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ABSTRACT 

The number of messages to match a pair of processes in a multiprocessor network with 
mobile processes is a measure for the cost of setting up tempo1·ary communication between 
processes. We establish lower bounds on the average number of point-to-point transmissions 
between any pair of nodes in this context. The present analysis allows for the possibility of multi
ple transmissions (as opposed to a single one) between any two nodes, and also for the possibility 
of multiple queries (as opposed to the two, i.e. post and a single query considered before). Appli
cations of the results include lower bounds on the number of messages for dist ributed s -matching, 
that is, matching a group of s processes, and distributed s -mutual exclusion, that is, s - 1 
processes may enter a critical section simultaneously, but s processes may not, for s 2:2. The 
idea of the proof of the combinatorial result needed for this analysis is further extended to obtain 
a lower bound on the average number of colors occurring in random cross-sections of colored, mul
tidimensional bodies in terms of the total (multidimensional) volume of each color in the whole 
body. 

Key Words and Phrases: Distributed Match-Making, Computer Network, Distributed Control, 
Name Server, Mutual Exclusion, Colored Body, Measure. 

© 1986 Massachusetts Institute of Technology, Cambridge, MA 02139 

The work of the first author was supported in part by the Computer Science Department of the University of 
Amsterdam. The work of the second author was supported in part by the Office of Naval Research under Con
tract N00014-8:'>-K-0168, by the Office of Army Research under Contract DAAG29-84-K-0058, by the National 
Science Foundation under Grant DCR-83-02391, and by the Defense Advanced Research Projects Agency 
(DARPA) under Grant N00014-83-K-0125. 



- 2 -

1. Introduction 

The design objectives of the Amoeba distributed operating system (described in [9]) 
motivated (see [5], [6]) the design and analysis of a mathematical model for the so called 
name-server mechanism in a distributed system with mobile processes ( and objects, hen
ceforth subsumed under processes). The name server, that is, a system that translates 
names of services into locations in the network, forms a central part of the design of 
many distributed operating systems for computer networks and multiprocessor systems. 
The implementation has been approached in various ways, from centralized directories 
which are vulnerable to host processor crashes [8], to methods which maintain a tree of 
forwarding addresses in the network for each mobile process [7]. This latter method is 
not more robust, and in general much less efficient, than the class of methods we con
sider below. 

More generally, we address the problem of matching mobile processes in a multiprocessor 
environment without centralized control. We call this distributed match-making (see [6]). 
Various issues in distributed control can be thought of in terms of the distributed 
match-making paradigm. One of them is the name-server, another one is mutual exclu
sion. 

1.1. The Name-Server 

A set of named processes with no permanent addresses residing at the nodes of a net
work wish to set up communication, when needed, among themselves. Let N be the set 
of nodes (i.e., processors) of such a network. The network is a communication graph 
with two-way noninterfering communication channels between directly connected nodes. 
It is assumed that the nodes communicate only by messages and do not share memory. 
An error-free underlying communications network supports the message transfers in 
which the delivery time may vary but messages between two nodes are delivered in the 
order sent. Each of these processes is considered both a potential server (i.e. it can offer 
a service) as well as a potential customer (i.e. it may request a service). Let a process p 

reside at a host node h (p ). Since processes may migrate, die or be created, h (p) can 
change, become empty or nonempty. Here we make the simplifying assumption that for 
the segment of time of the actual match-making instance, the process/ processor alloca
tion does not change. Location of services by the processes is achieved by the following 
procedure. Each server s selects a set P ( s) of nodes and posts at these nodes the availa
bility of the service it offers and the address h ( s ) where it resides. (Each node in P ( s ) 

stores this information in its individual cache.) When a client c wants to request a ser
vice it selects a set Q ( c) of nodes and queries each node in Q ( c) for the required ser
vice. When P (s)nQ(c ) is not empty the node (or any node) in P(s)nQ(c) will be able 
to return a message to c stating the address h (s) at which the service is available 
( recall that this information is already stored in the caches of all the nodes in P ( s )). For 
example, a centralized name-server corresponds to 

P(s) = {x}, Q(c) = {x}, 
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broadcasting corresponds to 

P(s) = {h(s)}, Q(c) = N , 

while what we may call sweeping corresponds to 

Q(c) = {h(c)}, P(s) = N , 

for all servers s and clients c with h ( s ),h ( c) EN and some x EN. Another example is 
the Manhattan network. The set N of nodes consists of pairs ( i , j ), with 
i=l, ... ,m, j=l, ... ,n. Forall(i , j)EN, aservers residingat(i,j)postsattheset 

P(s) = {(i,1), ... ,(i,n)}, 

and a client c residing at ( i, j) queries the set 

Q(c) = {(1,j), ... ,(m ,j)}. 

(For more examples see [5], which also discusses truly-distributed, hierarchically

distributed, etc., name-servers.) We restrict ourselves to methods where the sets P (s) 

and Q ( c ) depend on the respective hosts h ( s ) and h ( c ) only. It therefore makes more 
sense to talk about P(h(s)) and Q(h(c)) instead of P(s) and Q(c). Thus, we define 
the collection of posting and querying tactics of the set of nodes N , to implement the 
name-server, as a single strategy 

P , Q : N - zN , 

(where zN is the set of all subsets of N) for match-making in the given network. 

1.2. Mutual Exclusion 

Another application of the match-making paradigm is distributed mutual exclusion. Let 
the network be as before. In such a distributed system, each network node can issue a 
mutual exclusion request at an arbitrary time, see e.g. [4]. In order to arbitrate the 
requests, any pair of two requests must be known to one of the arbitrators. Since these 
arbitrators must reside in network nodes, any pair of two requests originating from 
different nodes must reach a common node. Assume that each node i must obtain a per
mission from each member of a subset S(i) of N before it can proceed to enter its criti
cal section. Then for each pair ( i , j )EN2 we must have S ( i )nS (j )=,rf0 so that the node 
in the intersection can serve as arbitrator. In [4] the situation is analysed where each 
node in the network serves as arbitrator equally often, that is, N times. The actual algo
rithm presented in [4] uses at most S·IS(i)I messages, where for some K , 
I S ( i) I = K for all i , i EN. (For each set S, I S I will denote the number of elem en ts 

of S .) It is clear that at least 2K messages are required: K messages to query a set 
S ( i ), and K answers from every member of S ( i) to i. The overhead of 3K messages 
arises from the necessary locking and unlocking protocols to guarantee that no more 
than one node can simultaneously be in the critical section, to resolve conflicts, and to 
prevent deadlock (i.e. , circular waiting among the nodes requesting mutual exclusion) and 
starvation (a node which wants to enter its critical section can be prevented from doing 
so forever). Here, we may view a strategy for distributed mutual exclusion as a mapping 
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and view it as a restricted case of match-making for which the symmetry condition 
P(i)=Q(i) (=S (i)) holds for all i EN. 

One way to achieve t his symmetry is to let the functions P, Q be as in §1.1, and set 
S ( i )=P ( i )U Q (i) for all i , i EN. As an example, in the Manhattan network we obtain: 

S(i ,j) = {(i ,1), ... , (i ,n ),(1,j ), ... , (m ,j )}. 

More frugal is the example of the projective plane. The projective plane PG (2, k) has 
n = k 2 + k + I points and equally many lines. Each line consists of k + 1 points and 
k + 1 lines pass through each point. Each pair of lines has exactly one point in common 
(and each pair of points has exactly one line in common). The set of k +1 points 
incident on any of the k + l lines incident on a node i serves as choice for S(i) (see 
[3,5]). 

1.3. Formal Framework 

To simplify notation from now on let the set N of network nodes be equal to {1, ... , n }. 
Without loss of generality, identify s and c with their respective host nodes h (s) and 
h (c ). What is meant, the process of its host, will be clear from the context. For each 
s ,c EN let m (s ,c) be the number of point-to-point messages (i.e. messages from a node 
to any of its direct neighbors) required for the match-making instance of nodes s ,c . 

Then the average number of point-to-point transmissions required for match-making is 
given by t he formula 

l n n 
m(n) = -

2 
E E m(s,c). 

n B= l c=l 

(la) 

Since a server s sends messages to all the nodes in P (s) and a client c queries each 
node in Q (c) the number m (s ,c) of point-to-point messages in the match-making 
instance ( s ,c ) must be at least I P ( s) I + I Q ( c) I . It is exactly the case 
m (s ,c) = IP (s) I+ I Q ( c) I for which a lower bound is derived in [6]. Another more 
general situation arises (see [6]) when the average call for a service s by a client c occurs 
a(s ,c )-times more often than the average posting of a service available at s. Here one 
might want to minimize (la), with m (s ,c) = IP (s) I +a(s ,c) I Q (c) I. A similar 
case arises when in the match-making instance (s ,c) the server s is allowed to post 
p ( s ,c )-many times to the nodes in P ( s) and the customer c is allowed to query 
q ( s ,c )-many times the nodes in Q ( c ). (This might be necessary in order to increase 
reliability of the network.) In this case the number m (s ,c) of point-to-point messages is 
equal to p(s ,c) I P(s) I + q(s ,c) I Q(c) I- The results of the next section are meant to 
derive lower bounds for these more general situations. 

As far as the mathematical aspects of the name-server model are concerned, the opera
tions posting and querying are entirely symmetric. Thus, one is led to consider posting 
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as a form of querying. In general, assume that there are s different forms of querying, 
say Q1, ... ,Q8 • Message passing in such ans-dimensional instance (j 1,. .. ,j8 ) of the name 
server mechanism, where jr =l, ... ,n, r =1, ... ,s, is as follows: at the r - th querying the 

node located at jr queries a set Qr Ur) of nodes. If 

then any node located at the above intersection will be able to return a message to any 
of the nodes of j v···,Js stating the address at which the desired service is available. 

We can interprete this as a generalization of the name-server: here a client at j 1 queries 
for a set of services j 2, ... , j 8 , each of a particular nature. 

Multimatch-Making 

For instance, in the UNIX* system a client may want the TROFF document preparation 
service, which involves setting up a 'pipe' of preprocessors for a pipelined computation. 
This may be a pipe like 

refer <file> lpiclgraphltblleqnltroff 

which needs a file, 'refer' preprocessing to assemble references, 'pie' to draw pictures, 
'graph' to draw graphs, 'tbl' to make tables, 'eqn' to layout mathematical formulas, and 
' troff' to take the final output and assemble an integrated document. Each preprocessor 
hands the result to the next preprocessor. The client therefore issues requests for many 
services simultaneously, say for s -1 services. We call this s -match-making. 

Multimutual-Exclusion 

Similarly, this approach can be used to investigate s -mutual exclusion, i.e. n processes 
can compete for a resource which can be granted to at most s-1 of them for some fixed 
s , 2 < s < n . In this case we wan t all query sets to be the same set, because of the sym
metrical role of the different processors in the algorithm. This is modelled by requiring 
Ql = ... =QB • 

This generalization of the critical section problem to the case where at most s - 1 of 
processes can be in their critical sections simultaneously was considered in [1 ]. One way 
of viewing this problem is to regard it as a resource allocation problem. There are s -1 
identical copies of of a non-sharable reusable resource, where each process can request at 
most one copy of that resource. Entry to the critical section corresponds to allocation of 
a resource copy. Here we can think of each process as having a designated section of 
code, called the critical section. This code manipulates a resource copy, such that entry 
of the critical section by a process corresponds to allocation of a resource copy. In [1] the 
problem is solved through the use of a shared memory which every process can read and 
write. Deadlock and starvation are avoided. The memory need have only n 2 different 
values. Essentially, this is a centralized solution. The distributed solution in [4] for 

• UNIX is a trademark of AT&T Bell Laboratories. 
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standard 2-mutual exclusion seems to generalize readily to s -mutual exclusion. The 

optimal solution there would be something like the projective plane PG ( s ,k ), where the 
network has k 8 + ks - I+ · · · +l = n nodes, each node is incident on k lines, and each 
line is incident on k nodes. Each s -element subset of lines intersects in precisely one 
node. Therefore, each query set S ( i )=Q 1( i )= · · · =Q8 (i) of a node i consists of the 

set of k nodes incident on a line. It does not matter which line we pick, because of the 
projective plane property that any s lines intersect in one node. The cost in point-to
point messages associated with a particular mutual exclusion instance is therefore at 
least sk ~ sn I/ s , which will be shown to be optimal. 

However, that is not the topic of the present paper. The problem we address here is 
that of a lower bound on the number of message passes for each instance of s -mutual 
exclusion for algorithms of any degree of distributedness within the chosen formal frame
work. 

Formally, the average number of point-to-point messages necessary for match-making (in 
this more general context) is defined by 

1 n 
m(n)= - ~ 

8 • n J1=l 

n 

~ m U 1,···,Js ), 
j, =l 

(lb) 

where m U 1, ... , j 8 ) is the number of transmissions required for the match-making 
instance U 1, ... ,j8 ). (It is an effort to obtain a lower bound for (lb) that motivates the 
general results of the next section.) In contrast to the post-query case, which is best visu
alized in two dimensions, this more general case is best visualized in s dimensions. (Each 
axis is marked with the nodes 1, ... , n and at the vertex U 1,-••,Js) a point of the intersec
tion Q 1U 1)n . · · nQe Us) is located.) 

The main inequality of the next section is further extended in the last section to obtain 
lower bounds on the average number of colors occurring across different cross-sections 
(one for each axis) of a colored (with a finite number of colors) multidimensional body in 
terms of the total (multidimensional) volume of each color in the whole body. The main 
motivation for this result is the following. Consider the s -dimensional grid with sides 
equal to {l, ... ,n }, i.e. the cartesian product {1, .. . ,n }8

; for every s -tuple (j 1,-•·,Js) put 

an element of the intersection Q 1(ii)n · · · nQs Us) at the vertex (j 1, ... ,Js ), if the 
intersection is nonempty, and nothing otherwise. This grid can be considered as a 
sufficiently accurate approximation of a partitioned multidimensional body. Now con
sider the inequality of theorem 1 below and pass to the limit as the partitions become 

finer. 

For general background information on networks the reader should consult [8]. A gen

eral discussion of match-making and its relation to mutual exclusion, implementations to 
different network topologies, as well as a mathematical analysis of the two dimensional 
case (from which the present research is inspired) is provided in [6]. In addition, the 

results of the present paper hold for any network topology and for the entire range of 
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networks, from centralized to distributed. 

2. The s -Dimensional Lower Bounds 

In this section the main lower bound results are derived. In order to be able to prove the 
most general results possible it will be necessary to formulate the required concepts with 
a higher level of abstraction than in the introduction. The motivation however is derived 
from the discussion in the introduction. 

Consider a family P = {P 1U 1), ... ,P s Us) : i r = l , ... ,nr , r = l, .. . ,s} of subsets of the 
set N = {l, ... ,n} of nodes. Let Pi Ud= I Pdid I . Let K i [P ] be the set of s -tuples 

U l,···,js) such that i EP 1U 1)n · · · nPs Us) and let ki [P ] = I K i [P ] I . (It is clear 
that if each of these intersections is nonempty then 

n 

~ ki [P ] > n 1 · · · ns , 
i =l 

with = if all K i [P ]'s are singleton sets. If all ki [P ]E{0,1} then the left-hand side is < 
the right-hand side.) For the given family P define the product (respectively sum) II[P ] 
(respectively A [P ]) corresponding to P by the following formulas: 

n 1 n.s 

A [P ] = __ l __ ~ · · · ~ [P1U1)+ · · · + PsUs)]. 
n 1 · · · ns j 

1
=1 i, =l 

Further, for r = l, ... ,s put 

l n, . 
Ar [P ] = - ~ Pr (Jr ) 

nr i,=l 

and notice that 

II[P ] = A i[P ] · · ·As [P ] and A [P ] = A 1[P ]+ ··· + A s [P ]. (2) 

The main result of the section is the following 

Theorem 1. For any f amity P the fallowing inequalities hold: 

II[P ] > l ( t ki [P ]1fs) s and A [P ] > s l / [:~=n
1

ki [P j1/s). 
n 1 · · · ns i =l ( n 1 · · · ns ) s . 

Proof: The following inequality, also known as inequality of the arithmetic and 

geometri"c means, holds for all posit ive real numbers a 1, .. . , as, 

a + · · · + a > s (a · · · a )1f s I s - 1 s · (3) 
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In fact, equality holds exactly when all the ai 's are equal (see [3]). For each r = l, ... ,s 

and each i = 1,. .. , n , define the set Hr ,i consisting of all jr , 1 < jr < nr , such that 

for some j 1,··· , jr-Vjr +1,···,js, 

Also put hr i = I Hr i I . It is now true that for all i = l ,. .. ,n, 
' ' 

h l,i · · · h8 ,i - I H l,i X · · · X H8 ,i I 
> I {Uv · · · , js): iEP1U1)n ... nPsUs)} I 
=kd P ]. 

Further, for all r = l, ... ,s, 

n n 

I; hr ,i < E I Ur : i EPr Ur )} I 
i =l i =l 

n 

= E I {(i ,jr): i EPr Ur)} I 
i=l 

n, 

= E I {( i ,jr) : i EPr Ur)} I 
j,=l 

n, 

= E PrUr) 
j, = l 

= nr Ar [P ]. 

To find the lower bound of II[P ] notice that by (5) 

II[P ] = A 1[P ] · · · A 8 [P ] 

l n 
- ---- E 

n1 · · · ns i
1
=1 

(4) 

(5) 

where S (ii, ... , i8 ) = h 1 i · · · h8 i . By cyclically rotat ing the indices ii, .. . , i
8 

one 
, 1 , s 

obtains the following s -many summands: 

Using inequalities (3) and (4) it is easy to see that t he sum of the above s -many sum
mands must be at least 

Adding the above s -many summands with respect to i 1, ... ,i
8 

and taking in to account 
the last inequality one easily obtains t hat 
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n n n 

I; h l,i 
1 
•.. h8 ,i, > I; 

i, =l i 1= 1 
I; (k;JP ] · · · k;, [P ]) 118 

i, =l 

This completes the proof of the lower bound of II[P ]. The lower bound on A [P ] is an 
immediate consequence of equations (2), inequality (3) and the lower bound for II[P ]. 
This completes the proof of the theorem • 

In particular, both propositions 1 and 2 of [6] are immediate consequences of theorem 1. 

The reader familiar with [6] will undoubtedly notice that the proof of theorem 1 is essen
tially a generalization of proposition 1 of [6] to rectangles (possibly with holes) and 
dimensions s > 2. 

Example 1. (Multidimensinal Cube Network} Let the number of nodes be n = 2d and 
suppose that the number s of queries is a divisor of d. Addresses of nodes consist of d 
bits, like u 1 u 2 · · · ud. Nodes are connected by an edge exactly when they differ by a 
single bit. For each r =I, .. . ,s, let Qr ( u 1 · · · ud) be the set 

{x 1 ... X (r-l)d j sU (r - l )d / s+l · .. Urd j sXrd / s+1 · .. Xd: X;E{O,l}}. 

Clearly, each of the above sets has size 2(s -l)d /s and I k; [P ] I = 2(s-l)d = n s-1. Thus, 

with m U 1, ... ,j9 ) = IP 1(h) I + · · · + I P8 Us) I , one easily obtains that 
m (n) > sn (s -l)/ s, i.e. the average number of point-to-point message transmissions is at 
least sn(s-l)/ s . 

Example 2. It is easy to see that for any family P , II[P ] < n 8
, A [P ] < sn. If in 

addition, Pr Ur)= {l, ... ,n }, for all jr = I, ... ,nr, r = l, ... ,s, then the lower bounds of 
theorem 1 are identical to the upper bounds given above. Consequently, the lower 
bounds of theorem 1 are optimal (see also the remark below). 

Example 3. Let the assumptions be as in Theorem 1. Let n 1=n 2= · · · =n
8

• Then the 
average n um her of colors in an axis parallel cross-section of P equals 

II(P)l fs (= A [P j) 
s 

and Theorem 1 provides a lower bound on this number. 

Remark. In the statement of theorem 1, the quantity A [P ] equals the right-hand side 
of the inequality in which it occurs, exactly when A 1[P ] = · · · = A

8 
[P ]. (This is an 

immediate consequence of the inequality on arithmetic and geometric means.) In particu
lar, the optimal name-servers are the ones for which the average number of point-to
point transmissions are equally balanced in all directions. This remark also applies to 
theorem 5, below. 
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3. Applications to Distributed Match-Making 

As an application of theorem 1 one can determine lower bounds for sums of the form 

n 1 ns 

S [P] = l E · · · E [p 1U 1, ... ,js )p 1Us )+ · · · +Ps U 1, ... ,js )Ps Us)], (6) 
n 1 · · · ns j 1=1 j, =l 

where Pr U 1, .. . ,j8 ) is a positive integer for each r = l, ... ,s and each ir = 1, ... , nr. 
(These are the types of sums for which a lower bound was promised in the introduction.) 
To determine the lower bound on S [P ] put 

n I n, _1 n, +i n, n, 

Nr,j,= E ··· E E ··· EPrU1, .. -,js)andNr 
j 1=1 j, -1=1 j,+1=1 j, =1 

'0 N . 
LJ r,J,, 

j,=l 

for each r = l , ... ,s . It is now clear that 

S [P ]= 

Consider a new family Q = { Qr (tr) : r =l, ... ,s, tr =l, ... ,Nr }, where Qr (tr) = Pr Ur) 
for the unique ir such that 

or 

As before, let qr (tr) = I Qr (tr) I . It is now clear from inequality (3) and theorem 1 that 

It remains to compare the quantities ki [P ], ki [ Q ]. This can be done by comparing the 

sizes of the sets Ki [P ], Ki [ Q ]. Indeed, by definition of the family Q to each 

(ji, .. ,,j8 ) E Ki [P ] there correspond at least Nu1 · · · Ns,;, -many s -tuples (t 1,. .. ,t
8

) of 

the set Ki [ Q ]. Hence, the following theorem has been proved. 
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Theorem 2. For any family P the following inequality holds: 

S n . . 1/ s 
S [P ] > n1 ... ns i~1 (,I;{N1 ,i1N2,i2 ... Ns,i,: (Ji,··•,Js)EKi [P l} ) • 

Now it is easy to obtain lower bounds for the average number of point-to-point messages 

for distributed match-making (this will answer open questions posed in [6]) . For example, 
one can handle the case 

m ( i ,i) = P ( i ,i) IP (i) I + q ( i ,j) I Q U) I 
mentioned m the introduction by using theorem 2. More generally, one can study the 
case 

m (j I,··· , js) = P 1U 1,···,js) IP 1U 1) I + · · · + Ps (j 1,···,js) I ps Us) I · 
Thus, for example, if each PrU 1, ... , js) = Ar then the average amount m(n) of point

to-point messages, as defined by equation (lb), must satisfy the inequality of the follow
mg 

Corollary 3. 

s (>- ... >- )1/ s n 
m ( n) > 1 8 I; k/1 s, 

n i=l 

Let n 1=n 2= · · · =ns = n. For really distributed s-mutual exclusion we requ1re all 

Pd id's to be equal, say K, and therefore A [P ]=sK (I<i,ji<n). Now expressing 

A [P ] in the ki [P ]'s which mea:sure the distributedness of the algorithm: 

n 
A [P ]=sK > ~ ~ ki [P ]1/s 

n i=l 

Setting all ki [P ] 's equal, gives therefore: K >n(s-l)/s . The resources in global storage 

space used must be essentially n s sK > sn 8 +(s-l)/ 8 but locally only sK is used. 

4. Application to Colored Multidimensional Bodies 

It is natural to think of the result of theorem 1 as providing a lower bound on the aver

age number of colors occurring across the different cross-sections of a colored multidi
mensional grid in terms of the total number of occurrences of each color in the whole 
grid. Now, it is desired to extend this result to finitely colored, continuous, multidimen
sional bodies. One way to do this, is to partition the given multidimensional body into 
infinitely small multidimensional cubes, apply theorem 1 to the resulting grid and pass to 

the limit, as the size of the members of the partition becomes infinitely small. Although 

this argument works, it suffers from two drawbacks. First, it causes notational 



- 12 -

complications and second, the class of bodies for which t he above limits exist is much 
smaller than the class of Lebesgue measurable sets. Thus, in order to avoid both the 
complications and limitations which arise from the possible nonexistence of such limits it 
will be necessary to use the notion of Lebesgue measure (see [2]). 

For any Lebesgue measurable set S CR s let m (S) denote its Lebesgue measure. (In the 
sequel, the same symbol will be used for r -dimensional Lebesgue measure on R r, i.e. 
Lebesgue measure on sets of r -tuples of real numbers, for each r = l , ... ,s; however, 
this will cause no confusion because it will be clear from the context which measure is 
meant in each case. In addition, all integrations considered below are with respect to 
Lebesgue measure.) 

Let B CR 8 be a Lebesgue measurable set. For each r =1, ... ,s let B, be the projection 

of B onto the x, -axis, i.e. B, is the set of u, such that for some u 1, ... ,u,_1,u, +1, ... ,u8 , 

( u 1, . .. , u8 )EB . For each r and each u, let B, ( u, ) be the u, cross-section of B , i.e .. 

B,(u,) = {(u 1, ... ,u,_1,U,+1, .. . ,u8 ) : (u 1, ... ,u8 )EB}. 

(Thus, each B, CR and each B, (u,) C R 8
-

1.) 

Suppose that B is colored with n colors, say l, .... ,n . For r =l, ... ,s let P, ( u,) = { i : 
color i occurs in B, ( u,)} and put Pr ( u,) = IP, ( u,) I . Further, it is assumed that 
each set 

K d B ] ={(ui, ... ,u8 )EB :(u 1, ... ,u8 )is colored with color i} 

is Lebesgue measurable, where i = l , ... ,n. Put ki [B ] = m (Ki [B ]). (As in section 2 it is 
n 

clear that ~ ki [B ] = m (B ).) Since, 
i =l 

B 1(u 1)n · · · nB8 (u8 ) = {(ui, ... ,u8 )}, 

it is evident that P 1(u 1)n · · · nP8 (u8 ) = {i}, where i is the (unique) color of vertex 

( u I,· .. , us) . 

For each r =1, ... ,s define 

Further, as in section 2, put 

and notice that 
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In addition, let Br ,i be the set of all ur such that for some u 1,--·,ur-vur+1,···,us, the s 

tuple (u 1, ... ,ur-1>ur ,ur+1,···,us) is colored with color i . (At this point the reader should 
be aware of the apparent similarities between the sets Hr ,i, defined in the proof of 

theorem 1, and the sets Br ,i defined here.) As before it can be shown that for all 

i = l, ... ,n, r = l, ... ,s, 

n 

E m (Br ,i ) < m (Br )·Ar [B ]. 
i=l 

(7) 

(8) 

The proof of (7) is trivial; the proof of (8) is similar to the proof of (5) but it requires the 
following lemma, which is proved by induction on n. 

Lemma 4. For any Lebesgue measurable sets S 1, ... ,Sn, 

n n 
Em(Si) < Ek·m({u :u belongstoexactlyk -manySi' s })• 
i=l k=l 

(The reader may find it convenient to convince himself of the validity of lemma 4 by 

drawing a picture for the case s = 2, n = 3.) Now inequality (8) is an immediate 
consequence of the lemma. Indeed, 

n n 

E m(Br,d < ~ m({urEBr: iEPr(ur)}) 
i =l i =l 

n 

< ~ k ·m ( { Ur EBr : I Pr (Ur) I = k}) 
k=l 

Finally, using inequalities (7), (8) and arguing as in the last part of the proof of t heorem 
1 it is easy to obtain the following 

Theorem 5. The following inequalities hold for any Lebesgue measurable set B CR 8 , 

and any partition { or coloring) of B into n Lebesgue measurable subsets: 

The following example might help illustrate the concepts involved. 

Example 4. Let B be the open disc with center at (0,0) and radius 3 units. Color B 
with the three colors 1,2,3. For each i = 1,2,3 let Ki [B ] be the set of all pairs (x ,Y) such 
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that 

i -1 < J x 2+y 2 < z. Using the notation of theorem 5, it is easy to show that 
k 1[B ] = 1r, k 2[B ] = 31r, k 3[B] = 51r, m (B 1) = m (B 2) = 6. It follows from the second 
inequality of theorem 5 that A [B] > 2.7468. 

Since it is immediately clear that Theorem 5 holds even when we rotate or translate the 
axis, we have: 

Example 5. Let m (B 1)=m (B 2)= · · · =m (B8 ) and let the assumptions be as m 

Theorem 5. Then the average number of colors in a cross-section of B is equal to 

II(B )Ifs (= A [B]) 
s 

Therefore, the average number of colors in a cross-section of the disc of example 4 1s 
>1.3734. 

The reader familiar with classical measure theory and product measures (see [2]) should 
have no difficulty extending this last theorem to arbitrary, positive, countably-additive 
measures µ. One simply replaces m with µ in the proof of theorem 5. The resulting 
theorem generalizes both theorems 1 and 5 ( theorem 1 corresponds to µ = counting 
measure and theorem 5 corresponds to µ = Lebesgue measure). Details are left to the 
reader. 
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