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Abstract-Communication bandwidth is a resource ignored by most parallel 
random- access machine (PRAM) models. This paper shows that many graph 
problems can be solved in parallel, not only with polylogarithmic performance, 
but with efficient communication at each step of the computation. We measure 
the communication requirements of an algorithm in a model called the distributed 
random- access machine (DRAM), in which communication cost is measured in 
terms of the congestion of memory accesses across cuts of an underlying network. 
The algorithms are based on a communication- efficient variant of the tree contrac­
tion technique due to Miller and Reif. 
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1. Introduction 

Underlying any realization of a parallel random-access machine (PRAM) is a com­
munication network that conveys information between processors and memory 
banks. Yet in most PRAM models, communication issues are largely ignored. 
The basic assumption in these models is that in unit time each processor can 
simultaneously access one memory location. For truly large parallel comptiters, 
however, computer engineers will be hard pressed to implement networks with the 
communication bandwidth demanded by this assumption. The difficulty of build­
ing such networks threatens the validity of the PRAM as a predictor of algorithmic 
performance. This paper introduces a more restricted PRAM model, which we 
call a distributed random-access machine (DRAM), to reflect an assumption of 
limited communication bandwidth in the underlying network. 

We measure the cost of communication in a network in terms of the number of 
messages that must cross a cut of the network, as in [8) and [11]. Specifically, a cut 
S = (A, A) of a network1 is a partition of the network into two sets of processors 
A and A. The capacity cap(S) is the number of wires connecting processors in 
A with processors in A, i.e . , the bandwidth of communication between A and A. 
For a set M of messages we define the load of Mon a cut S = (A, A) to be the 
number of messages in M between a processor in A and a processor in A. The 
load factor of M on S is 

>.(M S) = load(M, S) 
' cap(S) ' 

and the load factor of M on the entire network is 

>-(M) = maxA(M,S). 
s 

The load factor provides a simple lower bound on the time required to deliver a 
set of messages. For instance, if there are 10 messages to be sent across a cut of 
capacity 3, the time required to deliver all 10 messages is at least the load factor 

10/3. 
There are two commonly occurring types of message congestion that the load 

factor measures effectively. One is the "hot spot" phemomenon identified by Pfister 
and Norton [ 1 7]. When many processors send messages to a single other processor, 
large delays can be experienced as messages queue for access to that other proces­
sor. In this situation, the load factor on the cut that isolates the single processor 
is high. The second phenomenon is message congestion due to pinboundedness. 
In this case, it is the limited bandwidth imposed by the technology that can cause 
high load factors. For example, the cut of the network that limits communication 
performance might correspond to the pins on a printed-circuit board or to the 
cables between two cabinets. 

1 We assume that the communication network is an interconnection network, meaning that the 
processors are interconnected as a graph, and routing of me55ages is performed by the processors. 
The generalization to a routing network, where routing can be done by switches that are not 
processors, is straightforward, but complicates the definitions. 
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The load-factor lower bound can be met to within a polylogarithmic factor as 
an upper bound on many networks, including volume and area- universal networks, 
such as fat-trees (8,11] and meshes of trees [12], as well as the standard universal 
routing networks, such as the Boolean hypercube, the butterfly (a.k.a. FFT, 
Omega), and the cube-connected cycles. The lower bound is weak on the standard 
universal routing networks because every cut of these networks is large relative to 
the number of processors in the smaller side of the cut, but these networks may 
be more difficult to construct on a large scale than the volume and area- universal 
networks (11] . Networks for which the load factor lower bound cannot in general 
be approached to within a polylogarithmic factor as an upper bound include linear 
arrays, meshes , and high-diameter networks in general. 

Whereas communication is essentially free in PRAM models, the cost of com­
munication in a DRAM depends on the locality of memory accesses as measured 
by the load factor of an underlying network. The DRAM is an attempt to abstract 
the essential communication characteristics of volume and area- universal networks 
without relying in detail on any particular network. Much as the PRAM can be 
viewed as an abstraction of a hypercube, in that algorithms for a PRAM can be 
implemented on a hypercube with only polylogarithmic performance degradation, 
the DRAM can be viewed as an abstraction of a volume or area- universal net­
work. Fast, communication- efficient algorithms on a. DRAM translate directly to 
fast, communication- efficient algorithms on, for example, a. fat- tree. 

This paper shows that many graph problems for a graph G = (V, E) can be 
efficiently solved with O(IE I) processors in the DRAM model. The algorithms we 
give apply to all of the popular PRAM models because a PRAM can be viewed 
as a DRAM in which communication costs are ignored. In fact, the algorithms we 
give can all be performed on an exclusive-read, exclusive-write DRAM, and when 
run on a PRAM, they are nearly as efficient in the PRAM model as corresponding 
concurrent- read, exclusive-write PRAM algorithms in the literature. 

The remainder of this paper is organized as follows. Section 2 contains a 
specification of the DRAM model and the implementation of data structures in 
the model. The section demonstrates why the "recursive doubling"' technique fre­
quently used in parallel algorithms is inefficient in the DRAM model. It also defines 
the notion of a conservati"ve algor£thm as a concrete realization of a communication­
efficient algorithm, and gives a · "Shortcut Lemma"' that forms the basis of the 
conservative algorithms in this paper . Section 3 presents a conservative "recursive 
pairing" technique that can be used to perform many of the same functions as 
recursive doubling. Section 4 presents a linear-space, conservative "tree contrac­
tion" algorithm based on the ideas of Miller and Reif (16]. Section 5 presents treefix 
computati"ons, which are generalizatio ns of the parallel prefix computation [3,7,18] 
to trees. We show that treefix computations can be performed using the tree con­
traction a lgorithm of Section 4. Section 6 gives short, efficient parallel algorithms 
for tree and graph problems, most of which are based on treefix computations. 
Section 7 contains some concluding remarks. 
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2. The DRAM model 

This section presents the DRAM model. We show how a data structure can 
be embedded in a DRAM, and we define the load factor of a data structure. 
We demonstrate that many existing PRAM algorithms are not communication 
efficient in the DRAM model by examining the "recursive doubling" technique 
[22J used extensively by algorithms in the literature. We introduce the notion of 
a conservative algorithm as one in which the load factor of each set of memory 
accesses can be bounded above by the load factor of the input data structure. Our 
conservative algorithms are based on a simple lemma that shows how pointers in 
a data structure can be "shortcut" without increasing the load factor. 

A DRAM consists of a set of n processors. All memory in the DRAM is 
local to the processors, with each processor holding a small number of O(lg n)­
bit registers. A processor can read, write, and perform arithmetic and logical 
functions on values stored in its local memory. It can also read and write memory 
in other processors. {A processor can transfer information between two remote 
memory locations through the use of local temporaries.) Each set of memory 
accesses is performed in a memory access step, and any of the standard PRAM 
assumptions about simultaneous reads or writes can be made. Our a lgorithms use 
only mutually exclusive memory references, however, so these special cases never 
arise. 

The essential difference between a DRAM and a PRAM is that the DRAM 
models communication costs. We presume remote memory accesses are imple­
mented by routing messages through an underlying network. Each cut S = (A, A) 
of the network has an assigned capacity cap(S). For a set M of memory accesses, 
we define load(M, S) to be the number of accesses in M between a processor in A 
and a processor in A. The load factor of Mon Sis ).(M, S) = load(M, S)/cap(S), 
and the load factor of M on the entire network is ).(M) = maxs ).(M, S). The 
basic assumption in the DRAM model is that the time required to perform a set 
M of memory accesses is A(M). 

A natural way to embed a data structure in a DRAM is to put one record of 
the data structure into each processor. The record can contain pointers to records 
in other processors, as well as auxilliary local storage. We measure the quality 
of an embedding by generalizing the concept of load factor to a set of pointers. 
The load of a set P of pointers across a cut S = (A, A), denoted load(P, S), is the 
number of pointers in P from a processor in A to a processor in A or vice versa, 
and the load factor is ·).(P) = maxs load(P, S)/cap(S). The load factor of a data 
structure is the load factor of the set of its pointers. For many problems, good 
embeddings of data structures can be found in particular networks for which the 
DRAM is a good abstraction (see Section 7). 

The embedding of a data structure can influence the performance of a DRAM 
algorithm. As an example, consider the embedding of a simple linear list in which 
alternate list elements are placed on opposite sides of a narrow cut. If each ele­
ment fetches a value from the next element in the list, the load factor across the 

4 



cut is large. Thus, a set of memory accesses that theoretically takes unit time 
in the PRAM model may actually take considerably more time due to network 
congestion. On the other hand, there are better embeddings for the list in which 
the number of list pointers crossing any cut is small compared to the capacity of 
the cut. 

There are generally two situtations in which message congestion can arise dur­
ing the execution of a DRAM algorithm. In the first situation, which we have just 
seen, the embedding of a data structure in the network causes congestion because 
many of its pointers cross a relatively small cut of the network. A parallel ac­
cess of the information across those pointers generates substantial message traffic 
across the cut. In the second situation, the data structure is embedded with few 
pointers crossing the cut, but the algorithm itself generates substantial message 
traffic across the cut. The focus of this paper is this second cause of congestion. 

To see how a parallel algorithm can generate congestion, consider the "recursive 
doubling" or "pointer jumping" technique which is used extensively by algorithms 
in the literature. The idea is that each element i of a list initially has a pointer p(i) 
to the next element in the list . At each step, element i computes p(i) +- p(p(i)), 
doubling the distance d(i) between i and the e lement it points to (until it points to 
the end of the list) . This technique can be used, among other things, to compute 
the distance of each e lement to the end of the list. For each element i, d(i) 
is initially one. At each pointer jumping step, element i computes d(i) +- d(i) + 
d(p(i)). In a PRAM model, the running time on a linked list of length n is O(lg n). 
Variants of this technique are used for path compression, vertex numbering, and 
parallel prefix computation [16,19,21,22]. 

In the DRAM model, recursive doubling can be expensive even when a data 
structure has a good embedding. Figure 1 shows a cut of capacity 3 separating the 
two halves of a linked list of 16 elements . In the first step of recursive doubling, 
the load on the cut is only 1 because the only access across the cut occurs when 
element 8 copies the pointer of element 9. In the second step the load is 2 because 
element 7 accesses element 9 and element 8 accesses element 10. In the third step, 
the load is 4, and in the fourth step, as each of the first eight elements makes an 
access across the cut, the load is 8. Since the load factor of the cut in the fourth 
step is 8/3, this set of accesses requires a least 3 time units. Whereas the capacity 
of the cut is large enough to support the memory accesses across it in the first step, 
by the fourth step it is insufficient. Unless every cut of the network is sufficiently 
large to accommodate worst-case communication patterns, the performance of 
recursive doubling suffers due to message congestion, a phenomenon not predicted 
by analysis iI). the PRAM model. In the next section, we shall show how a recursive 
pairing strategy can perform many of the same functions as recursive doubling in 
a communication-efficient fashion. 

All of our algorithms have the property that the load factor of memory accesses 
in any step is bounded by the load factor of the input data structure. We define 
a set M of memory accesses to be conservative with respect to another set M' of 
memory accesses if >..(M) :S .>.(M'), and we make the natural generalization of this 
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Figure 1: A cut of capacity 3 separating two halves of a linked list. The load of the list on the 
cut is 1. At the final step of recursive doubling , each element on the left side of the cut accesses 
an element on the right, which induces a load of 8 on the cut. 

definition to pointers and data structures. A conservative algorithm is one all of 
whose memory accesses are conservative with respect to the input data structure. 

An algorithm that communicates only across pointers in the input data struc­
ture is conservative, but may require time linear in the diameter of the data 
structure to pass information between two elements. The following simple, but 
important, lemma shows how to shortcut pointers in the input data structure 
without increasing communication requirements. 

Lemma 1 (Shortcut Lemma) Suppose a set P of pointers in a data structure 
contains pointers a ---+ b and b ---+ c. Then the set P' of pointers defined by 

P' =PU {a---+ c} - {a --,. b,b--,. c} 

is conservative with re·spect to P. 

Proof: We shall show that >..(P', S) ~ >..(P, S) for any cut S of the underlying 
network, which implies that >..(P') ~ >..(P). Consider the eight ways in which a, b, 
and c can be assigned to sides of the partition induced by a cut S. Half the cases 
can be eliminated by symmetry if we assume that a is on the left side. In each 
of the four remaining cases, the load factor across the cut is either unchanged 
or diminished when a __,. b and b __,. c are replaced with a --,. c, as is shown in 
Figure 2. I 

We shall typically use a straightforward generalization of the Shortcut Lemma. 
Specifically, we can shortcut any set of pointer-disjoint paths in a data structure 
without increasing the load factor. 

Because the algorithms presented in this paper are based on the Shortcut 
Lemma, they are not only conservative, but they are also independent of the cut 
capacities of the DRAM and of the embedding of an input data structure in the 
DRAM. Thus, independent of the underlying network, the algorithms are correct, 
and if the embedding of the input data structure is good, the algorithms run fast. 
Moreover, for a specific embedding on a specific DRAM, the running time can be 
analyzed precisely. 
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Figure 2: The Shortcut Lemma. In each of the four cases illustrated, the load factor across the 
cut is either unchanged or diminished by replacing a -+ b and b-+ c with a-+ c . 

3. List contraction 

In this section we present a conservative "recursive pairing" algorithm, Algo­
rithm LC, that can perform many of the same functions on lists as recursive 
doubling. The idea is -to repeatedly "contract" the list until it consists of a single 
node . To record the contractions, we construct a binary contraction tree whose 
leaves are the elements in the list. After building the contraction tree, opera­
tions such as broadcasting from the root or parallel prefix can be performed in 
a conservative fashion. Algorithm LC is a randomized algorithm, and with high 
probability, the height of the contraction tree and the number of steps on a DRAM 
are both O(lg n) . A deterministic variant based on deterministic coin tossing [5 ] 
runs in O(lg n lg• rn) steps, where rn is the number of processors in the DRAM, 
and produces trees of height O(lg n). 

Algorithm LC requires a constant amount of extra space for each element in 
the input list. Each processor contains two elements, an element in the list, and 
a spare element that will act as an internal node in the contraction tree. We call 
the two elements in the same processor mates. Each element holds a pointer to 
an unused internal node, which for each list element initially points to its mate. 
The use of spare nodes allows the algorithm to distribute the space for the internal 
nodes of the contraction tree uniformly over the elements in the list. Spare internal 
nodes are used in [1] and [13] for similar reasons, but in a different context. 

Figure 3 shows Algorithm LC. Each element has a self register that points to 
itself, a mate register that points to its mate, and two registers left and right 
that point to the next and previous elements in the list. The left register of the 
first element of the list and the r ight register of the last element point to the 
elements themselves . An element also has three pointers, CTmerge, CTleft, and 
CTright, that represent the element's parent and left and right children in the 
contraction tree. To simplify boundary conditions for the algorithm, these three 
registers initially point to the element itself. Finally, each element holds a pointer 
CTspare to an unused internal node, which for each list element initially points to 
its mate. 
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1 Activate all list elements. 
2 Each active element executes: 
3 CTmerge +- self 
4 CTleft +- self 
5 CTright +- self 
6 CTspare +- mate 
7 while more than one element is active do 
8 Each active element randomly picks one of its two neighbors. 
9 if an element and its right neighbor pick each other 
10 then the element executes: 
11 CTmerge +- CTspare 
12 right .CTmerge +- CTmerge 
13 CTmerge.CTspare <- right.CTspare 
14 CTmerge .CTmerge +- CTmerge 
15 CTmerge.CTleft +- self 
16 CTmerge .CTright <- right 
1 7 CTmerge .left +- left 
18 CTmerge.right +- right.right 
19 Deactivate the element and its right neighbor, and activate its spare. 
20 Each active element executes : 
21 left +- left .CTmerge 
22 right <- right.CTmerge 

Figure 3: Algorithm LC. This conservative algorithm constructs a contraction tree for an input 
list by recursively pairing and merging elements of the list. 

Algorithm LC proceeds as follows. In each iteration, each element in the list 
randomly picks either its left or right neighbor. The leftmost and rightmost el­
ements a lways pick their single neighbor. If two elements pick each other, they 
merge, and the left element takes control. A new- internal node of the contraction 
tree is made using the spare of the left element. The spare for the new node is 
the spare of the right element. The new node's left child is the left element, and 
its right child is the right element. The new nodes and the unpaired nodes form 
themselves into a "contracted" list in the terminology of Miller and Reif [16] . The 
algorithm operates on this contracted list in the next iteration. 

In fact, a similar algorithm works for circular lists . Since there are no leftmost 
or rightmost elements in circular list, each element always randomly picks one of 
its two neighbors. When a circular list consists of exactly two elements, one is 
arbitrarily chosen to be the left element in the pair. 

To describe the efficiency of randomized algorithms such as Algorithm LC, 
we shall use the term "with high probability," by which we shall mean "with 
probability 1 - 0(1/nk) for any constant k > 0," where n is the size of the input . 
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Theorem 2 With high probability, Algorithm LC takes O(lg n) steps to construct 
a contraction tree for a list of n elements. 

Proof: We show that the algorithm terminates after (k+ 1) log 4 1 3 n iterations with 
probability at least 1 - 1/nk. We use an accounting scheme involving "tokens" 
to analyze the algorithm. Initially a unique token resides between each pair of 
elements in the input list. Whenever two list elements pick each other, we destroy 
the token between them. The key observation is that for each token destroyed, the 
length of the list · decreases by one. Thus the algorithm terminates when no token 
remains . In any iteration, an existing token has probability at least 1/4 of being 
destroyed. Thus after rn iterations, a token has probability at most (3/4)m. of 
remaining in existence. Let T. be the event that token i exists after rn iterations , 
and let T be the event that any token remains after rn iterations. Then by the 
principle of inclusion and exclusion, the probability that any token remains is given 
by 

Pr(T) Pr(T1 u T 2 U ... U T,.-1) 

Pr(T1) + Pr(T2) + · · · + Pr(T,.-1) 

(n - 1) (¾) m. 

For rn = (k + 1) log4 ; 3 n iterations we have 

Pr(T) ~ (n - 1) ( -
3

4

) (k+ l) logf,. 

1 

I 

Theorem 3 With high probability, the height of the contraction tree is O (lg n). 

Proof: The height of the contraction tree is not greater than the number of 
iterations of Algorithm LC. I 

We now prove that Algorithm LC is conservative. 

Theorem 4 Algorithm LC is conse rvative . 

Proof: The key idea is that the order of the list elements and their spares is pre­
served by the operation of contraction. By convention, let the mate of an element 
in the input list lie in the order between that element and its right neighbor. Then 
in each iteration, an active element's spare lies between the element and its right 
neighbor in the contracted list. Thus, both the pointers of the contracted list and 
the pointers between active elements and their spares correspond to disjoint paths 
in the input list. The memory accesses in a step of the algorithm correspond to 
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a set of pointers between active elements and their left or right neighbors in the 
contracted list, or to a set of pointers between active elements and their spares. I 

Once a contraction tree has been constructed, it can be used for broadcasting 
a value to all of the elements of the list, for accumulating values stored in each 
element of the list, and more generally, for performing prefix cornputations. Let 
D be a domain with a binary associative operation EB and an identity c. A prefix 
computation [3,7,18] on a list with elements x 1 , x 2 , • .. , x,. in D puts the value 
y; = x 1 EB x 2 EB · · · EB x, in position i for i = 1, 2, ... , n. 

A prefix computation on a list can be performed by a conservative, two-phase 
algorithm on the contraction tree. The leaves of the contraction tree from left to 
right are the elements in the list from x 1 to x,.. The first phase proceeds bottom up 
on the tree . Each leaf passes its x value to its parent. As the algorithm proceeds, 
each internal node receives values from its left and right children, call them z 1 and 
Zr- The node saves value z 1, and passes z 1 EB z,,. to its parent. The second phase 
proceeds top down after the root receives values from its children. The root then 
passes c to its left child and its z 1 value to its right child. Each child receives a 
value from its parent, call it Zp, and passes that value to its left child and z1 EB Zp 

to its right child. When a leaf receives Zp it computes y = Zp EB x. 

The algorithm performs the prefix computation in O(Ig n) steps . At each step, 
the a lgorithm communicates across a set of pointers in the contraction tree, all 
of which are the same distance from the leaves in the first phase and the same 
distance from the root in the second. That this computation is performed in a 
conservative fashion is a consequence of the following lemma. 

Theorem 5 Let CT be a contraction tree cornputed by Algorithrn LC on an input 
list L, and suppose P is a set of pointers of CT in edge-disjoint subtrees of CT. 
Then P is conservative with respect to L. 

Proof: An inorder traversal of CT alternately visits list elements (leaves) and 
their mates (internal nodes) in the same order that the list elements and mates 
appear in L. Thus, the pointers in P correspond to disjoint paths in L. By the 
Shortcut Lemma, any set of pointers that correspond to disjoint paths in the list 
L are conservative with respect to L . I 

Algorithm LC, which constructs a contraction tree in O(lg n) steps, is a ran­
domized a lgorithm. By using the "deterministic coin tossing" technique of Cole 
and Vishkin [5] the algorithm can be performed nearly as well deterministically. 
Specifically, the randomized pairing step can be performed deterministically in 
O(lg• rn ) steps on a DRAM with rn processors, where lg• rn is the number of times 
the logarithm functio~ must be successively applied to reduce rn to a value no 
greater than 1. The overall running time for list contraction is thus O (lg n lg• rn). 

4. Tree con.traction. 

This section presents a conservative tree cont raction algorithm, Algorithm TC, 
based on the tree contraction ideas of Miller and Reif [16] . The ~lgorithm uses a 
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1 Activate all tree elements. 
2 Each active element executes: 
3 CTmerge - self 
4 CTparent - self 
5 CTleft - self 
6 CTright +-- self 
7 CTspare - mate 
8 CTlevel +-- 1 
9 call RPT 
10 procedure RPT 
11 if more than one element is active then 
12 call Pair 
13 call Contract 
14 call RPT recursively 
15 call Expand 

Figure 4.: Algorithm TC. This conservative algorithm contracts an input rooted binary tree to a 
single node recursively pairing and merging elements of the tree . A contraction tree is contructed 
to record the order of contractions made. 

recursive pairing strategy to build a contraction tree for an input rooted binary tree 
in much t he same manner as Algorithm LC does for a list . With high probability, 
the height of the contraction tree and the number of steps on a DRAM are both 
O(lgn). A deterministic variant runs in O(lgn lg• m.) steps. 

As in Algorithm LC, each processor in A lgorithm TC contains two elements, an 
element in the input tree and its mate, a spare element that will act as an internal 
node of the contraction tree. Each element has a self register that points to itself, 
and a mate register that points to its mate. Registers left, right, and parent 
point to the element's left and right children, and parent in the input b inary 
tree . One or more of these three registers may point to the element itself. Each 
element holds a pointer CTspare to an unused e lement, which initially points t o 
its mate. An element also has pointers CTmerge, CTleft, CTright, and CTparent 
that represent its position in the contraction tree and a CTlevel register that 
records t he number of the contraction step in which the node merged with another 
node. To simplify boundary conditions for the algorithm the CTmerge , CTparent, 
CTleft , and CTright regis ters of each element in the input binary tree (each leaf 
of the contraction tree) initially point to the element itself. 

Algorithm TC is depicted in Figure 4 . F or clarity, it has been broken into three 
subroutines, Pair, Contract, and Expand, which we now outline. 

In procedure Pair each node of the tree chooses to pair with one of its neighbors. 
Figure 5 illustrates how the choice is made. A leaf picks its parent with probability 
l. A node with exactly one child picks its child or its parent, each with probability 
1/2. A node with two children picks each child with probability 1/2. The root, 
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Figure 5 : A pairing step. A leaf picks its parent with probability 1. A node with exactly one child 
picks its child or its parent, each with probability 1/2. A node with t-wo children picks each child 
-with probability 1/2. The root, which has no parent, picks its children -with equal probability. 

which has no parent, picks its children with equal probability. 

The second subroutine, Procedure Contract , shown in Figure 6, performs one 
contraction step. We now outline a contraction step. If two nodes pick each other 
they merge and the parent takes over . The merge is recorded by a new internal 
node in the contraction tree. Space for the new node is provided by t he spare, 
CT s pare, of the parent in the pair. The spare of the child in the pair becomes 
the spare for the new node. The CTmerge register of both the parent and child 
of the pair point to the new node. The CTparent register points to the parent 
in the pair, and one of CTleft and CTright points to the child, depending on 
whether the node records the pairing of a parent and a left or right child. The 
other register points to the new node itself. The new nodes and the unpaired nodes 
form themselves into a new tree, which is guaranteed to be binary by the pairing 
strategy. The new internal node of the contraction tree inherits its parent, left, 
and right pointers from the parent and child in the pair . After a contraction step, 
Procedure RPT is called recursively on the contracted tree (not to be confused 
with the contraction tree which records the contractions). 

Once the input tree has been contracted to a single node, it is "expanded" 
by undoing the contractions in the reverse of the order in which they occurred. 
Procedure Expand performs a single expansion step. The procedure, illustrated 
in Figure 7, undoes all of the merges made in the contracted tree during a single 
contraction step, but it leaves the contraction tree intact . Each active node holds 
the number of the contraction step being undone in its CTleve l register. An active 
node expands to a parent-child pair if this number is equal to the number of the 
contraction step in which the parent and child merged. When the node expands, 
the tree pointers of the parent and child, which have been undisturbed by the 
algorithm since the nodes merged, are used to restore the pair to the state it had 
when the contraction step took place. The expansion requires only constant space 
at each node. In the next section we will see that tree expansion allows us to 
describe treefix computations recursively. 

In fact, the tree can be expanded by a greedy strategy without consulting the 
number of the contraction step at which each merge occurred. In each expansion 
step every active node simply undoes the merge that it records. We have chosen 
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1 procedure Contract 
2 Each active element executes: 
3 if an element and its left child pick each other 
4 then the element executes: 
5 CTmerge <- CTspare 
6 left.CTmerge +- CTspare 
7 CTmerge.CTspare <- left .CTspare 
8 CTmerge.CTmerge <- CTmerge 
9 CTmerge.CTlevel <- CTlevel 
10 CTmerge.CTparent +- self 
11 CTmerge.CTleft <- left 
12 CTmerge .CTright <- CTmerge 
13 CTmerge.parent +- parent 
14 CTmerge.right +- right 
15 if left.left # left then CTmerge.left +- left.left 
16 else CTmerge .left +- left .right 
1 7 Deactivate the element and its left child, and activate its spare. 
18 elseif an element and its right child pick each other 
19 then the element executes: 
20 CTmerge +- CTspare 
21 right.CTmerge +- CTspare 
22 CTmerge.CTspare +- right.CTspare 
23 CTmerge.CTmerge <- CTmerge 
24 CTmerge.CTlevel +- CTlevel 
25 CTmerge.CTparent +- self 
26 CTmerge.CTright +- right 
27 CTmerge.CTleft +- CTmerge 
28 CTmerge .parent +- parent 
29 CTmerge.left +- left 
30 if right.right # right then CTmerge.right +- right.right 
3 1 else CTmerge .right +- right.left 
32 Deactivate the element and its right child, and activate its spare. 
33 Each active element executes: 
34 parent +- parent .CTmerge 
35 left +- left.CTmerge 
36 right +- right.CTmerge 
37 CTlevel <- CTlevel + 1 

Figure 6: Procedure Contract. In this procedure each pair of nodes that pick each other are 
merged. A new internal node of the contraction tree is created to record each merger. 
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1 procedure Expand 

2 

3 
4 
5 
6 
7 
8 
g 

10 
11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 
25 
26 

Each active element executes: 
CTlevel +- CTlevel - 1 
if CTparent # self then 

if CTparent .CTlevel = CTlevel then 
if CTparent.parent # CTparent then 

if CTparent.parent.le£t = sel£ then 
CTparent.parent.le£t +- CTparent 

else CTparent.parent .right +- CTparent 
if CTle£t # self then 

if CTle£t.le£t # CTle£t then 
CTle£t.left.parent +- CTle£t 

elseif CTle£t.right # CTle£t then 
CTle£t.right.parent +- CTleft 

if CTparent.right # CTparent then 
CTparent.right.parent +- CTparent 

Activate CTle£t. 
elseif CTright # self then 

if CTright.left # CTright then 
CTright.left .parent +- CTright 

elseif CTright.right # CTright then 
CTright.right.parent +- CTright 

if CTparent.le£t # CTparent then 
CTparent.left.parent +-- CTparent 

Activate CTright. 
Deactivate the element and activate CTparent. 

Figure '1: Procedure Expand. This procedure "undoes" the most recent contraction performed 
by Procedure Contra.ct. 

to contrain each expansion step to correspond to a contraction step in order to 
simplify the descriptions of the treefix computations in the next section. 

The proof that, with high probability, Algorithm TC takes O(lg n) steps to 
contract an input rooted binary tree to a single node requires three technical 
lemmas. The first lemma shows that in a binary tree, the number of nodes with 
two children and the number of leaves are nearly equal. The second lemma provides 
an elementary bound on the expectation of a discrete random variable with a finite 
upper bound. The last lemma presents a "Chernoff" [4] type bound on the tail 
end of a binomial distribution. 

Lemma 6 Suppose T = (V, E) is a rooted binary tree, and let Vo, V1 and V2 

denote the sets of nodes in T {excluding the root), with zero, one, or two children, 
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respectively, and let d(r) be the degree of the root. Then we have 

Lemma 7 Let X ~ b be a discrete random variable with expected value µ. For 
w < b, we have 

Pr(X ~ w) 
µ-w 

b-w •• 
The final lemma presents a bound on the tail end of a binomial distribution. 

Consider a set oft independent Bernoulli trials, each occurring with probability p 

of success. The probability that fewer than s successful trials occur is 

B(s, t,p) 

The lemma bounds the probability B(s, t,p) that fewer than s successes occur in 
t trials when t > 2s and p < 1/2. 

Lemma 8 Fort> 2s and p < ½, we have 

With these lemmas we can now prove that with high probability, Algorithm TC 
takes O(lg n) steps to contract a rooted binary tree to a single node. The key 
observation in the proof is that for each node that pairs with its parent, the 
number of nodes in the tree decreases by one. 

Theorem 9 Wi"th high probability, Algorithm TC takes O(lg n) contraction steps 
to contract a rooted binary tree of n nodes to a single node. 

Proof: The proof has three parts . First, we use Lemma 6 to show that that if 
a rooted binary tree has !V I nodes, the expected number of nodes pairing with a 
parent in a single contraction step is at least IVI /4. Next, we use Lemma 7 to 
show that the probability that at least IV! /8 nodes pair with a parent in any step 
is at least 1/3. Finally, we use Lemma 8 to show for any constant k that after 
a log8 ; 7 n steps, for some constant a > 2, the probability that the tree has not 
contracted into a single node is 0(1/nk). 

We first show that the expected number of nodes pairing with a parent is at 
least !V I /4. A node is picked by its parent with probability 1 when its parent is a 
degree 1 root, and 1/2 otherwise. Thus a leaf pairs with its parent with probability 
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at least 1/2, and a node (other than the root) with one child picks its parent with 
probability at least 1/4. Let P be the number of nodes pairing with a parent. We 
apply Lemma 6 to the simple bound on the expected value of P, 

E(P) > 

to yield the desired result: 

Now we show that the probability that at least JV J /8 nodes pair with a parent 
in a single contraction step at least; 1/3. We cail such a step successful. At 
most half of the nodes pair with their parents. Using Lemma 7 with b = JVJ /2, 
w = JV I /8, andµ~ JV J /4, we have 

~ - ~ 
Pr(P ~ JVI /8) ~ ~_!TI 

2 8 

1 

3 

Finally~ we show that with high probability, Algorithm TC takes O(lg n) con­
traction steps to contract the input tree to a single node. In the contraction 
following a successful pairing step, the size of the tree decreases by a factor of 7 /8 
or more. After log817 n successful steps, the tree must consist of a single node. By 
Lemma 8 with p = 1/3, the probability that fewer than .s = log817 n successful 
steps occur in a:.s steps is 

~ 2 ( (
~
3
)"' ~e) log

8;7,. . B(log817 n, a log8; 7 n, 1/3) ~ 

For any value k, we can choose a so that B(log817 n, a log817 n, 1 / 3) is 0(1 / nk) . In 
particular, for k = 1 a value of a = 8 suffices. 

We now prove that Algorithm TC is conservative. 

Theorem 10 Algorithm TC is conservative. 

Proof: The key idea is that each active element in the contracted tree is a "rep­
resentative" of a subgraph of the input tree that has been contracted to a single 
node. The contracted subgraphs, which are trees, are disjoint in the input tree. 
The representative and spare of a subgraph are either elements in or mates of 
elements in the subgraph. The pairing strategy ensures that each subgraph is ad­
jacent by an edge to at most one subgraph which is higher in the input tree, and 
to at most two subgraphs which are lower . The representative of the subgraph 
has pointers to the representatives of these subgraphs, and to the spare of the 
subgraph. 

As in the list contraction algorithm, the set of memory accesses in a step of the 
tree contraction algorithm corresponds to a set of disjoint paths in the input data 
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structure. Since each subgraph is connected, the pointers between representatives 
and spares correspond to disjoint paths in the input tree. Similarly, any set of 
pointers between each representative and the representative of at most one of the 
two adjacent subgraphs lower in the input tree corresponds to a set of disjoint 
paths in the input tree. The memory accesses in a step correspond to a set of 
pointers between representatives and spares or to a set of pointers between each 
representative and the representative of at most one of the two adjacent subgraphs 
lower in the input tree. I 

Tree contraction can be performed conservatively and deterministically on a 
DRAM with rn processors in O(lg n lg• rn) steps using the deterministic coin toss­
ing algorithm of Cole and Vishkin [5]. The key idea is that in Algorithm TC, the 
nodes in the tree that can pair form chains , and by Lemma 6 these chains contain 
at least half the tree edges. The chains can be oriented from child to parent in 
the tree, and deterministic coin tossing can be used to perform the pairing step in 
O(lg• rn) steps. 

5. Treefix. computations 

This section presents a generalization of the parallel prefix computation to binary 
trees. We present two kinds of treefix computations-rootfix and leaffix-and show 
how they can be implemented by an O(lg n)-step conservative algorithm in linear 
space. As we shall see in Section 6, treefix computations can greatly simplify 
the description of many parallel graph algorithms in the literature, and moreover, 
treefix computations can be performed by conservative algorithms. 

We begin with a definition of treefix computation. 

Definition. Let D be a domain with a binary associative operation EB and an 
identity t::. Let T be a rooted, binary tree in which each vertex i E T has an 
assigned value Xi E D. The rootfix problem is to compute for each vertex i E T 
with parent 1·, the value Yi = Y; EB Xi, where Y; = t:: if i is the root. The leaffix 
problem is to compute for each vertex i E T with left child J and right child k, 
the value y, = Xi EBY; EB Yk, where Y; = t:: if i has no left child and Yk = t:: if i has 
no right child. 

Simple examples of treefix problems are computing the depth of each vertex 
in a rooted binary tree and computing the size of each subtree. These and other 
examples appear in the next section. 

Like the prefix computation on lists, treefix computations can be performed 
directly on the contraction tree. To simplify the description here, however, we 
describe a recursive version. We execute one contraction step and then recursively 
perform a treefix computation on the new tree. The treefix values for the input 
tree can be computed immediately from the treefix values for the new tree. 

Theorem 11 A rootfix or leaffix computation can be performed by a conservative 
randomized algorithm which, with high probability, takes O(lg n) steps, or by a 
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conservative deterministic algorithm which takes O(lg n lg" rn) steps, where rn is 
the number of processors in the DRAM. 

Proof: We first describe the computation for rootfix. First the input binary tree 
T is transformed to a new tree T' by one contraction step. Each new node u in 
T' resulting from the pairing of parent p and child c in T passes input value Xe 

to the child in T' that u inherited from c. Node u passes c to its other child. 
Each unpaired node v in T' passes c to each of its children. Each node in T' 
receives a value from its parent, call it z. Each new node u computes x:, +- z EB Xp. 

Each unpaired node v computes x~ +- z EB xv. A rootfix computation is performed 
recursively on T' using the x' values as input and yielding y' values as output. The 
contraction step from T to T' is then undone. Each new node u passes y~ to p and 
c. Node p computes Yp +- y~ and c computes Ye +- y~ EB Xe. Each unpaired node v 
computes Yv +- Y~-

We now describe a computation of which leaffi.x is a special case. Each node i 
in T is assigned input values x;, l,, and r,. Node i with left child j and right child 
k computes output value y, = x, EB Yi EB l, EB Yk EB r;, where Yi and l, are c if i has no 
left child and Yk and r; are c if i has no right child. For the special case of leafix, 
l; and r; are both c. First, a contraction step transforms T to T' . Consider each 
new node u in T' resulting from the pairing of parent p and left child c in T with 
input values Xp, lp, Tp and Xe, le respectively. (The cases where c is a right child, or 
where c has a right child or is a leaf, are similar.) Node u computes x:, +- Xp EB Xe, 

z:, +- le EB lp, and r:, +- rp. Each unpaired node v computes x~ +- x.,, l~ +- lv, and 
r: +- r.,. The computation is performed recursively on T' using the x' values as 
input and yielding y' values as output. Each node passes its y' value to its parent 
in T'. Each node receives values from its left and right children, call these values 
z 1 and Zr. Each new node u passes z1 to c and both z1 and z.- top. The contraction 
step from T to T' is undone. Node c computes Ye +- Xe EB z1 EB le. Node p computes 
Yp +- Xp EB Xe EB z1 EB le EB lp EB z.- EB Tp- Each unpaired node v computes Yv +- y~. I 

6. Conservative algorithms 

This section presents a collection of conservative DRAM algorithms, all of which 
use treefix computations. The algorithms use two processors per edge of an input 
graph G = (V, E) and require constant extra space in each processor. Since the 
algorithms are based on shortcutting pointers in the input data structure, they 
are independent of the underlying DRAM or embedding of the data structure. 

We represent each vertex in an undirected graph G = (V, E) by a doubly linked 
incidence ring of processors, one for each edge. Each element of the incidence ring 
contains pointers to the next and previous elements in the ring, and one pointer 
for a graph edge. For each edge (u, v) EE the element in the incidence ring for u 
contains a pointer to an edge element in the incidence ring for v, and vice versa. 
A directed graph is represented in the same doubly linked fashion, but the graph 
edges are labeled with their directions. 
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We represent trees with arbitrary vertex degrees by an incidence ring structure 
as well. If the tree is directed, each ring has a unique principal element that points 
toward the root. Breaking the incidence ring before the principal element yields 
the standard binary tree representation of the tree [9, pp. 332-333]. 

We now present brief descriptions of the algorithms. The performance is given 
terms of the number of steps on a DRAM when the input representation has size 
n. We assume the implicit tree contractions in the algorithms are performed by 
the randomized Algorithm TC. Deterministic bounds can be obtained by multi­
plying the number of steps by O(lg* rn), where rn is the number of processors. An 
upper bound on the actual performance in the DRAM model can be obtained by 
multiplying the number of steps by the load factor of the input. 

Generalized treefix. Perform a treefix operation on a directed tree with 
arbitrary vertex degree. The input values {x,} are stored in the principal elements 
of the tree, which is where the output values {y,} are to be placed. The leaffix value 
at a node i whose children have values Yi, Y2, ..• , Y1c is y, = x, EB Y1 EB Y2 EB · · • EB Y1c. 
Each element that is not principal stores the identity element g for its value . A 
binary treefix computation performed on the binary tree representation underlying 
the tree computes the desired values. Performance: O(lg n). 

Tree functions. Given a directed tree, compute for each node the number of 
descendents, its height, or its depth. The number of decendents for each node can 
be computed by a leaffi.x computation with EB as integer addition and x, = 1 for all 
nodes. The height of a node can also be computed by a leaffi.x computation where 
a EB b = max(a + 1, b + 1), the identity is g = -1, and x, = - 1 for all nodes. 2 The 
depth of a node .can be computed by a rootfix computation with EB as addition 
and x. = 1 for all nodes except the root which has value 0. Performance: O(lg n ) . 

Rooting an undirected tree. Pick a root of a tree with undirected graph 
pointers and orient the graph pointers toward the root. Form an "Eulerian tour" 
of the pointers of the representation [21] by direct ing each element of the tree to 
link its incoming ring pointer with its graph edge directed outward and its graph 
edge directed inward with its outgoing ring pointer. Each graph edge is used twice 
in the tour, once in each direction, but each ring pointer is used only once. Using 
the variant of Algorithm LC which works for circular lists, form a contraction 
tree of the tour. Choose the root of the contraction tree to be the root of the 
tree, and break the tour so that it begins wit h t he root. Use parallel prefix to 
number each node according to its first occurrence in the tour. Use contraction 
trees to distribute the smallest value in each incidence ring to the e lements of t he 
ring. Orient each graph edge from the larger value to the smaller. Performance: 
O(Ig n). 

Rerooting a directed tree. Given a directed tree and another distinguished 
vertex k , reorient the graph edges of the tree to point to k. The algorithm for root­
ing a tree can be used by picking k as the root instead of the root of the contract ion 

2 Te
0

chnically, e = -1 is not an identity for the operation a EB b = max(a + I, b + 1). Nonetheless , 
this leaffix computation correctly comput es the height of each node in a binary tree. Moreover, 
this leaffix computation also generalizes to a directed t ree with arbitrary vertex degree. 
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tree, but a single treefix computation suffices. Perform a leaffix computation with 
x1c = 1 and x, = 0 if i =f k, and use Boolean OR for EB. Each principal element 
whose leaffix value is 1 lies on the path from x1c to the root. Reverse the direc­
tion of the graph pointers of these elements . (Note : rerooting a tree changes the 
principal elements.) Performance: O(lg n). 

Tree-walk numberings of a binary tree. Number the nodes of a binary 
tree according to the order they would be visited in a preorder/inorder/postorder 
tree walk. For each of the walks , we will compute Y1c, the number of nodes visited 
before the left subtree of k. Use a leaffix computation to compute the number .size1c 
of the subtree rooted at k . We first compute the preorder numbering . (For the 
purposes of these numbering algorithms, we consider the root to be a left child .) 
If node k is a left child, set x1c to 1. If node k is a right child, set x1c to 1 plus the 
size of its sibling subtree. A rootfix computation with + yields Y1c, which is the 
preoder numbering of node k. The inorder numbering can be computed similarly. 
If node k is a left child, set x1c to 0 . If k is a right child, set x1c to 1 plus the size of 
its sibling subtree. Compute Y1c for each node using a rootfix computation with+. 
The inorder numbering of node k is 1 plus Yk plus the size of its left subtree. The 
postfix numbering can be computed by setting x,. to O if node k is a left child, and 
by setting x1c to the size of its sibling subtree if k is a right child. After computing 
Y1c using a rootfix computation with +, the postfix numbering of node k is 1 plus 
Yk plus the sizes of its two subtrees. Performance: O(lg n). 

Prefix/postfix numbering of a directed tree. Number the edges of an 
arbitrary directed tree according to the order they are visited in preorder /postorder 
tree walk. The problem reduces to prefix/postfix numbering on the underlying 
binary tree representation. Performance: O(lg n). 

Diameter and center of a tree. The diameter is the length of the longest 
path in the tree. A center is a vertex v such that the longest path from v to a leaf £s 
minimal over all vert£ces in the tree . The diameter can be determined by rooting 
the tree and using rootfix to find the furthest leaf from the root. Reroot the tree 
at this leaf. The distance from the new root to the furthest leaf is the diameter. 
(Based on an analog algorithm attributed to J. Wennmacker [6].) A center of the 
tree can be determined by finding a median element of the path that realizes the 
diameter. Performance: O(lg n). 

Centroid of a tree. A centroid is a vertex v such that the largest subtree with 
v as a leaf is minimal over all vertices in the tree. A centroid can be determined 
by rooting the tree and computing the size of each subtree. By broadcasting 
the size rn of the tree from the root, each graph edge in each incidence ring can 
determine the number of elements on the other side of the edge. For each incidence 
ring, compute the maximum of these values. A vertex with the minimum of these 
maximum values is a centroid. Performance: O(lg n). 

Separator of a tree. A separator [14] ,·s a partition of the vertices of an 
rn-vertex tree into three sets A, B, and C, with IAI ::; ¾rn, IBI = 1, e nd IC I ::; 
¾rn, such that no edge of the tree goes between a vertex in A and a vertex in C. 
Determine a centroid of the tree. This vertex is the separator vertex in B. It 
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remains to partition the rema1n1ng vertices between A and O. For each graph 
edge in the incidence ring, count the number of vertices in the subtree on the 
other side of the edge. Put the largest subtree in A. Use parallel prefix on the 
incidence ring to compute a running sum of the sizes of the other subtrees. Put 
all subtrees whose prefix value is at most ~rn in O, and put the remainder in A. 
Performance: O(lg n). 

Subexpression evaluation. Given a directed tree in which each leaf has a 
value and each internal node has an operator from { +, -, ·, + }, compute for each 
internal node the subexpression rooted at that node. A single leaflix computation 
suffices using the ideas of Brent [2] and Miller and Reif [16]. Performance: O(lg n). 

Minimum cost spanning tree. Given an undirected input graph G = (V, E) 
and a cost funct£on w : E --+ R, determ£ne a set F ~ E of edges such that each 
vertex in V is incident on an edge of F, and the sum of the weights of th_e edges 
in F is minimal. We give a conservative DRAM implementation of Boruvka's 
algorithm, also attributed to Sollin [20, pp. 71- 83] . We assume without loss of 
generality that the edge weights are distinct-otherwise, we can assign the weight 
of a graph edge e between two incidence ring elements with addresses a and b 
to be ( w ( e), max( a, b), min ( a, b)) and then compare weights lexicographically. We 
determine F by marking edges in G . Initially, no edges are marked. At each step 
of the algorithm, the currently marked graph edges form a subforest of F. Break 
each incidence ring by removing a single ring pointer and direct the resulting linear 
list. At each step of the algorithm, the marked graph edges and the ring pointers 
form a set {T.} of rooted trees, where the index i of the tree is the address of 
the root. The algorithm proceeds as follows. For each tree T,, use a rootfix 
computation to broadcast i to all of the elements in T,. Use a leaffix computation 
on T, to determine an edge e E E with the smallest weight w(e) connecting an 
edge element u E T, with an edge element v E T;, where i =/= j. H no such edge 
exists, the algorithm terminates. li T; picks the same edge as T,, the tree with 
smaller index does nothing. Otherwise, mark e as a member of F, directing it 
into T;, and reroot T. with u as the new root. Repeat this procedure until the 
algorithm terminates. Performance: O(lg2 n). 

Connected components. Given an undirected input graph G = (V, E), de­
termine a labeling l : V --+ Z such that such that l ( v) = l ( v') if and only if v and 
v' are in the same connected component of G. The algorithm is the same as the 
minimum spanning tree algorithm, choosing the weight of a graph edge e between 
incidence ring elements with addresses a and b to be max( a, b), min ( a, b). The 
label of a vertex is the index of its tree. Per/ ormance: 0 (lg2 n). 

Biconnected components. Two edges of an undirected graph G = (V, E) 
are in the same biconnected component if they lie on a common simple cycle. 
Determine a label£ng l ; E --+ Z such that l(e) = l(e') if and only if e and e' 
are in the same biconnected component of G . We give a conservative DRAM 
implementation of the biconnectivity algorithm of Tarjan and Vishkin [21] . We 
assume that the reader has some familiarity with that algorithm. Find a (directed) 
minimum spanning tree T = (V, F) of G. Number the vertices in the minimum 
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spanning tree in preorder. Use leaffix computations to compute for each vertex v 

three values: nd(v), low(v), and high(v). Here nd(v) is the number of descendants 
of v , while low(v) and high(v) are the lowest and highest vertices (with respect to 
the preorder numbering of T) that are either a descendant of v or adjacent to a 
descendant of v by an edge of E - F. Build a new graph G' where the edges of F 
are the vertices of G'. Let e be an edge from u to p(u), where p(u) is the parent of 
u in F. The adjacenc~ ring for u in G acts as the adjacency ring for e in G'. Add 
two kinds of edges to G'. For each edge { w, v} in E - F such that v + nd( v) :S w, 
add an edge {{v,p(v)},{w,p(w)}} to G'. For each edge (v,p(v)) of F such that 
v =j:. 1 and p(v) =J:. 1, and low(v) < low(p(v)) or high(v) 2::: p(v) + nd(p(v)), add an 
edge { { v, p(v )}, {p(v), p(p(v))}} to G' . It can be verified that the representation 
of G' is conservative with respect to the represent a t ion of G. Find the conn-ec t ed 
components of G'. Two edges of F are in the same block if as vertices in G' they 
are in the same connected component. Finally, for each edge e = { w, v} in E - F, 
let l(e) = l( {w, p(w)} ). Performance: O(lg 2 n). 

Eulerian cycle. An Eulerian cycle of an undirected graph G = (V, E) is 
a cycle contai·ning each edge in E exactly once . IT any vertex has odd degree, 
then no Eulerian cycle exists. Form a set of disjoint cycles of the pointers of 
the representation of G as in the algorithm for directing a tree. The cycles can 
be merged using an algorithm similar to the minimum spanning tree a lgorithm. 
Performance: O(lg 2 n). 

7. Conclusion. 

This paper has addressed the problem of embedding data structures, the use of 
load factor to evaluate embeddings and algorithms, and the notion of a conser­
vative algorithm as one that is communication efficient . This section gives some 
examples of graphs that can be embedded efficiently in DRAM networks. We dis­
cuss load factors for data structures other than graphs, and we consider relaxing 
the requirement that an algorithm be conservative in order to be communication 
efficient. 

The efficiency of a DRAM algorithm depends on how well its input is embedded 
in the DRAM and this embedding problem must be faced by a lgorithm designers 
in any bandwidth-limited distributed network. In general, the problem of deter­
mining the best embedding is NP-complete, but for many common situations , 
good embeddings can be found. Moreover, there are many situations in which the 
input graph structure is simple and known a priori, and a good embedding may 
be easy to construct for a given DRAM network. 

To illustrate how the embedding problem can be solved in many practical 
situations, consider fat- trees as the DRAM networ k. Because of the recursive 
structure of fat- trees, the divide-and-conquer heuristic works well for many input 
graphs . For example, a subproblem in switch- level simulation of a VLSI circuit is 
the finding of electrically equivalent portions of the circuit. A naive divide-and­
conquer embedding of the circuit on the fat- tree yields small load factors for every 
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cut. Thus, our conservative connected components algorithm will never cause 
undue congestion in communicating messages in the underlying network, and the 
algorithm will run effectively as fast as on an expensive, high- bandwidth network. 

For some graphs, it can be proved that divide-and-conquer yields near optimal 
embeddings on a fat-tree. Specifically, graphs for which a good separator theorem 
[14] exists can be embedded well. Examples include meshes, trees, planar graphs, 
and multigrids. Situations in which a mesh might be used include systolic array 
computation and image processing. Planar graphs and multigrids arise from the 
solution of sparse linear systems of equations based on the finite-element method. 

Many other classes of algorithms can be implemented in a conservative fashion 
on a DRAM. Any algorithm that communicates only across pointers in an input 
data structure is conservative. Passing a single datum between two processors, 
however, can require time linear in the diameter of the data structure, whereas 
our algorithms all run in a polylogarithmic number of steps. As another example, 
systolic array algorithms for matrix problems (10,13] can be implemented efficiently 
if the matrices are properly embedded. In general, any fixed-connection network 
algorithm will run well on a DRAM if the communication required by the network 
can be supported by the underlying DRAM network. 

Although the algorithms presented in this paper operate primarily on graphs, 
for which there is a natural definition of load factor, it is also possible to define 
the load factor of a data structure that contains no explicit pointers. For example, 
it is natural to superimpose a mesh on the matrix, as is suitable for systolic array 
computation, and the load factor of the matrix can be defined as the load factor 
of the superimposed mesh. 

For some problems, the running time may be more a function of the load factor 
of the output than the load factor of the input. As an example, consider the 
problem of sorting a linear list of elements. A natural question to ask is whether 
the list can be sorted in a polylogarithmic number of steps where at each step, 
the load factor is bounded by the load factor induced by the linear list together 
with the permutation determined by the sorted output. Whether such a sorting 
algorithm exists is an open question. 

Whereas the Shortcut Lemma presented in this paper holds for any network, 
for particular networks, other shortcut lemmas may hold. For example, another 
shortcut lemma for tree structures such as fat-trees is used in [15] to show that a 
certain parallel algorithm for finding the optimal embedding of a list on a fat-tree 
is conservative. 

As a final comment, it may well be that the notion of a conservative algorithm 
is too conservative. A contraction tree is not conservative with respect to its 
input tree (though the levels of the contraction tree are), but the load factor of 
the contraction tree is at most O(lg n) times the input load factor. As a practical 
matter, it is probably not worth worrying whether every set of memory accesses 
is conservative with respect to the input, as long as the load factor of memory 
accesses is polylogarithmically bounded. Algorithms with this looser bound are 
somewhat easier to code because of the relaxed constraint, and they should perform 
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comparably. 
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