
LABORATORY FOR ~ (b ~1iiti:i~~TTS
COMPUTER SCIENCE ii! I TECHNOLOGY

MIT / LCS/TM-312

HIERARCHICAL INEQUALITY REASONING

ELISHA P . SACI~S

FEBRUARY H)87

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

Hierarchical Inequality Reasoning

Elisha Sacks

MIT Laboratory for Computer Science
545 Technology Square, Room 370

Cambridge, MA 02139
U.S.A.

Tel: (617) 253-3447
Net: ELISHA©ZERMATT .LCS .MIT .EDU

Abstract

This paper describes a program called BOUNDER that proves inequalities between
elementary functions over finite sets of constraints. Previous inequality algorithms
perform well on some subset of the elementary functions, but poorly elsewhere.
Although complex algorithms perform better than simple ones for most functions,
exceptions exist. To overcome these problems, B OUNDER maintains a hierarchy of
increasingly complex algorithms. When one fails to resolve an inequality, it tries
the next . This strategy resolves more inequalities than any single algorithm. It also
performs well on hard problems without wasting time on easier ones. The current
hierarchy consists of four algorithms: bounds propagation, substitution, derivative
inspection, and iterative approximation. Propagation is an extension of interval
arithmetic that takes linear time, but ignores constraints between variables and
multiple occurrences of variables. The remaining algorithms consider these factors,
but require exponential time. Substitution is a new, provably correct, algorithm
for utilizing constraints between variables. An earlier attempt by Brooks does not
terminat e on all inputs and exploits fewer constraints. The final two algorithms
analyze constraints between variables. Inspection examines the signs of partial
derivatives. Iteration is based on several earlier algorithms from interval arithmetic.

Keywords: inequality proving, theorem proving, symbolic reasoning

This research was supported (in part) by National Institutes of Health Grant No.
R0l LM04493 from the National Library of Medicine and National Institutes of
Health Grant No. R24 RR01320 from the Division of Research Resources.

Contents

1 Introduction
1

2 System Architecture
2

3 The Context Manager
3

4 Bounding Algorithms 5 4.1 Bounds Propagation 5 4.2 Substitution 9 4.3 Derivative Inspection . 15
4.4 Iterative Approximation 17

5 Related Work 21

6 Conclusions
24

1 Introduction

This paper describes a program called BOUNDER that proves inequalities between

functions over all points satisfying a finite set of constraints: equalities and in

equalities between functions. It manipulates extended elementary functions: poly

nomials and compositions of exponentials, logarithms, trigonometric functions, in

verse trigonometric functions, absolute values, maxima, and minima. No program

can prove all inequalities between arbitrary extended elementary functions, since

Richardson [13] proves this problem undecidable. Programs that restrict their at

tention to a decidable subset, such as the linear functions, are often inadequate,

since many important problems fall outside all such subsets. BOUNDER takes a

different tack: it sacrifices completeness rather than generality.

BOUNDER tests whether a set of constraints, S, implies an inequality a ~ b

between the extended elementary functions a and b by calculating upper and lower

bounds for a -b over all points satisfying S. It proves the inequality when the upper

bound is negative or zero, refutes it when the lower bound is positive, and fails oth

erwise. Previous bounding algorithms perform well on some subset of the extended

elementary functions, but poorly elsewhere. For this reason, BOUNDER maintains a

hierarchy of increasingly complex bounding algorithms. When one fails to resolve

an inequality, it tries the next. Although complex algorithms derive tighter bounds

than simple ones for most functions, exceptions exist. Hence, BOUNDER's hierarchy

of algorithms derives tighter bounds than even its most powerful component. It

also performs well on hard problems without wasting time on easier ones.

The purpose of BOUNDER is to resolve inequalities that arise in realistic model

ing problems efficiently, not to derive deep theoretical results. It is an engineering

utility, rather than a theorem-prover for pure mathematics. For this reason, it only

addresses universally quantified inequalities, which make up the majority of practi

cal problems, while ignoring the complexities of arbitrary quantification. BOUNDER

enhances the performance of QMR [14], a program that derives the qualitative prop-

1

erties of parameterized functions: signs of the first and second derivatives, disconti

nuities, singularities, and asymptotes. It also helps explore the qualitative behavior

of dynamic systems, such as stability and periodicity. For example, suppose a linear

system contains symbolic parameters. Given constraints on the parameters, one can

use BOUNDER to reason about the locations of the system's poles and zeroes.

The next section outlines BOUNDER's architecture. Details appear in the two

subsequent sections. The final two sections contain a review of literature and conclu

sions. I argue that most current inequality provers are weak, brittle, or inefficient

because they process all inputs uniformly. BOUNDER avoids these shortcomings

with its hierarchical strategy.

2 System Architecture

BOUNDER consists of an inequality prover, a context manager, and four bounding

algorithms: bounds propagation, substitution, derivative inspection, and iterative

approximation. The prover tests whether an inequality between extended elemen

tary functions follows from a set of constraints S. It reduces the original inequality

to an equivalent but simpler one by canceling common terms and replacing mono

tonic functions with their arguments. For example, x + 1 :S: y + 1 simplifies to x :S: y,

-x :S: - y to x 2:: y, and ex :S: eY to x :S: y. It only cancels multiplicands whose signs

it can determine by bounds propagation. For a simplified inequality of the form

a :S: b, it applies each bounding algorithm to the pair (a - b, S) in turn. It proves

the original inequality if the upper bound is ever negative or zero, refutes it if the

lower bound is ever positive, and fails otherwise. The context manager organizes

constraint sets in the format required by the bounding algorithms. The bounding

algorithms derive upper and lower bounds for a function over all points satisfying a

constraint set. I describe the context manager in the next section and the bounding

algorithms in the following four sections.

BOUNDER distinguishes between strict and non-strict inequalities. This mecha-

2

nism consists mainly of careful bookkeeping, based on the properties of continuous

functions. For instance, a sum can only attain its upper (lower) bound if both ad

dends can attain theirs. From here on, we will speak only of non-strict inequalities,

since BOUNDER handles the strict case analogously.

3 T he Context Manager

The context manager (CM) manages constraint sets for the other components. The

simplest constraints, called relational constraints, are equalities and inequalities

between extended elementary functions. CM derives an upper (lower) bound for a

variable x from an inequality L :S R by reformulating it as x :S U (x ~ U) with

U free of x. It derives upper and lower bounds for x from an equality L = R by

reformulating it as x = U. Inequality manipulation may depend on the signs of

the expressions involved. For example, the constraint ax :S b can imply x :S b/ a

or x ~ b/ a depending on the sign of a. In such cases, CM attempts to derive the

relevant signs from other members of the constraint set using bounds propagation.

If it fails, it ignores the constraint. (Another possibility would be to create a

disjunctive constraint, explained below.) Constraints whose variables cannot be

isolated, such as x :S 2"', are ignored as well. CM gathers the bounds that it derives

from a set of relational constraints into a simple context. The number of variables in

a constraint is linear in its length and each variable requires linear time to isolate.

Isolation may require deriving the signs of all the subexpressions in the constraint.

Theorem 1 implies that this process takes linear time. All told, processing each

constraint requires quadratic time in its length. Subsequent complexity results

exclude this time.

The context manager also handles propositional constraints, boolean combina

tions of relational constraints. A set of propositional constraints is equivalent to

the conjunction of its members. CM eliminates negation from this conjunction by

replacing every instance of a =/=- b with a < b Vb < a, every instance of -i(a :S b) with

3

X VAR- LBs(x) VAR-UBs(x)

a l oo

b -2 0

C -OO 00

LOWERs(x)

1

max{-2, -4/a, c}

b

UPPERs(x)

-4/b

min{O,c}

b

Table 1: Sample bounds for S ={a~ 1, b:::; 0, b ~ -2, ab~ -4, c = b}

b < a, and so on. It recasts the resulting formula in disjunctive normal form as a

disjunction of conjunctions of relational constraints. CM creates a simple context

for each disjunct and collects the results into a disjunctive context.

The bounding algorithms and the inequality prover reduce disjunctive contexts

to simple ones. The upper bound of a function in a disjunctive context is the

maximum of its upper bounds in all disjuncts and the lower bound is the minimum

of its lower bounds. For example, the constraint x :::; -1 V x ~ 2 implies a lower

bound of 1 for x 2
• Similarly, an inequality holds in a disjunctive context iff it holds

in all disjuncts. The remainder of this paper deals solely with relational constraints

and simple contexts, hereafter abbreviated to constraints and contexts.

Two pairs of functions form the interface between the context manager and the

inequality prover and bounding algorithms. Given a variable x and a constraint set

S, the functions VAR-LBs(x) and VAR-UBs(x) return the maximum of x's numeric

lower bounds in S and the minimum of its numeric upper bounds. The functions

LOWERs(x) and UPPERs(x) return the maximum over all lower bounds, both sym

bolic and numeric, and the minimum over all upper bounds. Both VAR-LB and

LOWER derive lower bounds for x, whereas both VAR- UB and UPPER derive upper

bounds. However, LOWER and UPPER produce tighter bounds then VAR-LB and

VAR-UB because they take symbolic constraints into account. Examples of these

functions appear in Table 1. All four functions run in constant time once the con

texts are constructed.

4

4 Bounding Algorithms

This section contains the details of the bounding algorithms. Each algorithm derives

tighter bounds than its predecessor, but takes more time. Each invokes all of

its predecessors for subtasks, except that derivative inspection never calls bounds

propagation. The bounding algorithms define the extended elementary functions on

the extended real numbers in the standard fashion, that is 1/ ± oo = 0, log O = - oo,

200 = oo, and so on. Throughout this paper, "number" refers to an extended real

number.

4.1 Bounds Propagation

The bounds propagation algorithm bounds a compound function by bounding its

components recursively and combining the results. For example, the upper bound

of a sum is the sum of the upper bounds of its addends. The recursion terminates

when it reaches numbers and variables. Numbers are their own bounds, whereas

VAR- LB and VAR- UB bound variables. Figure 1 contains the bounds propagation

algorithm, BPs(e), for a function e over a set of constraints, S. One can represent

e as an expression in its variables x1 , ..• , Xn or as a function e(x) of the vector

x = (x 1 , • .• , xn)- From here on, these forms are used interchangeably. The notations

lb,, and ub,, abbreviate LBs(e) and UBs(e). The bounds for exponentials appear in

Figure 2. Figure 3 contains the upper bounds for trigonometric functions . The

lower bounds are obtained by replacing max with min, oo with - oo, TRIG-UB with

TRIG-LB, and line 1.1 with

1.1' :3n E Z lba. < (2n - ½)1r < uba. - 1

and by interchanging all instances of lb and ub that appear in the second column.

The correctness and complexity of BP are summarized in the theorem:

5

e lS lbe ube

1 a number e e

2 a variable VAR-LBs(e) VAR-UBs(e)

3 a+b lba. + lbb uba. + ubb

4 ab min { lba.lbb, lba.ubb, max {lba.lbb, lba.ubb,

uba.lbb, uba.ubb} uba.lbb, uba.ubb}

5 ab EXPT-LBs(a, b) EXPT-UBs(a, b)

6 min{a, b} min {lba., lbb} min { uba., ubb}

7 max{a, b} max {lba., lbb} max { uba., ubb}

8 log a log lba. log uba.

9 !al

9.1 lba. < 0 < uba. 0 max { -lba., uba.}

9.2 else min {llba.l, luba.l} max {llba.l, luba.l}

10 trigonometric TRIG-LBs(e) TRIG-UBs(e)

Figure 1: The BPs(e) Algorithm

Case EXPT-LBs(a, b) EXPT-UBs(a, b)

1 lba. > 0 elb&1og" eub1,1og"

2 b = l?. with p, q integers
q

2.1 p, q odd and positive [lba.t [uba.]b

2.2 p, q odd and uba. < 0 [uba.]b [lba.]b

2.3 p even elb1,1og lcil eub1,1og lcil

2.4 else - 00 00

3 else - 00 00

Figure 2: Bounding Algorithms for Exponentials

6

e IS TRIG-UBs(e)

1 s1na

1.1 :3n E Z lba, < (2n + ½}rr < uba, 1

1.2 else max{ sin lba,, sin uba,}

2 cos a TRIG-UBs(sin(a + fl)
3 tan a

3.1 :3n E Z lba, < (n + ½}rr < uba, 00

3.2 else tan uba,

4 arcs1n a

4.1 lba, 2'.: -1 /\ uba, :S: 1 arcsin uba,

4.2 else 00

5 arccosa

5.1 Iba, 2'.: -1 /\ uba, :S: 1 arccos lba,

5.2 else 00

6 arctana arctanuba,

Figure 3: Upper bounds for Trigonometric Functions

7

Theorem 1 For any extended elementary function e(x) and set of constraints S,

bounds propagation derives numbers lbe and ube satisfying

\:Ix.satisfies (x, S) =} lbe :S: e(x) :S: ube (1)

in time proportional to e's length.

Proof: The proof is by induction on e's lengt h. First, consider correctness. Num

bers and variables are the only inputs of length 1. Numbers sat isfy condition (1)

identically and variables satisfy it by the definitions of VAR- LB and VAR-UB. Sup

pose condition (1) holds for inputs of length less than n and let e be of length n. BP

bounds e by combining the bounds of its components, a and b, in one of steps 3-10.

The correctness of the bounds on a and b follows from the inductive hypothesis,

since they have length less than n. It remains to verify that the combination rules

yield valid bounds. Straightforward algebraic manipulations, performed in full by

Moore [11], confirm steps 3,4,6,7 and 9. Step 8 follows from the fact that log x

increases monotonically in x, with the provision that undefined LB values repre

sent -oo and undefined UB values, oo. The remaining steps, 5 and 10, call the

exponential and trigonometric bounding algorithms respectively.

Step 1 of the exponential bounding algorithm uses the identity ab = ebloga for

a 2:: 0 along with the monotonicity of the exponential function. The inductive

hypothesis does not establish the correctness of the bounds on blog a because it

has length n. Instead, we must apply the arguments for steps 4 and 8 of BP to the

bounds of a and b. Steps 2.1 and 2.2 are valid because the function ab respectively

increases and decreases monotonically in a for those choices of b. In st ep 2.3 the

equality ab = !alb holds, so the proof of step 1 applies . Finally, steps 2.4 and 3 yield

valid bounds vacuously.

The correctness of the trigonometric bounding algorithms follows from the prop

erties of piecewise monotonic functions. Suppose an interval A partitions into a set

of subintervals D on which a function f decreases monotonically and a set I on

8

which f increases monotonically. The maximum (minimum) off on A occurs at

the right (left) endpoint of some interval in I or at the left (right) endpoint of

some interval in D . When specialized to the individual trigonometric functions,

this result implies the correctness of their bounds. This completes the correctness

proof.

Next, consider the time-complexity of BP, t(n) . Inputs of length 1, numbers and

variables, take constant time. A unary function of length n takes time t(n - l) to

calculate the bounds of its argument plus constant overhead. A binary function of

length n takes time t(i) + t(n - i - l) to calculate the bounds of its arguments, with

i the length of its first argument, plus constant overhead. Induction proves that

t(n) is of order kn, with k the maximum overhead required for any step of BP. I

BP achieves linear time-complexity by ignoring constraints among variables or

multiple occurrences of a variable in an expression. It derives excessively loose

bounds when these factors prevent all the constituents of an expression from varying

independently over their ranges. For instance, the constraint a~ b implies that a - b

cannot be positive. Yet given only this constraint, BP derives an upper bound of oo

for a - b by adding the upper bounds of a and -b, both oo. As another example,

when no constraints exist, the joint occurrence of x in the constituents of x 2 + x

implies a global minimum of -1/4. Yet BP deduces a lower bound of -oo by

adding the lower bounds of x 2 and x, 0 and -oo. Subsequent bounding algorithms

derive optimal bounds for these examples. Substitution analyzes constraints among

variables and the final two algorithms handle multiple occurrences of variables. All

three obtain better results than BP, but pay an exponential time-complexity price.

4.2 Substitution

The substitution algorithm constructs bounds for an expression by replacing some of

its variables with their bounds in terms of the other variables. Substitution exploits

all solvable constraints, whereas bounds propagation limits itself to constraints be-

9

tween variables and numbers. In our previous example, substitution derives an

upper bound of O for a - b from the constraint a ::; b by bounding a from above with

b, that is a - b ::; b - b = 0. Substitution is performed by the algorithms SUP s(e, H)

and INFs(e, H), which calculate upper and lower bounds one over the constraint set

Sin terms of the variable set H. When His empty, the bounds reduce to numbers.

Figures 4 and 5 contain the SUP function and its auxiliary, SUPP. One obtains

the INF function from Figure 4 by interchanging all occurrences of SUP and INF and

replacing SUPP with INFF, UPPER with LOWER, EXPT-SUP with EXPT-INF, TRIG-SUP

with TRIG-INF, and max with min. Also, step 9 is replaced with:

9' lal
9.1 INFs(a, H) < 0 < SUPs(a, H) 0

9.2 else min{jINFs(a,H) l,lsUPs(a,H)I}

The INFF function is obtained from Figure 5 by replacing SUPP with INFF and UB

with LB. The auxiliary functions EXPT-SUP, EXPT-INF, TRIG-SUP, and TRIG-INF

are derived from the exponential and trigonometric bounding algorithms (Figures 2

and 3) by replacing UBs(a) with SUPs(a, H), replacing LBs(a) with INFs(a, H),

and so on for b. The expression v(e) denotes the variables contained in e. In the

remainder of this section, we will focus on SUP. INF is analogous.

In step 1, SUP calculates the upper bounds of numbers and of variables included

in H. It analyzes a variable, x, not in H by constructing an intermediate bound

B = SUPs(UPPERs(x),H u {x}) (2)

for x and calling SUPP to derive a final bound. If possible, SUPP derives an upper

bound for x in H directly from the inequality x ::; B. Otherwise, it applies bounds

propagation to B. For instance, the inequality x ::; 1- x yields a bound of 1/2, but

x ::; x2 - 1 does not provide an upper bound, so SUPP returns UBs(x2 - 1).

SUP exploits constraints among variables to improve its bounds on sums and

products. If b contains variables that a lacks, but which have bounds in a's variables,

1 v(e) ~ H

2 a variable

3 a+ b

3.1 v(b) - v(a) ~ H

3.2 else

4 ab

4.1 LBs(a) ~ 0

SUPs(e, H)

e

SUPPs(e,SUPs(UPPERs(e),H u {e}))

SUPs(a, H) + SUPs(b, H)

SUPs (a+ sup5 (b, HU v(a)), H)

4.1.1 v(b)-v(a) ~ H max{SUPs(a,H)sUPs(b,H),INFs(a,H)sups(b,H)}

5

6

7

8

g

10

4.1.2 else SUPs(aSUPs(b,H U v(a)),H)

4.2 UBs(a) :s; 0

4.2.1 v(b) -v(a) ~ H max{SUPs(a,H)INFs(b,H),INFs(a,H)INFs(b,H)}

4.2.2 else

4.3 else

ab

min{a, b}

max{a, b}

log a

lal

trigonometric

SUPs(aINFs(b, HU v(a)), H)

max {SUPs(a, H)SUPs(b, H), SUPs(a, H)INFs(b, H),

INFs(a, H)sup s(b, H), INF s(a, H)INF s(b, H)}

EXPT-SUPs(a, b, H)

min { SUPs(a, H), SUP s(b, H)}

max{SUPs(a, H), SUPs(b, H)}

log SUP s(a, H)

max {IINFs(a, H) I , lsUPs(a, H)I}

TRIG-SUPs(e, H)

Figure 4: The SUPs(e, H) Algorithm

11

case SUPPs(x, B)

1 x rt v(B) B

2 B = rx + A; r E ~. v rt v(A)

2.1 r~l 00

2.2 r < 1 _A_
1-T

3 B = min{O,D} min {sUPPs(x, C), SUPPs(x, D)}

4 B = max{C,D} max {sUPPs(x, C), SUPPs(x, D)}

5 else UBs(B)

Figure 5: The SUPPs(x, B) Algorithm

SUP constructs an intermediate upper bound, U, for a+ b or ab by replacing b with

these bounds. A recursive application of SUP to U produces a final upper bound.

(Although not indicated explicitly in Figure 4, these steps are symmetric in a and

b.) For example, given the constraints c ~ 1, d ~ 1, and cd ::; 4, SUP derives an

intermediate bound of 3c/4 for c - 1/d by replacing - 1/d with - c/4, its upper

bound in c. This bound is derived as follows:

C

4
(3)

SUP uses the recursive call

4 4
SUP(c,{}) = SUPP(c,SUP(d,{c})) = SUPP(c, INF(d,{c})) = SUPP(c,4) = 4 (4)

to derive a final bound of 3 for c-1/ d. If a and b have the same variables, SUP bounds

a+ b and ab by recursively bounding a and band applying bounds propagation to

the results.

Substitution produces valid bounds for any input, variable set, and constraints.

Although the proof requires a joint induction on both SUP and INF, I will present

only the SUP half, since the INF half is completely analogous. At first glance, it

seems possible that SUP fails to terminate on some inputs. Step 2 bounds a variable

by invoking SUP recursively on a more complex expression, its UPPER. Similarly,

12

steps 3.1, 4.1.2, and 4.2.2 bound their inputs by recursing on intermediate values of

unknown complexity. The following lemma rules out infinite recursion and allows

us to proceed to the correctness theorem:

Lemma 2 The algorithms SUPs(e, H) and INFs(e, H) terminate for any input e,

variable set H, and constraint set S.

Proof: The auxiliary functions EXPT-SUP and TRIG-SUP terminate if SUP does,

since they call it at most twice and apply a few extended elementary functions to

the results. Irregardless of SUP, SUPP always terminates because each recursive call,

in steps 2 and 3, decreases the length of b, while the other steps terminate directly.

It remains to show that SUP makes only finitely many recursive calls on any input.

Let T be the invocat.ion tree of recursive calls made by SUP for some e, H and S.

Each node n is labeled with the input en and variable set Hn of its corresponding

SUP call. A node n takes step kif en matches case k of SUP. Let V denote the union

of e's variables with those appearing in S. The variables of every en form a subset

of V. Consider some path p through T. Each node l of p that takes step 2 adds

some member of V to the set Hm of its successor m. No step removes elements from

H, so this variable appears in all subsequent Hn. At most IVI nodes of p can take

step 2 before some node takes step 1 and terminates the path.

Let q be the sub-path of p beginning with the successor of the last node that

takes step 2. By the argument above, p is finite iff q is finite. Let the free set of a

node n denote the variables of en not in Hn. Suppose n's predecessor, m, takes step

3.2, 4.1.2, or 4.2.2 and n corresponds to the outer SUP of that step. The expression

em has the form a + b or ab with b containing some variable not in v(a) U Hm,

whereas en contains only variables from v(a) U Hn. This implies that n's free set is

a proper subset of m's, since Hm equals Hn. None of SUP's steps increases the free

set of a node over that of its predecessor, except 2. Path q contains no instances of

step 2, so it can contain only finitely many such successors of nodes that take steps

3.2, 4.1.2, and 4.2.2 before it reaches a node with an empty free set and terminates

13

at step 1. Let r be the sub-path of q beginning with the successor of the last node

that takes one of these three steps. Each of r's nodes takes a step that reduces the

size of its input, so r must terminate. This proves q, and hence p, finite. I

The following theorem establishes the correctness of substitution:

Theorem 3 For every extended elementary function e, variable set H, and con

straint set S, the expressions i = INFs(e,H) ands= SUPs(e,H) satisfy the condi

tions:

i and s are expressions in H

\/x.satisfies(x, S) =} i(x) ~ e(x) ~ s(x)

(5)

(6)

Proof: I will prove that every finite invocation tree for SUP satisfies conditions (5)

and (6) by induction on tree depth. This proves the theorem, since both algorithms

always produce finite trees by Lemma 2. Trees of depth 1 return bounds of e,

which satisfy condition (5) trivially and (6) identically. Suppose the theorem holds

for trees of depth less than n and consider a SUP tree T of depth n > l. The

correctness of all recursive calls follows from the inductive hypothesis. It remains

to prove that the root node satisfies both conditions.

Step 1 cannot occur since n is greater than 1. By inductive hypothesis and

by the definition of the UPPER function, the second argument to SUPP in step 2

is an expression in H U { e} that bounds e. This implies directly that step 1 of

SUPP satisfies conditions (5) and (6) . Step 2.1 satisfies them by elementary algebra,

step 2.2 satisfies them vacuously, and step 5, by Theorem 1. Since the other steps

satisfy the conditions, the definitions of min and max guarantee that steps 3 and 4

do too.

Steps 3.2, 4.1.2, and 4.2.2 of SUP generate an intermediate upper bound, u, by

bounding one of e's constituents. Their final result, SUP(u, H), satisfies conditions 5

14

and 6 by the inductive hypothesis. The validity of u follows from the facts

(step 3.2) k ~ l '* a+ k ~a+ l

(step4.1.2) a~Ot\k~l '* ak~al

(step 4.2.2) a~ 0 t\ k ~ l '* ak ~ al

and the inductive hypothesis . SuP's remaining steps, including the auxiliary func

tions EXPT-SUP and TRIG-SUP, apply the combination rules of BP, appearing in

Figures 1-3, to the SUP and INF of e's constituents. Their results satisfy condi

tion (5) because the constituents do. Condition (6) holds by Theorem 1. I

Substitution utilizes constraints among variables to improve on the bounds of

BP, but ignores constraints among multiple occurrences of variables. It performs

identically to BP on the example of x 2 + x, deriving a lower bound of - oo. Yet

that bound is overly pessimistic because no value of x minimizes both addends

simultaneously. The last two bounding algorithms address this shortcoming.

4.3 Derivative Inspection

The derivative inspection algorithm, DI, calculates bounds for a function, f, from

the signs of its partial derivatives. If the partial derivative of f with respect to

x is non-negative over an interval [l, r], then f's minimum and maximum on the

interval, for any choice of its other variables, occur at l and r respectively. If the

partial derivative is non-positive, the maximum occurs at l and the minimum at r.

In the example from the previous section, the derivative of x 2 + x is non-positive on

[- oo, - 1/ 2] and non-negative on [-1/2, oo]. This information enables DI to derive

an opt imal lower bound of - 1/ 4 for x 2 + x, as opposed to INF's bound of - oo.

Before describing DI in detail, I will introduce some notation. Let S be a set

of const raints and x a vector (x1 , ... xn) of variables. The range of Xi in S is the

interval

(7)

15

and the range of x in Sis the Cartesian product X = X 1 x • • • xXn of its components'

ranges. Theorem 3 implies that

Vx .satisfies (x, S) :::::} x E X (8)

One can split X in dimension i by choosing a point Pi m Xi and forming two

supersets of S, one with the additional constraint Xi =:; Pi and the other with Xi ~ Pi·

One can collapse X to a point in dimension i by adding the constraint Xi = Pi to

S. If X is collapsed in all directions, it reduces to a point.

DI bounds a function f(x) by partitioning X into subregions on which J(x)

1s monotonic. The maximum upper bound and minimum lower bound over all

subregions bound f (x) from above and below on X. These bounds are valid over

the set of points whose components satisfy S, since all such points belong to X by

equation 8. DI splits X in each dimension i by dividing Xi into maximal intervals

of the following types:

decreasing SUP(
0££~), {}) ::; 0

increasing INF(8g£~2, {}) ~ O
unknown neither of the above.

(9)

If J(x) increases in Xi on a subregion, it must attain its minimum over that sub

region when Xi equals its left endpoint and its maximum when Xi equals its right

endpoint . If J(x) decreases, the endpoints are reversed. Either way, DI can collapse

the subregion to a point in dimension i. Figure 6 shows the results of this procedure

for the function x 2 - y2 on the region ([-1, 1), [-1, l]). The upper and lower bounds,

Ui and li, are found directly for each interval because no intervals are unknown.

Derivative inspection takes time proportional to the number of regions into which

f's domain splits. For this reason, it only applies to functions whose partial deriva

tives all have finitely many zeroes in X. When every Xi consists solely of increasing

and decreasing intervals , derivative inspection yields optimal bounds directly, since

all regions reduce to points. Otherwise, one must use another bounding algorithm

16

y

1
i

l3 l2
7

xlyl xiyl

-1 iu3 u2l1

IU4 U1 I
X

xlyi xjyj

L [4 l1 _J -
-1

Figure 6: Derivative inspection for x 2 - y 2

to calculate bounds on the non-trivial subregions. This two-step approach gener

ally yields tighter bounds than applying the second algorithm directly on f's entire

domain, since the subregions are smaller and often reduce to points along some

dimensions.

4.4 Iterative Approximation

Iterative approximation, like derivative inspection, reduces the errors m bounds

propagation and substitution caused by multiple occurrences of variables. Instead

of bounding a function over its entire range directly, it subdivides the regions under

consideration and combines the results. Intuitively, BP's choice of multiple worst

case values for a variable causes less damage on smaller regions because all these

values are less far apart. Figure 7 illustrates this idea for the function x 2 - x on

the interval [O, l] . Part (a) demonstrates that BP derives an overly pessimistic lower

bound on [O, 1] because it minimizes both - x and x 2 independently. Part (b) shows

that this factor is less significant on smaller intervals: the maximum of the two

17

n m n mn m

0 1 0 l
2

l 1
2

LB(x2
- x) - 1 _ l _ J

2 4

(a) (b)

Figure 7: Illustration of iterative approximation for x2 - x on [O, l]. The symbols

m and n mark the values of x that minimize -x and x2 respectively.

lower bounds, -3/4, is a tighter bound for x2 - x on [O, 1] than that of part (a).

One can obtain arbitrarily tight bounds by constructing sufficiently fine partitions.

Iterative approximation generalizes interval subdivision to multivariate functions

and increases its efficiency, using ideas from Moore [11] and Asaithambi et at. [l].

It converges to the true bounds of any continuously differentiable function on a

bounded domain. Let X 0 denote the range of the vector x in constraint set S, as

defined in the previous section. The IA algorithm, shown in Figure 8, calculates an

upper bound for a continuously differentiable function, f(x), on a finite region, Xo,

by iteratively dividing and shrinking X 0 • It derives a lower bound by negating the

upper bound of - f(x). By Theorem 3, these bounds are valid over the set of point s

whose components satisfy S.

Let c denote the collection of subsets of X 0 produced by DI on input f(x) and

S. The least upper bound, LUB, off on X 0 equals the maximum LUB off over c,

as explained in the previous section. IA uses a modified version of the UB function,

MUB, to estimate the LUB on regions. Initially, it pairs each member of c with its

MUB value and sorts the pairs in decreasing order of MUB . The first MUB value in

the list is an upper bound for f on X 0 • At each iteration, IA splits the first region,

Z, by bisecting an unknown component (defined in equation (9)) and inserting the

18

resulting subregions into the list in proper order.

It would be inefficient to split Zin an increasing or decreasing direction, i, since

the optimal value of Xi is known. In fact, the range of Xi consists of its optimal

value. Derivative inspection imposes this condition on the initial partition and IA

maintains it by collapsing each subregion of Z to its left endpoint in every decreasing

direction and to its right endpoint in every increasing direction. Also, it would be

pointless to consider regions on which f cannot attain its maximum. One such

case occurs when the MUB value, b', of an entry (Z', b') is less than f's value at the

middle of Z1 or Z2 • To improve efficiency, IA deletes these entries.

The MUB function is defined as follows:

MUB(X) = f(m(X)) + UBx (:Z:::: (xi - mi(X)) BJ
3

(~))
iEU(X) x,

(10)

The set U(X) contains all dimensions in which f(x) has unknown direction in X

and the vector m(X) denotes the middle of X, whose component mi(X) equals the

midpoint of Xi- The MLB function is defined analogously, with LB replacing UB in

equation (10) . Moore [11] proves that these functions bound f on all subsets of Xo,

that is

VX ~ X 0 'vx E X.MLB(X) ~ f(x) ~ MUB(X) (11)

This implies that the LUB off on X lies between its MUB and MLB.

Let us define the width of the interval [a, b] as b - a and the width of the region

X, w(X), as the maximum over the widths of its components. Moore proves that

VX ~ X 0 .MUB(X) - MLB(X) ~ Lw(X) (12)

with L a constant. This result enables us to prove that IA terminates.

Lemma 4 Let x = (x1 , . . . , x,.) have finite range X in S. For every positive c and

function f (x) continuously differentiable on X, IA terminates within

(2L)" " M = - IT w(Xi)
€ i=l

(13)

iterations, where L is the constant of equation {12).

19

1. Apply DI to f and S, pair each resulting region with its MUB value, sort the

pairs in decreasing order of MUB, and set list to the sorted list.

2. (Z, b) - head(list); list - tail(list) {The MUB of b is Z.}

3. If U(X) = 0 or b - MLB(Z) ~ c return b.

4. Choose an i in U(Z) which maximizes w(Zi)-

5. Calculate Z1 and Z2 by bisecting Z in dimension i and collapsing the

results in increasing and decreasing directions.

6. For j = 1, 2 do

6.1 Delete from list every pair (Z',b') for which b' < f(m(Zj)).

6.2 Insert {Zj, MUB(Zj)) into list in proper order.

7. Go to step 2.

Figure 8: Algorithm IA(j(x), S, c)

Proof: First, suppose list contains only the region X after step 1. Each interval

Xk can be decomposed by a sequence of bisections into at most

(14)

subintervals without splitting some interval narrower than e/ L. All told, X can

be decomposed into at most M regions without splitting such an interval. By the

choice of i in step 4, IA can only split an interval narrower than c/ L if the region

Z is narrower than c/ L . This never happens because such a Z satisfies the second

disjunct of step 3, terminating the iteration, by equation (12). Hence, at most M

iterations can occur.

Next, suppose list contains regions X 1
, ... , Xk after step 1. Applying the argu

ment above to each region shows that IA terminates within

(15)

iterations. The jth addend in this equation equals the volume of X i , whereas the

20

product in equation (13) equals the volume of X. The sum cannot exceed the

product because the Xj are pairwise disjoint subsets of X . I

The following theorem establishes the correctness of iterative approximation:

Theorem 5 Let x have finite range in S. For every positive € and continuously

differentiable function f(x), iterative approximation calculates a number, b, .satis

fying

'efx . .sati.sfie.s(x, S) * 0::; b - f(x)::; € (16)

Proof: It follows from Lemma 4 that IA terminates at step 3. If it halts because

U(Z) is empty, b is the LUB of f on Z because Z reduces to a point. If IA halts

because b - MLB(Z) is less than €, then b is at most € greater than the LUB by

equation (11). Either way, b approximates the LUB off on Z, which equals the LUB

on X, within €. This implies condition (16) by equation (8). I

For some applications and functions, other termination tests perform better than

step 3 of Figure 8. Asaithambi et al. [1) prove that the test

(17)

generates optimal bounds for rational functions . If one only needs to establish that

f is not greater than a particular bound, b0 , then b ::; b0 is a sufficient condition

for termination. This case arises when the inequality prover proves that c ::; d by

establishing that c - d has an upper bound of 0.

5 Related Work

In this section, I discuss, in order of increasing generality, existing programs that

derive bounds and prove inequalities. As one would expect, the broader the domain

of functions and constraints, the slower the program. The first class of systems

bounds linear functions subject to linear constraints. Valdes-Perez [18) analyzes

sets of .simple linear inequalities of the form x - y ~ n with x and y variables

21

and n a number. He uses graph search to test their consistency in cv time for c

constraints and v variables. Malik and Binford [10] and Bledsoe [2] check sets of

general linear constraints for consistency and calculate bounds on linear functions

over consistent sets of constraints. Both methods require exponential time.1 The

former uses the Simplex algorithm, whereas the latter introduces preliminary ver

sions of BOUNDER's substitution algorithms. Bledsoe defines SUP, SUPP, INF, and

INFF for linear functions and constraints and proves the linear versions of Lemma 2

and Theorem 3. In fact, these algorithms produce exact bounds, as Shostak [15]

proves.

The next class of systems bounds nonlinear functions, but allows only range con

straints. All resemble BOUNDER's bounds propagation and all stem from Moore's

[11] interval arithmetic. Moore introduces the rules for bounding elementary func

tions on finite domains by combining the bounds of their constituents. His algorithm

takes linear time in the length of its input. Bundy [7] implements an interval package

that resembles BP closely. It generalizes the combination rules of interval arithmetic

to any function that has a finite number of extrema. If the user specifies the sign

of a function's derivative over its domain, Bundy's program can perform interval

arithmetic on it. Unlike BOUNDER's derivative inspection algorithm, it cannot de

rive this information for itself. Many other implementations of interval arithmetic

exist, some in hardware.

Moore also proposes a simple form of iterative approximation, which Skelboe

[17], Asaithambi et al. [1], and Ratschek and Rokne [12, ch. 4] improve. BOUNDER's

iterative approximation algorithm draws on all these sources.

Simmons [16] handles functions and constraints containing numbers, variables,

and the four arithmetic operators. He augments interval arithmetic with simple

algebraic simplification and inequality information. For example, suppose x lies

in the interval [- 1, 1]. Simmons simplifies x - x to 0, whereas interval arithmetic

1The simplex algorithm often performs better in practice. Also, a polynomial alternative exists.

22

produces the range [-2, 2]. He also deduces that x :S z from the constraints x :Sy

and y :S z by finding a path from x to z in the graph of known inequalities. The

algorithm is linear in the total number of constraints. Although more powerful than

BOUNDER's bounds propagation, Simmons's program is weaker than substitution.

For example, it cannot deduce that x 2 2: y 2 from the constraints x 2: y and y 2: 0.

Brooks [6, sec. 3] extends Bundy's SUP and INF to nonlinear functions and argues

informally that Lemma 2 and Theorem 3 hold for his algorithms. This argument

must be faulty because his version of SUPH(e, {}) recurses infinitely when e equals

x + l / x or x + x2, for instance. Brooks's program only exploits constraints among

the variables of sums rx + B and of products xn B with r real, x a variable of

known sign, B an expression free of x, and n an integer. In other cases, it adds

or multiplies the bounds of constituents, as in steps 3.1, 4.1.1, 4.2.1, and 4.3 of

BOUNDER's SUP (Figure 4). These overly restrictive conditions rule out legitimate

substitutions that steps 3.2, 4 .1.2, and 4.2.2 permit. For example, BOUNDER can

deduce that 1/x - 1/y 2: 0 from the constraints y 2: x and x 2: 1, but Brooks's

algorithm cannot. On some functions and non-empty sets H, his algorithm makes

recursive calls with H empty. This produces needlessly loose bounds and sometimes

causes an infinite recursion.

Bundy and Welham (9, sec. 4] derive upper bounds for a variable x from an

inequality L :S R by reformulating it as x :S U with U free of x. If U contains a

single variable, they try to find its global maximum, M, by inspecting the sign of its

second derivative at the zeroes of its first derivative. When successful, they bound x

from above with M. Lower bounds and strict inequalities are treated analogously.

Bundy and Welham use a modified version of the PRESS equation solver [9,8] to

isolate x. As discussed in section 3, inequality manipulation depends on the signs

of the expressions involved. When this information is required, they use Bundy's

interval package to try to derive it. The complexity of this algorithm is unclear,

since PRESS can apply its simplification rules repeatedly, possibly producing large

23

intermediate expressions. BOUNDER contains both steps of Bundy and Welham's

bounding algorithm: its context manager derives bounds on variables from con

straints, while its derivative inspection algorithm generalizes theirs to multivariate

funct ions. PRESS may be able t o exploit some constraints that BOUNDER ignores

because it contains a stronger equation solver than does BOUNDER.

The final class of systems consists of theorem provers for predicate calculus

that treat inequalities specially. These systems focus on general theorem proving,

rather than problem-solving. They handle more logical connectives than BOUNDER,

including disjunction and existential quantification, but fewer functions, typically

just addition. Bledsoe and Hines [4] derive a restricted form of resolution that con

tains a theory of dense linear orders without endpoints. Bledsoe et al. [5] prove

this form of resolution complete. Finally, Bledsoe et al. [3] extend a natural de

duction system with rules for inequalities. Although none of these authors discuss

complexity, all their algorithms must be at least exponential.

6 Conclusions

Current inequality reasoners are weak, brittle, or inefficient because they treat all

inputs uniformly. Interval arithmetic systems, such as Bundy's and Simmons's,

run quickly, but generate exceedingly pessimistic bounds when dependencies exist

among components of functions. These dependencies are caused by constraints

among variables or multiple occurrences of a variable, as discussed in Section 4.1.

The upper bound of a - b given a :'.S b demonstrates the first type, while the

lower bound of x 2 + x given no constraints demonstrates the second. Each of the

remaining systems is brittle because it takes only one type of dependency into

account. Iterative approximation, suggested by Moore, and derivative inspection,

performed in the univariate case by Bundy and Welham, address the second type

of dependency, but ignore the first . Conversely, substitution, used (in a limited

form) by Brooks and Simmons, exploits constraints among variables, while ignoring

24

multiple occurrences of variables. All these systems are inefficient because they

apply a complex algorithm to every input without trying a simple one first.

BOUNDER overcomes the limitations of current inequality reasoners with its hier

archical strategy. It uses substitution to analyze dependencies among variables and

derivative inspection and iterative approximation to analyze multiple occurrences of

variables. Together, these techniques cover far more cases than any single-algorithm

system. Yet unlike those systems, BOUNDER does not waste time applying overly

powerful methods to simple problems. It tries bounds propagation, which has linear

time-complexity, before resorting to its other methods. An inequality reasoner like

BOUNDER should be an important component of future general-purpose symbolic

algebra packages.

References

[1] N. S. Asaithambi, Shen Zuhe, and R. E. Moore.
On computing the range of values.
Computing, 28:225- 237, 1982.

[2] W. W. Bledsoe.
A new method for proving certain Presburger formulas.
In Proceedings of the Fourth International Joint Conference on Artificial In

telligence, pages 15- 21, 1975.

[3] W. W. Bledsoe, Peter Bruell, and Robert Shostak.
A prover for general inequalities.
In Proceedings of the Sixth International Joint Conference on Artificial Intel

ligence, pages 66-69, 1979.

[4] W. W. Bledsoe and Larry M . Hines.
Variable elimination and chaining in a resolution-based prover for inequalities.
In Proceeding of the fifth conference on automated deduction, Springer-Verlag,

Les Arcs, France, July 1980.

[5] W. W. Bledsoe, K. Kunen, and R. Shostak.
Completeness results for inequality provers.
ATP 65, University of Texas, 1983.

[6] Rodney A. Brooks.
Symbolic reasoning among 3-d models and 2-d images.

25

Artificial Intelligence, 17:285-348, 1981.

[7] Alan Bundy.
A generalized interval package and its use for semantic checking.
ACM Transactions on Mathematical Software, 10(4):397-409, December 1984.

[8] Alan Bundy and Bob Welham.
Using meta-level descriptions for selective application of multiple rewrite rules

in algebraic manipulation.
Artificial Intelligence, 16(2):189-211, May 1981.

[9] Alan Bundy and Bob Welham.
Using meta-level descriptions for selective application of multiple rewrite rules

in algebraic manipulation.
D.A.I. Working Paper 55, University of Edinburgh, Depatment of Artificial

Intelligence, May 1979.

[10] J. Malik and T . Binford.
Reasoning in time and space.
In Proceedings of the Eighth International Joint Conference on Artificial Intel

ligence, pages 343- 345, August 1983.

[11] Ramon E. Moore.
Methods and Applications of Interval Analysis.
SIAM Studies in Applied Mathematics, SIAM, Philadelphia, 1979.

[12] H. Ratschek and J. Rokne.
Computer Methods for the Range of Functions.
Halsted Press: a division of John Wiley and Sons, New York, 1984.

[13] D. Richardson.
Some unsolvable problems involving elementary functions of a real variable.
Journal of Symbolic Logic, 33:511-520, 1968.

[14] Elisha P. Sacks.
Qualitative mathematical reasoning.
In Proceedings of the Ninth International Joint Conference on Artificial Intel

ligence, pages 137-139, 1985.

[15] Robert E. Shostak.
On the SUP-INF method for proving Presburger formulas.
Journal of the A CM, 24:529- 543, 1977.

[16] Reid Simmons.
"Commonsense" arithmetic reasoning.
In Proceedings of the National Conference on Artificial Intelligence, pages 118-

124, American Association for Artificial Intelligence, August 1986.

26

[17] S. Skelboe.
Computation of rational functions.
BIT, 14:87- 95, 1974.

[18] Raul Valdes-Perez.
Spatio-temporal reasoning and linear inequalities.
AIM 875, Massachusetts Institute of Technology, Artificial Intelligence Labo

ratory, May 1986.

27

