
LABO RA TORY FOR St: MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT /LCS/TM-318

COMfv1UNICATION-EFFICIEi\1T PARALLEL
GRAPH ALGORITHfvlS

CHARLES E. LEISERSON
BRUCE M. MAGGS

DECEMBER ·f 986

5-'15 TECH~OLOGY SQU.-\RE. C.-\ .\lBRIDGE .. \1.-\SS.-\CHUSETTS O.?H9

Communication- Efficient Parallel Graph Algorithms

Charles E. Leiserson
Bruce M . Maggs

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract-Communication bandwidth is a resource ignored by most parallel
random- access machine (PRAM) models. This paper shows that many graph
problems can be solved in parallel, not only with polylogarithmic performance,
but with efficient communication at each step of the computation. We measure
the communication requirements of an algorithm in a model called the distributed
random- access machine (DRAM), in which communication cost is measured in
terms of the congestion of memory accesses across cuts of an underlying network.
The algorithms are based on a communication- efficient variant of the tree contrac­
tion technique due to Miller and Reif.

Key Words: communication, fat-trees, graph theory, load factor, parallel algo­
rithms, randomized algorithms, tree contraction, volume- universal networks.

This research was supported in part by the Defense Advanced Research Projects Agency under
Cont ract N00014-80-C-0622. Charles Leiserson is s u pported in part by an NSF Presidential
Young Investigator Award with matching funds provided by AT&T Bell Laboratories and Xerox
Corporation. Bruce Maggs is suppo rted in part by an NSF Fellowship.

1

1. Introduction

Underlying any realization of a parallel random-access machine (PRAM) is a com­
munication network that conveys information between processors and memory
banks. Yet in most PRAM models, communication issues are largely ignored.
The basic assumption in these models is that in unit time each processor can
simultaneously access one memory location. For truly large parallel comptiters,
however, computer engineers will be hard pressed to implement networks with the
communication bandwidth demanded by this assumption. The difficulty of build­
ing such networks threatens the validity of the PRAM as a predictor of algorithmic
performance. This paper introduces a more restricted PRAM model, which we
call a distributed random-access machine (DRAM), to reflect an assumption of
limited communication bandwidth in the underlying network.

We measure the cost of communication in a network in terms of the number of
messages that must cross a cut of the network, as in [8) and [11]. Specifically, a cut
S = (A, A) of a network1 is a partition of the network into two sets of processors
A and A. The capacity cap(S) is the number of wires connecting processors in
A with processors in A, i.e . , the bandwidth of communication between A and A.
For a set M of messages we define the load of Mon a cut S = (A, A) to be the
number of messages in M between a processor in A and a processor in A. The
load factor of M on S is

>.(M S) = load(M, S)
' cap(S) '

and the load factor of M on the entire network is

>-(M) = maxA(M,S).
s

The load factor provides a simple lower bound on the time required to deliver a
set of messages. For instance, if there are 10 messages to be sent across a cut of
capacity 3, the time required to deliver all 10 messages is at least the load factor

10/3.
There are two commonly occurring types of message congestion that the load

factor measures effectively. One is the "hot spot" phemomenon identified by Pfister
and Norton [1 7]. When many processors send messages to a single other processor,
large delays can be experienced as messages queue for access to that other proces­
sor. In this situation, the load factor on the cut that isolates the single processor
is high. The second phenomenon is message congestion due to pinboundedness.
In this case, it is the limited bandwidth imposed by the technology that can cause
high load factors. For example, the cut of the network that limits communication
performance might correspond to the pins on a printed-circuit board or to the
cables between two cabinets.

1 We assume that the communication network is an interconnection network, meaning that the
processors are interconnected as a graph, and routing of me55ages is performed by the processors.
The generalization to a routing network, where routing can be done by switches that are not
processors, is straightforward, but complicates the definitions.

2

The load-factor lower bound can be met to within a polylogarithmic factor as
an upper bound on many networks, including volume and area- universal networks,
such as fat-trees (8,11] and meshes of trees [12], as well as the standard universal
routing networks, such as the Boolean hypercube, the butterfly (a.k.a. FFT,
Omega), and the cube-connected cycles. The lower bound is weak on the standard
universal routing networks because every cut of these networks is large relative to
the number of processors in the smaller side of the cut, but these networks may
be more difficult to construct on a large scale than the volume and area- universal
networks (11] . Networks for which the load factor lower bound cannot in general
be approached to within a polylogarithmic factor as an upper bound include linear
arrays, meshes , and high-diameter networks in general.

Whereas communication is essentially free in PRAM models, the cost of com­
munication in a DRAM depends on the locality of memory accesses as measured
by the load factor of an underlying network. The DRAM is an attempt to abstract
the essential communication characteristics of volume and area- universal networks
without relying in detail on any particular network. Much as the PRAM can be
viewed as an abstraction of a hypercube, in that algorithms for a PRAM can be
implemented on a hypercube with only polylogarithmic performance degradation,
the DRAM can be viewed as an abstraction of a volume or area- universal net­
work. Fast, communication- efficient algorithms on a. DRAM translate directly to
fast, communication- efficient algorithms on, for example, a. fat- tree.

This paper shows that many graph problems for a graph G = (V, E) can be
efficiently solved with O(IE I) processors in the DRAM model. The algorithms we
give apply to all of the popular PRAM models because a PRAM can be viewed
as a DRAM in which communication costs are ignored. In fact, the algorithms we
give can all be performed on an exclusive-read, exclusive-write DRAM, and when
run on a PRAM, they are nearly as efficient in the PRAM model as corresponding
concurrent- read, exclusive-write PRAM algorithms in the literature.

The remainder of this paper is organized as follows. Section 2 contains a
specification of the DRAM model and the implementation of data structures in
the model. The section demonstrates why the "recursive doubling"' technique fre­
quently used in parallel algorithms is inefficient in the DRAM model. It also defines
the notion of a conservati"ve algor£thm as a concrete realization of a communication­
efficient algorithm, and gives a · "Shortcut Lemma"' that forms the basis of the
conservative algorithms in this paper . Section 3 presents a conservative "recursive
pairing" technique that can be used to perform many of the same functions as
recursive doubling. Section 4 presents a linear-space, conservative "tree contrac­
tion" algorithm based on the ideas of Miller and Reif (16]. Section 5 presents treefix
computati"ons, which are generalizatio ns of the parallel prefix computation [3,7,18]
to trees. We show that treefix computations can be performed using the tree con­
traction a lgorithm of Section 4. Section 6 gives short, efficient parallel algorithms
for tree and graph problems, most of which are based on treefix computations.
Section 7 contains some concluding remarks.

3

2. The DRAM model

This section presents the DRAM model. We show how a data structure can
be embedded in a DRAM, and we define the load factor of a data structure.
We demonstrate that many existing PRAM algorithms are not communication
efficient in the DRAM model by examining the "recursive doubling" technique
[22J used extensively by algorithms in the literature. We introduce the notion of
a conservative algorithm as one in which the load factor of each set of memory
accesses can be bounded above by the load factor of the input data structure. Our
conservative algorithms are based on a simple lemma that shows how pointers in
a data structure can be "shortcut" without increasing the load factor.

A DRAM consists of a set of n processors. All memory in the DRAM is
local to the processors, with each processor holding a small number of O(lg n)­
bit registers. A processor can read, write, and perform arithmetic and logical
functions on values stored in its local memory. It can also read and write memory
in other processors. {A processor can transfer information between two remote
memory locations through the use of local temporaries.) Each set of memory
accesses is performed in a memory access step, and any of the standard PRAM
assumptions about simultaneous reads or writes can be made. Our a lgorithms use
only mutually exclusive memory references, however, so these special cases never
arise.

The essential difference between a DRAM and a PRAM is that the DRAM
models communication costs. We presume remote memory accesses are imple­
mented by routing messages through an underlying network. Each cut S = (A, A)
of the network has an assigned capacity cap(S). For a set M of memory accesses,
we define load(M, S) to be the number of accesses in M between a processor in A
and a processor in A. The load factor of Mon Sis).(M, S) = load(M, S)/cap(S),
and the load factor of M on the entire network is).(M) = maxs).(M, S). The
basic assumption in the DRAM model is that the time required to perform a set
M of memory accesses is A(M).

A natural way to embed a data structure in a DRAM is to put one record of
the data structure into each processor. The record can contain pointers to records
in other processors, as well as auxilliary local storage. We measure the quality
of an embedding by generalizing the concept of load factor to a set of pointers.
The load of a set P of pointers across a cut S = (A, A), denoted load(P, S), is the
number of pointers in P from a processor in A to a processor in A or vice versa,
and the load factor is ·).(P) = maxs load(P, S)/cap(S). The load factor of a data
structure is the load factor of the set of its pointers. For many problems, good
embeddings of data structures can be found in particular networks for which the
DRAM is a good abstraction (see Section 7).

The embedding of a data structure can influence the performance of a DRAM
algorithm. As an example, consider the embedding of a simple linear list in which
alternate list elements are placed on opposite sides of a narrow cut. If each ele­
ment fetches a value from the next element in the list, the load factor across the

4

cut is large. Thus, a set of memory accesses that theoretically takes unit time
in the PRAM model may actually take considerably more time due to network
congestion. On the other hand, there are better embeddings for the list in which
the number of list pointers crossing any cut is small compared to the capacity of
the cut.

There are generally two situtations in which message congestion can arise dur­
ing the execution of a DRAM algorithm. In the first situation, which we have just
seen, the embedding of a data structure in the network causes congestion because
many of its pointers cross a relatively small cut of the network. A parallel ac­
cess of the information across those pointers generates substantial message traffic
across the cut. In the second situation, the data structure is embedded with few
pointers crossing the cut, but the algorithm itself generates substantial message
traffic across the cut. The focus of this paper is this second cause of congestion.

To see how a parallel algorithm can generate congestion, consider the "recursive
doubling" or "pointer jumping" technique which is used extensively by algorithms
in the literature. The idea is that each element i of a list initially has a pointer p(i)
to the next element in the list . At each step, element i computes p(i) +- p(p(i)),
doubling the distance d(i) between i and the e lement it points to (until it points to
the end of the list) . This technique can be used, among other things, to compute
the distance of each e lement to the end of the list. For each element i, d(i)
is initially one. At each pointer jumping step, element i computes d(i) +- d(i) +
d(p(i)). In a PRAM model, the running time on a linked list of length n is O(lg n).
Variants of this technique are used for path compression, vertex numbering, and
parallel prefix computation [16,19,21,22].

In the DRAM model, recursive doubling can be expensive even when a data
structure has a good embedding. Figure 1 shows a cut of capacity 3 separating the
two halves of a linked list of 16 elements . In the first step of recursive doubling,
the load on the cut is only 1 because the only access across the cut occurs when
element 8 copies the pointer of element 9. In the second step the load is 2 because
element 7 accesses element 9 and element 8 accesses element 10. In the third step,
the load is 4, and in the fourth step, as each of the first eight elements makes an
access across the cut, the load is 8. Since the load factor of the cut in the fourth
step is 8/3, this set of accesses requires a least 3 time units. Whereas the capacity
of the cut is large enough to support the memory accesses across it in the first step,
by the fourth step it is insufficient. Unless every cut of the network is sufficiently
large to accommodate worst-case communication patterns, the performance of
recursive doubling suffers due to message congestion, a phenomenon not predicted
by analysis iI). the PRAM model. In the next section, we shall show how a recursive
pairing strategy can perform many of the same functions as recursive doubling in
a communication-efficient fashion.

All of our algorithms have the property that the load factor of memory accesses
in any step is bounded by the load factor of the input data structure. We define
a set M of memory accesses to be conservative with respect to another set M' of
memory accesses if >..(M) :S .>.(M'), and we make the natural generalization of this

5

Figure 1: A cut of capacity 3 separating two halves of a linked list. The load of the list on the
cut is 1. At the final step of recursive doubling , each element on the left side of the cut accesses
an element on the right, which induces a load of 8 on the cut.

definition to pointers and data structures. A conservative algorithm is one all of
whose memory accesses are conservative with respect to the input data structure.

An algorithm that communicates only across pointers in the input data struc­
ture is conservative, but may require time linear in the diameter of the data
structure to pass information between two elements. The following simple, but
important, lemma shows how to shortcut pointers in the input data structure
without increasing communication requirements.

Lemma 1 (Shortcut Lemma) Suppose a set P of pointers in a data structure
contains pointers a ---+ b and b ---+ c. Then the set P' of pointers defined by

P' =PU {a---+ c} - {a --,. b,b--,. c}

is conservative with re·spect to P.

Proof: We shall show that >..(P', S) ~ >..(P, S) for any cut S of the underlying
network, which implies that >..(P') ~ >..(P). Consider the eight ways in which a, b,
and c can be assigned to sides of the partition induced by a cut S. Half the cases
can be eliminated by symmetry if we assume that a is on the left side. In each
of the four remaining cases, the load factor across the cut is either unchanged
or diminished when a __,. b and b __,. c are replaced with a --,. c, as is shown in
Figure 2. I

We shall typically use a straightforward generalization of the Shortcut Lemma.
Specifically, we can shortcut any set of pointer-disjoint paths in a data structure
without increasing the load factor.

Because the algorithms presented in this paper are based on the Shortcut
Lemma, they are not only conservative, but they are also independent of the cut
capacities of the DRAM and of the embedding of an input data structure in the
DRAM. Thus, independent of the underlying network, the algorithms are correct,
and if the embedding of the input data structure is good, the algorithms run fast.
Moreover, for a specific embedding on a specific DRAM, the running time can be
analyzed precisely.

6

I _..,
C

b a
\

\

b a

',J r,
C b

Figure 2: The Shortcut Lemma. In each of the four cases illustrated, the load factor across the
cut is either unchanged or diminished by replacing a -+ b and b-+ c with a-+ c .

3. List contraction

In this section we present a conservative "recursive pairing" algorithm, Algo­
rithm LC, that can perform many of the same functions on lists as recursive
doubling. The idea is -to repeatedly "contract" the list until it consists of a single
node . To record the contractions, we construct a binary contraction tree whose
leaves are the elements in the list. After building the contraction tree, opera­
tions such as broadcasting from the root or parallel prefix can be performed in
a conservative fashion. Algorithm LC is a randomized algorithm, and with high
probability, the height of the contraction tree and the number of steps on a DRAM
are both O(lg n) . A deterministic variant based on deterministic coin tossing [5]
runs in O(lg n lg• rn) steps, where rn is the number of processors in the DRAM,
and produces trees of height O(lg n).

Algorithm LC requires a constant amount of extra space for each element in
the input list. Each processor contains two elements, an element in the list, and
a spare element that will act as an internal node in the contraction tree. We call
the two elements in the same processor mates. Each element holds a pointer to
an unused internal node, which for each list element initially points to its mate.
The use of spare nodes allows the algorithm to distribute the space for the internal
nodes of the contraction tree uniformly over the elements in the list. Spare internal
nodes are used in [1] and [13] for similar reasons, but in a different context.

Figure 3 shows Algorithm LC. Each element has a self register that points to
itself, a mate register that points to its mate, and two registers left and right
that point to the next and previous elements in the list. The left register of the
first element of the list and the r ight register of the last element point to the
elements themselves . An element also has three pointers, CTmerge, CTleft, and
CTright, that represent the element's parent and left and right children in the
contraction tree. To simplify boundary conditions for the algorithm, these three
registers initially point to the element itself. Finally, each element holds a pointer
CTspare to an unused internal node, which for each list element initially points to
its mate.

7

1 Activate all list elements.
2 Each active element executes:
3 CTmerge +- self
4 CTleft +- self
5 CTright +- self
6 CTspare +- mate
7 while more than one element is active do
8 Each active element randomly picks one of its two neighbors.
9 if an element and its right neighbor pick each other
10 then the element executes:
11 CTmerge +- CTspare
12 right .CTmerge +- CTmerge
13 CTmerge.CTspare <- right.CTspare
14 CTmerge .CTmerge +- CTmerge
15 CTmerge.CTleft +- self
16 CTmerge .CTright <- right
1 7 CTmerge .left +- left
18 CTmerge.right +- right.right
19 Deactivate the element and its right neighbor, and activate its spare.
20 Each active element executes :
21 left +- left .CTmerge
22 right <- right.CTmerge

Figure 3: Algorithm LC. This conservative algorithm constructs a contraction tree for an input
list by recursively pairing and merging elements of the list.

Algorithm LC proceeds as follows. In each iteration, each element in the list
randomly picks either its left or right neighbor. The leftmost and rightmost el­
ements a lways pick their single neighbor. If two elements pick each other, they
merge, and the left element takes control. A new- internal node of the contraction
tree is made using the spare of the left element. The spare for the new node is
the spare of the right element. The new node's left child is the left element, and
its right child is the right element. The new nodes and the unpaired nodes form
themselves into a "contracted" list in the terminology of Miller and Reif [16] . The
algorithm operates on this contracted list in the next iteration.

In fact, a similar algorithm works for circular lists . Since there are no leftmost
or rightmost elements in circular list, each element always randomly picks one of
its two neighbors. When a circular list consists of exactly two elements, one is
arbitrarily chosen to be the left element in the pair.

To describe the efficiency of randomized algorithms such as Algorithm LC,
we shall use the term "with high probability," by which we shall mean "with
probability 1 - 0(1/nk) for any constant k > 0," where n is the size of the input .

8

Theorem 2 With high probability, Algorithm LC takes O(lg n) steps to construct
a contraction tree for a list of n elements.

Proof: We show that the algorithm terminates after (k+ 1) log 4 1 3 n iterations with
probability at least 1 - 1/nk. We use an accounting scheme involving "tokens"
to analyze the algorithm. Initially a unique token resides between each pair of
elements in the input list. Whenever two list elements pick each other, we destroy
the token between them. The key observation is that for each token destroyed, the
length of the list · decreases by one. Thus the algorithm terminates when no token
remains . In any iteration, an existing token has probability at least 1/4 of being
destroyed. Thus after rn iterations, a token has probability at most (3/4)m. of
remaining in existence. Let T. be the event that token i exists after rn iterations ,
and let T be the event that any token remains after rn iterations. Then by the
principle of inclusion and exclusion, the probability that any token remains is given
by

Pr(T) Pr(T1 u T 2 U ... U T,.-1)

Pr(T1) + Pr(T2) + · · · + Pr(T,.-1)

(n - 1) (¾) m.

For rn = (k + 1) log4 ; 3 n iterations we have

Pr(T) ~ (n - 1) (-
3

4

) (k+ l) logf,.

1

I

Theorem 3 With high probability, the height of the contraction tree is O (lg n).

Proof: The height of the contraction tree is not greater than the number of
iterations of Algorithm LC. I

We now prove that Algorithm LC is conservative.

Theorem 4 Algorithm LC is conse rvative .

Proof: The key idea is that the order of the list elements and their spares is pre­
served by the operation of contraction. By convention, let the mate of an element
in the input list lie in the order between that element and its right neighbor. Then
in each iteration, an active element's spare lies between the element and its right
neighbor in the contracted list. Thus, both the pointers of the contracted list and
the pointers between active elements and their spares correspond to disjoint paths
in the input list. The memory accesses in a step of the algorithm correspond to

9

a set of pointers between active elements and their left or right neighbors in the
contracted list, or to a set of pointers between active elements and their spares. I

Once a contraction tree has been constructed, it can be used for broadcasting
a value to all of the elements of the list, for accumulating values stored in each
element of the list, and more generally, for performing prefix cornputations. Let
D be a domain with a binary associative operation EB and an identity c. A prefix
computation [3,7,18] on a list with elements x 1 , x 2 , • .. , x,. in D puts the value
y; = x 1 EB x 2 EB · · · EB x, in position i for i = 1, 2, ... , n.

A prefix computation on a list can be performed by a conservative, two-phase
algorithm on the contraction tree. The leaves of the contraction tree from left to
right are the elements in the list from x 1 to x,.. The first phase proceeds bottom up
on the tree . Each leaf passes its x value to its parent. As the algorithm proceeds,
each internal node receives values from its left and right children, call them z 1 and
Zr- The node saves value z 1, and passes z 1 EB z,,. to its parent. The second phase
proceeds top down after the root receives values from its children. The root then
passes c to its left child and its z 1 value to its right child. Each child receives a
value from its parent, call it Zp, and passes that value to its left child and z1 EB Zp

to its right child. When a leaf receives Zp it computes y = Zp EB x.

The algorithm performs the prefix computation in O(Ig n) steps . At each step,
the a lgorithm communicates across a set of pointers in the contraction tree, all
of which are the same distance from the leaves in the first phase and the same
distance from the root in the second. That this computation is performed in a
conservative fashion is a consequence of the following lemma.

Theorem 5 Let CT be a contraction tree cornputed by Algorithrn LC on an input
list L, and suppose P is a set of pointers of CT in edge-disjoint subtrees of CT.
Then P is conservative with respect to L.

Proof: An inorder traversal of CT alternately visits list elements (leaves) and
their mates (internal nodes) in the same order that the list elements and mates
appear in L. Thus, the pointers in P correspond to disjoint paths in L. By the
Shortcut Lemma, any set of pointers that correspond to disjoint paths in the list
L are conservative with respect to L . I

Algorithm LC, which constructs a contraction tree in O(lg n) steps, is a ran­
domized a lgorithm. By using the "deterministic coin tossing" technique of Cole
and Vishkin [5] the algorithm can be performed nearly as well deterministically.
Specifically, the randomized pairing step can be performed deterministically in
O(lg• rn) steps on a DRAM with rn processors, where lg• rn is the number of times
the logarithm functio~ must be successively applied to reduce rn to a value no
greater than 1. The overall running time for list contraction is thus O (lg n lg• rn).

4. Tree con.traction.

This section presents a conservative tree cont raction algorithm, Algorithm TC,
based on the tree contraction ideas of Miller and Reif [16] . The ~lgorithm uses a

10

1 Activate all tree elements.
2 Each active element executes:
3 CTmerge - self
4 CTparent - self
5 CTleft - self
6 CTright +-- self
7 CTspare - mate
8 CTlevel +-- 1
9 call RPT
10 procedure RPT
11 if more than one element is active then
12 call Pair
13 call Contract
14 call RPT recursively
15 call Expand

Figure 4.: Algorithm TC. This conservative algorithm contracts an input rooted binary tree to a
single node recursively pairing and merging elements of the tree . A contraction tree is contructed
to record the order of contractions made.

recursive pairing strategy to build a contraction tree for an input rooted binary tree
in much t he same manner as Algorithm LC does for a list . With high probability,
the height of the contraction tree and the number of steps on a DRAM are both
O(lgn). A deterministic variant runs in O(lgn lg• m.) steps.

As in Algorithm LC, each processor in A lgorithm TC contains two elements, an
element in the input tree and its mate, a spare element that will act as an internal
node of the contraction tree. Each element has a self register that points to itself,
and a mate register that points to its mate. Registers left, right, and parent
point to the element's left and right children, and parent in the input b inary
tree . One or more of these three registers may point to the element itself. Each
element holds a pointer CTspare to an unused e lement, which initially points t o
its mate. An element also has pointers CTmerge, CTleft, CTright, and CTparent
that represent its position in the contraction tree and a CTlevel register that
records t he number of the contraction step in which the node merged with another
node. To simplify boundary conditions for the algorithm the CTmerge , CTparent,
CTleft , and CTright regis ters of each element in the input binary tree (each leaf
of the contraction tree) initially point to the element itself.

Algorithm TC is depicted in Figure 4 . F or clarity, it has been broken into three
subroutines, Pair, Contract, and Expand, which we now outline.

In procedure Pair each node of the tree chooses to pair with one of its neighbors.
Figure 5 illustrates how the choice is made. A leaf picks its parent with probability
l. A node with exactly one child picks its child or its parent, each with probability
1/2. A node with two children picks each child with probability 1/2. The root,

11

1/2 t
112 '(

1/2 1 /2 1 /2 1 /2

Figure 5 : A pairing step. A leaf picks its parent with probability 1. A node with exactly one child
picks its child or its parent, each with probability 1/2. A node with t-wo children picks each child
-with probability 1/2. The root, which has no parent, picks its children -with equal probability.

which has no parent, picks its children with equal probability.

The second subroutine, Procedure Contract , shown in Figure 6, performs one
contraction step. We now outline a contraction step. If two nodes pick each other
they merge and the parent takes over . The merge is recorded by a new internal
node in the contraction tree. Space for the new node is provided by t he spare,
CT s pare, of the parent in the pair. The spare of the child in the pair becomes
the spare for the new node. The CTmerge register of both the parent and child
of the pair point to the new node. The CTparent register points to the parent
in the pair, and one of CTleft and CTright points to the child, depending on
whether the node records the pairing of a parent and a left or right child. The
other register points to the new node itself. The new nodes and the unpaired nodes
form themselves into a new tree, which is guaranteed to be binary by the pairing
strategy. The new internal node of the contraction tree inherits its parent, left,
and right pointers from the parent and child in the pair . After a contraction step,
Procedure RPT is called recursively on the contracted tree (not to be confused
with the contraction tree which records the contractions).

Once the input tree has been contracted to a single node, it is "expanded"
by undoing the contractions in the reverse of the order in which they occurred.
Procedure Expand performs a single expansion step. The procedure, illustrated
in Figure 7, undoes all of the merges made in the contracted tree during a single
contraction step, but it leaves the contraction tree intact . Each active node holds
the number of the contraction step being undone in its CTleve l register. An active
node expands to a parent-child pair if this number is equal to the number of the
contraction step in which the parent and child merged. When the node expands,
the tree pointers of the parent and child, which have been undisturbed by the
algorithm since the nodes merged, are used to restore the pair to the state it had
when the contraction step took place. The expansion requires only constant space
at each node. In the next section we will see that tree expansion allows us to
describe treefix computations recursively.

In fact, the tree can be expanded by a greedy strategy without consulting the
number of the contraction step at which each merge occurred. In each expansion
step every active node simply undoes the merge that it records. We have chosen

12

1 procedure Contract
2 Each active element executes:
3 if an element and its left child pick each other
4 then the element executes:
5 CTmerge <- CTspare
6 left.CTmerge +- CTspare
7 CTmerge.CTspare <- left .CTspare
8 CTmerge.CTmerge <- CTmerge
9 CTmerge.CTlevel <- CTlevel
10 CTmerge.CTparent +- self
11 CTmerge.CTleft <- left
12 CTmerge .CTright <- CTmerge
13 CTmerge.parent +- parent
14 CTmerge.right +- right
15 if left.left # left then CTmerge.left +- left.left
16 else CTmerge .left +- left .right
1 7 Deactivate the element and its left child, and activate its spare.
18 elseif an element and its right child pick each other
19 then the element executes:
20 CTmerge +- CTspare
21 right.CTmerge +- CTspare
22 CTmerge.CTspare +- right.CTspare
23 CTmerge.CTmerge <- CTmerge
24 CTmerge.CTlevel +- CTlevel
25 CTmerge.CTparent +- self
26 CTmerge.CTright +- right
27 CTmerge.CTleft +- CTmerge
28 CTmerge .parent +- parent
29 CTmerge.left +- left
30 if right.right # right then CTmerge.right +- right.right
3 1 else CTmerge .right +- right.left
32 Deactivate the element and its right child, and activate its spare.
33 Each active element executes:
34 parent +- parent .CTmerge
35 left +- left.CTmerge
36 right +- right.CTmerge
37 CTlevel <- CTlevel + 1

Figure 6: Procedure Contract. In this procedure each pair of nodes that pick each other are
merged. A new internal node of the contraction tree is created to record each merger.

13

1 procedure Expand

2

3
4
5
6
7
8
g

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26

Each active element executes:
CTlevel +- CTlevel - 1
if CTparent # self then

if CTparent .CTlevel = CTlevel then
if CTparent.parent # CTparent then

if CTparent.parent.le£t = sel£ then
CTparent.parent.le£t +- CTparent

else CTparent.parent .right +- CTparent
if CTle£t # self then

if CTle£t.le£t # CTle£t then
CTle£t.left.parent +- CTle£t

elseif CTle£t.right # CTle£t then
CTle£t.right.parent +- CTleft

if CTparent.right # CTparent then
CTparent.right.parent +- CTparent

Activate CTle£t.
elseif CTright # self then

if CTright.left # CTright then
CTright.left .parent +- CTright

elseif CTright.right # CTright then
CTright.right.parent +- CTright

if CTparent.le£t # CTparent then
CTparent.left.parent +-- CTparent

Activate CTright.
Deactivate the element and activate CTparent.

Figure '1: Procedure Expand. This procedure "undoes" the most recent contraction performed
by Procedure Contra.ct.

to contrain each expansion step to correspond to a contraction step in order to
simplify the descriptions of the treefix computations in the next section.

The proof that, with high probability, Algorithm TC takes O(lg n) steps to
contract an input rooted binary tree to a single node requires three technical
lemmas. The first lemma shows that in a binary tree, the number of nodes with
two children and the number of leaves are nearly equal. The second lemma provides
an elementary bound on the expectation of a discrete random variable with a finite
upper bound. The last lemma presents a "Chernoff" [4] type bound on the tail
end of a binomial distribution.

Lemma 6 Suppose T = (V, E) is a rooted binary tree, and let Vo, V1 and V2

denote the sets of nodes in T {excluding the root), with zero, one, or two children,

14

respectively, and let d(r) be the degree of the root. Then we have

Lemma 7 Let X ~ b be a discrete random variable with expected value µ. For
w < b, we have

Pr(X ~ w)
µ-w

b-w ••
The final lemma presents a bound on the tail end of a binomial distribution.

Consider a set oft independent Bernoulli trials, each occurring with probability p

of success. The probability that fewer than s successful trials occur is

B(s, t,p)

The lemma bounds the probability B(s, t,p) that fewer than s successes occur in
t trials when t > 2s and p < 1/2.

Lemma 8 Fort> 2s and p < ½, we have

With these lemmas we can now prove that with high probability, Algorithm TC
takes O(lg n) steps to contract a rooted binary tree to a single node. The key
observation in the proof is that for each node that pairs with its parent, the
number of nodes in the tree decreases by one.

Theorem 9 Wi"th high probability, Algorithm TC takes O(lg n) contraction steps
to contract a rooted binary tree of n nodes to a single node.

Proof: The proof has three parts . First, we use Lemma 6 to show that that if
a rooted binary tree has !V I nodes, the expected number of nodes pairing with a
parent in a single contraction step is at least IVI /4. Next, we use Lemma 7 to
show that the probability that at least IV! /8 nodes pair with a parent in any step
is at least 1/3. Finally, we use Lemma 8 to show for any constant k that after
a log8 ; 7 n steps, for some constant a > 2, the probability that the tree has not
contracted into a single node is 0(1/nk).

We first show that the expected number of nodes pairing with a parent is at
least !V I /4. A node is picked by its parent with probability 1 when its parent is a
degree 1 root, and 1/2 otherwise. Thus a leaf pairs with its parent with probability

15

at least 1/2, and a node (other than the root) with one child picks its parent with
probability at least 1/4. Let P be the number of nodes pairing with a parent. We
apply Lemma 6 to the simple bound on the expected value of P,

E(P) >

to yield the desired result:

Now we show that the probability that at least JV J /8 nodes pair with a parent
in a single contraction step at least; 1/3. We cail such a step successful. At
most half of the nodes pair with their parents. Using Lemma 7 with b = JVJ /2,
w = JV I /8, andµ~ JV J /4, we have

~ - ~
Pr(P ~ JVI /8) ~ ~_!TI

2 8

1

3

Finally~ we show that with high probability, Algorithm TC takes O(lg n) con­
traction steps to contract the input tree to a single node. In the contraction
following a successful pairing step, the size of the tree decreases by a factor of 7 /8
or more. After log817 n successful steps, the tree must consist of a single node. By
Lemma 8 with p = 1/3, the probability that fewer than .s = log817 n successful
steps occur in a:.s steps is

~ 2 ((
~
3
)"' ~e) log

8;7,. . B(log817 n, a log8; 7 n, 1/3) ~

For any value k, we can choose a so that B(log817 n, a log817 n, 1 / 3) is 0(1 / nk) . In
particular, for k = 1 a value of a = 8 suffices.

We now prove that Algorithm TC is conservative.

Theorem 10 Algorithm TC is conservative.

Proof: The key idea is that each active element in the contracted tree is a "rep­
resentative" of a subgraph of the input tree that has been contracted to a single
node. The contracted subgraphs, which are trees, are disjoint in the input tree.
The representative and spare of a subgraph are either elements in or mates of
elements in the subgraph. The pairing strategy ensures that each subgraph is ad­
jacent by an edge to at most one subgraph which is higher in the input tree, and
to at most two subgraphs which are lower . The representative of the subgraph
has pointers to the representatives of these subgraphs, and to the spare of the
subgraph.

As in the list contraction algorithm, the set of memory accesses in a step of the
tree contraction algorithm corresponds to a set of disjoint paths in the input data

16

structure. Since each subgraph is connected, the pointers between representatives
and spares correspond to disjoint paths in the input tree. Similarly, any set of
pointers between each representative and the representative of at most one of the
two adjacent subgraphs lower in the input tree corresponds to a set of disjoint
paths in the input tree. The memory accesses in a step correspond to a set of
pointers between representatives and spares or to a set of pointers between each
representative and the representative of at most one of the two adjacent subgraphs
lower in the input tree. I

Tree contraction can be performed conservatively and deterministically on a
DRAM with rn processors in O(lg n lg• rn) steps using the deterministic coin toss­
ing algorithm of Cole and Vishkin [5]. The key idea is that in Algorithm TC, the
nodes in the tree that can pair form chains , and by Lemma 6 these chains contain
at least half the tree edges. The chains can be oriented from child to parent in
the tree, and deterministic coin tossing can be used to perform the pairing step in
O(lg• rn) steps.

5. Treefix. computations

This section presents a generalization of the parallel prefix computation to binary
trees. We present two kinds of treefix computations-rootfix and leaffix-and show
how they can be implemented by an O(lg n)-step conservative algorithm in linear
space. As we shall see in Section 6, treefix computations can greatly simplify
the description of many parallel graph algorithms in the literature, and moreover,
treefix computations can be performed by conservative algorithms.

We begin with a definition of treefix computation.

Definition. Let D be a domain with a binary associative operation EB and an
identity t::. Let T be a rooted, binary tree in which each vertex i E T has an
assigned value Xi E D. The rootfix problem is to compute for each vertex i E T
with parent 1·, the value Yi = Y; EB Xi, where Y; = t:: if i is the root. The leaffix
problem is to compute for each vertex i E T with left child J and right child k,
the value y, = Xi EBY; EB Yk, where Y; = t:: if i has no left child and Yk = t:: if i has
no right child.

Simple examples of treefix problems are computing the depth of each vertex
in a rooted binary tree and computing the size of each subtree. These and other
examples appear in the next section.

Like the prefix computation on lists, treefix computations can be performed
directly on the contraction tree. To simplify the description here, however, we
describe a recursive version. We execute one contraction step and then recursively
perform a treefix computation on the new tree. The treefix values for the input
tree can be computed immediately from the treefix values for the new tree.

Theorem 11 A rootfix or leaffix computation can be performed by a conservative
randomized algorithm which, with high probability, takes O(lg n) steps, or by a

17

conservative deterministic algorithm which takes O(lg n lg" rn) steps, where rn is
the number of processors in the DRAM.

Proof: We first describe the computation for rootfix. First the input binary tree
T is transformed to a new tree T' by one contraction step. Each new node u in
T' resulting from the pairing of parent p and child c in T passes input value Xe

to the child in T' that u inherited from c. Node u passes c to its other child.
Each unpaired node v in T' passes c to each of its children. Each node in T'
receives a value from its parent, call it z. Each new node u computes x:, +- z EB Xp.

Each unpaired node v computes x~ +- z EB xv. A rootfix computation is performed
recursively on T' using the x' values as input and yielding y' values as output. The
contraction step from T to T' is then undone. Each new node u passes y~ to p and
c. Node p computes Yp +- y~ and c computes Ye +- y~ EB Xe. Each unpaired node v
computes Yv +- Y~-

We now describe a computation of which leaffi.x is a special case. Each node i
in T is assigned input values x;, l,, and r,. Node i with left child j and right child
k computes output value y, = x, EB Yi EB l, EB Yk EB r;, where Yi and l, are c if i has no
left child and Yk and r; are c if i has no right child. For the special case of leafix,
l; and r; are both c. First, a contraction step transforms T to T' . Consider each
new node u in T' resulting from the pairing of parent p and left child c in T with
input values Xp, lp, Tp and Xe, le respectively. (The cases where c is a right child, or
where c has a right child or is a leaf, are similar.) Node u computes x:, +- Xp EB Xe,

z:, +- le EB lp, and r:, +- rp. Each unpaired node v computes x~ +- x.,, l~ +- lv, and
r: +- r.,. The computation is performed recursively on T' using the x' values as
input and yielding y' values as output. Each node passes its y' value to its parent
in T'. Each node receives values from its left and right children, call these values
z 1 and Zr. Each new node u passes z1 to c and both z1 and z.- top. The contraction
step from T to T' is undone. Node c computes Ye +- Xe EB z1 EB le. Node p computes
Yp +- Xp EB Xe EB z1 EB le EB lp EB z.- EB Tp- Each unpaired node v computes Yv +- y~. I

6. Conservative algorithms

This section presents a collection of conservative DRAM algorithms, all of which
use treefix computations. The algorithms use two processors per edge of an input
graph G = (V, E) and require constant extra space in each processor. Since the
algorithms are based on shortcutting pointers in the input data structure, they
are independent of the underlying DRAM or embedding of the data structure.

We represent each vertex in an undirected graph G = (V, E) by a doubly linked
incidence ring of processors, one for each edge. Each element of the incidence ring
contains pointers to the next and previous elements in the ring, and one pointer
for a graph edge. For each edge (u, v) EE the element in the incidence ring for u
contains a pointer to an edge element in the incidence ring for v, and vice versa.
A directed graph is represented in the same doubly linked fashion, but the graph
edges are labeled with their directions.

18

We represent trees with arbitrary vertex degrees by an incidence ring structure
as well. If the tree is directed, each ring has a unique principal element that points
toward the root. Breaking the incidence ring before the principal element yields
the standard binary tree representation of the tree [9, pp. 332-333].

We now present brief descriptions of the algorithms. The performance is given
terms of the number of steps on a DRAM when the input representation has size
n. We assume the implicit tree contractions in the algorithms are performed by
the randomized Algorithm TC. Deterministic bounds can be obtained by multi­
plying the number of steps by O(lg* rn), where rn is the number of processors. An
upper bound on the actual performance in the DRAM model can be obtained by
multiplying the number of steps by the load factor of the input.

Generalized treefix. Perform a treefix operation on a directed tree with
arbitrary vertex degree. The input values {x,} are stored in the principal elements
of the tree, which is where the output values {y,} are to be placed. The leaffix value
at a node i whose children have values Yi, Y2, ..• , Y1c is y, = x, EB Y1 EB Y2 EB · · • EB Y1c.
Each element that is not principal stores the identity element g for its value . A
binary treefix computation performed on the binary tree representation underlying
the tree computes the desired values. Performance: O(lg n).

Tree functions. Given a directed tree, compute for each node the number of
descendents, its height, or its depth. The number of decendents for each node can
be computed by a leaffi.x computation with EB as integer addition and x, = 1 for all
nodes. The height of a node can also be computed by a leaffi.x computation where
a EB b = max(a + 1, b + 1), the identity is g = -1, and x, = - 1 for all nodes. 2 The
depth of a node .can be computed by a rootfix computation with EB as addition
and x. = 1 for all nodes except the root which has value 0. Performance: O(lg n) .

Rooting an undirected tree. Pick a root of a tree with undirected graph
pointers and orient the graph pointers toward the root. Form an "Eulerian tour"
of the pointers of the representation [21] by direct ing each element of the tree to
link its incoming ring pointer with its graph edge directed outward and its graph
edge directed inward with its outgoing ring pointer. Each graph edge is used twice
in the tour, once in each direction, but each ring pointer is used only once. Using
the variant of Algorithm LC which works for circular lists, form a contraction
tree of the tour. Choose the root of the contraction tree to be the root of the
tree, and break the tour so that it begins wit h t he root. Use parallel prefix to
number each node according to its first occurrence in the tour. Use contraction
trees to distribute the smallest value in each incidence ring to the e lements of t he
ring. Orient each graph edge from the larger value to the smaller. Performance:
O(Ig n).

Rerooting a directed tree. Given a directed tree and another distinguished
vertex k , reorient the graph edges of the tree to point to k. The algorithm for root­
ing a tree can be used by picking k as the root instead of the root of the contract ion

2 Te
0

chnically, e = -1 is not an identity for the operation a EB b = max(a + I, b + 1). Nonetheless ,
this leaffix computation correctly comput es the height of each node in a binary tree. Moreover,
this leaffix computation also generalizes to a directed t ree with arbitrary vertex degree.

19

tree, but a single treefix computation suffices. Perform a leaffix computation with
x1c = 1 and x, = 0 if i =f k, and use Boolean OR for EB. Each principal element
whose leaffix value is 1 lies on the path from x1c to the root. Reverse the direc­
tion of the graph pointers of these elements . (Note : rerooting a tree changes the
principal elements.) Performance: O(lg n).

Tree-walk numberings of a binary tree. Number the nodes of a binary
tree according to the order they would be visited in a preorder/inorder/postorder
tree walk. For each of the walks , we will compute Y1c, the number of nodes visited
before the left subtree of k. Use a leaffix computation to compute the number .size1c
of the subtree rooted at k . We first compute the preorder numbering . (For the
purposes of these numbering algorithms, we consider the root to be a left child .)
If node k is a left child, set x1c to 1. If node k is a right child, set x1c to 1 plus the
size of its sibling subtree. A rootfix computation with + yields Y1c, which is the
preoder numbering of node k. The inorder numbering can be computed similarly.
If node k is a left child, set x1c to 0 . If k is a right child, set x1c to 1 plus the size of
its sibling subtree. Compute Y1c for each node using a rootfix computation with+.
The inorder numbering of node k is 1 plus Yk plus the size of its left subtree. The
postfix numbering can be computed by setting x,. to O if node k is a left child, and
by setting x1c to the size of its sibling subtree if k is a right child. After computing
Y1c using a rootfix computation with +, the postfix numbering of node k is 1 plus
Yk plus the sizes of its two subtrees. Performance: O(lg n).

Prefix/postfix numbering of a directed tree. Number the edges of an
arbitrary directed tree according to the order they are visited in preorder /postorder
tree walk. The problem reduces to prefix/postfix numbering on the underlying
binary tree representation. Performance: O(lg n).

Diameter and center of a tree. The diameter is the length of the longest
path in the tree. A center is a vertex v such that the longest path from v to a leaf £s
minimal over all vert£ces in the tree . The diameter can be determined by rooting
the tree and using rootfix to find the furthest leaf from the root. Reroot the tree
at this leaf. The distance from the new root to the furthest leaf is the diameter.
(Based on an analog algorithm attributed to J. Wennmacker [6].) A center of the
tree can be determined by finding a median element of the path that realizes the
diameter. Performance: O(lg n).

Centroid of a tree. A centroid is a vertex v such that the largest subtree with
v as a leaf is minimal over all vertices in the tree. A centroid can be determined
by rooting the tree and computing the size of each subtree. By broadcasting
the size rn of the tree from the root, each graph edge in each incidence ring can
determine the number of elements on the other side of the edge. For each incidence
ring, compute the maximum of these values. A vertex with the minimum of these
maximum values is a centroid. Performance: O(lg n).

Separator of a tree. A separator [14] ,·s a partition of the vertices of an
rn-vertex tree into three sets A, B, and C, with IAI ::; ¾rn, IBI = 1, e nd IC I ::;
¾rn, such that no edge of the tree goes between a vertex in A and a vertex in C.
Determine a centroid of the tree. This vertex is the separator vertex in B. It

20

remains to partition the rema1n1ng vertices between A and O. For each graph
edge in the incidence ring, count the number of vertices in the subtree on the
other side of the edge. Put the largest subtree in A. Use parallel prefix on the
incidence ring to compute a running sum of the sizes of the other subtrees. Put
all subtrees whose prefix value is at most ~rn in O, and put the remainder in A.
Performance: O(lg n).

Subexpression evaluation. Given a directed tree in which each leaf has a
value and each internal node has an operator from { +, -, ·, + }, compute for each
internal node the subexpression rooted at that node. A single leaflix computation
suffices using the ideas of Brent [2] and Miller and Reif [16]. Performance: O(lg n).

Minimum cost spanning tree. Given an undirected input graph G = (V, E)
and a cost funct£on w : E --+ R, determ£ne a set F ~ E of edges such that each
vertex in V is incident on an edge of F, and the sum of the weights of th_e edges
in F is minimal. We give a conservative DRAM implementation of Boruvka's
algorithm, also attributed to Sollin [20, pp. 71- 83] . We assume without loss of
generality that the edge weights are distinct-otherwise, we can assign the weight
of a graph edge e between two incidence ring elements with addresses a and b
to be (w (e), max(a, b), min (a, b)) and then compare weights lexicographically. We
determine F by marking edges in G . Initially, no edges are marked. At each step
of the algorithm, the currently marked graph edges form a subforest of F. Break
each incidence ring by removing a single ring pointer and direct the resulting linear
list. At each step of the algorithm, the marked graph edges and the ring pointers
form a set {T.} of rooted trees, where the index i of the tree is the address of
the root. The algorithm proceeds as follows. For each tree T,, use a rootfix
computation to broadcast i to all of the elements in T,. Use a leaffix computation
on T, to determine an edge e E E with the smallest weight w(e) connecting an
edge element u E T, with an edge element v E T;, where i =/= j. H no such edge
exists, the algorithm terminates. li T; picks the same edge as T,, the tree with
smaller index does nothing. Otherwise, mark e as a member of F, directing it
into T;, and reroot T. with u as the new root. Repeat this procedure until the
algorithm terminates. Performance: O(lg2 n).

Connected components. Given an undirected input graph G = (V, E), de­
termine a labeling l : V --+ Z such that such that l (v) = l (v') if and only if v and
v' are in the same connected component of G. The algorithm is the same as the
minimum spanning tree algorithm, choosing the weight of a graph edge e between
incidence ring elements with addresses a and b to be max(a, b), min (a, b). The
label of a vertex is the index of its tree. Per/ ormance: 0 (lg2 n).

Biconnected components. Two edges of an undirected graph G = (V, E)
are in the same biconnected component if they lie on a common simple cycle.
Determine a label£ng l ; E --+ Z such that l(e) = l(e') if and only if e and e'
are in the same biconnected component of G . We give a conservative DRAM
implementation of the biconnectivity algorithm of Tarjan and Vishkin [21] . We
assume that the reader has some familiarity with that algorithm. Find a (directed)
minimum spanning tree T = (V, F) of G. Number the vertices in the minimum

21

spanning tree in preorder. Use leaffix computations to compute for each vertex v

three values: nd(v), low(v), and high(v). Here nd(v) is the number of descendants
of v , while low(v) and high(v) are the lowest and highest vertices (with respect to
the preorder numbering of T) that are either a descendant of v or adjacent to a
descendant of v by an edge of E - F. Build a new graph G' where the edges of F
are the vertices of G'. Let e be an edge from u to p(u), where p(u) is the parent of
u in F. The adjacenc~ ring for u in G acts as the adjacency ring for e in G'. Add
two kinds of edges to G'. For each edge { w, v} in E - F such that v + nd(v) :S w,
add an edge {{v,p(v)},{w,p(w)}} to G'. For each edge (v,p(v)) of F such that
v =j:. 1 and p(v) =J:. 1, and low(v) < low(p(v)) or high(v) 2::: p(v) + nd(p(v)), add an
edge { { v, p(v)}, {p(v), p(p(v))}} to G' . It can be verified that the representation
of G' is conservative with respect to the represent a t ion of G. Find the conn-ec t ed
components of G'. Two edges of F are in the same block if as vertices in G' they
are in the same connected component. Finally, for each edge e = { w, v} in E - F,
let l(e) = l({w, p(w)}). Performance: O(lg 2 n).

Eulerian cycle. An Eulerian cycle of an undirected graph G = (V, E) is
a cycle contai·ning each edge in E exactly once . IT any vertex has odd degree,
then no Eulerian cycle exists. Form a set of disjoint cycles of the pointers of
the representation of G as in the algorithm for directing a tree. The cycles can
be merged using an algorithm similar to the minimum spanning tree a lgorithm.
Performance: O(lg 2 n).

7. Conclusion.

This paper has addressed the problem of embedding data structures, the use of
load factor to evaluate embeddings and algorithms, and the notion of a conser­
vative algorithm as one that is communication efficient . This section gives some
examples of graphs that can be embedded efficiently in DRAM networks. We dis­
cuss load factors for data structures other than graphs, and we consider relaxing
the requirement that an algorithm be conservative in order to be communication
efficient.

The efficiency of a DRAM algorithm depends on how well its input is embedded
in the DRAM and this embedding problem must be faced by a lgorithm designers
in any bandwidth-limited distributed network. In general, the problem of deter­
mining the best embedding is NP-complete, but for many common situations ,
good embeddings can be found. Moreover, there are many situations in which the
input graph structure is simple and known a priori, and a good embedding may
be easy to construct for a given DRAM network.

To illustrate how the embedding problem can be solved in many practical
situations, consider fat- trees as the DRAM networ k. Because of the recursive
structure of fat- trees, the divide-and-conquer heuristic works well for many input
graphs . For example, a subproblem in switch- level simulation of a VLSI circuit is
the finding of electrically equivalent portions of the circuit. A naive divide-and­
conquer embedding of the circuit on the fat- tree yields small load factors for every

22

cut. Thus, our conservative connected components algorithm will never cause
undue congestion in communicating messages in the underlying network, and the
algorithm will run effectively as fast as on an expensive, high- bandwidth network.

For some graphs, it can be proved that divide-and-conquer yields near optimal
embeddings on a fat-tree. Specifically, graphs for which a good separator theorem
[14] exists can be embedded well. Examples include meshes, trees, planar graphs,
and multigrids. Situations in which a mesh might be used include systolic array
computation and image processing. Planar graphs and multigrids arise from the
solution of sparse linear systems of equations based on the finite-element method.

Many other classes of algorithms can be implemented in a conservative fashion
on a DRAM. Any algorithm that communicates only across pointers in an input
data structure is conservative. Passing a single datum between two processors,
however, can require time linear in the diameter of the data structure, whereas
our algorithms all run in a polylogarithmic number of steps. As another example,
systolic array algorithms for matrix problems (10,13] can be implemented efficiently
if the matrices are properly embedded. In general, any fixed-connection network
algorithm will run well on a DRAM if the communication required by the network
can be supported by the underlying DRAM network.

Although the algorithms presented in this paper operate primarily on graphs,
for which there is a natural definition of load factor, it is also possible to define
the load factor of a data structure that contains no explicit pointers. For example,
it is natural to superimpose a mesh on the matrix, as is suitable for systolic array
computation, and the load factor of the matrix can be defined as the load factor
of the superimposed mesh.

For some problems, the running time may be more a function of the load factor
of the output than the load factor of the input. As an example, consider the
problem of sorting a linear list of elements. A natural question to ask is whether
the list can be sorted in a polylogarithmic number of steps where at each step,
the load factor is bounded by the load factor induced by the linear list together
with the permutation determined by the sorted output. Whether such a sorting
algorithm exists is an open question.

Whereas the Shortcut Lemma presented in this paper holds for any network,
for particular networks, other shortcut lemmas may hold. For example, another
shortcut lemma for tree structures such as fat-trees is used in [15] to show that a
certain parallel algorithm for finding the optimal embedding of a list on a fat-tree
is conservative.

As a final comment, it may well be that the notion of a conservative algorithm
is too conservative. A contraction tree is not conservative with respect to its
input tree (though the levels of the contraction tree are), but the load factor of
the contraction tree is at most O(lg n) times the input load factor. As a practical
matter, it is probably not worth worrying whether every set of memory accesses
is conservative with respect to the input, as long as the load factor of memory
accesses is polylogarithmically bounded. Algorithms with this looser bound are
somewhat easier to code because of the relaxed constraint, and they should perform

23

comparably.

Acknowledgments

Thanks to Baruch Awerbuch, Ravi Boppana, Benny Chor, Tom Cormen, Johan
Has tad, Alex Ishii, Joe Kilian, Tom Leighton, and Ron Rivest of MIT for numerous
helpful discussions. Thanks to Ginny Loop for producing the figures.

References

[1] S. N. Bhatt and C. E. Leiserson, "How to assemble tree machines," Advances
in Computing Research, Vol. 2, VLSI Theory, F . P. Preparata, ed., JAI Press,
Greenwich, Conn., 1984, pp. 95-114 .

[2] R. P. Brent, "The parallel evaluation of general arithmetic expressions,"
JACM, Vol. 21, No . 2, April 1974, pp. 201-208.

[3] R. P. Brent and H. T. Kung, "A regular layout for parallel adders," IEEE
Transactions on Computers, Vol. C-31, No. 3, March 1982, pp. 260- 264.

[4] H . Chernoff, "A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations," Annals of Mathematical Statistics, Vol.
23, 1952, pp. 493-507.

[5] R. Cole and U. Vishkin, "Deterministic coin tossing and accelerating cascades:
micro and macro techniques for designing parallel algorithms," Proceedings of
the Eighteenth Annual ACM Symposium on the Theory of Computing, May
1986, pp. 206-219.

[6] A. K. Dewdney, "Computer Recreations," Scientific American, Vol. 252, No.
6, June 1985, pp. 18-29.

[7] M. J . Fischer and R. E. Ladner, "Parallel prefix computation," JACM, Vol.
27, No. 4, October 1980, pp. 831-838.

[8] R . I. Greenberg and C. E. Leiserson, "Randomized routing on fat-trees," Pro­
ceedings of the 26th Annual Symposium on Foundations of Computer Science,
IEEE, October 1985, pp. 241-249.

[9] D. E. Knuth, The Art of Computer Programming, Vol. 1, Second Edition,
Addison- Wesley, Reading, Massachusetts, 1973.

[10] H. T. Kung and C . E. Leiserson, "Systolic arrays (for VLSI)," SIAM Sparse
Matrix Proceedings, I. S. Duff and G. W. Stewart, ed., 1978, pp. 256-282.

[11] C. E. Leiserson, "Fat-trees: universal networks for hardware-efficient super­
computing," IEEE Transactions on Computers, Vol. C-34, No. 10, October
1985, pp. 892-901.

[12] F. T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge, Mas­
sachusetts, 1983.

[13] C. E. Leiserson, Area-Efficient VLSI Computation, MIT Press, Cambridge,
Massachusetts, 1983.

[14] R. J. Lipton and R. E . Tarjan, "A planar separator theorem," Siam J . of
Applied Math, Vol. 36, No . 2, 1979, pp. 177-189.

24

[15] B. M. Maggs, Communication-Efficient Parallel Graph Algorithms, Master's
thesis, Department of Electrical Engineering and Computer Science, Mas­
sachusetts Institute of Technology, Cambridge, Massachusetts, May 1986.

[16] G. Miller and J . Reif, "Parallel tree contraction and its application," Proceed­
ings of the 26th Annual Symposium on Foundations of Computer Science,
IEEE, October 1985, pp. 478-489.

[17] G. F . Pfister and V. A. Norton, "'Hot spot' contention and combining in
multistage interconnection networks," IEEE Transactions on Computers, Vol.
C-34, No. 10, October 1985, pp. 943-948.

[18] Yu. Ofman, "On the algorithmic complexity of discrete functions," English
translation in Soviet Physics - Doklady, Vol. 7, No. 7, 1963, pp. 589- 591.

[19] Y. Shiloach and U. V ishkin, "An O(logn) parallel connectivit y algorithm,"
Journal of Algorithms, Vol. 3, 1982, pp. 57-67.

[20] R. E. Tarjan, Data Structures and Network Algorithms, Society for Industrial
and Applied Mathematics, Philadelphia, Pennsylvania, 1983.

[21] R. E. Tarjan and U. Vishkin, "Finding biconnected components and comput­
ing t ree functions in logarithmic parallel time," Proceedings of the 25th Annual
Symposium on Foundati"ons of Computer Science, IEEE, October 1984, pp.
12-20.

[22] J. C . Wyllie, The Complexity of Parallel Computations, Ph.D . t hesis, Cornell
University, Ithaca, N. Y . , August 1979.

25

