
LABORATORY FOR ~~ ~~ii¢3f~~'i,TTS
COMPUTER SCIENCE iJ}g ~ TECHNOLOGY

MIT /LCS/TM -303

THE POWER OF THE QUEUE

MING LI
LUC LONGPRE

PAUL M . B . VlTAN YI

APRIL 1986

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

The Power of the Queue

Ming Li

Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210

Luc Longpre

Department of Computer Science
University of Washington, Seattle, WA 98195

Paul M.B. Vitanyi

M.I.T. Laboratory for Computer Science
Cambridge, MA 02139

and
Centrum voor Wiskunde en Informatica

Amsterdam, The Netherlands

April, 1986

ABSTRACT

Queues, stacks (pushdown stores), and tapes are storage models
which have direct applications in compiler design and the general design
of algorithms. Whereas stacks (pushdown store or last-in-first-out
storage) have been thoroughly investigated and are well understood, this
is much less the case for queues (first-in-first-out storage). This paper
contains a comprehensive study comparing queues to stacks and tapes.
We address off-line machines with a one-way input, both deterministic
and nondeterministic. The techniques rely on algorithmic information
theory (Kolmogorov Complexity).

Keywords f!3 Phrases : tape, stack, queue, pushdown stores, determinism, nondetermin
ism, off-line one-way input, time complexity, lower bound, upper bound, simulation,
algorithmic information theory, Kolmogorov complexity

Note : This paper will be presented at the Structure in Complexity Theory Conference,

to be held at the University of California, Berkeley, June 2-5, 1986.

© 1986 Massachusetts Institute of T echnology, Cambridge, MA 02139

The work of the third author was supported in part by the Office of Nava.I Research under Con
tract N00014-85-K-0168, by the Office of Army Research under Contract DAAG29-84-K-0058, by
the National Science Foundation under Grant DCR-83-02391, and by the Defense Advanced
Research Projects Agency (DARPA) under Grant N00014-83-K-0125.

- 2 -

1. Introduction

Queues, stacks (pushdown stores), and tapes are storage models which have direct appli
cat ions in compiler design and the general design of algorithms. Whereas stacks (push
down store or last-in-first-out storage) have been thoroughly investigated and are well
understood, this is much less the case for queues (first-in-first-out storage). In this paper
we present a comprehensive study comparing queues to stacks and tapes. We address
off-line machines with a one-way input . In particular, 1 queue and 1 tape (or st ack) are
not comparable:

(1) Simulating 1 stack (and hence 1 tape) by 1 queue requires O(n 413/ logn) time in
both the deterministic and the nondeterminist ic cases.

(2) Simulating 1 queue by 1 tape requires 0(n 2) t ime in the deterministic case, and
0(n 4/

3 / logn) in the nondeterministic case;

We further compare the relative power between different numbers of queues:

(3) Nondeterministically simulating 2 queues (or 2 tapes) by 1 queue requires
0(n 2 / (log2n loglogn)) time and deterministically simulating 2 queues (or 2 tapes)
by 1 queue requires 0(n 2) time. The second bound is tight. The first is almost
tight.

(4) We also obtain the simulation results for queues: 2 nondeterministic queues (or 3
pushdown stores) can simulate k queues in linear t ime. One queue can simulate k
queues in quadratic time.

It has been known for over twenty years that all multitape Turing machines can be
simulated on-line by 2- tape Turing machines in time O (n logn) [HS2], and by I-tape
Turing machines in time O (n 2) [HU]. Since then , many other models of computation
have been introduced and compared. (See [Aa, DGPR, HSI , HS2, HU, LS, PSS, Pa,
Vi2].) In addit ion to different storage mechanisms, real-time, on-line and off-line
machines have been studied. An on-line machine is expected to give an answer after
reading each prefix of the input. In this paper, we consider the off-line machines, where
an answer is given only once the whole input has been read. We also use the one-way
input convention, where the machine has a one-way input, a finite control and access to
some storage.

The relative power of stacks and tapes is more or less well known. For example,
for the nondeterministic case, we know that 1 stack < 1 tape < 2 stacks < 3 stacks =
k stacks = k tapes, where A < B means that B can simulate A in linear t ime, while A
cannot simulate B in linear time. In most of the cases, close lower and upper bounds
are known for the simulation [Ma, Lil , Vil, LV, Li2].

In this paper, we give a complete characterization of (off-line) queue machines. The
main theorems show that one queue machines are not comparable to one stack or one
tape machines, both deterministically and nondeterministically. We also compare the
relative power of machines having different number of queues. We use Kolmogorov com

plexity techniques [Ko, Ch, So] to prove the theorems, together with some new tech
niques to enable us to deal with queues. The Kolmogorov complexity of a st ring x ,

K (x), is the length of the shortest program printing the string x. By a simple counting

- 3 -

argument, we know that there are strings x of each length such that K (x) > I x I .
These strings are called incompressible or K -random.

In section 2, we introduce the jamming lemma which is used in further proofs. In
section 3, we show that deterministically simulating a queue by a tape takes quadratic

time (infinitely often). (For the lower bound on the simulation time of 1 queue by 1 tape
in the nondeterministic case, see [Li3, LV].) In section 4, we have a lower bound for non

deterministically simulating a stack by a queue. In section 5, we present lower and
upper bounds for simulating k queues by 2 queues or 2 queues by one queue.

2. The Jamming Lemma

In this section, we are concerned with one-tape and one-queue off-line TM's where
the Turing machine has one 1-way input tape in addition to one work tape or one queue,

each with one head. We will call the input tape head h 1 and work tape head or queue

head h 2. We say that a poll occurs hen the head h 1 moves one cell. At any time t ,
hi (t) denotes the position of head hi on its tape.

In the following lower bound proofs, the input will be separated into blocks. We
will observe the behavior of the machine as the head polls the successive cells in a block.

Although the definitions and the Jamming Lemma are stated with respect to one-tape
TM's for simplicity, they also apply to one-queue machines where the work tape is
replaced by a queue.

Definition 2.1: Let xi be a block of input, and R be a tape segment on the

storage tape. We say that M maps xi into R if h 2 never leaves tape segment R while

h 1 is reading xi . We say M maps xi onto R if h 2 traverses the entire tape segment R
without leaving R while h 1 reads xi .

Definition 2.2: A crossing sequence (c.s.) associated with the boundary between
two contiguous work tape cells is a sequence of ID 's of the form (M(t) ,h 1(t)) , where

M (t) is the state of the machine at time t, for each time t when the machine crosses
that boundary.

We prove an intuitively straightforward lemma for one-tape machines with one-way

input. The lemma states that M cannot poll too many input symbols, with h 2 located

on a given small t ape segment bordered by short c.s. 's, without losing some information.
Formally:

Jamming Lemma. Let the input string start with x# = x 1 x 2 · · · xk # , with the

xi 's blocks of equal length C. Let R be a segment of M 's storage tape and let l be an

integer such that M maps each block xi i1 . .. , xi, (of the xi 's) into tape segment R . The

contents of the storage tape of M , at time t# when h 1(t#) = I x# I and

h 1(t# - 1) = I x I , can be reconstructed by using only the blocks xj
1

• • · xj, _
1

which

remain from x 1 · · · xk after deleting blocks xi
1
, ••. , xi,, the final contents of R , the two

final c.s. 's on the left and right boundaries of R , a description of M and a description of
this discussion.

- 4 -

Remark 2.3: If we want to give a description of a sequence of different strings of
variable length, we use self-delimiting strings, adding O (logn) bits for each string of
length n.

Remark 2.4: Roughly speaking, if the number of missing bits ~}=1 I xii I is

greater than the number of added description bits then the Jamming Lemma implies
that either x =x 1 · · · xk is not incompressible or some information about x has been
lost.

Proof of the Jamming Lemma. Let the two positions at the left boundary and
the right boundary of R be lR and rR , respectively. We now simulate M. Put the

blocks x; of x;
1

• • • x;,_, in their correct positions on the input tape (as indicated by the

h 1 values in the left and right c.s.'s). Run M with h 2 staying to the left of R. When

ever h 2 reaches point lR, the left boundary of R, we interrupt M and check whether
the current ID matches the next ID , say !Di, in the c.s. at lR. Subsequently, using

!Di +1, we skip the input up to and including h 1(ti +1), adjust the state of M to M (ti +1),

and continue running M. After we have finished left of R , we do the same thing right
of R. At the end we have determined the appropriate contents of M's tape, apart from
the contents of R, at t# (i.e., the time when h 1 reaches #). Inscribing R with its final

con ten ts from the reconstruction description gives us M's storage tape con ten ts at t ime
t# . Notice that although there are many unknown xi's, they are never polled since h 1

skips over them because h 2 never goes into R.

Remark 2.5: If M is nondeterministic, then we need to rephrase "contents of
storage tape" by "legal contents of storage tape", which simply means that some compu
tation path for the same input would create this storage tape contents.

3. Lower bound for simulating one queue by one tape

We present a tight lower time bound for deterministic simulation of one queue by
one off-line tape with one-way input. (For a lower bound for the nondeterministic case,
see [LV] or [Li3].)

Remark. Only in this section 3, g (n)EO(f (n)) means " there is a positive con
stant 8 such that g (n)>8J (n) infinitely often". Everywhere else the results hold for
the stronger variant of 0: "there exist a positive constant 8 and a positive integer n 0

such that g (n)>8f (n) for all n >n 0" .

Let <preffa mean 'is a prefix of.' Let E = {0,l}X{0,1,O,I,E}, where E denotes the
empty string, and consider the words over E of the form

such that for all i, 1 <i <n ,

ai E{0,1} and bi E{0,1,O,1,E}

b 1 b 2 · · · bi <prefix a 1 b 1 a 2b 2 · · · iii bi ,

where for any pair (a , b)EE we define a by

(3.1)

a=aifb=e:

a=aifb =I=<=

- 5 -

Remark. Words of this form constitute the witness language Lq below, which is

real-time acceptable by a queue but which requires 0(n 2) time for acceptance by a tape.

Think of the sequence a 1 a 2 · · · an as the n -length sequence of bits to be stored con

secutively in the queue, and the sequence b 1 b 2 · · · bn, of length m (m < n), as the

sequence of bits which are consecutively unstored from the queue. (Note, that while
ai =I= <: for all i, it is possible that bi=<: for some· i (1 < i < n). That is, (ai ,bi) specifies

that <: be unstored.) For technical reasons in the proof below, we have to complicate this

scheme. All of the prefix of a 1 a 2 · · · an which has been stored in the queue previously,

needs to remain stored in the queue forever. Nonetheless, to force the queue to operate

correctly we need to be able to unstore it. To combine both requirements, each pair
(ai ,bi) causes the queue not only to store ai and to unstore bi (possibly e:), but also to

store bi anew. Below we show that the scheme of barred and unbarred ai 's, related to

whether or not the associated 'unstore' bi's are <: or not, makes it possible to retrieve the

complete sequence of ai 's, in the order they have been stored originally , from the queue
contents at each instant.

The witness language Lq consists of all words satisfying (3.1). To aid intuition, we
can view Lq as the language accepted by a queue Q as follows:

• Initially, Q is empty.

• For all i>l, input command '(ai, bd' to Q is interpreted by Q as 'if bi=<: then

append ai to the rear else append ai to the rear; delete bi up front; append bi to

the rear.' (Here 'actionl;action2;action3' denotes the sequential execution of action 1,
action2 and action3.)

• A word (a i,b 1) · · · (an ,bn) is accepted if the sequence of successive front items

deleted in the actual computation by Q on this input is the sequence b 1, ... , bn.
All other words are rejected.

The properties of words of form (3.1) we need in the sequel are expressed in the following
three lemmas.

Lemma 3.1: For a word of the form (B. 1},
- I b 1 b 2 · · · bi I = i for all i, 1 < i < n .

Proof: Obvious.

Lemma 3.2: For a word of the form (B.1} we can reconstruct a 1a 2 ·· · an from the
n -length suffix of a I b I a 2b 2 · · · an bn .

Proof: Let then -length suffix be x 1x 2 · ··xn with xiE{0,1,0,1} (l<i<n). By

(3.1) one of the following two cases must hold (note that the combination xn-iE{0,1}
and Xn E{O,I} is impossible):

(a) Assume Xn ,xn-iE{0,1}. Then an =Xn and bn = <: by (3.1). Consequently,

X1X2 ... Xn-I is the (n-1)-length suffix of a1b1a2b2 .. . an - lbn -1 by (3.1).

- 6 -

(b) Assume Xn_1E{0,1}. Then an =Xn-l and bn =xn by (3.1). Consequently,

XnX1X2···xn-2 is the (n-1}-length suffix of a1b1a2b2···an-1bn-l by (3.1).
(Because bn is the last unstored symbol which has been appended to the rear of the

queue, it is the last symbol to have been unstored from the front of the queue.

Therefore, to restore the queue contents just before (an ,bn) is processed, we delete

suffix an bn from x 1 x 2 · · · Xn and prefix the remaining string with bn .)

Iterating this reasoning n times we recover all of a 1 a 2 · · · an . This proves the lemma.

L emma 3.3: For a word of the form {9.1} with I b 1 · · · bn I = m, we can recon

struct a 1 a 2 · · · am ; 2 from b 1 · · · bn .

Proof: Let

By (3.1) we have a 1 = x I·

(a) If x1E{O,l} then a 1=x 1 and b1=€. Consequently, x 2 · · · xm is the (m-1)-length

prefix of a2b 2 · · · an bn by (3.1).

(b) If x1E{0,1} then a1=x 1 and b 1=x 2. Consequently, x3 · · · Xm is the (m-2)-length

prefix of a 2b 2 · · · an bn by (3.1).

Iterating this reasoning m /2 times we recover all of a 1 a 2 · · · am ; 2. T his proves t he

lemma.

Theorem 3.2. It requires 0(n 2) time to deterministically simulate one queue by
one off-line tape with one-way input.

P ro of. (I). Assume, by way of contradiction, that an off-line deterministic 1- tape
machine M with one-way input accepts Lq in time T (n)$0(n 2). We derive a contradic

tion by showing that then some incompressible string has too short a description.

Without loss of generality, it can be assumed that M has a semi-infinite storage tape

[O,oo) on which it writes only O's and 1 's, T he positions at time t are denoted by h 1(t)
and h 2(t). By ti we denote the time when the i th input command is polled, i.e.,

h 1(td=i and h 1(ti-l)=i -1. Fix a constant C and the word length n as large as

needed to derive the desired contradictions below and such that the formulas in the

sequel are meaningful. Below we show that T (m) > m 2 / C4, for some m ,
Vn /C <m <n , which contradicts the assumption and proves the theorem.

First, choose an incompressible string x E{O,l} * of length n. We consider the
behavior of M on a fixed input prefix. This can be any string z such that

x = x1x2 · · · Xn, y = y 1y2 · · · Yn and z=(xi,y 1)(x2,Y2) · · · (xn,Yn), for some y such

that z satisfies (3.1). Therefore, z ELq . If many polls occur while the head h 2 is in some

small area, then we can show that x is not incompressible (Case 1). Otherwise, we

choose particular Yi 's, among the possibilities which remain under this constraint, so as

to suit the argument in Case 2 below.

Case 1 (Jammed). Fix an integer m such that Vn / C<m<n (any such integer

m will do) and consider them -length prefix z(m) of z. By (3.1), if z is in Lq then so

- 7 -

is each prefix of z, so in particular z (m)ELq. Assume, by way of contradiction, that in
the accepting computation on z (m) at least 2m / 0 polls occur, with h 2 on a particular

(m / 0)-length tape segment R = [a, a +m/0). Consider the two tape segments R1

and Rr of length IR I /4 left and right of R. Choose positions p1 in R, and Pr in Rr

with the shortest c.s.'s in their respective tape segments. These c.s.'s must both be
shorter than m / 0 2

, for if the shortest c.s. in either tape segment is longer than m / 0 2

then Muses T(m)>m 2/40 3 time, which is a contradiction. (If O<a <m / 40 then set
I R, I = a , so that R, RRr C [0,oo). Choose Pt =0 and note that the length of the associ

ated c.s. can be set to 0.) We show that a short program can be constructed which
accepts only x. Let the bits of x 1 · · · Xm polled with h 2 outside tape segment [P1, Pr],
concatenated in the order in which they occur in x, form a string u.

As explained below, we can construct a program to check if a string x I E{0,1} *

equals x, using as a description the values of n, m, 0, a , the locations of Pt and Pr ,

the two c.s. 's at Pt and Pr, the self-delimiting version of u , the bits Xm +l · · · Xn , the
final contents of [p1 , Pr] at time tm +1, the state of M at time tm +l and hi tm +1).

This description of x requires no more than n - ...!::... bits, for sufficiently large 0
40

and n. However, this contradicts the incompressibility of x since K (x)> n and
m>Vn / 0.

To check whether a string x I equals x , check I x I I =n and
x I m +l · · · x I n =xm +l · · · Xn . By the Jamming Lemma (using the above information
as related to M's processing of the input) reconstruct the contents of M's storage tape

at time tm+l, after processing z(m)=(xi,y 1) · · · (xm,Ym)- Simulate M from time tm+l
onwards on an input suffix

(3.2)

with I Ym +1Ym +2 · · · y 2m I =m , and such that M accepts for the chosen Yi 's
(m +1 <i <2m). It is easy to see from (3.1), that there is such a suffix (3.2) for which
M accepts if x 1

1x 1
2 · · · x I m =x 1x 2 · · · Xm. In that case x 1 =x, and by (3.1) and

Lemma 3.1, Ym+lYm+2 · · · Y2m equals them -length suffix of x1y1 · · · XmYm· By
Lemma 3.2, we can retrieve x 1x 2 · · · Xm from this suffix. Suppose, there is ax' -=f. x
such that

z I (m) = (X I I, y I 1)(X I 2, y I 2) . . . (X I m 'y I m) (3.3)

matches the description above, and z 1 (m) drives M into the same configuration at
time t' m+l of M's (m + l)th poll in its computation, as the configuration into which

z (m) drives M at time tm +1· Consequently, the concatenation of (3.3) and (3.2) is also
accepted by M. Note, that x' differs from x only in the first m bits, in particular in
those bits polled with h 2 positioned in tape segment [p1 ,Pr]. We can cut and paste the

computations based on z 1
(m) inside [Pt ,Pr] and based on z (m) outside [Pt ,Pr], and

still have M accept. The 'cut and paste' computation is accepting up to the (m + l)th
poll because both computations satisfy the description above, and afterwards because
the two computations are identical from the (m + l)st poll onwards. Let the resulting

- 8 -

string composed in the obvious way from xi · · · Xm and x 1 i · · · x I m be

x(m)=xi · · · Xm with Xi E{ xi ,x 1 i} (1 < i < m). Above we saw that we can retrieve

xix 2 · · · xm from Ym +i · · · y 2m, by Lemma 3.1 and Lemma 3.2. However, this con
tradicts the acceptance by M of the cut and paste computation based on z (m) and
z 1

(m), because that entails the retrieval of x(m) =/:- xix 2 · · · Xm from Ym +i · · · y 2m

by (3.1), Lemma 3.1 and Lemma 3.2.

Gas~ 2 (Not jammed}. Let n 1 be any integer such that vn / C < n 1 < n. Let

z(n 1
) be the n 1 -length prefix of an n -length input z. By (3.1), if zELq then

z (n 1)ELq. Assume, by way of contradiction, that in the accepting computation of M
on z (n 1

) at most 2n 1
/ C polls occur with h 2 on any particular (n 1 / C)-length tape

segment R = [a, a+ n 1 JC).

We now define the particular input z we need. Let x =xix2 · · · xn be as in Case 1.

Determine the Yi 's (1 <i <n) in input z = (xi,Yi) · · · (xn ,Yn) as follows.

(1) Let M start its computation with Yi=E. So first (xi,Yi) is polled.

(2) Let M continue its computation and suppose we have determined
(xi,Yi) · · · (xi-bYi-i) and M polls for the i th time. Let ti be the time at which

M polls (xi ,Yi). If hiti)E[O,n / 4) then Yi =1:, else Yi =/:- 1:. In the latter case Yi is
be determined uniquely from (xi,Yi) · · · (xi-1'Yi-i) by using the relation

YiY2 ···Yi <prefiz XiYi · · · xi -iYi-1' that is, using (3.1) and the fact that y 1=E

by (1).

We now fix a particular value m as determined by M's computation on z.

(a) By contradictory assumption (with n 1 =n), we have that <n /2 polls occur on
[O,n / 4) and >n /2 polls occur on [n /2,oo).

(b) Since T(n)$0(n 2
), we have h2(tdE[O,n/4), for all i (l<i<vn).

Let l(t) and r(t) be the number of polls for (xi,Yd's, with h 2(tdE[O,n / 4) and
h2(ti)E[n /4,oo) (1 <ti <t), respectively. By (a) and (b) there is an integer m such that

l(t)>r(t), for l<t<tm, l(tm)=r(tm) and vn / C<m<n. This m is the break

even length where the number of polls left and right of position n /4 on the tape is equal
for the first time.

Claim 1. As a consequence of this definition of m and (1) and (2), it follows that
r (tm)= I Y 1 · · · Ym I =m /2 for input prefix

z(m) = (xi,Yi) · · · (xm,Ym)-

Since each prefix of z satisfies (3.1), we can retrieve x 1 · · · Xm ;4 from prefix y 1 · · · Ym

of x 1y 1 · · · Xm Ym by Lemma 3.3.

Claim 2. By definition, all Yi 'sin y 1 · · · Ym, which are different from E, are polled

on [n/4,oo). Since l(tm;4)>r(tm ;4), at most m/8 of the x/s in Xi··· xm ;4 are polled
on [n /4,oo).

In the computation on the m -length prefix z (m) of z , choose the point p with the
shortest c.s. in [n / 4-m/C,n / 4). This c.s. is shorter than m/C2; otherwise, the

- g -

running time T (m) > m 2
/ C 3, which is a contradiction.

As explained below, we can construct a program to check if a string x I E{O,l} *
equals x , using as a description the values of n , m , the position of p , the c.s. at p , the
string u of concatenated bits of x 1 · · · Xm ; 4, polled with h 2 on [p , oo) and the string

X(m/4)+1. · · Xn·

This description of x requires no more than n - ..!!!:.. bits, for sufficiently large C
16

and n. However, this contradicts the incompressibility of x since K(x)>n and
m>..fn / C.

To check whether a string x I equals x , check J x I I =n and

x 1
(m ; 4) +l · · · x I n = x (m ; 4) +1 · · · Xn . Let u I be the result of deleting the bits in

x I in the same positions as the ones used to obtain u from x. These positions are
determined by the crossing sequence at p . Check u 1 =u . If the test is negative then

x 1 -:;I= x, else x I can only differ from x on positions where x 1 · · · Xm ;/s bits are polled

with h 2 on [O, p). Run M on z 1 (m), that is, the input constructed according to (1),
(2), using the m -length prefix x 1

1x 1
2 · · · x I m of a candidate x 1 • Whenever h 2

crosses p we interrupt M and check if the current ID in the computation is consistent
with the corresponding ID in the c.s. at p .

By construction everything matches up to the end of processing inpu t z 1
(m), and

M accepts, if x 1 =x . Assume that x 1 -:;I= x matches the description as well. There

fore, x' 1X 1
2 · · · x' m/4 -:;I= x 1x 2 · · · xm;4 and x' i=xi for all i (m / 4+l<i<n).

Let the input z' (m), based on x 1
1x 1

2 · · · x 1 m and constructed according to (1),(2),
be

z' (m) = (x' 1,Y 1 1)(x' 2,Y 1 2) · · · (x ' m,Y 1 m) •

Let the input based on x 1x 2 · · · xm, constructed according to (1), (2), be

Z (m) = (X 1, Y 1)(X 2, Y 2) . . . (Xm , Ym) ·

By assumption, x I and x differ only on the first m /4 bits, and then only on the bits
that are polled left of p. Let the final accepting position of h 2 for M's computation on

z(m) be right of p. (If it is left of p interchange z and z 1 below.) Cut and paste the
computations on z (m) and z 1

(m) such that M runs on input z 1 (m) with h 2 left of

position p, and M runs on input z(m) with h 2 right of position p. Let S'{m) be the

input composed in this way from z 1 (m) and z (m). By construction, the computation

on S'{ m) is also an accepting computation of M. Consequently, S'{ m) satisfies (3.1).
Then,

S'{m) = (a1,b1)(a 2,b2) · · · (am,bm)

with (ai,bd is either (xi,Yd or (x' i,Y ' d (l<i<m). Because both z(m) and z 1 (m)

match the description, (x I i ,Y I d is polled right of position p if and only if (xi ,Yd is

polled right of position p for all i, 1 < i < m . Therefore, Yi=€ if and only if y I i =€ if

and only if (xi ,Yi) is polled left of position p if and only if (x I i ,Y I i) is polled left of

position p for all z, 1 <i <m. Consequently, the sequences of 'unstored' symbols

- 10 -

unequal E in the computations on z (m), z 1 (m) and ~ m) are equal, that is,

b 1 b 2 · · · bm = Y 1Y 2 · · · Ym (3.4)

By assumption, (xi ,Yi) and (x I i ,Yi) are polled left of p and xi =/:- xi I for some i,

1 < i < m / 4. Therefore, since ai =x I i if the i th poll occurs left of p , and ai =xi if the
ith poll occurs right of p (l<i<m / 4), in M's computation on ~m), we have

a1a2 · · · am /4 =/:- x 1x2 · · · Xm /4 - Because x 1x 2 · · · Xm /4 is retrieved from y 1 · · · Ym by
Claim 1, we retrieve x 1x 2 · · · xm /4 from b 1b 2 · · · bm as well, by (3.4) , using Lemma

3.3. However , for ~m) to satisfy (3.1), we have to retrieve a 1a 2 · · · am /4 from

b 1 b 2 · · · bm , by virtue of the construction of ~ m) and Claim 1. Consequently,
b1b2 · · · bm is not a prefix of a 1b 1a2b2 ···am bm as required by (3.1) . Hence, ~m)
does not satisfy (3.1), which is a contradiction.

Since m > Vn / C, Cases 1 and 2 complete the proof of T (n)ED(n 2).

(II). With the description of Lq we have already indicated how a queue recognizes
this language in real-time.

The theorem follows from (I) and (II).

4. Lower bound for simulating one pushdown by one queue.

In this section, we show that it takes at least D(n 4/ 3 / logn) time for a one-way
input one queue nondeterministic machine to recognrze the language
{w#wR :wE{O,l}*}.

Because this language can be recognized in linear time by a deterministic pushdown
automaton, we can conclude that it takes at least D(n 413/ logn) time for a one queue
nondeterministic machine to simulate a deterministic pushdown automaton.

The intuition behind the proof is that while the queue machine reads w, it has to
store all the information in some sequential way on the queue. To compare this informa
tion with wR , the machine will have to go through the queue too many times.

Let h 1 be the read-only head on the one-way input tape. We can view the queue as
a tape with two heads h 2 and h 3. The head h 2 is a read-only, one-way head on the

queue. The head h 3 is a write-only, one-way head on the queue. Each time something is

put on the queue, h 3 writes and each time something is read from the queue, h 2 reads.

Theorem 4.1: A one-way input one queue nondeterministic machine takes time in
D(n 413/ logn) to accept the language {w#wR :wE{O,l}"}.

Proof: Leading to a contradiction, we suppose that there is an algorithm to accept
L in time T (n) which is not in D(n 4/ 3 / logn).

Let hi (t) denote the position of head i at time t on its respective tape. At time t ,
the length of the queue is hs(t)- h 2(t), and the content of the tape between h 2(t) and
h s(t) is called the actual queue .

Let x be an incompressible string. We separate x into blocks: x=x 0x 1x 2 · · · xm.

Each block xi for 1 < i < m is separated into p sub blocks: xi = xilxi2xi 3 · · · xip. For
the proof of t he theorem, we take m = n 113 and p =n 213/ k 1logn, where k

1
is an

- 11 -

appropriately chosen constant. Let Ix I =n and I x 0 I =n / 2. Each subblock will

have the same length, c logn. We look at any computation of the machine on input
x#xR.

Claim 4.2: If n / 2<h 1(t)<3n / 2, then the length of the queue at time tis at least
n /2-logn.

Proof: We know that K(x 0)>n / 2-k 2 for some constant k 2. The result follows

because x O can be described by the content of the queue, the state of the machine and
h 1(t).

Claim 4.3: Let ti be the time step when the input head enters the block xi. For

at least half of the blocks Xj, we have that h 2(tj+i)<h 3(tj).

Proof: Otherwise the algorithm takes time 0(n 4/ 3 / logn).

The machine needs to remember what it reads on the input and code it in some
way on the queue. This notion will be captured by the influence relation defined below.
What is written on the queue can be a coding of the input and of the rear of the queue.

If h2(tj+i)<hs(tj), then we have the nice property that a whole block from the input

has to be coded sequentially on the queue, since the reading head on the queue doesn't
reach where the coding has started. Let's call the blocks which satisfy this last claim the
valid blocks.

Now, we define the influence relation. Let c 1,c 2, · · · cP be the cells on the input

tape. Let d i,d 2, · · · dq be the cells on the queue. We say that a cell dj is directly

influenced by a cell ci if h 1(t)=i at the time t when h 3 writes on di. Similarly, a cell

dj is directly influenced by a cell di if h 2(t)=i at the time t when h 3 writes on dj.

The influence relation is the transitive closure of the direct influence relation. We

say that ci (or di) influences di if there is a chain of direct influences from ci to di. A
block of cells influences a cell if and only if at least one of the cells in the block
influences it.

The influence relation will allow us to talk about where the information can be
stored on the queue. Notice that during the computation, the content of a cell may still
be dependent on some other input cell even if that input cell has no influence on it, due
to the finite control of the machine. This minor problem will not cause any trouble.

Claim 4.4: For any block xj such that h2(tj+1)<hs(tj), we have that each cell in

xi influences a disjoint set of cells on the queue. Moreover, the regions influenced by

these cells form an ordered sequence of regions on the actual queue at any later time.

Now we look at what happens when the input head h 1 reads the second part of the

input. Let t/ denote the time when the head h 1 enters the block xi R corresponding
to xi.

Claim 4.5: There is at least one valid block Xj such that h 2(tj-i')< hs(t/).
(Remember that xj_1

1 R follows xi I R .)

- 12 -

Proof: Otherwise the algorithm takes time 0(n 4/
3 / logn).

In the following two claims, we mention cycles and crossing sequences. A cycle is

any span of time from time t to time t I such that h 2(t 1)=h 3(t). The crossing

sequence associated with the border between cell di and cell di +1 is the list of states of

the machine when any head goes from cell di to cell di +l · Because the tape is in fact a
queue, the crossing sequence will have length 2.

Each block influences a series of regions on the tape, one for each cycle of the
queue. The crossing sequence around a list of regions is the concatenation of the cross

ing sequences under the border of each region.

Claim 4 .6: Throughout r cycles, starting at time t 0' , the actual queue always has

length at least n 213- (r +k 4)logn , for some constant k 4.

Proof: Let xi be the block provided by claim 4.5. Let x be the string x where

xi has been deleted. Because the regions influenced by the xii are ordered on the actual

queue, and the regions influenced by the xii R are in reverse order, there is only one con

tiguous region which can be influenced by both a subblock xii and its corresponding

sub block xii R. We call this region the overlapping region.

At any time after t 0
1 , the string x can be totally described by ,J , the index of

xi, the actual queue, the crossing sequences around the overlapping region and the con

tent of the regions that were overlapping at each cycle.

Claim 4. 7: The machine makes 0(n 2/ 3 /logn) cycles after t 0' .

Proof: The string x can be described by x' , the index of xi , the crossing sequence

around the overlapping region and the content of the regions that were overlapping at
each cycle. At each cycle, this information is of length O (logn), so it takes n 213 / logn

cycles to gather enough information. (At the end, we don't need the actual queue, so r

has to be large to compensate.)

By the last two claims, the machine takes time in 0(n 4/ 3 / logn).

5. Simulating more queues by less queues

In this section we study the power of queue machines with different number of

queues. We first show that 2 queues are as good as k queues in the nondeterministic

case. This motivates our research concerning a small number of queues. We also show
that 1 queue can simulate k queues in quadratic time, deterministically or nondetermin
istically. We will provide tight, and almost tight, lower bounds for our simulations men
tioned above.

5.1. Upper bounds

Theorem 5 .1: Two pushdown stores can simulate one queue in linear time, both
for deterministic and nondeterministic machines.

Proof: Let P be a two pushdown store machine with 2 pushdown stores pd 1, pd 2.
To simulate a queue, every time the a symbol is pushed into the queue, P pushes the

same symbol into pd 1. If a symbol is taken from the queue, then P pops a (the same)

- 13 -

symbol from pd2 if pd2 is not empty. If pd2 is empty then P first unloads the entire
contents of pd 1 into pd 2 and then pops the top symbol from pd 2. At the end of the
input, P accepts iff the 1 queue machine accepts.

Theorem 5 .2: Two queues can nondeterministically simulate k queues for any
fixed k in linear time.

Proof: This is actually the same technique Book and Greibach [BG] used to prove
the same theorem for tapes. The 2 queue machine guesses the computation of the k
queue machine computation and put this guess on 1 queue. Then use the other queue to
simulate the computation of each of the k queues of the simulated machine and check
its correctness against the guess on the first queue. We refer the reader to [BG] for the
details. (This simulation takes O (kn) time. But it can be improved to real time using
the methods developed in [BG].)

Theorem 5.3: 3 pushdown stores can nondeterministically simulate k queues in
linear time.

Proof: Combine ideas from the above 2 theorems. I.e. , guess the computation of
the k queue machine, and put the guess into one pushdown store. Save this guess also to
another pushdown store (but put a marker on the top). Then simulate a queue and
check the correctness of the guess. (The simulation needs 2 pushdowns, one of the push
downs has the guessed computation saved on the bottom.) After simulating one queue,
retrieve the guessed content and again put it into 2 pushdowns. Repeat this process for
each queue.

Notice that a strange phenomenon occurs here. When we have 1 queue and 1 push
down store, 1 queue is better in the sense that 1 queue can accept all the r. e. languages
but 1 pushdown cannot. However, when we have more pushdown stores, more pushdown
stores seems to be better than queues because they are more efficient.

Theorem 5.4: One queue can simulate k queues in quadratic time, both determin
istically and nondeterministically.

Proof: Here, use some basic simulation schemes.

This also relates to a interesting problem of whether "2 heads (on one tape) are
better than 2 tapes (each with one single head)". Vitanyi [Vi3] showed that 2 tapes can
not simulate a queue in real time if one of the tape has only o (n) cells to use. Our result
here shows that 2 pushdowns can simulate a queue in linear time. It would be interesting
to know whether this can be done in real time. The question of how to simulate k
deterministic queues by 2 queues (like the Rennie Stearns simulation in the tape case
[HS2]) remains open.

5.2. Lower bounds

We now prove optimal lower bounds for above simulations. We define the language
L:

L = { a f3 blb l · · · b/#

ba2bJbi2blbi3bs2 . .. bz1b/b21+1 . .. bk~1b(L1i;2b/

- 14 -

bo
4

b(i+1)/2b1
4
bib(1+3)/ 2b3

4
· · · b21moo (k+1)b/b (t+1)mod (k+1) · · · b/_1b/b/

nf3 a

b/ = b/ = b/ = b/ for £ = 0, ... , k for any odd k }

The length of each b/ is a fixed constant C. The superscripts of bi's are used only
to facilitate later discussions. L can be considered as a modified version of a language

used in [Ma]. We have added a string a on the both ends. The purpose of a is to
prevent the queue from shrinking since if we choose a to be a long random string then
before the second a is read the size of the queue has to be larger than I a I . We have to
prevent the queue from shrinking because otherwise the crossing sequence argument
would not work. In order to prove the lower bounds for queues new techniques, in addi
tion to those used in [Ma,L V], are required.

Theorem 5 .5: Simulating two deterministic queues by one nondeterministic queue
requires 0(n 2 / log2n loglogn) time.

Proof: We will show that L defined above requires 0(n 2 / log2 n loglogn) time on a
one-queue nondeterministic machine (always with an extra 1-way input tape). Since L

can obviously be accepted by a two-queue deterministic machine in linear time, the
theorem will follow.

Now, aiming at a contradiction, assume that a one-queue machine M accepts L in
o (n 2 / log2n loglogn) time. Only for the notational convenience, we think the queue of
M as a cfrcular tape with just one queue head, which combines the push head and the

pop head. The head moves clockwise uniformly. The circular tape can augment (insert a
tape square) or shrink (delete a tape square) at constant cost in order to mimic a queue.
We call it Queue and write I Queue (t) I to denote its length at time t. Name the
input head h 1 and the queue head h 2. Initially the Queue is a point, a degenerated
rmg.

Choose a large n and a C >10 IM I + 10 so that all the subsequent formulas make
sense. Choose an incompressible string X E{0,1 }2n. Let X =X! X! 1 where

I X! I = I X! 1 I . Equally divide X! 1 in to k + l = n / C loglogn parts,
X! 1 =x 0x 2 · • · xk, each C loglogn long. Consider a word w EL where a =X! and
b/=xi for 1 <j <5 and O<i" <k. Fix a shortest accepting path, P, of M on w.

Consider only the path P. Let tff be the time when h 1 reaches the first f3, t! ff be
the time h 1 reaches the second f3 , and t# be the time when h 1 reaches #-

Clai"m l. I Queue (tff) I > n /2.
Proof . If not, we can conclude that K (X) < IX I as follows. For every Y such

that I Y I = I X I , let Y = a I y O • • · Yk . Replace the last a after the f3 sign in w by
a' . Using the (short) description of the queue, start to simulate M from time tff. By a

standard argument, Y =X iff M accepts. Therefore K (X)< IX I, a contradiction.

By a similar argument as in Claim 1, we derive Claim 2.

- 15 -

Claim 2. I Queue (t) I > n / 2 for every te3 < t < f & .

Claim 3. The crossing sequence from time t& to f & 1s shorter than
n

C 10log2n loglog n ·

Proof. Follows directly from Claim 2.

If the Queue cells which are scanned or created by h 2, while h 1 is scanning b/, are

m Q ={ q 1, · · · ,qu }, then we say that b/ is mapped into Q. Notice that b/ is at first
mapped into a set, Q, of consecutive sequence of cells. But, different from a regular Tur
ing machine tape, Q may become disconnected because other queue squares can be
inserted later. We say that b/ is sequentially mapped if, while h 1 scans b/, h 2 did not

scan any Queue cell twice (leave and re-enter), that is, h 2 did not make a round t rip on

Queue . We say that b/ is majorly mapped into Q if b/ is sequentially mapped, and there

are two substrings, u and v, of b/ which are mapped into Q and

I u I + I V I > I b/ I 1.

Remark. According to above definition, a b/ can be majorly mapped into two dis
joint sets.

Claim 4. At time t#, Queue can be cut into two segments, S 1 and S 2, such that

(1) S 1nS 2=</> and S 1US 2=Queue;

(2) k / 4 b/'s, say b/ , · · · ,b/
1

, are majorly
I k 4

mapped into Si, and k / 4 b/'s, say

bi~ , · · · ,bj;14 , are majorly mapped into S 2·

{bi~, ··· A/14 }n{bi~, · · · ,bi;14 } = ef>.

(3) I s 1 I , I s 2 I > n I c 2;

Proof. In our proof only properties (1) and (2) are used, (3) is stated for the sake
of completeness. We will only give proofs of (1) and (2). The proof of (3) is very similar
to the last part of this proof and we leave the proof of (3) to the interested readers.

First we show that ~~~ b/ are sequentially mapped. By Claim 2, for t& < t < f & ,

we always have I Queue (t) I > n / 2. Therefore, if after time t& more than k / 100 b/'s
are not sequentially mapped, then on each of them M must spend at least n / 2 time to
go around the Queue . Altogether M would be spending 0(n 2 / loglog n) time, a contrad
iction. Hence at least 99k / 100 b/'s are sequentially mapped.

Now we can easily choose two points p ,q on Queue to cut Queue into two parts

S 1 and S 2 such that (1) and (2) in the claim are true.

>From now on, we will always consider the Queue to be partitioned as S 1 and S 2.

The sizes of S 1 and S 2 may increase or decrease. If anything is inserted in the intersec

tion point of S 1 and S 2 then it does not matter in which set we place the inserted

Queue cell.

The next claim is a simple generalization of a theorem proved by Maass in [M]
(Theorem 3.1). The proof of this claim is a simple reworking of the proof in [M].

- 16 -

Claim 5. Let S be a sequence of numbers from {0, ... ,k -1}, where k=21 for

some l. Assume t hat every number b E {O, ... , k-1} is somewhere in S adjacent to

the number 2b (mod k) and 2b (mod k)+1. Then for every partition of {O, . .. , k-1}

into two sets G and R such that S =G UR and I G I , I R I > k /4 there are at least

k /(c log k) (for some fixed c) elements of G that occur somewhere in S adjacent to a

number from R.

A k / Jlog k upper bound corresponding to the lower bound in this lemma is con

tained in [Li]. A more general, but weaker, upper bound can be found in [Kl]. Notice

that any sequence S in L satisfies the requirements in Claim 5.

Claim 6. At time t' & , the bi's between # and the second f3 are mapped into

Queue in the following way: either

(1) a set, Si, of k / clogk b/s, which belong to {bj~, · · · ,bj;
1
J, are mapped into S 1;

or

(2) a set, 5 2, of k / c logk bi's, which belong to {bi~, · · · ,bi,\
4
}, are mapped into S 2.

Where c < < C is a small constant as used in Claim 5.

Proo J. By Claim 3 we can assume that from t ime t# to time t' & , h 2 made less
k than --- round trips on Queue . Therefore by the nature of the queue, only

C 2log k

2

2k b/'s can be mapped in to both S 1 and S 2. Also since h 2 can alternate between
Clog k

2k S 1 and S? less than
2

times, we complete the proof by applying Claim 5.
- C log k

(a)

Without loss of generality, assume that (1) of Claim 6 is true.

Claim 7. Let tend be the time M ends. Either

n
There exists a time t' & < t 0 < tend such that I Queue (t 0) I <

10
and the

C logn

crossing sequence from t' & to t O is shorter than n · or
C 10logn loglogn '

(b) > From time t' & to time tend the length of the crossing sequence is shorter than
n

C 10logn loglogn ·
n2

Proo J . If (a) and (b) are both false, then M spends 0(
2

) time, a con-
log n loglogn

tradiction.

By Claim 3 the crossing sequence is shorter than
10 2

n before time
C log n loglogn

t' & . Record th is crossing sequence. For every j ,k, if b } ES 1, then b / is majorly mapped

into S 2. Let uj , vi be the substrings of b/ such that

I b _1 I
(i) I ui I+ I vi I > ~ 1 and

(ii) Uj ,vj are mapped into S 2.

- 17 -

k -Let suv={uj,Vj I bjES1 for some k >l}. Notice that

~ (I ui I+ I vi I)> n •
uj,VjES.v 3C logn

Now we describe a program which reconstructs X with less than IX I informa

tion. Consider every Y such that I Y I = I X I and Y = a Yo · · · Yk for some

Yo . .. Yk ·

(1) Check if Y is the same as X at positions other than those places occupied by

Ut ,Vt ESuv.

(2) If (1) is true, then construct the input, wy, as before except with xi replaced by Yi

for i =0,1, · · · ,k.

(3) Run M following path P up to time t8 .

(4) We distinguish between two cases according to Claim 7.

Case 1. (b) of Claim 7 is true. Record the crossing sequence from t1 8 to tend.

Continue to run M from t1 8 to tend such that h 2 never goes into S 2. Whenever

h 2 reaches the border of S 2 it matches the current ID with the crossing sequence.

If they match M jumps over S 2 and, using the next ID on the other side of S 2 to

start from, M continues until time tend .

Case 2. (a) of Claim 7 is t rue. Record the crossing sequence from time t1 8 to

time t O and the contents of S 2 at time t 0 . Simulate M, with h 2 staying outside of

S 2, from time t1 8 to time t 0 similar to Case 1. At time t 0, M puts the (short)

contents of S2 in the posit ion of S 2 and then finishes the computation in the nor
mal way.

(5) By the end M accepts iff Y =X. Notice that since M is nondeterministic, by
"accept" we mean that there is an accepting path.

Now the information we used in this program is only the following.

(1) X - Suv, plus the information to describe the relative locations of bi ES\ in X and

the relative locations of u i, vnnj in b j ES 1. Using the coding method described in

the previous part of the paper, this would require at most

n n n I X I - -- + C +o (lo n),
2c logn - c logn g

3

where the second term is for the u1 ,Vt in Suv, the third term is for the information to

describe the relative positions of bi ES i, and the last term is for the information needed
to describe the relative positions of u1 ,v1 in each b1

(2) Description of the crossing sequence, of length less than n around
C 9logn loglogn'

S 2. Again by the method used in previous part of this paper, this requires at most

n bits.
C 8logn loglogn

- 18 -

(3) Description of the contents of S 1 at time t 0 when (a) of Claim 6 1S true. But

I Queue (t 0) I <
10

n
C logn

(4) Extra O (log n) bits to describe the program discussed above.

The total is less than IX I . Therefore K (X)< IX I , a contradiction.

Corollary. Simulating two deterministic tapes by one nondeterministic queue

requires 0(n 2 / log2n loglogn).

Proof. Since L can also be accepted by a two tape Turing machine in linear time.

Theorem 5.6: It requires n(n 2) time to simulate two deterministic queues by one

deterministic queue.

Proof Idea. Define a language L 1 as follows. (Below, a ,xi ,Yi E{0,1}* .)

Li= {a 81 x1$x2$ · · · $xk#y 1$ · · · $y,# (li 1,lj 1)(1\1i2
) ... (1\ 1i,) 81 a I

xp=Yq 81 (p = i 1+. .. +i1 , q = j 1+. . .+j1) 81 I<t <s}.

L 1 can be accepted by a two queue deterministic machine in linear time. But using

the techniques in Theorem 1 and in the proof of one deterministic Turing machine tape
requiring square time for this language (See [LV]), it can be shown that L 1 requires

O(n 2) for a one queue deterministic machine. We omit the proof.

Remark. The above lower bounds are similar to the case of one tape vs two tapes

[Ma,LV]. However, the proofs require special techniques to handle the queues. Still we
do not have a lower bound as good as in the nondeterministic tape case [LV,GKS]. We
feel that some improvement should be possible.

References

[Aa] Aanderaa, S.O., "On k-tape versus (k-1)-tape real-time computation," in Complexity of
Computation, ed. R.M. Karp, SIAM-AMS P roceedings, vol. 7, pp. 75-96, American Math.
Society, Providence, R.I. , 1974.

[BGW]
Book, R., S. Greibach, and B. Wegbreit, "Time- and tape-bound Turing acceptors and
AFL's," J. Computer and System Sciences, vol. 4, pp. 606-621, 1970.

[Ch] Chaitin, G.J. , "Algorithmic Information Theory," IBM J. Res. Dev. , vol. 21, pp. 350-359,
1977.

[DGPR]
Duris, P., Z. Galil, W. Paul, and R. Reischuk, "Two nonlinear lower bounds for on-line
computations," Information and Control, vol. 60, pp. 1-11, 1984.

[GKS]Galil, Z., R. Kannan, E. Szemeredi, " On nontrivial separators for k-page graphs and simu
lations by nondeterministic one-tape Turing machines," in Proceedings 18th Annual ACM
Symposium on Theory of Computing, 1986.

- 19 -

[HSl]Hartmanis, J. and R.E. Stearns, "On the computational complexity of algorithms," Trans.
Amer. Math. Soc., vol. 117, pp. 285-306, 1969.

[HS2] Hennie, F.C. and R.E. Stearns, "Two tape simulation of multitape Turing machines," J.
Ass. Comp. Mach. , vol. 4, pp. 533-546, 1966.

[HU] Hopcroft, JE. and J.D. Ullman, Formal Languages and their Relations to Automata,
Addison-Wesley, 1969.

[Kl] Klawe, M., "Limitations on explicit construction of expanding graphs," SIAM J. Comp., vol.
13, no. 4, pp. 156-166, 1984.

[Ko] Kolmogorov, A.N., "Three approaches to the quantitative definition of information," Prob

lems in Information Transmission, vol. 1, no. 1, pp. 1-7, 1965.

[Lil] Li, M. , " Simulating two pushdowns by one tape in O(n**l.5 (log n)**0.5) time," 26th
Annual IEEE Symposium on the Foundations of Computer Science, 1985.

[Li2] Li, M., "Lower Bounds in Computational Complexity," Ph.D. Thesis, Report TR-85-663,
Computer Science Department, Cornell University, march 1985.

[Li3] Li, M., "Lower bounds by Kolmogorov-complexity", 12th ICALP, Lecture Notes in Com
puter Science, 194, pp. 383-393, 1985.

[L VJ Li, M. and P .M.B. Vitanyi, "Tape versus queue and stacks: The lower bounds," Submitted
for publication.

[LS] Leong, B.L. and J.I. Seiferas, "New real-time simulations of mul- tihead tape units," J. Ass.
Comp. Mach., vol. 28, pp. 166-180, 1981.

[Ma] Maass, W., "Combinatorial lower bound arguments for deterministic and nondeterministic
Turing machines," Trans. Amer. Math. Soc., 292,2, pp. 675-693, 1985. (Preliminary Version
"Quadratic lower bounds for deterministic and nondeterministic one-tape Turing machines,"
pp 401-408 in Proceedings 16th ACM Symposium on Theory of Computing, 1984.)

[PSS] Paul, W.J., J.I. Seif eras, and J. Simon, "An information theoretic approach to time bounds
for on-line computation," J. Computer and System Sciences, vol. 23, pp. 108-126, 1981.

[Pa] Paul, W.J. , "On-line simulation of k+l tapes by k tapes requires nonlinear time," Informa
tion and Control, pp. 1-8, 1982.

[So] Solomonov, R., Information and Control, vol. 7, pp. 1-22, 1964.

[Vil] Vita.nyi, P.M.B., "One queue or two pushdown stores take square time on a one-head tape
unit," Computer Science Technical Report CS-R8406, CWI, Amsterdam, March 1984.

[Vi2] Vita.nyi, P.M.B., "An N**l.618 lower bound on the time to simulate one queue or two push
down stores by one tape," Information Processing Letters, vol. 21 , pp. 147-152, 1985.

[Vi3] Vita.nyi, P.M.B., " On two-tape real-time computation and queues," J. Computer and System
Sciences, vol. 29, pp. 303-311, 1984.

