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Abstract 

This paper describes a program called BOUNDER that proves inequalities between 
elementary functions over finite sets of constraints. Previous inequality algorithms 
perform well on some subset of the elementary functions, but poorly elsewhere. 
Although complex algorithms perform better than simple ones for most functions, 
exceptions exist. To overcome these problems, B OUNDER maintains a hierarchy of 
increasingly complex algorithms. When one fails to resolve an inequality, it tries 
the next . This strategy resolves more inequalities than any single algorithm. It also 
performs well on hard problems without wasting time on easier ones. The current 
hierarchy consists of four algorithms: bounds propagation, substitution, derivative 
inspection, and iterative approximation. Propagation is an extension of interval 
arithmetic that takes linear time, but ignores constraints between variables and 
multiple occurrences of variables. The remaining algorithms consider these factors, 
but require exponential time. Substitution is a new, provably correct, algorithm 
for utilizing constraints between variables. An earlier attempt by Brooks does not 
terminat e on all inputs and exploits fewer constraints. The final two algorithms 
analyze constraints between variables. Inspection examines the signs of partial 
derivatives. Iteration is based on several earlier algorithms from interval arithmetic. 
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1 Introduction 

This paper describes a program called BOUNDER that proves inequalities between 

functions over all points satisfying a finite set of constraints: equalities and in

equalities between functions. It manipulates extended elementary functions: poly

nomials and compositions of exponentials, logarithms, trigonometric functions, in

verse trigonometric functions, absolute values, maxima, and minima. No program 

can prove all inequalities between arbitrary extended elementary functions, since 

Richardson [13] proves this problem undecidable. Programs that restrict their at

tention to a decidable subset, such as the linear functions, are often inadequate, 

since many important problems fall outside all such subsets. BOUNDER takes a 

different tack: it sacrifices completeness rather than generality. 

BOUNDER tests whether a set of constraints, S, implies an inequality a ~ b 

between the extended elementary functions a and b by calculating upper and lower 

bounds for a -b over all points satisfying S. It proves the inequality when the upper 

bound is negative or zero, refutes it when the lower bound is positive, and fails oth

erwise. Previous bounding algorithms perform well on some subset of the extended 

elementary functions, but poorly elsewhere. For this reason, BOUNDER maintains a 

hierarchy of increasingly complex bounding algorithms. When one fails to resolve 

an inequality, it tries the next. Although complex algorithms derive tighter bounds 

than simple ones for most functions, exceptions exist. Hence, BOUNDER's hierarchy 

of algorithms derives tighter bounds than even its most powerful component. It 

also performs well on hard problems without wasting time on easier ones. 

The purpose of BOUNDER is to resolve inequalities that arise in realistic model

ing problems efficiently, not to derive deep theoretical results. It is an engineering 

utility, rather than a theorem-prover for pure mathematics. For this reason, it only 

addresses universally quantified inequalities, which make up the majority of practi

cal problems, while ignoring the complexities of arbitrary quantification. BOUNDER 

enhances the performance of QMR [14], a program that derives the qualitative prop-
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erties of parameterized functions: signs of the first and second derivatives, disconti

nuities, singularities, and asymptotes. It also helps explore the qualitative behavior 

of dynamic systems, such as stability and periodicity. For example, suppose a linear 

system contains symbolic parameters. Given constraints on the parameters, one can 

use BOUNDER to reason about the locations of the system's poles and zeroes. 

The next section outlines BOUNDER's architecture. Details appear in the two 

subsequent sections. The final two sections contain a review of literature and conclu

sions. I argue that most current inequality provers are weak, brittle, or inefficient 

because they process all inputs uniformly. BOUNDER avoids these shortcomings 

with its hierarchical strategy. 

2 System Architecture 

BOUNDER consists of an inequality prover, a context manager, and four bounding 

algorithms: bounds propagation, substitution, derivative inspection, and iterative 

approximation. The prover tests whether an inequality between extended elemen

tary functions follows from a set of constraints S. It reduces the original inequality 

to an equivalent but simpler one by canceling common terms and replacing mono

tonic functions with their arguments. For example, x + 1 :S: y + 1 simplifies to x :S: y, 

-x :S: - y to x 2:: y, and ex :S: eY to x :S: y. It only cancels multiplicands whose signs 

it can determine by bounds propagation. For a simplified inequality of the form 

a :S: b, it applies each bounding algorithm to the pair (a - b, S) in turn. It proves 

the original inequality if the upper bound is ever negative or zero, refutes it if the 

lower bound is ever positive, and fails otherwise. The context manager organizes 

constraint sets in the format required by the bounding algorithms. The bounding 

algorithms derive upper and lower bounds for a function over all points satisfying a 

constraint set. I describe the context manager in the next section and the bounding 

algorithms in the following four sections. 

BOUNDER distinguishes between strict and non-strict inequalities. This mecha-
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nism consists mainly of careful bookkeeping, based on the properties of continuous 

functions. For instance, a sum can only attain its upper (lower) bound if both ad

dends can attain theirs. From here on, we will speak only of non-strict inequalities, 

since BOUNDER handles the strict case analogously. 

3 T he Context Manager 

The context manager ( CM) manages constraint sets for the other components. The 

simplest constraints, called relational constraints, are equalities and inequalities 

between extended elementary functions. CM derives an upper (lower) bound for a 

variable x from an inequality L :S R by reformulating it as x :S U (x ~ U) with 

U free of x. It derives upper and lower bounds for x from an equality L = R by 

reformulating it as x = U. Inequality manipulation may depend on the signs of 

the expressions involved. For example, the constraint ax :S b can imply x :S b/ a 

or x ~ b/ a depending on the sign of a. In such cases, CM attempts to derive the 

relevant signs from other members of the constraint set using bounds propagation. 

If it fails, it ignores the constraint. (Another possibility would be to create a 

disjunctive constraint, explained below.) Constraints whose variables cannot be 

isolated, such as x :S 2"', are ignored as well. CM gathers the bounds that it derives 

from a set of relational constraints into a simple context. The number of variables in 

a constraint is linear in its length and each variable requires linear time to isolate. 

Isolation may require deriving the signs of all the subexpressions in the constraint. 

Theorem 1 implies that this process takes linear time. All told, processing each 

constraint requires quadratic time in its length. Subsequent complexity results 

exclude this time. 

The context manager also handles propositional constraints, boolean combina

tions of relational constraints. A set of propositional constraints is equivalent to 

the conjunction of its members. CM eliminates negation from this conjunction by 

replacing every instance of a =/=- b with a < b Vb < a, every instance of -i( a :S b) with 
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X VAR- LBs(x) VAR-UBs(x) 

a l oo 

b -2 0 

C -OO 00 

LOWERs(x) 

1 

max{-2, -4/a, c} 

b 

UPPERs(x) 

-4/b 

min{O,c} 

b 

Table 1: Sample bounds for S ={a~ 1, b:::; 0, b ~ -2, ab~ -4, c = b} 

b < a, and so on. It recasts the resulting formula in disjunctive normal form as a 

disjunction of conjunctions of relational constraints. CM creates a simple context 

for each disjunct and collects the results into a disjunctive context. 

The bounding algorithms and the inequality prover reduce disjunctive contexts 

to simple ones. The upper bound of a function in a disjunctive context is the 

maximum of its upper bounds in all disjuncts and the lower bound is the minimum 

of its lower bounds. For example, the constraint x :::; -1 V x ~ 2 implies a lower 

bound of 1 for x 2
• Similarly, an inequality holds in a disjunctive context iff it holds 

in all disjuncts. The remainder of this paper deals solely with relational constraints 

and simple contexts, hereafter abbreviated to constraints and contexts. 

Two pairs of functions form the interface between the context manager and the 

inequality prover and bounding algorithms. Given a variable x and a constraint set 

S, the functions VAR-LBs(x) and VAR-UBs(x) return the maximum of x's numeric 

lower bounds in S and the minimum of its numeric upper bounds. The functions 

LOWERs( x) and UPPERs( x) return the maximum over all lower bounds, both sym

bolic and numeric, and the minimum over all upper bounds. Both VAR-LB and 

LOWER derive lower bounds for x, whereas both VAR- UB and UPPER derive upper 

bounds. However, LOWER and UPPER produce tighter bounds then VAR-LB and 

VAR-UB because they take symbolic constraints into account. Examples of these 

functions appear in Table 1. All four functions run in constant time once the con

texts are constructed. 
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4 Bounding Algorithms 

This section contains the details of the bounding algorithms. Each algorithm derives 

tighter bounds than its predecessor, but takes more time. Each invokes all of 

its predecessors for subtasks, except that derivative inspection never calls bounds 

propagation. The bounding algorithms define the extended elementary functions on 

the extended real numbers in the standard fashion, that is 1/ ± oo = 0, log O = - oo, 

200 = oo, and so on. Throughout this paper, "number" refers to an extended real 

number. 

4.1 Bounds Propagation 

The bounds propagation algorithm bounds a compound function by bounding its 

components recursively and combining the results. For example, the upper bound 

of a sum is the sum of the upper bounds of its addends. The recursion terminates 

when it reaches numbers and variables. Numbers are their own bounds, whereas 

VAR- LB and VAR- UB bound variables. Figure 1 contains the bounds propagation 

algorithm, BPs(e), for a function e over a set of constraints, S. One can represent 

e as an expression in its variables x1 , ..• , Xn or as a function e( x) of the vector 

x = ( x 1 , • .• , xn)- From here on, these forms are used interchangeably. The notations 

lb,, and ub,, abbreviate LBs( e) and UBs(e). The bounds for exponentials appear in 

Figure 2. Figure 3 contains the upper bounds for trigonometric functions . The 

lower bounds are obtained by replacing max with min, oo with - oo, TRIG-UB with 

TRIG-LB, and line 1.1 with 

1.1' :3n E Z lba. < (2n - ½)1r < uba. - 1 

and by interchanging all instances of lb and ub that appear in the second column. 

The correctness and complexity of BP are summarized in the theorem: 
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e lS lbe ube 

1 a number e e 

2 a variable VAR-LBs(e) VAR-UBs(e) 

3 a+b lba. + lbb uba. + ubb 

4 ab min { lba.lbb, lba.ubb, max {lba.lbb, lba.ubb, 

uba.lbb, uba.ubb} uba.lbb, uba.ubb} 

5 ab EXPT-LBs( a, b) EXPT-UBs(a, b) 

6 min{a, b} min {lba., lbb} min { uba., ubb} 

7 max{a, b} max {lba., lbb} max { uba., ubb} 

8 log a log lba. log uba. 

9 !al 

9.1 lba. < 0 < uba. 0 max { -lba., uba.} 

9.2 else min {llba.l, luba.l} max {llba.l, luba.l} 

10 trigonometric TRIG-LBs( e) TRIG-UBs(e) 

Figure 1: The BPs(e) Algorithm 

Case EXPT-LBs( a, b) EXPT-UBs( a, b) 

1 lba. > 0 elb&1og" eub1,1og" 

2 b = l?. with p, q integers 
q 

2.1 p, q odd and positive [lba.t [uba.]b 

2.2 p, q odd and uba. < 0 [uba.]b [lba.]b 

2.3 p even elb1,1og lcil eub1,1og lcil 

2.4 else - 00 00 

3 else - 00 00 

Figure 2: Bounding Algorithms for Exponentials 
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e IS TRIG-UBs(e) 

1 s1na 

1.1 :3n E Z lba, < (2n + ½}rr < uba, 1 

1.2 else max{ sin lba,, sin uba,} 

2 cos a TRIG-UBs(sin(a + fl) 
3 tan a 

3.1 :3n E Z lba, < (n + ½}rr < uba, 00 

3.2 else tan uba, 

4 arcs1n a 

4.1 lba, 2'.: -1 /\ uba, :S: 1 arcsin uba, 

4.2 else 00 

5 arccosa 

5.1 Iba, 2'.: -1 /\ uba, :S: 1 arccos lba, 

5.2 else 00 

6 arctana arctanuba, 

Figure 3: Upper bounds for Trigonometric Functions 
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Theorem 1 For any extended elementary function e(x) and set of constraints S, 

bounds propagation derives numbers lbe and ube satisfying 

\:Ix.satisfies ( x, S) =} lbe :S: e( x) :S: ube (1) 

in time proportional to e's length. 

Proof: The proof is by induction on e's lengt h. First, consider correctness. Num

bers and variables are the only inputs of length 1. Numbers sat isfy condition (1) 

identically and variables satisfy it by the definitions of VAR- LB and VAR-UB. Sup

pose condition (1) holds for inputs of length less than n and let e be of length n. BP 

bounds e by combining the bounds of its components, a and b, in one of steps 3-10. 

The correctness of the bounds on a and b follows from the inductive hypothesis, 

since they have length less than n. It remains to verify that the combination rules 

yield valid bounds. Straightforward algebraic manipulations, performed in full by 

Moore [11], confirm steps 3,4,6,7 and 9. Step 8 follows from the fact that log x 

increases monotonically in x, with the provision that undefined LB values repre

sent -oo and undefined UB values, oo. The remaining steps, 5 and 10, call the 

exponential and trigonometric bounding algorithms respectively. 

Step 1 of the exponential bounding algorithm uses the identity ab = ebloga for 

a 2:: 0 along with the monotonicity of the exponential function. The inductive 

hypothesis does not establish the correctness of the bounds on blog a because it 

has length n. Instead, we must apply the arguments for steps 4 and 8 of BP to the 

bounds of a and b. Steps 2.1 and 2.2 are valid because the function ab respectively 

increases and decreases monotonically in a for those choices of b. In st ep 2.3 the 

equality ab = !alb holds, so the proof of step 1 applies . Finally, steps 2.4 and 3 yield 

valid bounds vacuously. 

The correctness of the trigonometric bounding algorithms follows from the prop

erties of piecewise monotonic functions. Suppose an interval A partitions into a set 

of subintervals D on which a function f decreases monotonically and a set I on 
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which f increases monotonically. The maximum (minimum) off on A occurs at 

the right (left ) endpoint of some interval in I or at the left (right) endpoint of 

some interval in D . When specialized to the individual trigonometric functions, 

this result implies the correctness of their bounds. This completes the correctness 

proof. 

Next, consider the time-complexity of BP, t( n ) . Inputs of length 1, numbers and 

variables, take constant time. A unary function of length n takes time t( n - l) to 

calculate the bounds of its argument plus constant overhead. A binary function of 

length n takes time t( i) + t( n - i - l) to calculate the bounds of its arguments, with 

i the length of its first argument, plus constant overhead. Induction proves that 

t( n) is of order kn, with k the maximum overhead required for any step of BP. I 

BP achieves linear time-complexity by ignoring constraints among variables or 

multiple occurrences of a variable in an expression. It derives excessively loose 

bounds when these factors prevent all the constituents of an expression from varying 

independently over their ranges. For instance, the constraint a~ b implies that a - b 

cannot be positive. Yet given only this constraint, BP derives an upper bound of oo 

for a - b by adding the upper bounds of a and -b, both oo. As another example, 

when no constraints exist, the joint occurrence of x in the constituents of x 2 + x 

implies a global minimum of -1/4. Yet BP deduces a lower bound of -oo by 

adding the lower bounds of x 2 and x, 0 and -oo. Subsequent bounding algorithms 

derive optimal bounds for these examples. Substitution analyzes constraints among 

variables and the final two algorithms handle multiple occurrences of variables. All 

three obtain better results than BP, but pay an exponential time-complexity price. 

4.2 Substitution 

The substitution algorithm constructs bounds for an expression by replacing some of 

its variables with their bounds in terms of the other variables. Substitution exploits 

all solvable constraints, whereas bounds propagation limits itself to constraints be-
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tween variables and numbers. In our previous example, substitution derives an 

upper bound of O for a - b from the constraint a ::; b by bounding a from above with 

b, that is a - b ::; b - b = 0. Substitution is performed by the algorithms SUP s( e, H ) 

and INFs( e, H), which calculate upper and lower bounds one over the constraint set 

Sin terms of the variable set H. When His empty, the bounds reduce to numbers. 

Figures 4 and 5 contain the SUP function and its auxiliary, SUPP. One obtains 

the INF function from Figure 4 by interchanging all occurrences of SUP and INF and 

replacing SUPP with INFF, UPPER with LOWER, EXPT-SUP with EXPT-INF, TRIG-SUP 

with TRIG-INF, and max with min. Also, step 9 is replaced with: 

9' lal 
9.1 INFs(a, H) < 0 < SUPs(a, H) 0 

9.2 else min{jINFs(a,H) l,lsUPs(a,H)I} 

The INFF function is obtained from Figure 5 by replacing SUPP with INFF and UB 

with LB. The auxiliary functions EXPT-SUP, EXPT-INF, TRIG-SUP, and TRIG-INF 

are derived from the exponential and trigonometric bounding algorithms (Figures 2 

and 3) by replacing UBs(a) with SUPs(a, H), replacing LBs(a) with INFs(a, H), 

and so on for b. The expression v( e) denotes the variables contained in e. In the 

remainder of this section, we will focus on SUP. INF is analogous. 

In step 1, SUP calculates the upper bounds of numbers and of variables included 

in H. It analyzes a variable, x, not in H by constructing an intermediate bound 

B = SUPs(UPPERs(x),H u {x}) (2) 

for x and calling SUPP to derive a final bound. If possible, SUPP derives an upper 

bound for x in H directly from the inequality x ::; B. Otherwise, it applies bounds 

propagation to B. For instance, the inequality x ::; 1- x yields a bound of 1/2, but 

x ::; x2 - 1 does not provide an upper bound, so SUPP returns UBs( x2 - 1 ). 

SUP exploits constraints among variables to improve its bounds on sums and 

products. If b contains variables that a lacks, but which have bounds in a's variables, 



1 v(e) ~ H 

2 a variable 

3 a+ b 

3.1 v(b) - v(a) ~ H 

3.2 else 

4 ab 

4.1 LBs(a) ~ 0 

SUPs(e, H) 

e 

SUPPs(e,SUPs(UPPERs(e),H u {e})) 

SUPs(a, H) + SUPs(b, H) 

SUPs (a+ sup5 (b, HU v(a)), H) 

4.1.1 v(b)-v(a) ~ H max{SUPs(a,H)sUPs(b,H),INFs(a,H)sups(b,H)} 

5 

6 

7 

8 

g 

10 

4.1.2 else SUPs(aSUPs(b,H U v(a)),H) 

4.2 UBs(a) :s; 0 

4.2.1 v(b) -v(a) ~ H max{SUPs(a,H)INFs(b,H),INFs(a,H)INFs(b,H)} 

4.2.2 else 

4.3 else 

ab 

min{a, b} 

max{a, b} 

log a 

lal 

trigonometric 

SUPs(aINFs(b, HU v(a)), H) 

max {SUPs(a, H)SUPs(b, H), SUPs(a, H)INFs(b, H), 

INFs( a, H)sup s(b, H), INF s( a, H)INF s(b, H)} 

EXPT-SUPs( a, b, H) 

min { SUPs( a, H), SUP s(b, H)} 

max{SUPs(a, H), SUPs(b, H)} 

log SUP s( a, H) 

max {IINFs(a, H) I , lsUPs(a, H)I} 

TRIG-SUPs( e, H) 

Figure 4: The SUPs( e, H) Algorithm 
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case SUPPs(x, B) 

1 x rt v(B) B 

2 B = rx + A; r E ~. v rt v(A) 

2.1 r~l 00 

2.2 r < 1 _A_ 
1-T 

3 B = min{O,D} min {sUPPs(x, C), SUPPs(x, D)} 

4 B = max{C,D} max {sUPPs(x, C), SUPPs(x, D)} 

5 else UBs(B) 

Figure 5: The SUPPs(x, B) Algorithm 

SUP constructs an intermediate upper bound, U, for a+ b or ab by replacing b with 

these bounds. A recursive application of SUP to U produces a final upper bound. 

(Although not indicated explicitly in Figure 4, these steps are symmetric in a and 

b.) For example, given the constraints c ~ 1, d ~ 1, and cd ::; 4, SUP derives an 

intermediate bound of 3c/4 for c - 1/d by replacing - 1/d with - c/4, its upper 

bound in c. This bound is derived as follows: 

C 

4 
(3) 

SUP uses the recursive call 

4 4 
SUP(c,{}) = SUPP(c,SUP(d,{c})) = SUPP(c, INF(d,{c})) = SUPP(c,4) = 4 (4) 

to derive a final bound of 3 for c-1/ d. If a and b have the same variables, SUP bounds 

a+ b and ab by recursively bounding a and band applying bounds propagation to 

the results. 

Substitution produces valid bounds for any input, variable set, and constraints. 

Although the proof requires a joint induction on both SUP and INF, I will present 

only the SUP half, since the INF half is completely analogous. At first glance, it 

seems possible that SUP fails to terminate on some inputs. Step 2 bounds a variable 

by invoking SUP recursively on a more complex expression, its UPPER. Similarly, 
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steps 3.1, 4.1.2, and 4.2.2 bound their inputs by recursing on intermediate values of 

unknown complexity. The following lemma rules out infinite recursion and allows 

us to proceed to the correctness theorem: 

Lemma 2 The algorithms SUPs( e, H) and INFs(e, H) terminate for any input e, 

variable set H, and constraint set S. 

Proof: The auxiliary functions EXPT-SUP and TRIG-SUP terminate if SUP does, 

since they call it at most twice and apply a few extended elementary functions to 

the results. Irregardless of SUP, SUPP always terminates because each recursive call, 

in steps 2 and 3, decreases the length of b, while the other steps terminate directly. 

It remains to show that SUP makes only finitely many recursive calls on any input. 

Let T be the invocat.ion tree of recursive calls made by SUP for some e, H and S. 

Each node n is labeled with the input en and variable set Hn of its corresponding 

SUP call. A node n takes step kif en matches case k of SUP. Let V denote the union 

of e's variables with those appearing in S. The variables of every en form a subset 

of V. Consider some path p through T. Each node l of p that takes step 2 adds 

some member of V to the set Hm of its successor m. No step removes elements from 

H, so this variable appears in all subsequent Hn. At most IVI nodes of p can take 

step 2 before some node takes step 1 and terminates the path. 

Let q be the sub-path of p beginning with the successor of the last node that 

takes step 2. By the argument above, p is finite iff q is finite. Let the free set of a 

node n denote the variables of en not in Hn. Suppose n's predecessor, m, takes step 

3.2, 4.1.2, or 4.2.2 and n corresponds to the outer SUP of that step. The expression 

em has the form a + b or ab with b containing some variable not in v(a) U Hm, 

whereas en contains only variables from v(a) U Hn. This implies that n's free set is 

a proper subset of m's, since Hm equals Hn. None of SUP's steps increases the free 

set of a node over that of its predecessor, except 2. Path q contains no instances of 

step 2, so it can contain only finitely many such successors of nodes that take steps 

3.2, 4.1.2, and 4.2.2 before it reaches a node with an empty free set and terminates 
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at step 1. Let r be the sub-path of q beginning with the successor of the last node 

that takes one of these three steps. Each of r's nodes takes a step that reduces the 

size of its input, so r must terminate. This proves q, and hence p, finite. I 

The following theorem establishes the correctness of substitution: 

Theorem 3 For every extended elementary function e, variable set H, and con

straint set S, the expressions i = INFs(e,H) ands= SUPs(e,H) satisfy the condi

tions: 

i and s are expressions in H 

\/x.satisfies(x, S) =} i(x) ~ e(x) ~ s(x) 

(5) 

(6) 

Proof: I will prove that every finite invocation tree for SUP satisfies conditions (5) 

and (6) by induction on tree depth. This proves the theorem, since both algorithms 

always produce finite trees by Lemma 2. Trees of depth 1 return bounds of e, 

which satisfy condition (5) trivially and (6) identically. Suppose the theorem holds 

for trees of depth less than n and consider a SUP tree T of depth n > l. The 

correctness of all recursive calls follows from the inductive hypothesis. It remains 

to prove that the root node satisfies both conditions. 

Step 1 cannot occur since n is greater than 1. By inductive hypothesis and 

by the definition of the UPPER function, the second argument to SUPP in step 2 

is an expression in H U { e} that bounds e. This implies directly that step 1 of 

SUPP satisfies conditions (5) and (6) . Step 2.1 satisfies them by elementary algebra, 

step 2.2 satisfies them vacuously, and step 5, by Theorem 1. Since the other steps 

satisfy the conditions, the definitions of min and max guarantee that steps 3 and 4 

do too. 

Steps 3.2, 4.1.2, and 4.2.2 of SUP generate an intermediate upper bound, u, by 

bounding one of e's constituents. Their final result, SUP( u, H), satisfies conditions 5 
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and 6 by the inductive hypothesis. The validity of u follows from the facts 

(step 3.2) k ~ l '* a+ k ~a+ l 

(step4.1.2) a~Ot\k~l '* ak~al 

(step 4.2.2) a~ 0 t\ k ~ l '* ak ~ al 

and the inductive hypothesis . SuP's remaining steps, including the auxiliary func

tions EXPT-SUP and TRIG-SUP, apply the combination rules of BP, appearing in 

Figures 1-3, to the SUP and INF of e's constituents. Their results satisfy condi

tion (5) because the constituents do. Condition (6) holds by Theorem 1. I 

Substitution utilizes constraints among variables to improve on the bounds of 

BP, but ignores constraints among multiple occurrences of variables. It performs 

identically to BP on the example of x 2 + x, deriving a lower bound of - oo. Yet 

that bound is overly pessimistic because no value of x minimizes both addends 

simultaneously. The last two bounding algorithms address this shortcoming. 

4.3 Derivative Inspection 

The derivative inspection algorithm, DI, calculates bounds for a function, f, from 

the signs of its partial derivatives. If the partial derivative of f with respect to 

x is non-negative over an interval [l, r], then f's minimum and maximum on the 

interval, for any choice of its other variables, occur at l and r respectively. If the 

partial derivative is non-positive, the maximum occurs at l and the minimum at r. 

In the example from the previous section, the derivative of x 2 + x is non-positive on 

[- oo, - 1/ 2] and non-negative on [-1/2, oo]. This information enables DI to derive 

an opt imal lower bound of - 1/ 4 for x 2 + x, as opposed to INF's bound of - oo. 

Before describing DI in detail, I will introduce some notation. Let S be a set 

of const raints and x a vector (x1 , ... xn) of variables. The range of Xi in S is the 

interval 

(7) 
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and the range of x in Sis the Cartesian product X = X 1 x • • • xXn of its components' 

ranges. Theorem 3 implies that 

Vx .satisfies ( x, S) :::::} x E X (8) 

One can split X in dimension i by choosing a point Pi m Xi and forming two 

supersets of S, one with the additional constraint Xi =:; Pi and the other with Xi ~ Pi· 

One can collapse X to a point in dimension i by adding the constraint Xi = Pi to 

S. If X is collapsed in all directions, it reduces to a point. 

DI bounds a function f(x) by partitioning X into subregions on which J(x) 

1s monotonic. The maximum upper bound and minimum lower bound over all 

subregions bound f ( x) from above and below on X. These bounds are valid over 

the set of points whose components satisfy S, since all such points belong to X by 

equation 8. DI splits X in each dimension i by dividing Xi into maximal intervals 

of the following types: 

decreasing SUP( 
0££~), {}) ::; 0 

increasing INF( 8g£~2, {}) ~ O 
unknown neither of the above. 

(9) 

If J( x) increases in Xi on a subregion, it must attain its minimum over that sub

region when Xi equals its left endpoint and its maximum when Xi equals its right 

endpoint . If J( x) decreases, the endpoints are reversed. Either way, DI can collapse 

the subregion to a point in dimension i. Figure 6 shows the results of this procedure 

for the function x 2 - y2 on the region ([-1, 1), [-1, l ]). The upper and lower bounds, 

Ui and li, are found directly for each interval because no intervals are unknown. 

Derivative inspection takes time proportional to the number of regions into which 

f's domain splits. For this reason, it only applies to functions whose partial deriva

tives all have finitely many zeroes in X. When every Xi consists solely of increasing 

and decreasing intervals , derivative inspection yields optimal bounds directly, since 

all regions reduce to points. Otherwise, one must use another bounding algorithm 
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Figure 6: Derivative inspection for x 2 - y 2 

to calculate bounds on the non-trivial subregions. This two-step approach gener

ally yields tighter bounds than applying the second algorithm directly on f's entire 

domain, since the subregions are smaller and often reduce to points along some 

dimensions. 

4.4 Iterative Approximation 

Iterative approximation, like derivative inspection, reduces the errors m bounds 

propagation and substitution caused by multiple occurrences of variables. Instead 

of bounding a function over its entire range directly, it subdivides the regions under 

consideration and combines the results. Intuitively, BP's choice of multiple worst 

case values for a variable causes less damage on smaller regions because all these 

values are less far apart. Figure 7 illustrates this idea for the function x 2 - x on 

the interval [O, l] . Part (a) demonstrates that BP derives an overly pessimistic lower 

bound on [O, 1] because it minimizes both - x and x 2 independently. Part (b) shows 

that this factor is less significant on smaller intervals: the maximum of the two 
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Figure 7: Illustration of iterative approximation for x2 - x on [O, l]. The symbols 

m and n mark the values of x that minimize -x and x2 respectively. 

lower bounds, -3/4, is a tighter bound for x2 - x on [O, 1] than that of part (a). 

One can obtain arbitrarily tight bounds by constructing sufficiently fine partitions. 

Iterative approximation generalizes interval subdivision to multivariate functions 

and increases its efficiency, using ideas from Moore [11] and Asaithambi et at. [l]. 

It converges to the true bounds of any continuously differentiable function on a 

bounded domain. Let X 0 denote the range of the vector x in constraint set S, as 

defined in the previous section. The IA algorithm, shown in Figure 8, calculates an 

upper bound for a continuously differentiable function, f(x), on a finite region, Xo, 

by iteratively dividing and shrinking X 0 • It derives a lower bound by negating the 

upper bound of - f(x ). By Theorem 3, these bounds are valid over the set of point s 

whose components satisfy S. 

Let c denote the collection of subsets of X 0 produced by DI on input f(x) and 

S. The least upper bound, LUB, off on X 0 equals the maximum LUB off over c, 

as explained in the previous section. IA uses a modified version of the UB function, 

MUB, to estimate the LUB on regions. Initially, it pairs each member of c with its 

MUB value and sorts the pairs in decreasing order of MUB . The first MUB value in 

the list is an upper bound for f on X 0 • At each iteration, IA splits the first region, 

Z, by bisecting an unknown component (defined in equation (9)) and inserting the 
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resulting subregions into the list in proper order. 

It would be inefficient to split Zin an increasing or decreasing direction, i, since 

the optimal value of Xi is known. In fact, the range of Xi consists of its optimal 

value. Derivative inspection imposes this condition on the initial partition and IA 

maintains it by collapsing each subregion of Z to its left endpoint in every decreasing 

direction and to its right endpoint in every increasing direction. Also, it would be 

pointless to consider regions on which f cannot attain its maximum. One such 

case occurs when the MUB value, b', of an entry (Z', b') is less than f's value at the 

middle of Z1 or Z2 • To improve efficiency, IA deletes these entries. 

The MUB function is defined as follows: 

MUB(X) = f(m(X)) + UBx ( :Z:::: (xi - mi(X)) BJ
3

(~ )) 
iEU(X) x, 

(10) 

The set U(X) contains all dimensions in which f(x) has unknown direction in X 

and the vector m(X) denotes the middle of X, whose component mi(X) equals the 

midpoint of Xi- The MLB function is defined analogously, with LB replacing UB in 

equation (10) . Moore [11] proves that these functions bound f on all subsets of Xo, 

that is 

VX ~ X 0 'vx E X.MLB(X) ~ f(x) ~ MUB(X) (11) 

This implies that the LUB off on X lies between its MUB and MLB. 

Let us define the width of the interval [a, b] as b - a and the width of the region 

X, w(X), as the maximum over the widths of its components. Moore proves that 

VX ~ X 0 .MUB(X) - MLB(X) ~ Lw(X) (12) 

with L a constant. This result enables us to prove that IA terminates. 

Lemma 4 Let x = (x1 , . . . , x,.) have finite range X in S. For every positive c and 

function f ( x) continuously differentiable on X, IA terminates within 

(2L)" " M = - IT w(Xi) 
€ i=l 

(13) 

iterations, where L is the constant of equation {12). 
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1. Apply DI to f and S, pair each resulting region with its MUB value, sort the 

pairs in decreasing order of MUB, and set list to the sorted list. 

2. (Z, b) - head( list); list - tail(list) {The MUB of b is Z.} 

3. If U(X) = 0 or b - MLB(Z) ~ c return b. 

4. Choose an i in U(Z) which maximizes w(Zi)-

5. Calculate Z1 and Z2 by bisecting Z in dimension i and collapsing the 

results in increasing and decreasing directions. 

6. For j = 1, 2 do 

6.1 Delete from list every pair (Z',b') for which b' < f(m(Zj)). 

6.2 Insert {Zj, MUB(Zj)) into list in proper order. 

7. Go to step 2. 

Figure 8: Algorithm IA(j(x), S, c) 

Proof: First, suppose list contains only the region X after step 1. Each interval 

Xk can be decomposed by a sequence of bisections into at most 

(14) 

subintervals without splitting some interval narrower than e/ L. All told, X can 

be decomposed into at most M regions without splitting such an interval. By the 

choice of i in step 4, IA can only split an interval narrower than c/ L if the region 

Z is narrower than c/ L . This never happens because such a Z satisfies the second 

disjunct of step 3, terminating the iteration, by equation (12). Hence, at most M 

iterations can occur. 

Next, suppose list contains regions X 1
, ... , Xk after step 1. Applying the argu

ment above to each region shows that IA terminates within 

(15) 

iterations. The jth addend in this equation equals the volume of X i , whereas the 
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product in equation (13) equals the volume of X. The sum cannot exceed the 

product because the Xj are pairwise disjoint subsets of X . I 

The following theorem establishes the correctness of iterative approximation: 

Theorem 5 Let x have finite range in S. For every positive € and continuously 

differentiable function f( x ), iterative approximation calculates a number, b, .satis

fying 

'efx . .sati.sfie.s(x, S) * 0::; b - f(x)::; € (16) 

Proof: It follows from Lemma 4 that IA terminates at step 3. If it halts because 

U(Z) is empty, b is the LUB of f on Z because Z reduces to a point. If IA halts 

because b - MLB(Z) is less than €, then b is at most € greater than the LUB by 

equation (11). Either way, b approximates the LUB off on Z, which equals the LUB 

on X, within €. This implies condition (16) by equation (8). I 

For some applications and functions, other termination tests perform better than 

step 3 of Figure 8. Asaithambi et al. [1) prove that the test 

(17) 

generates optimal bounds for rational functions . If one only needs to establish that 

f is not greater than a particular bound, b0 , then b ::; b0 is a sufficient condition 

for termination. This case arises when the inequality prover proves that c ::; d by 

establishing that c - d has an upper bound of 0. 

5 Related Work 

In this section, I discuss, in order of increasing generality, existing programs that 

derive bounds and prove inequalities. As one would expect, the broader the domain 

of functions and constraints, the slower the program. The first class of systems 

bounds linear functions subject to linear constraints. Valdes-Perez [18) analyzes 

sets of .simple linear inequalities of the form x - y ~ n with x and y variables 
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and n a number. He uses graph search to test their consistency in cv time for c 

constraints and v variables. Malik and Binford [10] and Bledsoe [2] check sets of 

general linear constraints for consistency and calculate bounds on linear functions 

over consistent sets of constraints. Both methods require exponential time.1 The 

former uses the Simplex algorithm, whereas the latter introduces preliminary ver

sions of BOUNDER's substitution algorithms. Bledsoe defines SUP, SUPP, INF, and 

INFF for linear functions and constraints and proves the linear versions of Lemma 2 

and Theorem 3. In fact, these algorithms produce exact bounds, as Shostak [15] 

proves. 

The next class of systems bounds nonlinear functions, but allows only range con

straints. All resemble BOUNDER's bounds propagation and all stem from Moore's 

[11] interval arithmetic. Moore introduces the rules for bounding elementary func

tions on finite domains by combining the bounds of their constituents. His algorithm 

takes linear time in the length of its input. Bundy [7] implements an interval package 

that resembles BP closely. It generalizes the combination rules of interval arithmetic 

to any function that has a finite number of extrema. If the user specifies the sign 

of a function's derivative over its domain, Bundy's program can perform interval 

arithmetic on it. Unlike BOUNDER's derivative inspection algorithm, it cannot de

rive this information for itself. Many other implementations of interval arithmetic 

exist, some in hardware. 

Moore also proposes a simple form of iterative approximation, which Skelboe 

[17], Asaithambi et al. [1], and Ratschek and Rokne [12, ch. 4] improve. BOUNDER's 

iterative approximation algorithm draws on all these sources. 

Simmons [16] handles functions and constraints containing numbers, variables, 

and the four arithmetic operators. He augments interval arithmetic with simple 

algebraic simplification and inequality information. For example, suppose x lies 

in the interval [- 1, 1]. Simmons simplifies x - x to 0, whereas interval arithmetic 

1The simplex algorithm often performs better in practice. Also, a polynomial alternative exists. 
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produces the range [-2, 2]. He also deduces that x :S z from the constraints x :Sy 

and y :S z by finding a path from x to z in the graph of known inequalities. The 

algorithm is linear in the total number of constraints. Although more powerful than 

BOUNDER's bounds propagation, Simmons's program is weaker than substitution. 

For example, it cannot deduce that x 2 2: y 2 from the constraints x 2: y and y 2: 0. 

Brooks [6, sec. 3] extends Bundy's SUP and INF to nonlinear functions and argues 

informally that Lemma 2 and Theorem 3 hold for his algorithms. This argument 

must be faulty because his version of SUPH( e, {}) recurses infinitely when e equals 

x + l / x or x + x2, for instance. Brooks's program only exploits constraints among 

the variables of sums rx + B and of products xn B with r real, x a variable of 

known sign, B an expression free of x, and n an integer. In other cases, it adds 

or multiplies the bounds of constituents, as in steps 3.1, 4.1.1, 4.2.1, and 4.3 of 

BOUNDER's SUP (Figure 4). These overly restrictive conditions rule out legitimate 

substitutions that steps 3.2, 4 .1.2, and 4.2.2 permit. For example, BOUNDER can 

deduce that 1/x - 1/y 2: 0 from the constraints y 2: x and x 2: 1, but Brooks's 

algorithm cannot. On some functions and non-empty sets H, his algorithm makes 

recursive calls with H empty. This produces needlessly loose bounds and sometimes 

causes an infinite recursion. 

Bundy and Welham (9, sec. 4] derive upper bounds for a variable x from an 

inequality L :S R by reformulating it as x :S U with U free of x. If U contains a 

single variable, they try to find its global maximum, M, by inspecting the sign of its 

second derivative at the zeroes of its first derivative. When successful, they bound x 

from above with M. Lower bounds and strict inequalities are treated analogously. 

Bundy and Welham use a modified version of the PRESS equation solver [9,8] to 

isolate x. As discussed in section 3, inequality manipulation depends on the signs 

of the expressions involved. When this information is required, they use Bundy's 

interval package to try to derive it. The complexity of this algorithm is unclear, 

since PRESS can apply its simplification rules repeatedly, possibly producing large 
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intermediate expressions. BOUNDER contains both steps of Bundy and Welham's 

bounding algorithm: its context manager derives bounds on variables from con

straints, while its derivative inspection algorithm generalizes theirs to multivariate 

funct ions. PRESS may be able t o exploit some constraints that BOUNDER ignores 

because it contains a stronger equation solver than does BOUNDER. 

The final class of systems consists of theorem provers for predicate calculus 

that treat inequalities specially. These systems focus on general theorem proving, 

rather than problem-solving. They handle more logical connectives than BOUNDER, 

including disjunction and existential quantification, but fewer functions, typically 

just addition. Bledsoe and Hines [4] derive a restricted form of resolution that con

tains a theory of dense linear orders without endpoints. Bledsoe et al. [5] prove 

this form of resolution complete. Finally, Bledsoe et al. [3] extend a natural de

duction system with rules for inequalities. Although none of these authors discuss 

complexity, all their algorithms must be at least exponential. 

6 Conclusions 

Current inequality reasoners are weak, brittle, or inefficient because they treat all 

inputs uniformly. Interval arithmetic systems, such as Bundy's and Simmons's, 

run quickly, but generate exceedingly pessimistic bounds when dependencies exist 

among components of functions. These dependencies are caused by constraints 

among variables or multiple occurrences of a variable, as discussed in Section 4.1. 

The upper bound of a - b given a :'.S b demonstrates the first type, while the 

lower bound of x 2 + x given no constraints demonstrates the second. Each of the 

remaining systems is brittle because it takes only one type of dependency into 

account. Iterative approximation, suggested by Moore, and derivative inspection, 

performed in the univariate case by Bundy and Welham, address the second type 

of dependency, but ignore the first . Conversely, substitution, used (in a limited 

form) by Brooks and Simmons, exploits constraints among variables, while ignoring 
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multiple occurrences of variables. All these systems are inefficient because they 

apply a complex algorithm to every input without trying a simple one first. 

BOUNDER overcomes the limitations of current inequality reasoners with its hier

archical strategy. It uses substitution to analyze dependencies among variables and 

derivative inspection and iterative approximation to analyze multiple occurrences of 

variables. Together, these techniques cover far more cases than any single-algorithm 

system. Yet unlike those systems, BOUNDER does not waste time applying overly 

powerful methods to simple problems. It tries bounds propagation, which has linear 

time-complexity, before resorting to its other methods. An inequality reasoner like 

BOUNDER should be an important component of future general-purpose symbolic 

algebra packages. 
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