 
to receive its label. The counter is incremented after rectangle A is given the label l 
so no friendless rectangles to enter after A get the label l. By the same argument, no 
friendless rectangles to enter before rectangle A are given the label l. 

Assume that at some point in the backscan, k rectangles have been given label land 
all k are in the same connected component. Some j $ k of these rectangles are active 
( i. e. are in the rectangle set R ). Now the start event for some rectangle B causes B to 
get label/. For this to happen, rectangle B must have a friend rectangle C which is one 
of the j active rectangles with label l. Since rectangle C is rectangle B 's friend, both 
rectangles B and C must have had the same color in the component set Q at the time 
rectangle B left in the forward scan. 

To finish the argument, we show that two rectangles simultaneously having the same 
color in the component set Qare in the same connected component. If this is true, then 
rectangles B and C are in the same connected component and therefore by transitivity 
rectangle Bis in the same connected component as the other k rectangles given label l. 

We show that two rectangles sharing a color in the component set Q must be in the 
same connected component by induction on the number of rectangles with that color. 
A new color is introduced into the component set Q only when a COLOR! operation 
is performed upon a rectangle A during its start event. Hence each color begins with 
only one member rectangle. Other rectangles join a color only through the RECOLOR! 
operations performed during the processing of the start event for a rectangle. 

Assume that before processing the start event for a rectangle A, all rectangles with 
the same color in the component set Q are in the same connected component. After 
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handling the boundary conditions, there are m 2:: 0 territories in the list L. These 
territories have n ~ m distinct colors qi, q2 , ••. , qn which are all merged into one final 
color q. The colors qi, q2 , ••• qn are exactly those colors for which at least one member 
rectangle intersects rectangle A. Each pair of rectangles in the final color q is connected 
by a path of intersecting rectangles. If they shared a color qi in the component set Q 
before rectangle A entered, then by assumption there is a path connecting them that 
includes only rectangles originally colored qi. Otherwise, there is a path between the two 
rectangles that includes rectangle A. Therefore all rectangles now colored q are in the 
same connected component. 

( ~) We now prove that if two rectangles are in the same connected component, then 
they get the same label. It suffices to show that if two rectangles intersect, they get the 
same label because then all rectangles in the same connected component get the same 
label by transitivity. The proof has two parts. First, we argue that if two rectangles 
intersect, then during the forward scan they have the same color in the component set 
Q while they are both active. Next we show that if two rectangles are simultaneously 
active and have the same color in the component set Q, then they get the same label. 

To show that if two rectangles A and B intersect , they have the same color in the 
component set Q while they are both active, assume without loss of generality that 
rectangle B enters after rectangle A. Let t be the territory in the territory set T that 
covers rectangle A at the time rectangle B enters. Since rectangles A and B intersect, 
territory t must at least partially cover rectangle B so it is gathered into the list L in 
the first step of the processing of the start event for rectangle B. The presence of the 
active rectangle A intersecting rectangle B guarantees that after the boundary condition 
checks, territory t is still in the list L. Therefore after the merging, rectangles A and 
B are the same color in the component set Q. From that point on they always move 
together in any recolorings, so they always have the same color until one of them leaves. 

To show that if two rectangles are in the same color in the component set Q while they 
are active, then they get the same final label, suppose a rectangle A is about to leave, 
and consider the set of rectangles that have the same color as rectangle A. Rectangle A 
chooses one as a friend (shown by an arrow in Figure 8). Later, other rectangles may 
join this set through merges. As each rectangle in the set leaves, it chooses a friend from 
among those left in the set. Eventually an exiting rectangle finds itself alone, and it 
exits without a friend. For example, Figure 8 illustrates the sequence of friend choices 
for one set of rectangles taken from the example in Figure 5. During the forward scan 
each of these rectangles simultaneously shares a color in the component set Q with at 
least one other rectangle in the set. For example rectangles A and B share a component 
immediately after rectangle B enters and rectangles B, E, and F share a component 
immediately after rectangle F enters. 

We can view the illustration in Figure 8 as an acyclic graph with the rectangles as 
vertices and the friend relation arrows as directed edges. Each vertex has outdegree one 
except for a single sink, the friendless rectangle H. If we start at any vertex in the 
graph and follow the edges, we always end up at the sink. We know from our previous 
argument that a rectangle gets the same label as its friend. That friend in turn gets 
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A C E B F H NIL 

Increasing t ime of exit on forward scan -

Figure 8: An example of a component t aken from Figure 5. The arrows represent t he 
friend relation. Each rectangle shares a component color with at least one other rectangle 
in this set during the forward scan. During the back scan, these rectangles enter from 
right to left . Rectangle H receives a new label, and all the other rectangles receive their 
labels indirectly from rectangle H. 

t he same label as its friend, . . . ( down the friend links) ... , who gets the same label as 
the sink H. By t ransitivity any two rectangles that are in the same component of the 
component set Q while act ive get the same final label. 

5 Analysis 

This section shows that the worst-case running time of the connected components algo
rithm is O(N lg N), the amount of primary memory required is O(W ), and the number 
of transfers between primary and secondary memory is O(N). We have already seen that 
each data structure requires only O(W ) primary memory space, and it can be verified 
that the number of disk transfers is O(N ). Thus, we must demonstrate that the running 
t ime of the algorithm is O(N lg N). 

The rectangle set Rand the scan set S each contribute only O(N lg N) to the overall 
time. The rectangle set R is used in both the forward scan and the back scan. It 
contributes only O(N lgN) to the time in each phase since it performs at most two 
operations, each requiring O(lg N) t ime, on each of the O(N ) start and end events. The 
scan set S performs one insertion or deletion and at most four S- FIND operations for 
each start or end event. 

Operations on the territory set T contribute 0 ( N lg N ) time as well. During the 
servicing of an end event , the territory set T performs at most one LOCATE, two 
T -DELETE!'s , and one T-INSERT!, if we regard the modification of a territory inter
val as a delet ion followed by an insertion. For a start event, only one LOCATE and at 
most three T-INSERT!'s are performed. The number of calls to NEXT, T-DELETE!, and 
COLOR directly depends on the size of the list L , however. 

We shall show that each operation is performed at most Q( N) times. The operations 
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that are performed a constant number of times for a given event are executed 0( N) 
times overall. The other operations are called once for each time a territory appears 
in a list L during a start event. Thus, showing that the sum total of the sizes of L 
throughout the entire forward pass is 0(N) will produce our desired bound. The total 
number of insertions into T is at most 4N, which therefore bounds the total number of 
deletions. Moreover, each of these territories can participate in a list L only once since 
it is deleted from T at that time and replaced by the consolidated territory or a new 
boundary territory. Hence, the sum total of the lengths of Lis O(N), which also bounds 
the number of times any operation is performed. Since each operation costs O(lg N) 
time, the total work performed on the territory set is 0( N lg N). 

It remains to analyze the component set Q. Each start event causes one COLOR! 
operation, and each end event causes one UNCOLOR! and REPRESENTATIVE operation. 
Using the same arguments as above for the territory set, at most 0(N) RECOLOR! 
and COLOR operations are performed throughout the whole forward scan. Thus, its 
contribution to the overall running time of the connected components algorithm is also 
O(NlgN). 

6 Conclusions 

This section presents the important extension of the connected components algorithm to 
multiple layers. We also discuss some alternative implementations of the data structures 
which may be better suited to a practical implementation. 

The connected components problem of rectangles in the plane presented in this paper 
is a simplification of the problem faced in computer-aided design of VLSI. Computing 
the electrically equivalent rectangles in multiple planar layers of a VLSI design is not 
much more difficult than the one-layer problem discussed in this paper, even though 
contact cuts can allow components to snake up and down among layers. 

To find the connected components of rectangles on multiple layers, we simply run 
a copy of the basic, one-layer, connected components algorithm on each layer. In the 
forward scan, each layer is given its own scan set, rectangle set, and territory set. The 
component set, however, is global to the entire computation. Each contact is represented 
explicitly on the layers it intersects. In the back scan, both the counter and the rectangle 
set are global. No further changes are necessary. 

Some of the data structures necessary for the connected components algorithm can 
be implemented more practically than with the asymptotically efficient height-balanced 
trees presented in the body of the paper. The rectangle set R, for example, can be 
implemented by hashing on the rectangle identification number, which would lead to 
good average case behavior. At the cost of a bit more complication, the component set 
Q can be implemented with a union-find structure that allows 0(N) merges in almost 
linear time [10]. These modifications improve the expected-time performance of some of 
the bookkeeping operations independent of the statistical distribution of rectangles. 
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With some assumptions about the distribution of rectangles, the scan set Sand the 
territory set T can also be implemented more efficiently using bins, as has been done 
for other VLSI algorithms [2]. Each bin represents a fixed portion of the scanline and 
contains a pointer to the list of objects that overlap that bin. A desirable bin size 
can be chosen based on statistical information about the VLSI design. The worst-case 
performance of the algorithm may be diminished, however, because long, tall rectangles 
are split across many bins, and consequently, the practical difference between this binning 
approach and Szymanski and Van Wyk's approach [9] may be negligible. 
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