
LABORATORY FOR tt" MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-322

Efficient Multichip
Partial Concentrator Switches

Thomas H. Cormen

February 1987

54 5 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

Efficient Multichip Partial Concentrator Switches

Thomas H. Cormen

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

February, 1987

Abstract

Due· to chip area and pin count constraints, large
concentrator switches sometimes must be partitioned
among several chips. This paper presents designs
for two multichip partial concentrator switches, both
of which follow from a lemma showing that an t:­

nearsorter is also an (n, m, 1 - t:/m) partial concen­
trator.

The first switch, based on the Revsort algorithm, is
an (n, m, 1 - O(n314/m)) partial concentrator switch
with at most 2y'n + f(lg n)/21 data pins per chip,
0(.Jn) chips, and volume 0(n312). A message incurs
3 lg n+O(l) gate delays in passing through the switch.

The second switch, based on Columnsort, is an
(n, m , 1 - O(n2- 2.8 /m)) partial concentrator switch
with 0(n.B) data pins per chip, 0(n1- .8) chips, and
volume 0(n1+.8), for any 1/2 ::; /3 ::; l. A message
incurs 4/3lgn + 0(1) gate delays.

1 Introduction

The problem of concentrating relatively few signals
on many input lines onto a lesser number of output
lines must be solved in many kinds of communication
networks. In many parallel computing systems, in­
formation is packaged into messages which are routed
among the processors. The switches that route these
messages sometimes require more chip area or input
and output wires than a single chip can supply. This
paper presents two designs for fast multichip partial
concentrator switches suitable for routing bit-serial
messages in a parallel supercomputer. The key lemma
of this paper may be used to justify other partial con­
centrator designs.

This research was supported in part by the Defense Ad­
vanced Research Projects Agency under Contract N00014-
80-C-0622 and in part by a National Science Foundation
Fellowship.

1

An n -by-m perfect concentrator switch has n in­
put wires X1, X 2 , •.. , Xn and m ::; n output wires
Y1, Y2 , ... , Ym. The switch can establish m disjoint
electrical paths from any set of m input wires to the
m output wires. A perfect concentrator switch al­
ways routes as many messages as possible. Specifi­
cally, whenever k out of the n input wires of an n-by­
m perfect concentrator switch carry messages, one of
the following is true:

• If k ::; m, then an electrical path is established
from each input wire that contains a message to
an output wire.

• If k > m, then each output wire has an electrical
path established from an input wire that contains
a message.

When k > m, some messages cannot be successfully
routed, in which case we say the switch is congested.
Typical ways of handling unsuccessfully routed mes­
sages in a routing network are to buffer them, to mis­
route them, or to simply drop them and rely on a
higher-level acknowledgment protocol to detect this
situation and resend them. The switch designs in this
paper are compatible with any of these congestion con­
trol methods.

One way to create a perfect concentrator switch is
with a hyperconcentrator switch. An n-by-n hyper­
concentrator switch has n input wires X1, X2, ... , Xn
and n output wires Y1 , Y2, ... , Yn- The switch can
establish disjoint electrical paths from any set of k in­
put wires, for any 1 ::; k ::; n, to the first k output
wires Y1 , Y2 , ... , Yk- In other words, we route the k
messages to the first k output wires. We can make
any n-by-m perfect concentrator switch from an n­
by-n hyperconcentrator switch by simply choosing the
first m output wires of the hyperconcentrator switch,
Y1, Y2, ... , Ym, as the m output wires of the perfect
concentrator switch.

An efficient n-by-n hyperconcentrator switch design
is given in [1) and [2). This switch has a highly regu­
lar layout in both ratioed nMOS and domino CMOS
technologies, and a signal incurs exactly 2 lg n gate
delays through the switch.i This switch uses 0(n2)

components and has area 0 (n2).

Partitioning this hyperconcentrator switch among
multiple chips with p pins each requires n((n/p)2)

chips, since each p-pin chip has area O(p2) and there
are 0(n2) components to partition. We may need to
partition the switch for two reasons:

1. The 0(n2) area may exceed the available chip
area.

2. If the switch is to be packaged by itself on a chip,
it may require more input and output pins than
are provided by the packaging technology.

A different hyperconcentrator switch, comprised of a
parallel prefix circuit and a butterfly network (1), can
be built in volume 0(n312) with O(nlgn) chips and
as few as four data pins per chip, but this switch is
not combinational. Although its sequential control
is not very complex, it is not as simple as that of a
combinational circuit.

Partial concentrator switches, as we shall see in Sec­
tions 4 and 5, can be combinational with relatively
low gate delays. Yet, given chips with p pins, we can
partition n-input partial concentrator switches using
only 0(n/p) chips. An (n, m, a) partial concentrator
switch has n input wires Xi, X2, ... , Xn, m $ n out­
put wires Yi, Y2, ... , Ym, and a fraction O < a $ 1
such that disjoint electrical paths may be established
from any set of k input wires, for any 1 ::; k $ am, to
k output wires.

A lightly loaded partial concent rator switch is sim­
ilar to a perfect concentrator switch. If there are k
messages entering an (n, m , a) partial concentrator
switch, one of the following is true:

• If k $ am, then an electrical path is established
from each input wire that contains a message to
an output wire.

• If k > am, then at least am electrical paths are
established from input wires containing messages
to output wires.

We call the fraction a the load ratio. If a partial con­
centrator switch is lightly loaded, i.e., the number of
messages entering is at most am, then all the mes­
sages are routed to output wires.

1 We use the notation lg n to denote log2 n .

2

An (n/a, m/a, a) partial concentrator switch can
be used anywhere an n-by-m perfect concentrator
switch is required. Consider a set of k $ m mes­
sages to be routed through an n-by-m perfect con­
centrator switch. For the (n/a, m/a, a) partial con­
centrator switch, we have that k $ m = a· (m/a),
and thus all k messages are routed to output wires.
If there are instead k > m messages to be routed
through the perfect concentrator switch, we have that
k > m =a• (m/a) for the (n/a, m/a, a) partial con­
centrator switch, and thus m output wires carry mes­
sages. In either case, the partial concentrator switch
performs the same function as the perfect concentra­
tor switch, at the cost of a 1/a-factor increase in the
number of input and output wires.

In this paper, we show a connection between near­
sorting and partial concentration. We then use this
relationship to design two efficient multichip partial
concentrator switches, both of which use the hyper­
concentrator switch of (1) and [2) as a subcircuit on a
single chip.

The remainder of this paper is organized as fol­
lows. Section 2 covers some basic terminology and
describes the message format upon which the switches
are based. Section 3 defines nearsorting and shows the
relationship between nearsorting and partial concen­
tration. Section 4 presents a design for a partial con­
centrator switch based on the Revsort algorithm for
sorting on a mesh; Section 5 does the same, but based
on the Columnsort algorithm for sorting on a mesh.
Finally, Section 6 contains further remarks about mul­
tichip concentrator switches.

2 Preliminaries

In this section, we define some basic terminology and
mathematical conventions and present the message
format assumed by the switch designs.

Bit and boolean values are denoted by "l " and "O"
for TRUE and FALSE respectively.

We assume that the switches route bit-serial mes­
sages. Each message is formed by a stream of bits
arriving at a wire at the rate of one bit per clock cy­
cle. The first bit of each message that arrives at an
input wire is the valid bit, indicating whether subse­
quent bits arriving on that wire form a valid message
or an invalid message. The bit sequence following a
valid bit of 1 forms a valid message, which we would
like to be routed from an input wire to an output wire
of the switch. From there it may pass through the
remainder of the routing network. A valid bit of 0
indicates an invalid message, which does not need to
be routed to an output wire.

The valid bits all arrive at the input wires of a
switch during the same clock cycle, which we call
setup. An external control line signals setup. Mes­
sage bits entering through input wires at cycles after
setup follow the electrical paths in the switch that are
established during setup.

We shall adopt some notational convent ions to ease
the exposition in the remainder of this paper. Upper­
case symbols denote wire names and lowercase sym­
bols denote integer values. We shall also use upper­
case symbols to denote bit values on the wires they
name when the usage is unambiguous. Wire names
will usually be subscripted.

A sequence of values is sorted if it is in nonincreas­
ing order. The valid bits output by an n-by-n hyper­
concentrator switch are thus sorted, since if there are
k valid messages, we have

Y1 ' Y2 , ... , yk = 1

Yk+l , Yk+2, ... , Yn = 0

during setup.
Concentrators were originally presented as graphs

in, for example, (4,5,8) . The term "hyperconcentra­
tor" is due to Valiant. Vertex-disjoint paths from des­
ignated input nodes to designated output nodes are
the concentrator graph counterpart of the combina­
tional routing paths established during setup in the
concentrator switches of this paper.

3 N earsorting and Partial Concentra­
tion

In this section, we define €-nearsorting and show its
relationship to partial concentration. The key lemma
proven in this section is used in the next two sections
to justify partial concentrator switch constructions.

A sequence of values is €-nearsorted if each element
in the sequence is within € positions of where it be­
longs in the fully sorted sequence. For example, the
sequence 5, 3, 6, 1, 4, 2 is 2-nearsorted since each ele­
ment is at most two places away from its correct po­
sition in the fully sorted sequence 6, 5, 4, 3, 2, 1. The
value € need not be a constant; we will usually let€ be
a function of the size of the sequence. A fully sorted
sequence is also O-nearsorted.

Since we are only interested in nearsorting valid
bits, for the remainder of this paper we shall be con­
cerned only with inputs whose value is either O or
1. We say that a sequence of values is clean if they
all have the same value; otherwise the sequence is
dirty. The following lemma describes an t-nearsorted
sequence of O's and l's.

3

111111111 1 000000000000 1

~
k n-k
~

11111 § 11 oo 10 ~ 00000000 1

~
k - £ £ £ n-k- £

Figure 1: A fully sorted sequence of k l's and n - k
O's and an E-nearsorted sequence of the same values. The
E-nearsorted sequence consists of a clean sequence of at
least k - E 1 's followed by a dirty sequence of at most 2E

bits followed by a clean sequence of at least n - k - E O's.

Lemma 1 A sequence of n bits, containing k 1 's and
n - k O's, is €-nearsorted if and only if it consists of
a clean sequence of at least k - € 1 's followed by a
dirty sequence of at most 2€ bits followed by a clean
sequence of at least n - k - € O's.

Proof (⇒) As shown in Figure 1, a fully sorted se­
quence of k 1 's and n - k O's is simply k 1 's followed
by n - k O's. In an €-nearsorted sequence of the same
values, each 1 appears within the first k + € positions,
and each O appears within the last n - k + e positions.
The only dirty sequence within the e-nearsorted se­
quence is therefore centered at the kth position and
extends e positions to either side. The lemma then
follows.

(¢=) Again referring to Figure 1, each 1 is within
the first k + € positions, and each O is within the last
n - k + t positions. The sequence is thus e-nearsorted.

□
The following lemma is the key lemma that relates

e-nearsorting to partial concentration.

Lemma 2 Let P be a switch with n inputs
X1, X2, ... , Xn and n outputs Y1, Y2, ... , Yn, and sup­
pose that P e -nearsorts valid bits. Then by restricting
the outputs of P to Yi , Y2, ... , Ym, for any m :S n,
P is an (n, m, a) partial concentrator switch, where
a = 1-e/m.

Proof Consider any input to switch P containing k
l 's and n-k O's. We have am = (1-e/m)m = m-e,
and there are two cases.

Case 1: k :S am = m - €. We have m 2:: k + e.
Since P is an e-nearsorter, each 1 appears within the
outputs {Y1,Y2,••·,Yk+e} ~ {Y1,Y2, ... , Ym}- Thus,
each 1 is routed to an output of the partial concentra­
tor switch.

11111ocnof¥oaj1111~
~ \ ~
mpositions, k k- m+ £

m- £ l's

Figure 2 : The output of an (n, m, 1- e/m) partial concen­
trator switch that is not e-nearsorted. This switch routes
m - e out of k > m - e 1 's to the first m outputs, but the
remaining k - m + e l's are routed to the last k - m + e
out of then outputs. If we have k + e < n - (k - m + e),
or equivalently, k + e < (n + m)/2, then the last k - m + e
l 's are not within e positions of output Yk , and thus the
output sequence is not e-nearsorted.

Case 2: k > am = m - e. We have m <
k + E. Again , each 1 appears within the outputs
{Y1, Y2, .. . , Yk+c}. From Lemma 1, we know that
at most E of the outputs {Y1, Y2, ... , Yk+c} carry O's,
so at most e of the outputs {Y1,Y2, . .. , Ym} carry
O's. Thus, at least m - E = am of the outputs
{Y1, Y2, ... , Y m} carry 1 's.

We conclude that by restricting the outputs of P to
Y1, Y2, . .. , Ym, Pis an (n, m, 1 - ,;/m) partial concen­
trator switch. D

The converse of Lemma 2 is not necessarily true.
As shown in Figure 2, if an (n, m, 1 - e/m) partial
concentrator switch routes m - e out of k > am =
m - e l's to the first m outputs, the remaining k - m+e
l 's may be routed to the last k - m + E out of the n
outputs. In this case, if there are more than ,; outputs
between Yk and Yn - (k-m+c) , then the output sequence
is not e-nearsorted.

4 A Revsort-Based P artial Concen­
trator Switch

In this section, we present a design for an (n, m, a)
partial concentrator switch that uses 0(v'n) chips
with only 0(v'n) data pins each. The basic building
block is the hyperconcentrator switch of [l] and [2]
placed on a chip. Each message incurs 3 lgn + 0(1)
gate delays in passing through the swit ch. The load
ratio is a= l-O(n314 /m). Mostoftheresultsofthis
section originally appeared in [l].

This partial concentrator switch can be imple­
mented in

• two dimensions with 0(n2) area and one chip
type with 2y"n data pins, or

• three dimensions with 0(n312) volume, two chip

4

types with at most 2fa+f(lgn)/2l pins, and two
board types.

The design is based on Schnorr and Shamir 's
Revsort algorithm for sorting on a mesh [7], which,
although not optimal for sorting on a mesh, is sim­
ple. The idea behind the partial concentrator switch
is to nearsort a fa-by-fa matrix of valid bits. The
m output wires of the switch correspond to the first
m nearsorted matrix entries.

We need some basic definitions. We assume that the
rows and columns of the fa X vn matrix are num­
bered 0, 1, ... , fa - 1 and that fa = 29 for some in­
teger q. We also define, for any integer i, 0 Si< fa,
rev(i) to be the binary number obtained by reversing
the q bits in the binary representation of i , including
the leading zeros. For example, when fa = 16, rev(3)
is 12.

The partial concentrator switch is built from three
stages, each stage containing fa hyperconcentrator
chips. Each fa-by-fa hyperconcentrator chip serves
to fully sort a row or column of valid bits in the un­
derlying matrix. We shall denote by H1,i the ith hy­
perconcentrator chip in stage I , for 1 S IS 3 and OS
i < fa, with input wires Xii o, X1 il, ... , X 1 ; ../n- t
and output wires Yi; o, Yi; 1, .'.'. , Yi1,.' •=n- 1· ''

I I I I t 1VU

The general idea of the construction of the partial
concentrator switch is as follows. Each stage 1 chip
corresponds to a column of the matrix, so the stage 1
chips fully sort the valid bits in each column. The
input and output wires X 1,;,; and Y1,; ,; represent the
value of the matrix element at row i and column j
before and after sorting.

The wiring between stages 1 and 2 is effectively a
matrix transposition, accomplished by connecting the
output wire Y1,; ,; to the input wire X2,i,j for OS i, j <
fa. Each stage 2 chip then corresponds to a row of
the matriJc, so the stage 2 chips fully sort the valid
bits in each row. The input and output wires X2 ,;,;

and Y2 ,;,; represent the value of the matrix element at
row i and column j before and after sorting.

The wiring between stages 2 and 3 is the compo­
si tion of two matrix permutations. We first cycli­
cally rotate row i by rev(i) places to the right , for
0 S i < fa. That is, the matrix element in row i
and column j , for O S i , j < fa, is moved to row i
and column (rev(i) + j) mod fa. The matrix is then
transposed. Each stage 3 chip then corresponds to a
column of the matrix, so the stage 3 chips fully sort the
valid bits in each column. The two permutations are
accomplished in one wiring step by connecting the out-

put wire Y2,i,j to the input wire x3,(rev(i)+j)mod..,fn,i ,
for O S i , j < fa.

The output wires of the partial concentrator switch
are the first m output wires of the matrix in row-major
order, or Y3,j,i for O $ i < Lm/foJ and O $ j < fo
or i = Lm/foJ and O $ j < m mod fo.

Like the hyperconcentrator chips from which it is
built, the partial concentrator switch is a combina­
tional circuit. The routing paths are established by
the valid bits during setup, and subsequent bits fol­
low along these paths.

To see that this construction does indeed yield an
(n, m, 1- O(n314/m)) partial concentrator switch, we
first observe that its operation is equivalent to the
following algorithm, which corresponds to the first l¼
iterations of Revsort: -

Algorithm 1 Given a fox fo matrix with fo =
2q and matrix element values of O or 1, perform the
following four steps:

l. Fully sort the columns.

2. Fully sort the rows.

3. For O $ i < fo, cyclically rotate row i by rev(i)
places to the right, i.e., move the element in col­
umn j to column (rev(i) + j) mod fo,.

4. Fully sort the columns.

The three sorting steps correspond to the three stages
of hyperconcentrator chips in the partial concentra­
tor switch construction. The wiring between stages 1
and 2 corresponds to changing from sorting columns
to sorting rows. The wiring between stages 2 and 3
corresponds to the cyclic rotations within rows and
changing from sorting rows to sorting columns. We
are now ready to prove that this construction works.

Theorem 3 The Revsort-based construction yields
an (n , m, 1- O(n314 /m)) partial concentrator switch.

Proof Both [1) and [7) show that after running Al­
gorithm 1 on a fo x fo matrix with elements val­
ued O or 1, the matrix consists of only clean rows
of l 's at the top, clean rows of O's at the bottom,
and at most 2 r n 1l 4l - 1 dirty rows in the middle.
Since each row contains fo elements, there are at
most O(n3l 4) dirty bits. By Lemma 1, the sequence
is O(n314)-nearsorted, and by Lemma 2, the circuit is
an (n, m, 1-0(n3l4 /m)) partial concentrator switch.

□
Figure 3 shows a two-dimensional layout of the

switch using 3fo hyperconcentrator chips, with 2fo
data pins each. We simply use crossbar wiring to
permute the wires between hyperconcentrator chips

5

Lstage 1

} output wires

} output wires

} output wires

} output wires

> output wires

> output wires

> output wires

>output wires

Figure 3: A two-dimensional layout of the Revsort-based
partial concentrator switch with n = 64 inputs and m = 28
outputs. The electrical paths established by 24 valid
messages are shown with heavy lines. The output wires
are the top four output wires of hyperconcentrator chips
H 3,o, H3,l, H3,2, H3,3 and the top three output wires of hy­
perconcentrator chips H3,4, H 3,5, H3,6, H3,1.

of consecutive stages. The area of this layout is 0(n2)

since the crossbar wiring area is 0(n2) , which dom­
inates the total chip area of 0(n312). (Each stage
of fo-by-fo hyperconcentrator chips consists of fo,
chips, each with area 0 (n), for a total chip area of
0(n3/2).)

A signal incurs 2 flg fol +0(1) gate delays in pass­
ing through each chip. The 2 flg fol gate delays are
from the hyperconcentrator switch within the chip.
The I/0 pad circuitry accounts for the additional 0(1)
delay. The total number of gate delays incurred by a
signal passing through the entire partial concentrator
switch is thus

6flgfol+O(l) < 6lgy'n+O(l)

3lgn+O(l).

As shown in Figure 4, we can package the partial
concentrator switch in three dimensions using volume
0(n3l 2). Each circuit board contains one fo-by-fo,
hyperconcentrator chip, corresponding to one row or

cyclic rotation control

/

inputs ,,. outputs
n111111111(11•

stage 1 stage 2 stage 3

Figure 4: The three-dimensional packaging of the Revsort-based partial concentrator switch for n = 64. Each stack
contains vn circuit boards and corresponds to one stage. Each board contains one ../n-by- ..fo hyperconcentrator chip,
and boards in stack 2 follow the hyperconcentrator chip by a ..fo-bit barrel shifter chip to perform the cyclic rotation of
each row. The lg ../n control bits that determine the shift amount for each barrel shifter are hardwired.

column of the matrix. Each of the three stacks con­
tains -Jn boards and represents one stage. The wires
cross stack junctions in a -Jn x -Jn array, with the
valid bit value of the wire in row i and column j equal
to the value of the matrix element in the same position
at the corresponding step of Algorithm 1.

The matrix transpose between stages 1 and 2 is per­
formed in the natural way, with the ith output wire
from board j in stage 1 going straight across the junc­
tion to be the jth input wire of board i in stage 2.
The wiring permutation between the hyperconcentra­
tor chips of stages 2 and 3 includes the cyclic rotations
of the rows, followed by the transpose. The transpose
is performed in the natural way once again. We per­
form the cyclic rotation by following each stage 2 hy­
perconcentrator chip by a fo,-bit barrel shifter on the
same board. The barrel shifter has -Jn input wires,
-Jn output wires, and flg fol control bits which, in­
terpreted as a binary integer, determine the rotation
amount. We hardwire the control bits in the ith board
to have the value rev(i).

We use only two board types, 3-Jn hyperconcen­
trator chips, and -Jn barrel shifters in building the
switch. All 2-Jn boards in stages 1 and 3 are identi­
cal, as are all -Jn stage 2 boards. The barrel shifters
require 2-Jn + flg fol = 2-Jn + r (lg n)/21 data pins.
The hardwiring of the barrel shifter control bit values
can be performed after the boards have been fabri­
cated.

To see that the volume is 0(n312), we need only
consider the stage 2 stack, which has the most com­
ponents. Each board contains a -Jn-by-fo hypercon-

6

centrator chip and a -Jn-bit barrel shifter, both hav­
ing area 0(n). The whole stack of -Jn boards, and
therefore the entire switch, has volume 0(n312).

Since the barrel shift amounts are hardwired and
never change, the barrel shifters introduce only a con­
stant number of gate delays. A signal therefore incurs
3 lgn + 0(1) gate delays in passing through the three­
dimensional switch.

Letting p, the number of pins per chip, be 0 (fo),
both the two-dimensional and three-dimensional lay­
outs use only 0(n/p) chips.

5 A Columnsort-Based Partial Con­
centrator Switch

In this section, we present a design for an (n, m, a)
partial concentrator switch that uses 0(n1-.B) chips
with 0(n.B) pins each , where 1/2 :5 /3 :5 1. The ba­
sic building block is a 0(n.B)-by-0(n.B) hyperconcen­
trator chip. Each message incurs 4,Blgn + 0(1) gate
delays in passing through the switch. The load ratio
is a, = 1 - 0(n2 - 2.B /m) . This switch can be imple­
mented in two dimensions with area 0(n2) or in three
dimensions with volume 0(n1+.B). Table 1 shows re­
source measures for the Revsort-based switch and the
values of ,B at which the switch of this section matches
them asymptotically.

The design is based on Leighton's Columnsort al­
gorithm [3] for sorting n elements on an r x s mesh,
where n = rs ands evenly divides r. The idea behind
this partial concentrator switch is to (s - 1)2-nearsort
an r x s matrix of valid bits. As with the switch of

Revsort
Columnsort, Columnsort, Columnsort,
/3 = 1/2 /3 = 5/8 /3 = 3/4

pins per chip 0(n''"') 0(n11
"') 0(n~1~) 0 (n"'•)

chip count 0(nlf2) 0(nlf2) 0{n31~) 0 (nlft)
load ratio 1- 0(n31•/m) 1 - O(n/m) 1 - 0(n"1• /m) 1 - O{n11

• /m)
gate delays 3lgn + 0(1) 2lgn+0(1) flgn+O(l) 3 lgn + 0(1)

volume 0{n3'") 0 (n"1") 0 {nl3/8) 0 (n 11•)

Table 1: Resource measures for the Revsort-based partial concentrator switch and the values of /3 at which the Column­
sort-based switch matches them asymptotically.

0 1 2 0 6 12
3 4 5 1 7 13
6 7 8 2 8 14
9 10 11 3 9 15
12 13 14 4 10 16
15 16 17 5 11 17
row-major column-major

Figure 5 : Row-major and column-major positions of ele­
ments in a 6 x 3 matrix.

the previous section, the m output wires of the switch
correspond to the first m matrix entries.

We may identify a matrix entry by either its row
and column position or by its position in row-major
or column-major order. All numbering starts at 0.
Thus, the rows are numbered O, 1, ... , r - 1 and the
columns are numbered 0, 1, ... , s - 1. The row-major
position of the matrix entry in row i and column j
is RM(i, j) = si + j, and its column-major position
is CM(i,j) = rj + i. For example, Figure 5 shows
the row-major and column-major positions of a 6 x 3
matrix. We have that O $ RM(i, j),CM(i,j) <
n. The row and column position corresponding to
the entry in row-major position x is RM- 1(x)
(lx/sJ , x mods).

The partial concentrator switch is built from two
stages, each stage containing s hyperconcentrator
chips. Since the hyperconcentrator chips are combi­
national, so is the partial concentrator switch. Each
r-by-r hyperconcentrator chip corresponds to a col­
umn of the underlying matrix, fully sorting the col­
umn. We shall denote by H1,; the jth hyperconcen­
trator chip in stage l , for l = 1, 2 and O $ j < s, with
input wires X1,;,o , X1,;,1 , ... , X1,;,r- l and output wires
Yi,;,o, Yi,;,1, ... , Yi,;,r- 1· Wires X1,j,i and Yi,;,; corre­
spond to the matrix element in row i and column j.

The wiring between stages 1 and 2 corresponds
to converting the matrix from column-major to row-

7

major ordering, using the composition of functions
RM- 1 o CM. We connect the output wire Y1,;,; to
the input wire X2,(r;+i)mod• , L(r;+i)/•J , for O $ i < r
and O $ j < s.

Once again, the output wires of the partial con­
centrator switch are the first m output wires of the
matrix in row-major order. We use wires Y2,;,; for
0 $ i < L m/ s J and O $ j < s or i = L m/ s J and
0 $ j < mmods.

To show that this circuit (s - 1)2-nearsorts the valid
bits, we first observe that its operation is equivalent
to the following algorithm, which corresponds to the
first three steps of Columnsort:

Algorithm 2 Given an r x s matrix of n elements,
where n = rs, and matrix values of O or 1, perform
the following three steps:

1. Fully sort the columns.

2. Convert the matrix from column-major to row­
major order, i.e., move the element in row i and
column j to row l(rj + i)/sJ and column (rj +
i) mods.

3. Fully sort the columns.

The two stages of hyperconcentrator chips correspond
to steps 1 and 3, and the wiring between the stages
corresponds to step 2. This correspondence between
the circuit and Columnsort allows us to prove the fol­
lowing theorem.

Theorem 4 The Columnsort-based construction
yields an (n, m, 1 - (s - 1)2 /m) partial concentrator
switch.

Proof Leighton shows in [3] that Algorithm 2 is an
(s-1)2-nearsorter when the matrix elements are taken
in row-major order. By Lemma 2, the circuit is an
(n, m, 1- (s-1)2 /m) partial concentrator switch when
the outputs are taken in row-major order. D

} output wues

} output wires

} output wires

} output wires

Figure 6: A two-dimensional layout of the Column­
sort-based partial concentrator switch with n = 32 inputs
and m = 18 outputs. The underlying matrix is 8 x 4. The
electrical paths established by 14 valid messages are shown
with heavy lines. The output wires are the first five out­
put wires of hyperconcentrator chips H 2 ,0 and H2,1 and
the first four output wires of hyperconcentrator chips H2,2

and H2 ,3,

To achieve the results stated at the beginning of
this section, we let r = 0(n.8) ands = 0 (n1- .8) . To
ensure that n = rs and thats divides r as n increases,
we require that we have 1/2 :5 /3 :5 l. The load ratio
is then

a = 1-(s-1)2
m

1 _ 0 (n2~2.13)

The number of chips is 2s = 0(n1-.8), and each chip
requires 2r = 0(n.8) data pins.

The delay through the switch is 2 • 2 lg r + 0(1) =
4lgr + 0(1). Letting r :5 cn.8 + o(n.8) for some con­
stant c, we have that the delay is

4lgr+O(l) <
<

=

4 lg(cn.8 + o(n.8)) + 0(1)

4lg((c + l)n.8) (for suff. large n)

4/3 lg n + 4/3 lg(c + 1)

4/3lgn +O(l) .

A two-dimensional layout using O(n2) area is shown
in Figure 6. As in the Revsort-based switch, we use
n x n crossbar wiring to connect the stages.

Figure 7 shows a three-dimensional packaging of the
switch using volume 0(1·2s) = 0(n1+.8). As in Fig­
ure 6, we have r = 8 and s = 4. There are two
stacks of boards, with each stack containing s boards

8

interstack connectors

stage 1 stage 2

Figure 7: The three-dimensional packaging of the
Columnsort-based partial concentrator switch for r = 8
and s = 4. Each stack contains s chips, each of which
is an r-by-r hyperconcentrator. The wiring between the
stages of chips performs the RM-1 o CM permutation.
The interstack connectors transpose the wires from verti­
cal to horizontal alignment.

inputs
11111111111111,

outputs
11111111111!1••

Figure 8: The transposition of w wires from vertical
to horizontal alignment, shown for w = 4, using volume
0(w2

).

and corresponding to one stage of hyperconcentrator
chips, and each board containing one r-by-r hyper­
concentrator chip.

The tricky part of this construction is the wiring
between stages, which must perform the permuta­
tion RM- 1 o CM. On the first stack, we group to­
gether output wires whose column-major numberings
are congruent modulo s, or equivalently, those whose
row numbers are congruent modulo s. Each such
group contains r / s wires. In Figure 7, for example,
since we have s = 4, we group together wires H1,o,o
and H1 ,o,4, H1,o,1 and H1,o,s, H1,o,2 and H1,o,6, H1,o,3
and H 1,0 ,7 , etc. In order to allow them to enter the
stage 2 chips, these wires are then "transposed" in
small interstack connectors to align them horizontally
instead of vertically. Figure 8 shows one way to trans­
pose a group of r/s wires in volume 0((r/s)2).

The first stack dominates the volume of this con­
struction. We have s boards, and each board contains
a 0(r2)-area hyperconcentrator chip and an O(r2) -

area wiring permutation. The total volume of each
stack is thus 0(r2 s) = 0(n1+.B). There are s2 inter­
stack connectors, each with volume O((r/s)2) , for a
total interstack volume of O(r2) = O(n2.B). Since we
have /3 ~ 1, the total interstack volume is O(nl+.B).
The total volume of the partial concentrator switch is
thus 0(n1+i3).

For both the two-dimensional and three-dimension­
al layouts, letting p, the number of pins per chip, be
0(r), we use only 0(s) = 0(n/p) chips. The three­
dimensional layout , however, uses s2 = 0((n/p)2) in­
terstack connectors, but these connectors contain only
wiring and no active components.

6 Concluding Remarks

In this section, we briefly discuss the characteristics
of the partial concentrator switches we have seen and
then discuss multichip hyperconcentrator switches.
Finally, we pose some open questions.

Both of the partial concentrator switches we have
examined are efficient in that they are relatively fast
and can be packaged with a relatively low volume.
They also allow air to flow through in all three di­
mensions and may thus be air-cooled.

The /3 parameter of the Columnsort-based switch
defines a tradeoff continuum for the characteristics of
the switch. As evidenced by Table 1, as the value of f3
increases, so do the number of pins per chip, delay, and
volume, but the load ratio improves and the number
of chips decreases.

Rather than simulating just the first steps of
Revsort and Columnsort, one could simulate the full
algorithms to fully sort the valid bits and thus build
multichip hyperconcentrator switches. Compared to
the partial concentrator switches presented above,
such hyperconcentrator switches have increased delay,
and a Revsort-based hyperconcentrator switch has a
greater chip count and asymptotic volume than its
partial concentrator counterpart.

Schnorr and Shamir show in (7) that if steps 1-3
of Algorithm 1 are repeated flg lg fol times, the re­
sulting matrix contains at most eight dirty rows. We
can then complete the full sorting by running three
iterations of the Shearsort algorithm [6). An n-by-n
hyperconcentrator switch based on the full Revsort al­
gorithm consists of flg lg fol repetitions of stacks 1
and 2 of Figure 4 followed by three pairs of different
stacks that simulate Shearsort. (Each Shearsort stack
consists of y'n boards, each of which contains a y'n­
by-y'n hyperconcentrator chip and fixed permutation
wiring.) A signal passes through 2 lg lg n+4 hypercon­
centrator chips in such an n-by-n hyperconcentrator

9

switch, incurring 4 lg n lg lg n + 8 lg n + O(lg lg n) gate
delays. The switch uses a total of 0(y'n lg lg n) chips
in volume 0(n312 lglgn).

Similarly, by simulating all eight steps of Column­
sort, we can build a hyperconcentrator switch with
the same asymptotic volume and chip count as the
partial concentrator switch of Section 5. A signal
passes through four chips and incurs 8/3 lg n + 0(1)
gate delays through such an n-by-n hyperconcentra­
tor switch.

Rather than wondering how fast a multichip hyper­
concentrator switch we can build, we might ask for
what functions f(p) can we build an (n(f(p)), m , 1 -
o(p/m)) partial concentrator switch, given chips with
p pins and using only two stages of chips. The
Columnsort-based construction, for example, gives us
f(p) = p2- c for any O < c ~ 1. Can we achieve
f(p) = n(p2)? In general, how large a function f(p)
can we achieve with k stages?

There may be c-nearsorters based on networks other
than the two-dimensional mesh to which we can ap­
ply Lemma 2. What types of partial concentrator
switches can we build by applying Lemma 2 to other
c-nearsorters?

Acknowledgements

Thanks to Charles Leiserson for suggesting this line
of research and for his frequent help and guidance.
Thanks also to James Park for his helpful comments.

References

[1) T. H. Cormen, "Concentrator switches for rout­
ing messages in parallel computers," Masters the­
sis, Dept. of Electrical Engineering and Computer
Science, M.I.T. , Cambridge, Mass. , (1986), 66pp.

[2) T. H. Cormen and C. E. Leiserson, "A hyper­
concentrator switch for routing bit-serial mes­
sages," Proceedings of the 15th Annual Interna­
tional Conference on Parallel Processing, (Aug.
1986), pp. 721-728.

[3) F. T. Leighton, "Tight bounds on the complexity
of parallel sorting," IEEE Transactions on Com­
puters, Vol. C-34, No. 4, (Apr. 1985), pp. 344-354.

[4) M. S. Pinsker, "On the complexity of a concen­
trator," Proceedings of the 7th International Tele­
traffic Conference, Stockholm, (1973), pp. 318/1-
318/4.

[5] N. Pippenger, "Superconcentrators," SIAM Jour­
nal on Computing, Vol. 6, No. 2, (June 1977),
pp. 298- 304.

[6] I. D. Scherson, S. Sen, and A. Shamir, "Shear sort:
a true two-dimensional sorting technique for VLSI
networks," Proceedings of the 15th Annual Inter­
national Conference on Parallel Processing, (Aug.
1986), pp. 903-908.

[7] C. P. Schnorr and A . Shamir, "An optimal sorting
algorithm for mesh connected computers," Pro­
ceedings of the 18th Annual ACM Symposium on
Theory of Computing, (May 1986), pp. 255-263.

[8] L. G. Valiant, "Graph-theoretic properties in com­
putational complexity," JCSS, Vol. 13, No. 3,
(Dec. 1976), pp. 278-285.

