
Know ledge and Common Know ledge in a
Byzantine Environment : Crash failures

Cynth ia Dwork

IB\1 Almaden Research Center .
San Jose, CA 95120

Yoram 1Ioses

\lIT Laboratory for Computer Science,
Cambridge, \IA 02139

July 1986

.-\BSTR.-\CT

By analyzing the states of knowledgt> that the processors attain in an unreliable sys
tem of a simple type. \Ve capt ure some of the ba ·ic underlying structure of such systems. In
particular. we study \vhat facts become common knou;ledge at various points in the execu
tion of protocols in an unreliable system. This characterizes the simultaneous actions that
can be carried out in such systems. For example. ,ve obtain a complete characterization
of the number of rounds required to reach Simultaneous By::antine Agreement. gi\·en the
pattern in which failures occur . From this \Ve derive a new protocol fo r this problem that
is optimal in all runs . rather than just al\\°ays matching t he worst-case lower bound. In
some cases this protocol attains imultaneous Byzantine .-\greement in as fe\\- as 2 rounds.
We also present a non-trivial simu ltaneous agreement problem called bivalent agreement

for which there is a protocol that always halts in two rounds . Our analysis applies to
simultaneous actions in general. and not just to Byzantine agreement. The lower bound
proofs presented here generalize and simpl ify the previously known proofs.

K eywords: common knowledge, simultaneous actions, crash failure, optimal in all runs.

@ 1986 :\Iassachusetts Institute of Technology, Cambridge, \![A. 02139

The work of the second author at .\HT was supported in part by an IB:\f Post
doctoral fellmvship. by the Office of \"aval Research under contract \"0001-!-85-K-0168,
by Office of Army Research under contract D.-\ . .\.C29-8-1- K-0058, by the \"ational Science
Foundation under grant DCR-8302391. and by the Defense Advanced Research Projects
agency (DARP.-\) under contract \"0001-!-83-K-0125. ·ome of the \-vork was done ,vhile he
v,as at Stanford Cniversity, supported by DARPA contract \"00039-82-C-0250, and by an
IB\1 Research Student Associateship.

1. Introduction

The problem of designing effective protocols for distributed systems whose components
are unreliable is both important and difficult . In general, a protocol for a distributed system
in which all components are liable to fail cannot unconditionally guarantee to achieve non
trivial goals . In particular, if all processors in the system fail at an early stage of an
execution of the protocol, then fairly little will be achieved regardless of what actions the
protocol intended for the processors to perform. However , such universal failures are not
very common in practice, and we are often faced with the problem of seeking protocols
that will func tion correctly so long as the number, type, and pattern of fai lures during the
execution of the protocol are reasonably limited. A requirement that is often made of such
protocols is t -resihency - that they be guaranteed to achieve a particular goal so long as
no more than t processors fail.

A good example of a desirable goal for a protocol in an unreliable system is called
Simultaneous By::an(ine Agreement (SBA), a variant of the Byzantine agreement problem
introduced in ·psL':

Given are n processors, at most t of which might be faulty. Each processor Pi has
an ini tial \a lue Xi E {O, l }. Required is a protocol with the following properties:

l. E\·ery non-faulty processor Pi irreversibly "decides·' on a value Yi E {O, l} .

2. The non-faulty processors all decide on the same value.

3. The non-faulty processors all decide simultaneously, i.e., in the same round
of computation.

4 . If all initial values Xi are identical, then all non-faulty processors decide Xi .

Throughout the paper we will use t to denote an upper bound on the number of
faulty processors . We call a distributed system whose processors are unreliable a Byzantine
environment.

The Byzantine agreement problem embodies some of the fundamental issues involved
in the design of effective protocols for unreliable systems, and has been studied extensively
in the literature (see [F] for a survey) . Interestingly, although many researchers have
obtained a good intuition for the Byzantine agreement problem, many aspects of this
problem still seem to be mysterious in many ways, and the general rules underlying some
of the phenomena related to it are still unclear.

A number of recent papers have looked at the role of knowledge in distributed com
puting (cf. [CM:, [HM], [PR]) . They suggest that knowledge is an important conceptual
abstraction for distributed systems, and that the design and analysis of distributed proto
cols may benefit from explicitly reasoning about the states of knowledge that the system
goes through during an execution of the protocol. In :HY!j, special attention is given to
states of kno,vledge of groups of processors, with the states of common knowledge and im
plicit knowledge singled out as states of knowledge that are of particular interest. Among
other things, they show that common knowledge is intimately related to simultaneous ac

tions - actions that are guaranteed to take place simultaneously at all sites of the system.
As we shall see, processors running a protocol for SBA can decide on a particular value v

1

only once certain facts about the inital values Xi become common knowledge. The problem
of attaining common knowledge of a given fact in a Byzantine environment turns out to
be a direct generalization of the SBA problem.

This paper studies the structure and properties of t-resilient protocols that perform
simultaneous actions by investigating what facts can become common knowledge at differ
ent points in the execution of a t-resilient protocol. We restrict our attent ion to systems
in which communication is synchronous and reliable , and the only type of processor faults
possible are crash failures : a faulty processor might crash at some point, after which it
sends no messages at all. Despite the fact that crash failures are relatively benign, and
dealing wi th arbitrary possibly malicious failures is often more complicated, work on the
Byzantine agreement problem has shown that many of the difficulties of working in a
Byzantine environment are a lready exhibited in this model. In the sequel we will use SBA
as our standard example of a desirable simultaneous action.

Our analysis provides new insight into the basic issues involved in performing simul
taneous actions in a Byzantine environment. For example, it shows that the pattern in
which failures occur completely determines the number of rounds required to attain com
mon knowledge of facts about the initial state of the system. Consequently, we obtain a
complete characterization of the patterns of failures that require a t-resilient protocol for
SBA to take k rounds, for 2 ::::; k ::::; t ...L. 1. This generalizes the well-known fact that SBA
requires t - 1 rounds in the worst case (cf. [DLM

1

, 1DS;,[CD j,[FLl,'. H:,:LFJ Our proof is
a simplification of the well- known lower bound proof for SBA. Interestingly, our analysis
immediately suggests a protocol for SBA that is optimal in all runs. That is, it halts as
early as possible, given the pattern in which failures occur. In many cases, this turns out
to be much earlier than in any protocol previously known. This is the first protocol for
SBA that is optimal in all runs . In fact, it is the first protocol for SBA that ever halts
before the end of round t + I . The t + I round lower bound on the worst case behavior of
protocols for SBA has often been misinterpreted to mean that SBA cannot ever be reached
in less than t + I rounds.

The analysis presented in this paper applies to a large class of simultaneous actions,
not only to SBA. For example, we present the bivalent agreement problem, in which clause
(4) of SBA is replaced by a requirement that the protocol have at least one run in which
the processors decide 0, and at least one run in which they decide 1. We derive a protocol
that always reaches bivalent agreement in two rounds. This contradicts a "folk conjecture"
in the field that states that performing any non-trivial task simultaneously in a byzantine
environment requires t + 1 rounds in the worst case.

The main contribution of this paper is to illustrate how a knowledge-based analysis of
protocols in a Byzantine environment can provide insight into the fundamental properties
of such systems. This insight is very useful in the design of improved t-resilient protocols for
Byzantine agreement and many related problems. The analysis also provides some insight
into how assumptions about the reliability of the system affect the states of knowledge
attainable in the system. We briefly consider some other reliability assumptions and apply
our analysis to them.

2

Section 2 contains the basic definitions and some of the fundament al properties of our
model of a distributed system and of knowledge in a distributed system. Section 3 inves
tigates the s tates of knowledge attainable in a particular fairly general protocol. Section 4
contains an analysis of the lower bounds corresponding to the analysis of Section 3, sim
plifying and generalizing the well-known t + 1 round worst-case lower bound for reaching
SBA. Sect ion .5 discusses some applications of our analysis to problems related to SBA,
an<l Sec t ion 6 includes some concluding remarks .

2 . D efin ition s and preliminary results

In t his section we present a number of basic definitions that will be used in the rest
of t he paper. and discuss some of their implications. Our t reatment will generally follow
along the lines of [H:\!I), simplified and modified for our purposes.

We consider a synchronous distributed system consisting of a finite collection of n ~ 2
processor's (automata) {p 1 ,p2 , • •• ,Pn}, each pair of which is connected by a two-way com
munication link. The processors share a discrete global clock that starts out at time 0
and advances by increments of one. Communication in the system proceeds in a sequence
of ro unds . with round k taking place between time k - 1 and time k. In each round,
evPry processor first sends the messages it needs to send to other processors, and then it
receives t he messages that were sent to it by other processors in t he same round. The
identity of t he sender and destinat ion of each message, as well as the round in which it
is sent, are assumed to be par t of the message. At any given time, a processor's message
history consists of the set of messages it has sent and received. Every processor p starts
out with some initial state a. A processor's view at any given time consists of its initial
state, message history, and the time on the global clock. We think of the processors as
following a protocol, which specifies exactly what messages each processor is requ ired to
send (and what other actions the processor should take) at each round, as a deterministic
function of the processor's view. However, a processor m ight be faulty, in which case it
might commit a stopping failure at an arbitrary round k > 0. If a processor commits a
stopping failure at round k (or s imply Jails at round k), then it obeys its protocol in all
rounds preceding round k, it does not send any messages in the rounds following k, and in
round k it sends an arbitrary (not necessarily strict) subset of the messages it is required
by its protocol to send. (Since a failed processor sends no further messages, we need not
make any assumptions regarding what messages it receives in its fai ling round and in later
rounds .) For technical reasons, we assume that once a processor fails, its view becomes a
distinguished failed view. The set A of active processors at time k consists of all of the
processors t ha t did not fail in the first k rounds.

A run p of such a system is a complete history of its behavior , from t ime O until
the end of time. This includes each processor's initial state, message history, and, if the
processor fai ls, the round in which it fails . An execution (sometimes a lso called a point)
is a pair (p, k), where pis a run and k is a natural number. We will use (p, k) to refer to
the state of p after its first k rounds. Two executions (p, k) and (p', k) will be considered
equal if all processors start in the same initial states and display the same behavior in the
first k rounds of p and p'. The list of the processors ' initial states is called the system's

3

initial configuration. We denote processor p's view at (p, k) by v(p, p, k). Furthermore,
we will sometimes parameterize the set A of active processors by the particular execution,
denoted A (p, k).

We will find it useful to talk about the pattern in which failures occur in a given run.
Formally, a failure pattern 1r is a set of triples of the form (p, k(p), Q(p)) , where p is a
processor, k(p) is a round number, and Q(p) is a set of processors. A run p displays (or,
more precisely, is consistent with) the failure pattern 1r if (i) every processor that fails in
p is the first element of some triple in 1r, and (ii) for every triple (p, k(p), Q(p)) in 1r it is
the case that processor p fails in round k(p) of p, in round k(p) it sends no messages to
processors in Q(p), and it does send messages to all processors not in Q(p) to which the
protocol prescribes it to send. A protocol P, initial configuration a, and failure pattern
" uniquely determine a run. (However, a run of the protocol may be the result of more
than one failure pattern in protocols that don't require all processors to send messages to
all other processors in every round.) We denote this run by P(a,1r).

Following :ff\,1], we identify a distributed system with the set S of the possible runs
of a particular fixed protocol P = (P(l), ... , P(n)), where P(i) is the part of the protocol
fol lowed by processor Pi · This set essentially encodes all of the relevant information abou t
the execution of the protocol in the system. Given a system S, for 1 :S i :S n let Li be the
set of initial states that processor Pi assumes in the runs of S. The system S is said to be a
t-uniform system for P if there is a set of initial configurations r ~ E 1 x · · · x En such that
5 is the set of all runs of the protocol P starting in initial configurations from r in which
at most t processors fail. t- uniform systems have the property that a processor failure is
an event that is independent of the initial configurat ion and of the time in which other
processors fail. A system is said to be independent if its set of initial configurations is of the
form E 1 x · · · x Ln- In an independent t- uniform system there is no necessary dependence
between the initial states of the different processors. The properties oft-resilient protocols
can be studied by analyzing particular t-uniform systems for them. For example, a given
protocol is a t-resilient protocol for SBA if all runs of the independent t- uniform system in
which the set of possible initial configurations is {O, l}n satisfy the requirements of SBA.

We assume the existence of an underlying logical language for representing ground
facts about the system. By ground we mean facts about the state of the system that do
not explicitly mention processors' knowledge. Formally, a ground fact <p will be identified
with a set of executions -r(ip) ~ S x N, where N is the set of natural numbers. Given a run
p E S of the system and a time k, we will say that <p holds at (p, k), denoted (S, p, k) 1 <p ,

iff (p, k) E -r(ip). We will define various ground facts as we go along. The set of executions
corresponding to these facts will be clear from the context. We close this language under
the standard boolean connectives /\ , -, and :) , interpreted as the standard conjunction.
negation and implication.

Given a system S, we now define what facts a processor is said to "know" at any given
point (p, k) for p E S. Roughly speaking, Pi is said to know a fact w if w is guaranteed to
hold, given p/s view of the run. \i!ore formally, given a system 5, we say that two points

(p, k) and (p', k') are Pi- equivalent relative to S, denoted (p , k) .i+ (p', k'), iff p, p' E S and

v(pi,P,k) = v(Pi,P',k'). (The only case in which v(Pi,P, k) = v(Pi , p',k') is possible for

4

k' i- k is when v(Pi, p, k) = failed .) We say that a processor Pi knows a fact 7/J in S at (p, k),
denoted (S,p,k) ~ Ki1/J, if (S ,p' ,k') t-- 1/; for all executions (p',k') ES x N satisfying

(p, k) j_..,, (p', k') . This definition of knowledge is essentially the total view interpretation of
:HY(]. We are about to review some of the properties of knowledge under this definition.
Other properties will be covered in the sequel (see also ;H:vI] and ;HM2J

A formula is said to be valid if it is true of all executions in all systems. Given a
system S, a formula is said to be valid in S if it t rue of all executions of S. It follows
that a valid fact is valid in S for all systems S. We now show that under our definition
of knowledge , K i satisfies the axioms of the modal system S5. This fact will follow in a

straightforward way from the fact that knowledge is determined by the :, relations, which
in our case are equivalence relations.

Proposition 1:

a) If 'P is valid in S then K i<p is valid in S.

b) The consequence closure axiom is valid:

CONSEQ uE:\'CE CLOSGRE:

c) The knowledge axiom is valid:

K~OWLEDGE AXIO:vf:

d) The positive introspection axiom is valid:

POSITIVE L "TROSPECTIO N:

e) The negative introspection axiom is valid:

NEGATIVE INTROSPECTION:

Proof: For part (a), let (p, k) be an (arbitrarily chosen) execut ion sa tisfying p E S , and
let <.p be a formula that is valid in S . Thus <p is true of all executions (p', k') E S x N,
and, in particular, <.p is true of all executions in S x N that are Pi-equivalent to (p, k).
It thus follows that K i 'P is true of (p, k), and since (p, k) was an arbitrary execution in
S x N, we have that K i<p is valid in S . For (b), let (S,p, k) p= Ktp I\ K i('P :J ·w) .
Then by the definit ion of (S,p ,k) = K i'P we have that bot h 'P and (rp :J 7/;) hold at
all points (p' ,k) that are Pi-equivalent to (p, k). It thus follows that 7j; holds at all such
points (p', k), and again by the definition of (S, p, k) = 7j; we are done. Part (c) follows

from the fact that (p, k) :, (p, k), i.e., Pi-equivalence is reflexive . .\ow. by definit ion we
have that if K i'P is true of (p , k) then rp is true of all executions tha t are Pi-equivalent
to (p,k), and in particular <.p is t rue of (p, k). For part (d), let (S,p,k) k::: K i'P · Thus, <.p

is true of all executions (p", k") :, (p , k) . We wish to show that (S, p', k') ;-- Ki<.p for all

5

(p', k') ::.-+ (p, k). Since ::.-+ is an equivalence relation, all executions (p", k") E S x N satisfy

that (p, k) ::.-+ (p", k") iff (p', k') ::.-+ (p", k"). It thus follows that r.p is true of all executions

(p", k") ::.-+ (p', k'), and we are done. The argument for part (e) is similar. If (S, p, k) I= ,r.p
then (S,p,k) 'f= rp, and therefore there must be an execution (p",k") that is Pi-equivalent
to (p,k) of which r.p is not true. Let (p',k') be an execution that is Pi-equivalent to (p,k).

Because Pi-equivalence is an equivalence relation, we have that (p', k') ~ (p", k"), and
hence (S,p',k') I= -,Ki'P· It now follows that (S,p,k) = Ki , Kirp and we are done. ><1

Roughly speaking, clauses (a) through (e) characterize the modal system S5. An
operator satisfying clauses (a) through (d) is said to satisfy the modal system S4 (cf.
[HM2]). An interesting consequence of our choice of having a failed processor's view be
a distinguished failed view is the fact that a processor always knows whether it is active.
Furthermore, the only things that a failed processor knows are the consequences of the fact
that the processor has failed and of the formulas that are valid in S. Given that a failed
processor is "out of the game" in our model, we will focus our attention on the knowledge
of the active processors.

Having defined knowledge for individual processors, we now extend this definition to
states of group knowledge. Given a group G S: {p1 , ••• , Pn}, we first define G's view a t
(p,k), denoted v(G,p,k) :

v(G,p,k) def { (p, v(p, p , k)) : p E G}.

Thus, roughly speaking, G's view is simply the joint view of its members. Extending our
definition for individuals' knowledge, we say that the group G has implied knowledge of r.p
at (p,k), denoted (S,p,k) ~ I c;rp , if for all runs p' E S satisfying v(G,p,k) = v(G,p',k) it
is the case that (S, p', k) I= r.p. Intuitively, G has implicit knowledge of r.p if the joint view
of G's members guarantees that r.p holds . Notice that if processor p knows r.p and processor
q knows r.p :J 1/J, then together they have implicit knowledge of 1/J, even if neither of them
knows 1/J individually. An identical proof to that of Proposition 1 now shows:

Proposition 2: The operator I r. satisfies the modal system S5 (clauses (a) through (e)
of Proposition 1, substituting Ic; for K i) . C><J

We refer the reader to [HM) and [HM2] for a discussion and a formal t reatment of
I ,; . In this paper we are mainly interested in states of knowledge of the group A of active
processors. We say that the set of active processors implicitly knows rp, denoted I rp, exactly
if lr;rp holds for the set G = A. Stated more formally,

(S,p,k) I= Jrp iff (S,p ,k) \= l ,;rp for G = A(p,k).

Although Jrp is defined in terms of I ,; <p, it is not the case that I and L have the same
properties . The reason for this is that whereas G is a fixed set, membership in A may vary
over time and differs from one run to another. Thus, for example, it is often the case that
for G = A(p,k) we have (S,p,k) Ip I0 (A = G), because there is some run p' E S such that
v(G, p,k) = v(G,p',k) and where G is a strict subset of A(p',k) . Consequently, whereas

6

the negative introspection axiom for L, i.e., , fr:(() =:, l ,: , f ,/p, is valid, the corresponding
formula for I : ,Jcp =:, J,Jcp, is not valid! (Notice, however, that I(G ~ A) holds whenever
G ~ A). For example, it may be the case that processor Pi sends processor Pi a message
in round 1 stating Pi 's initial state, and fails before sending any other message, and that
processor Pi fails in round 1 after sending all of its round 1 messages. Processor pj's initial
state is thus not implicitly known to the set of active processors, but it is consistent with
the active processors' joint view that Pi is active, in which case Pi 's initial state would be
implicitly known. The above discussion can be summarized by:

Proposition 3: The implicit knowledge operator I satisfies the modal system S4 (i.e.,
clauses (a) - (d) of Proposition 1). The negat ive introspection axiom is not valid for I.
C><l

The following lemma describes the relationship between Ki and I :

Lemma 4 : Let cp be a formula and let Pi E A(p, k) .

a) If (S,p,k) ; K i'P then (S,p,k) F Jcp.

b) If (S,p,k) r== Ki'P then (S,p . k) ,= KJcp .

Proof: For part (a), assume that (5, p, k) I= Ki'P, and let (p', k') be an execution sat
isfying v(A(p,k),p',k') = v(A(p.k),p,k) . In particular, since Pi E A(p,k) we have that
v(pi, P',k') = v(Pi ,P,k), and thus since Ki'P holds at (p,k), we have that cp holds at
(p',k'). Since this is true for all such executions (p',k'), we are done by the definition
of (S,p,k) = lcp. For (b), let (S,p, k) I= K i'P- By Proposition 1 (d) we have that
(S, p, k) I= K iKi'P· The fact that Pi E A (p, k) implies t hat v(Pi, p, k) i- failed. Thus, Pi is

an active processor in all executions that are Pi-equivalent to (p, k) . Let (p', k') J-i- (p, k).
We thus have that Pi E A(p', k'), and that Kicp holds at (p', k'). Part (a) therefore implies
that I cp holds at (p', k'), and thus K i I cp holds a t (p, k). C><J

We now show that, roughly speaking, in t-uniform systems once a fact about the past
is not implicitly known it is lost forever; it will not become implicit knowledge at a later
time. We say that a fact 'if; is about the first k rounds if for all runs p E S it is the case
that (S,p , k) I= 'if; iff (S,p,l) I= 'if; for all e ~ k . In particular, facts about the first O rounds
are facts about the initial configuration. We now have:

Theorem 5 : Let S be at-uniform system, let 'if; be a fact about the first k rounds, and
let e > k. If (S, P, k) F I 'l/; then (S, P, e) F ['if; .

Proof: Let e > k, and let p and 'if; be such that 'if; is about the first k rounds and
(S,p,k) F I 'l/; . Let G = A (p,k). It follows that there exists a run p' E S such that
v(G,p,k) = v(G, p',k) , and (S, p' ,k) '/= 'lj; . Let p11 be a run with the following properties:
(i) (p", k) = (p', k); (ii) all processors in A(p', k) - G fail in round k + l of p11 before sending
any messages; and (iii) from round k + 1 on all processors in G behave in p11 exactly as
they do in p. By construction, the number of processors that fail by t ime k in p" is no
larger than the number in p, and exactly the same processors fail in p and in p11 by any
later time. Given that S is a t-uniform system and p E S, no more than t processors fail
in p. It follows that p" E S, since all of the processors follow the same protocol in p"
and in p, and no more than t processors fail in p11

. By construction of p11 we also have

7

that A(p" , f) = A(p, f) and that the active processors have identical views in (p", f) and
in (p,e). It follows that (S,p",e) F h /; iff (S,p,e) F h f; . Since '1P is a fact about the first
k rounds and (p",k) = (p',k), we have that (S,p'',f) ~ 'I/; because (S , p' , k) tf. -lj;. Thus, in
particular, (S,p",f) F I'l/; and it follows that (S,p,f) F I 'l/; and we are done. I><J

Fagin and Vardi perform an interesting analysis of implicit knowledge in reliable sys
tems (cf. [FV]) . Among other things, they prove that the set of facts that are implicit
knowledge about the initial configuration does not change with time. I.e., in reliable sys
tems the implication in the statement of the Theorem 5 becomes an equivalence. However,
in t-uniform Byzantine systems it is clearly the case that implicit knowledge can be "lost".
For example, if processor Pi may start in initial states a and a', and in a particular run
of the system Pi starts in state a and fails in the first round before sending any messages,
then whereas I ("Pi started in state a") holds a t time 0, it does not hold at any later time.

We now introduce the two other states of group knowledge that are central to our
analysis . We define "everyone knows" and "common knowledge" along the lines of [H:\if].
In our case, however, these notions will be defined for the set of active processors. Every
(active) processor knows ({), deno ted El{), is defined by

E p d ef I\ (Pi E .4 =:> K i({)) .
1 S: iS: n

An immediate corollary of Lemma 4 which we will find useful in the sequel is:

Corollary 6: El{) =:> E(I({)) is valid .
(><]

We define E 1({) d~f El{) , and E m.J.. l({) d~f E(Em({)) for m ~ l. A fact p is said to be
common knowledge among the active processors, denoted Ccp, if E mcp holds for all m ~ l.
More formally,

Common knowledge among the active processors, which we will call simply common
knowledge, will play a crucial role in the sequel. We now study some of its properties. A
useful tool for thinking about Emcp and Ccp is the labelled undirected graph whose nodes

are the executions of a system S, and whose edges are the :...+ relations , restricted so that

an edge e :...+ e' exists only if Pi is active in e (and hence also in e'). (This graph is precisely
the Kripke structure modelling the active processors ' knowledge in the system; cf. [ff'v12 j.)
The distance between two executions e = (p,k) and e' = (p',k) in .this graph, denoted
8 (e, e'), is simply the length of the shortest path in the graph connecting e and e'. If there
is no path connecting e toe' , then 8(e, e') is defined to be infinity. Two execut ions e and e'
are said to be similar, denoted e ~ e' if 8 (e, e') is finite (i.e., if e' and e are in the same
connected component of the graph) . Equivalently, (p, k) ~ (p' , k) , if for some finite m there
are runs p 1 , P2, . . . , Pm - l E S, and processors Pi 1 , Pi1 , ... , Pi.,.,.._ , satisfying Pi

1
E A(Pj, k) for

j :S: m - 1, Pi.,.,.._ E A(p',k), and

8

(The system S is usually clear from context, and thus we do not add a subscript S to
sim.) It is now easy to check that (S,p,k) F Ep iff (S,p',k) I= p for all executions (p',k)
of distance ::; 1 from (p, k) . Notice that similar ity is an equivalence relation. We can now
show:

Proposit ion 7 :

a) (S,p,k) F C<p iff (S,p',k) = p for all p' ES such that (p,k) ~ (p',k) .

b) If rp is valid in S then Crp is valid in S .

c) C satisfies the axioms of the modal system S5 (see Proposition 1) .

d) T he induction axiom is valid :

INDUCTION AXIOYI: C(rp => E <p) => (rp => Crp).

e) If <p => E<p is valid in S then rp ":J Crp is valid in S.

f) The fixpoint axiom is valid:

FIXPOI:S:T AXIOM: Crp :J <p /\ ECrp.

P roof: (a) follows by a straightforward induc t ion on m showing t hat (5, p, k) i= Emrp
iff (5, p' , k) = <p for all (p' , k) of distance :S m from (p, k). Part (b) follows directly from
(a). The proof of part (c) is identical to the proof of Proposition 1, substituting C for K i

and~ for J..+ . For (d), assume that both <p and C (rp ":J E<p) hold ate = (p,k) . We prove
by induction on m that p holds at all points of dist ance ::; m from e. The case m = 0
follows from our initial assumption. Assume that the claim holds for m , and let e' be a
point satisfying o(e, e') = m - l. It follows that there is a point e" such t hat o(e, e") = m
and o(e",e') = l. By the inductive hypothesis p holds ate". Since C(rp => E rp) holds ate
and e ~ e" , part (a) implies that rp ":J Erp holds at e". It follows that E<p holds at e",
and since o(e", e') = 1, we have that rp holds at e'. By induction we have that rp holds
at all points reachable from (i.e., similar to) e, and by part (a) we have that Crp holds
at e, and we are done. Part (e) now follows since if <p => Erp is valid in 5 then by (b)
C(<p => E<p) is also valid in S, and by (d) we have that rp ":J Crp is also valid in S. For
part (f), the validity of Crp => <p is immediate. By part (c) we have t hat C satisfies the
positive introspecton axiom, and hence Crp :J CCrp is valid. By definition of C'lj; we have
that C'lj; => E 'lj; is valid, and taking 1/; = C<p, we thus have that C<p => CC<p => ECrp is
valid, and we are done. D<J

It is interesting to note that in contrast to the case of implicit knowledge, the basic
properties of E and C (which we have defined here relative to the set of active processors)
are the same as those of E r. and C0 , stated in [HM:. In particular, C satisfies all of the
axioms of the logical system S5 (cf. :HM2 i) , not only the axioms mentioned above.

Proposition 7 is very useful in relating common knowledge and actions that are guar
anteed to be performed simultaneously. For example, we can use Proposition 7(6) and 7(e)
in order to relate the ability or inability to attain common knowledge of certain facts wit h
the possibility or impossibility of reaching simultaneous Byzantine agreement. We model
a processor's "deciding v" by the processor sending the message "the decision value is v"
to itself, and have:

9

Corollary 8: Let S be a system in which the processors follow a protocol for SBA. If
the active processors decide on a value v at (p, k), then

a) (S,p,k) I= C("All processors are deciding v"), and

b) (S,p,k) I= C("At least one processor had v as its initial value").

Proof: Let <p be the fact "all processors are deciding v" . Given that the protocol guar
antees that SBA is attained in S, it is the case that whenever some processor decides v

all active processors do, and thus the formula <p :J E<p is valid in S. Thus, by Proposi
tion 7(e) we have that <p :J C<p is valid in S, and thus if (S,p, k) I= <p then (S,p,k) I= C<p
and we are done with part (a). For (b), let 'lj; be "at least one processor had v as its initial
value", and notice SBA guarantees that <p :J 'lj; is valid in S. Thus, by Proposition 7(6),
so is C(<p :J 'l/;) . The consequence closure axiom states that (C<p I\ C(<p :J 'l/;)) :J C w
is valid, and we conclude that C<p :J C'lj; is valid. By part (a) we have that (5, p, k) I= <p

implies that (S,p,k) I= C(<p), from which we can now conclude that (S,p,k) I= C'lj; and
we are done. ><J

The reasoning used in proof of Corollary 8 is typical of the way Proposi tion 7(a)
and (b) together with the consequence closure and induction axioms are used to prove that
certain facts are common knowledge. We will use such reasoning again in later proofs.

3. Analysis of a simple protocol

In this section we take a close look at t-uniform systems S7 in which all processors
follow a simple and fairly general protocol l:

Fork 2:: 0, in round k , 1 each processor sends its view at time k
(i.e., after k rounds) to all other processors.

This protocol was named the maximal information protocol by Hadzilacos (cf. [HJ) . We
are interested in determining what facts about the run become common knowledge at the
different stages of the execution of th is protocol. Intuitively, t he protocol l should provide
the processors with "as much knowledge as possible" about the initial configuration and the
pattern of failures, and should facilitate the ability of the system to perform actions that
depend on the init ial configuration. One of the relevant properties of this protocol is that
every processor is required to send messages to all other processors in every round. This
ensures among other things that tha failure of a processor will be known to all processors
at most one rounds after the round in which the processor fails .

A fact <p is called stable if once it becomes true it rem_ains true forever (cf. [HM]). For
example, fac ts about the first k rounds, and in particular facts about the system's initial
configuration, are stable. Since a processor's knowledge is based on the processor's view,
and an active processor's view grows monotonically with time, it is the case that if <p is
stable then (as long as at least one processor remains active) so are E <p and C<p. As we
have seen, I <p is not necessarily stable.

A round in which no processor fails is called a clean round. A round that is not clean
is called dirty. If no processor that fails in round k fails to send to a processor that is
active at time k, then round k is said to be seemingly clean. Notice that a clean round is

10

in particular seemingly clean. Individual processors cannot, in general, determine whether
a round is clean, seemingly clean, etc. Roughly speaking, if, for some k, round k of a run
in which the processors all follow J is clean, then every active processor's view at the end
of round k includes the view of all of the active processors at t ime k - l. In particular this
implies that any stable fact that is implicit knowledge at time k - 1 is known to everyone
at time k . Consequently, at time k all processors know exactly the same facts about the
initial configuration. Furthermore, T heorem 5 together with the fact that Erp is stable
when rp is, imply that at any point after a clean round, all of the processors have identical
knowledge about the initial configuration. T herefore, once it is common knowledge that
there was a clean round, it is common knowledge that the processors have an identical
view of the initial configuration. The above discussion is made precise by the following
theorem:

Theorem 9 : Assume that t ::; n - l.

a) Let rp be a stable fact such t hat (S,,p,k- 1) F lrp.
If round k of p is seemingly clean then (S, , p, k) r Erp .

b) Let p be a fact about the initial configuration.
If (S, ,p,t) = C("a seemingly clean round has occurred") then
(S:;-,p,e) = I p iff (S,,p, e) == Grp.

Proof: By definition, (S7 ,p,k - 1) I= l rp iff (S7 ,p,k - 1) I= l,,p for G = A(p,k - 1). If
round k is seemingly clean then all processors active at t ime k receive round k messages
from all of the processors in G, and hence t he view of each active processor at time k
has a copy of v(G, p,k - 1), and it follows that every active processor at time k knows Y ·
For part (b), let r.p be a fac t about the initial configurat ion and let !/,,· be the fact "a
seemingly clean round has occured". Let (p',e) be an execution satisfying (S7 ,p',t) F 'l!J .
By T heorem 5, if (S,,p', t) F I rp then (S,,p',k) i- Jcp for all k S £. Given that 1jJ holds at
(p', k) , let round k of p' be a seemingly clean round, where k S e. Since (S,, p', k - 1) F J rp,
by part (a) we have that (S, ,p',k) F Erp . Erp is stable because rp is, and therefore
(S,,p,£) F Erp. By Corollary 6 we have that (S,,p',£) ~ E (Irp). We have just shown
that 1jJ =:> (Irp =:> E(Irp)) is valid in S, . T hus, by Proposition 7(b) we have that C(?jJ =:>

(Ip =:> E(Irp))) is also valid in S, . Now assume that pis a run satisfying (p, £) F C ?jJ . By
the consequence closure axiom for C (Proposition 7(c)), we have that (S, ,p,£) I= C(Irp =:>

E(Irp)) . And by the induction axiom we have that (S,,p,t) F lcp =:> C(Irp) . Since
C(Icp) =:> Crp is valid, we also have that (S,,p,£) 1= Jrp =:> Cr.p . Finally, since Cr.p =:> I r.p
is valid, we have that (S,, p, £) 1 Jtp = Cr.p, and we are done. ><l

As a corollary of Theorem 9 we can now show: ·

Coro lla ry 10 : Let r.p be a fac t about the initial configuration.

a) (S,,p ,t - 1) ~ I r.p iff (S,,p,t + 1) I= Grp.

b) (S,,p,n - 1) = Jrp iff (S,,p,n - 1) := Ccp .

Proof: Notice that the "if" direction in both cases is immediate, since C?jJ =:> I 1jJ is valid
for all facts 1/J . We now show the other direction. All runs of S , have the property that
no more than t processors fail during the run. Given that a processor falure occurs in a

11

unique round, we have that one of the first t + 1 rounds of every run of S7 must be clean.
Since a clean round is in particular seemingly clean, Proposition 7(b) implies that at time
t + 1 it is common knowledge in all runs of S, that a seemingly clean round has occured.
Part (a) now follows from Theorem 9(b) . For the proof of part (b), we need a slightly
stronger variant of Theorem 9(b), which states that if it is common knowledge that there
has either been a clean round or that there is at most one processor then J<p holds iff C<p
does. The proof of this fact is completely analogous to that of Theorem 9(b), given that
I <p = C<p is trivially true when there is at most one active processor. C><!

As a consequence of Theorem 9 and Corollary 10 we have that any action that depends
on the system's initial configuration can be carried out simultaneously in a consistent way
by the set of active processors at any time k 2: min{t, l,n - l} . This is consistent with
the fact that there are well-known t-resilient protocols for SBA that attain SBA in t - 1
rounds . Interestingly, none of the known protocols for SBA attain SBA in less than t - l

rounds in any run. It is therefore natural to ask whether a protocol for SBA can ever
attain SBA in less than t + 1 rounds. Clearly, once it is common knowledge that a clean
round has occurred, SBA can be attained. And as we shall see, there are cases in which
the existence of a clean round becomes common knowledge before time t - 1. When the
existence of a clean round becomes common knowledge depends crucially on the pattern
of failures, and on the time in which failures become implicitly known to the group of
active processors. For example, if a processor p detects t failures in the first round of a
run of J, then the second round of the run will be clean, and at the end of the second
round all active processors will know that p detected t failures in round l. It follows from
Proposition 7(e) that at the end of round 2 it will be common knowledge that all processors
have an identical view of the initial configuration (check!). Clearly, the processors can then
perform any action that depends on the initial configuration (e.g., SBA) in a consistent
way. In the remainder of this section we show a class of runs of S7 in which the processors
attain common knowledge of an identical view of the initial configuration at time k, for
every k between 2 and t + 1. In the next section, we will prove that this is in fact a precise
classification of the runs according to the time in which common knowledge of an identical
view of the initial configuration is attained.

Intuitively, if there are more than k failures by the end of round k, then from the
point of view of the ability to delay the first clean round, failures have been "wasted". In
particular, if for some k it is the case that there are k ...1.. j failures by the end of round
k, then there must be a clean round before time t - 1 - j (in fact, between round k + 1
and round t , 1 - j) . This motivates the following definitions: We denote the number of
processors that fail by time k in p by N (p, k) .. We define the difference at (p, k), denoted
d(p, k), by

d(p,k) ~r N(p,k) - k.

We also define the maximal difference in (p, £), denoted D(p, £), by

D (p, e) d~/ Ttf d(p, k).

Observe that d(p, 0) = 0 for all runs p, since N(p, 0) = 0. Furthermore, in a t-uniform
system it is always the case that d(p , k) ::S; t - k, since N(p,k) ::S; t . Let D be a variable

12

whose value at a point (p, k) is D(p, k), and let d(k) be a variable whose value at any point
in p is d(p, k). By Theorem 9(6) we have that if at time t , 1 - J it is common knowledge
that D 2:: J, then it is common know ledge that a clean round has occurred . and that a ll
processors have an identical view of the initial configuration. We are abou t to show t hat
the protocol T guarantees that if it ever becomes implicit knowledge that D 2:: i then at
t ime t + 1 - J it is common knowledge that D 2:: J (and, therfore, that a clean round has
occurred). This leads us to the following definition: Given a system S, the wastefulness of
(p, £) with respect to S, denoted W (S, p, £), is defined by:

W(S,p,e) ~f max{j : (S,p, £) I I(D 2:: J)}.

In words, the wastefulness of (p, £) is the maximal value that the difference d(p, ·) is im
plicitly known to have assumed by time £. Finally, we define the wast efulness of a run p .

denoted W(S,p), by:

We now formally prove the claims informally stated above. We start with a somewhat
technical lemma discussing the propert ies of wastefu lness in the case of 5,:

Lemma 11: Let t ::; n - l.

a) If (S , , p,£) ~ I(D 2:: J) then (S, , p, £) F I(d (k) 2:: i) for some k :S £.

b) If I (d(k) 2:: J) holds a t t ime k then either E (d(k) ~ i) or I (d(k - 1) ~ J) holds a t
time k - 1

c) W(S, ,p,k-1) 2:: W(S, ,p,k) for all k 2:: 0.

Proof: For part (a), let p ES, satisfy (S,,p,£) F I(D 2:: J·), and assume that for no k
is it the case that (S,,p ,£) F I(d(k) 2:: J)) . Let p' be a run of T such that (p',O) = (p ,O),
and in which the only messages not delivered are those that are implicitly known at (p, £)
not to have been delivered. It is easy to check that p' E S,, since no more than t processors
fail in p1

• Because it is not implicit knowledge at (p, £) that d(k) 2:: J for any k, it follows
that D(p', £) < J. If we show t hat the group G = A(p, £) has exact ly the same view
in (p, £) and in (p', £) we will be done, since this will contradict the assumpt ion that
(S,, p, e) F I (D ~ i). We now prove that A(p, £) has t he same view in (p, £) and in (p', £) .
This is done by showing by induction on k that the set of processors that are implicitly
known at (p, £) to have been active at time k :S e have the same views at time k in both p
and p'. Define G(e) = A(p, £). Fork < £,.assume induct ively that G(k - 1) is defined, and
for all processors Pi E G(k - 1) let g(Pi , k) be the set of processors from which Pi receives
a message in round k + 1 of p. Defi ne

u g(Pi, k).
p,EG (k ..J... l)

Let G'(£) = G(£), and fork <£ define g'(Pi, k) and G'(k) from G' (k ..1- 1) in an analogous
fashion (subst it ut ing G, g, and p by G', g1

, and p'). We now show by induct ion on £- k that

13

if k < e then for all Pi E G(k--;- l) we have that g(Pi,k) = g'(Pi,k) and that G(k) = G'(k) .
Let k < e and assume induc tively that G(k + 1) = G'(k + 1). (Notice that we have defined
G(£) = G'(t).) Let Pi E G(k + 1). The sets G(k) are the sets of processors implicitly known
at (p, e) to have been active at t ime k . The sets g(Pi, k - l) are the sets of processors that
send a message to Pi in round k. By requiring messages to contain t he sender's complete
view, the protocol J guarantees that a processor is implicitly known at (p, €) to have been
active at time k iff the processor's view at (p, k) is implicitly known. Thus, the precise
ident ity of g(Pi, k) for Pi E G(k + 1) is implicitly known at (p, £). It follows that processor
Pi sends a message t o Pi in round k + 1 of p iff Pi sends Pi a round k , 1 message in
p' . It thus follows tha t g(pi,k) = g'(Pi,k) . Since this is true for all Pi E G(k - 1), we
have that G(k) = G' (k) , and the claim is proven. ~otice that G(k) 2 G(k - 1). \Ve now
show by induction on k that for all Pi E G(k) it is the case tha t v(Pi,P,k) = v(Pi ·P' . k) .
The case k = 0 follows from the fact that (p, 0) = (p', 0) and G(0) = G' (0) . :\ss11me
inductively the claim holds for k; we prove it for k , l. Let Pi E G(k - 1) . O bsen·e
that p/s view at (p, k + 1) is determined by its view at (p, k) and by the view of the
group g(p; , k) at (p,k) . Since by the inductive hypothesis we have that g(pi, k) = g'(pi .k).
and that v(g(pi, k),p,k) = v(g' (Pi,P',k), and that v(Pi, P,k) = v(pi ,p' . k), it follows that
v(pi,P,k , 1) = v(pi, P',k - 1). It now follows that v(G(£), p,£) = v(G(t), p'. e) . and ,,·e are
done with part (a) .

For part (b), assume that (S,,p ,k) L I (d(k) 2 j) . If d(k) 2 j is not known to
everyone at (p, k, 1) then there must be (at least one) processor, say q, that fails in round
k ...L 1 by not sending a message to at least one processor, say p, that is active at time
k ...!... l. Thus, in particular, p knows at time k - 1 that q has failed . .\iow , by requiring
all processors to send messages to all of t he ot her processors in every round, J ensures
that all processors that fail by (p, k) are known by everyone at (p, k ...L 1) to have failed . It
follows t hat if d(k) 2 j is not known to everyone at time k + 1 then d(k , 1) 2 j is implicit
knowledge at that time.

For part (c), assume that W (p, k) = J. Then by part (a) there is some k' ::; k such
that (S,,p, k) F I (d(k') 2 J'). Without loss of generality let k' be the largest such number.
If k' < k then by (b) we have that at t ime k' + 1 ::; k everyone knows that d(k') 2 J. But
E(d(k') 2 J.) is a stable fact because d(k') 2 j is , and in this case W (p, k --;- 1) 2 J·, and
the claim of (c) holds . If k' = k then part (b) implies t hat at time k--;- 1 either everyone
will know that d(k) 2 j or it will be implicit knowledge that d(k , 1) 2 j . In both cases
we will have W (p, k + l) 2 j, and we a re done. c><

We now have:

Theorem 12: Let t ::; n - l.

a) W(S,,p) 2 j iff (S, ,p,t - 1 - j) p= C(W(S,, ·'the current run"') 2 j) .

b) Let <p be a fact about the initial configuration. If W(S1 , p) = j then
(S,,p , t , 1 - j) F l r.p iff (S,,p , t , 1 - j) ~ Grp.

14

Proof: The "if" direction of part (a) is immediate from the fact that Cp => p is valid.
We now show the other direction. Assume that W(S,,p) 2 j. Then for some e 2: 0 it
must be the case that W(S, , p, f) 2 j, and hence (S,,p,€) I= I (D 2: j) . By Lemma ll(a)
there is some k :Se for which (S,,p,€) I= I (d(k) 2 j). Let k' be the largest such k . Since
d(k') 2 j is a fact about the firs t k' rounds, we have by Theorem 5 that (S.~,p,k') I=
I(d (k') 2 j) . Since d(k') 2 j implies that at least k' + j processors must have failed by
t ime k', we have that k' '.St - j . Furthermore, (S,,p, k' , 1) \i= I (d(k' - 1) 2 J) implies
t hat no new processor failure becomes visible to t he active processors in round k' - l, and
thus in par t icular round k' + 1 must be seemingly clean. Since "d(k') 2 }"" is a stable
fact, it follows from Theorem 9 (a) that (S,,p,k' ...1.. 1) F E(d(k') 2 j) . and hence that
(S,,p,€) I= E(d(k') 2 j) for all f 2 k' + l. In particular , since t + 1 -j 2 k' - l. we have
that (S, ,p,t- 1-j) I= E (d(k') 2 j) . Let 'I/; be the fact "W(S,, "the current run"") :2: j . By
Corollary 6 we have that E(d(k') 2 j) => E(I(d(k') 2 j)), and since (d (k') 2 j) =' ?f.; is
valid,wealsohavethat(S, .p,t+ l -j) l= E 'l/; . Itfollows that(S,,p',t-1-J) =I..' _] E 'lj;

for all runs p' E S,. Given that t '.Sn, the only executions that are similar to an execution
(p',t + 1 - j) are of the form (p" ,t + 1 - j). Thus, by Proposition 7(a) we have that
(S,,p',t + 1 - j) ~ C('l/; :) E'lj;) for all p' E S,, and the induction axio n-1 im rlies that
all executions (p, t, 1 - j) satisfy 'I/; :) C'I/;, which is the claim of par t (a) . Fo r part (b) ,
recall from the proof of part (a) that if D 2: j then there must be a clean rou nd by time
t ...1.. 1 - j . By part (a), if W(S, ,p) = j then at time t - 1 - j it is common knowledge
that I (D 2: j) and therefore in particular that D 2 j . It follows that a t time t - 1 - j
it is common knowledge that a clean round (and hence also a seemingly clean round) has
occurred. The claim now follows from Theorem 9(b). x

Thus, certain patterns of failures help the processors to reach common knowledge of
an identical view of the initial configuration early. In particular, if the wastefulness of the
run is j, then the active processors obtain common knowledge of a common view of the
initial configuration at t ime t + 1 - j . We now make precise our heretofore informal claim
that it is the pattern of failures that determines the wastefulnes of the runs of S, . Given a
system S, a fact rp is said to be about the failure pattern (S,p, k) I= rp iff (S,p' ,k') I= rp for
all runs p, p' E S that have the same failure pattern. Observe that d(k) and D are facts
about the failure pattern by this definition. We can now show:

Lemma 13: Let rp be a fact about the failure pattern. Let O" and 0"1 be initial configura
tions, let 1r be a failure pattern, and let p = l (O" , 1r) and p' = l (0"1

, 1T) . Then (S 7 , p, €) I= I rp
iff (S,,p',€) I= Jrp, for all e 2: 0.

Sketch of proof: Assume that (S, ,p' , k) F Jrp, and let G = A(p',k). It follows that
there is a run p" such that u(G,p',k) = v(G,p'' ,k) , and (S,,p'',k) F rp . Let Q be the
set of processors on whose initial states O" and 0" 1 disagree. Clearly v (G, p', k) contains
the view at time O (i .e., initial state) of none of the processors in Q . Thus, without
loss of generality p" = l (0" 1

,Tt
11

) for some ri" . An induc tive argument along the lines of
the proof of Lemma ll(a) will now show that v(G,p,k) = v(G, l(CY ,1r"), ,,). ("'.\ote that
A(p, k) = A(p', k) = G) .) But because rp is a fact about the failure pattern, it follows that
(S7 , l (a, Tt"), II) F rp, and hence (S7 , p, k) F I rp, and we are done with one direction. The
other direction of the argument is symmetric . C><J

15

We can now define the wastefulness of a failure pattern 1r, denoted w(1r) . to be W (S,, p)
for a run p of the form p = 7 (a, 1r) for some a. Lemma 13 implies that w(11) is independent
of the initial configuration a chosen, and therefore w(1r) is well-defined. Theorem 12 can
now be read to state that if the failure pattern of a run is 1r, then a t time t - 1 - w (1r) the
active processors have common knowledge of a common view of the initial configuration.
A closer inspection of the proofs of Theorem 5(c) and of Theorem 12 actually shows that
if w(?T) = j the at t ime t + 1 - j there is a particular k' such that the acti\·e processors all
know that d(k') ~ j, and for no e > k' is it the case that an active processor knows that
d(f) ~ j . By Theorem 12(a), w(?T) =jiff "w = j" is common knowledge at time t + 1 - j .
It follows that the identity of this number k' is also common knowledge at t ime t + 1 - j.
Consequently, the active processors obtain common knowledge of a common view of the
first k' rounds of the run, and not only of the initial configuration. Fu r t her more, since k'
is determined by the implicitly known values of d(k), Lemma 13 implies that the value of
k' is uniquely determined by ?T.

One of the consequences of Theorem 12 and Lemma 13 is:

Corollary 14: There is at-resilient protocol for SBA that reaches SBA in t - 1 - w(11)
rounds in all runs of the protocol in which the failure pattern is iT . for all failure patterns
?T in which and at most t processors fail.

Proof: The protocol (uniform for all processors Pi) 1s:

for e ~ O perform the following at time e:
if K(D ~ t + 1 - e)

then halt {and send no messages in the following rounds);
decide O if K("some initial value x1 was O");
decide 1 otherwise.

else send the current view to all processors in round e + l.
The K in the text of the protocol means "the processor knows", i.e., it is K i in p/s

copy of the protocol. By Theorem 12(a) all correct processors halt after t - 1 - W(S,,p)
rounds. By Theorem 12(6) the active processors have common knowledge of the fact that
they have an identical view of the initial configuration. Thus, their decisions are identical.
The decision function clearly satisfies the requirements of SBA. C><J

The above protocol is not a protocol in the traditional sense of the word, but rather a
knowledge-based protocol, to use the terminology of Halpern and Fagin in [HF]: a processor's
actions at any given point are determined by the processor 's knowledge. As t hey point out ,
not every knowledge-based protocol can be implemented. However, if the only knowledge
required in the protocol is knowledge about the past, it is implementable. Thus, the above
protocol can be directly t ranslated into a standard protocol.

)i'ot ice that in runs in which many failures become visible early it is the case that SBA
is attained by this protocol significantly earlier than time t , l. We are aware of no other
protocol for SBA that stops before time t , 1 in some cases. In the next section we will
show that the protocol of Corollary 14 is optimal in the sense that for any given pattern
of failures, it attains SBA no later than any other protocol for SBA does.

16

Corollary 8 and Theorem 12 imply that the stopping condition K (D 2: t + 1 - e)
implies C(D 2: t + l - £) . In fac t, we will be able to show that this protocol is equivalent
to the following protocol:

for £ 2: 0 perform the following at time e:
if C("some initial value was O")

then decide O and halt
else if C("some initial value was l")

then decide 1 and halt
else send the current view to all processors in round e--'- l.

The number of bits of informat ion required to describe a processor ·s view at round k is
exponential in k. Thus, messages in the above protocols might be too long to be prac tical.
By modifying the protocol slightly so that messages specify only the sender's view of the
initial configuration and of the failure pattern, we get a protocol for SB .-\. with the same
propert ies in which the lengt h of each message is O(n--'- t log n) . ·

4 . Lower bounds

We are about to show that the only non-t rivial facts that can hecome common knowl
edge in a run p of at-uniform system S before time t - 1- W (S, p) are fac ts about the waste
fulness of the run. We do this by showing that all executions (p, e) with W (S, p, e) :S t - e
are similar. We first prove a lemma that is necessary for our proof of this fact . Roughly
speaking, this lemma says that if D(p, e) ::::; t - e and p is the last processor to fail in
p, then (p, e) is similar to an execution in which p doesn't fail, and all other processors
behave as they do in p. To make this precise we make the follow ing definition: Given a
failure pattern 71, the failure pattern 71-P is defined to be 71 - (p, k(p) , Q(p)) if there is a
t riple of the form (p, k(p), Q(p)) in 71, and to be 1r if pis not designated to fail according
to 1r . Given a run p = P(o-,1r), we define p-P to be P(o- , 1r -P) . If P does not require all
processors to send messages to all other processors in every round, p can be said to display
a number of failure patterns 1r . However, it is easy to check that if P (O", r,) = P (O", 1r') then
P(0",1r - P) = P (0",1r'-P), so that p-P is well defined. We can now show:

Lemma 15: Lett ::; n - 2, and let S beat-uniform system for P, with p = P (O", 1r) E S. If
D(p, e) ::::; t-e and no processor fails in p in a later round than p does, then (p, e) ~ (p - P, £).

Proof: If p does not fail in p then p = p- P, and the claim t rivially holds . Thus , let k be
the round in which p fails in p , ana not ice that by assumption no processor fails in p at a
later round. If k > e then (p, e) = (p-P ' e) and thus clearly (p, e) ~ (p - P' e) . We still need
to show the claim for k ::; e. We do this by induction on j = e - k.

Case j = 0 (i.e., k = £) : Let qi ¥=- qi E A(p,£) be two processors active at (p,£) . Such
processors exist by the assumption that t ::; n - 2. Clearly, qi 's view at (p, £) is independent
of whether or not p sent a message to qi in round e. Thus, (p, e) ~ (p', e), where (p', e)
differs from (p, £) only in that p does send a message to qi in round £ of (p', £) . (If p sends
qi a message in round £ of p, then p = p'.) Now, since p does send qi a message in round f,
of (p', £) , processor qj's view a t (p', £) is independent of whether p fails in (p', £) , (it is

17

consistent with qj 's view at (p', £) that p sends messages to all processors in round £, and
thus (p' , £) ~ (p-p, £) . By transitivity of~ we also have that (p, £) ~ (p-P, £) .

Case j > 0 (i .e ., k < £): Assume inductively that the claim holds for j - l. Let Q =
{ q 1 , • • • , q8 } be the set of processors active at (p, £) to whom p fails to send a message in
round k of (p, £) . We prove our claim by induction on s . Ifs = 0 then no processor active
in (p, £) can distinguish whether p failed in round k or in round k - l. Thus, (p, €) ~ (p', €),
where (p', €) differs from (p, €) only in that rather than failing in round k, processor p
fails in round k + 1 of (p', €) before sending any messages . ~ince e - (k - 1) = j - 1, we
have by the inductive hypothesis that (p', €) ~ (p-P, €) . By trans itivity of~ we have that
(p , €) ~ (p- P, €) . Now assume that s > 0 and that the claim is true for s - l. Let Ps be
a run such that (Ps, k) = (p, k), processor q5 fails in round k -,- 1 of Ps before sending any
messages, and no other processor fails in Ps after round k . Clearly D(p-=, €) ~ t - e, since
d(Ps, k') = d(p, k') ~ t - £ for all k' ~ k, and d(Ps, k--:- 1) = iV(p 3 , k - 1) - (k + 1) =
N(p, k) + 1 - (k + 1) = d(p , k) ~ t - £. Notice also that no processor fails in (Ps, £) after
round k ...1... 1. Thus, p = p-;q,., and by the inductive assumpt ion on j - 1, we have that
(Ps, €) ~ (p, €) . Let Pi E A(Ps, €) . Clearly p/s view at (p., . t) is independent of whether p
sent a message to q5 in round k of (p.,,£) . Thus, (Ps -t) ~ (l, . £) . where p'., differs from p.,
in that p does send a message to q8 in round k of p'., . _-\.gain by the inductive hypothesis
for j - 1 we have that (p~,e) ~ (p',£), where p' = p:-q. _ Processor p fails to send round
k messages only to s - 1 processors in p', and thus by the induc tive hypothesis for s - 1
we have that (p', £) ~ (p-P,£) . By the symmetry and transitivity of~, we have that
(p , £) ~ (p -P ,t), and we are done. N

The proof of Lemma 15 is a generalization and simplification of the basic inductive
argument in t he lower bound proofs of :ns], [LF '. , and '. C D]. Notice that the run p-P in
the statement of Lemma 15 has the following proper ties : (i) if p is not free of failures, then
the number of processors that fail in p-P is one fewer than in p; (ii) D(p-P, €) ~ t - e, and
(iii) (p-P, 0) = (p, 0). We can now use Lemma 15 to show:

Theorem 16: Let t ~ n - 2 and let S be an independent t-uniform system.

a) If e ~ t then all failure-free executions (p, £) E S x { e} are similar.

b) If W(S,p,£)~ t -£ and W(S,p' ,e)~t-e, t hen (p,£)~(p',£).

Proof: (a) Assume that £ ~ t and let (p, £) and (.o, €) be failure-free executions. We
wish to show that (p, £) ~ (.o, £) . Let Q = { q1 , ••• , q.,} be the set of processors whose
init ial states in p and p differ. We prove by induction on s that (p, £) ~ (p, €) . If s = 0
then (p, £) = (p, €) and we are done. Let s > 0 and assume inductively that all failure
free executions that differ from (p, £) in the initial state of no more than s - 1 processors
are similar to it. Let (Ps , £) be an execution such that (p, O) = (p.,,O), in which q5 fails
in the first round without sending any messages, and no other processor fails . Clearly
D(p., , £) = O ~ t - £, and by Lemma 15 we have that (Ps,e) ~ (p,£). Let Pi E A(Ps,£) .
Given that S is an independent t -uniform system, processor p/s view at (Ps, £) does not
determine whether the initial state of q5 in Ps is as in p or as in p. T hus, (Ps, £) ~ (p'.,, £),
where p~ differs from p 8 only in that the initial state of q8 in p~ is as in p. Again by
Lemma 15 we have that (p~,£) ~ (p',£), where (p~,0) = (p',O), and (p',£) is failure-free.

18

Since (p' , e) differs from (,8, e) only in the initial states of s - 1 processors, by the inductive
assumption we have that (p', e) ~ (,8, e) , and by the symmetry and transitivity of ~ we
have (p, e) ~ (p, e), and we are done with part (a) .

(b) If W (S, p, e) :S t - e then in particular it is not implicit knowledge at (p, l) that
d(k) > t - e for some k :S f._. It follows that (P, e) ~ (,o, e), for some ,o E S satisfying
D(,o, e) :S t - e. Using Lemma 15, a straightforward induction on the number of processors
that fail in (,o, e) shows that (,o, l) ~ (,8, l), where (,o. €) is failure-free . By transitivity of
~ we have that (p, l) ~ (,8, e) . The same argument a pp lies to (p', l) , and the claim now
follows from part (a) . x

R em arks: (a) T he assumption of independence of t he set of initial configurations is
essential to the lower bound in T heorem 16. Lemma 15 is independent of this assumption.
In fact, Lemma 15 can also be used to characterize non- independent systems. E .g., in
systems in which it is guaranteed that processors p 1 and p 1 have an identical initial state,
their initial state will become common knowledge a t t ime t a,.t the latest. Details are left
to the reader.
(b) Lemma 15 and Theorem 16(a) generalize and somewhat simplify the t + 1 round
lower bound on the worst-case behavior of SBA in our model (see iDL\.f , :Ds], '. FLl, [ff,
'. CD]) . Whereas the crash failure model is weaker (i.e .. is subs umed by) most other models
of failures, a further weakening of this model is to assume t hat the processors send their
messages to other processors in a particular order , and an initial segment of the messages
sent by a failing processor in its round of failure are delivered (cf. , CD) . Without loss of
generality we may assume that the protocol a processor follows determines this order as it
determines all other actions the processor performs. The proof of Lemma 15 goes through
for this model also. The only detail that must be added to the proof is that the processor
q8 E Q should be the last processor (among those in Q) to whom p sends a message in
round k. Details are left to the reader .

As we will see in the sequel, Theorem 16(6) allows us to completely characterize the
runs in which t + 1 rounds are necessary for attaining SBA, as well as those that require
k rounds, for all k. More generally, Proposit ion 7(a) and Theorem 16(6) provide us with
a lower bound on the t ime by which facts can become common knowledge in t- uniform
systems. Formally, we have:

Theorem 17: Let t :S n - 2, and let S be an independent t-uniform system. If
(S,p',l)F'P holdsforsomep' ES satisfying W(S , p') :S t - e, then (S,p,l) F Ctp
for all p E S satisfying W (S, p) :S t - e. C><l

Theorem 17 and Theorem 12(6) completely charact erize when non-trivial facts about
the initial configuration become common knowledge in the runs of S,. In a precise sense,
they imply that the only fact that is common knowledge at (p, k), fork :S t - W(S,,p), is
that the wastefulness is less than t - 1 - k. Formally, we have:

Corolla r y 18: Let t :S n - 2, le t S, be an independent t-uniform system for 'J, and let
W(S, , p) :S t - e. Then (S,,p,l) r Ctp iff for all p' E S, such that W(S, , p',e) :St - f_ it
is the case that (S, , p',l) F '{). C><J

Furthermore, Corollary 8 and Theorem 17 immediately imply:

19

Corollary 19: Let t :S n - 2, let P be a t- resilient protocol for SBA, and let S be
a t-uniform system for P, with p E S. Then SBA is not attained in p in fewer than
t + 1 - W(S,p) rounds. ><J

Corollary 19 proves that SBA cannot be a t tained in the runs of 1 any earlier than
it is attained by the protocol of Corollary 14. However. it still seems possible that using
another protocol SBA will be attainable in fewer rou nds than in the protocol of Corol
lary 14. We now show that this protocol is op t imal in a rather strong sense: for any given
initial configuration and failure pattern, no pro tocol attains SBA in fewer rounds than t he
protocol of Corollary 14. This fact follows from the following theorem, which states that
the wastefulness of a run resu lting from a given initial configuration and failure pattern
is no greater than its wastefulness in S1 . Given Corollary 19, this will imply that the
protocol of Corollary 14 always attains SBA at the earliest possible time, given the initial
configuration and failure pattern.

Theorem 20: Let S be a t-uniform system for a protocol P, let p = P (a, 7r), and let
p = 1 (a, 7r) . Then W (S, p) :S W (S 1 , p).

Proof: We will show a more general fact fro m wh ich the theorem will follow. Given
an initial configuration a', and a fai lure pat tern ii

1
• let p' = P(a1

,7r
1

) and p' = 1 (a1
,7r

1
) .

~otice that A(p, k') = A(p, k') for all k' . We claim t hat for all k and all Pi E A(p, k) it is
the case that if v(Pi,P,k) = v(pi ,p\k) then v(pi ,p. k) = v(pi,P',k) . We argue by induction
on k. The case k = 0 is immediate. Let k > 0 and assume inductively that the claim
holds for all processors in A(p,k - 1) at time k - 1. Thus, if v(pi,P,k) = v(Pi,f/,k) and Pi
sends a round k message to Pi in p, then Pi has t he same view at (,o, k - 1) and (p', k - 1),
and Pi also sends Pi a round k message in f/. In this case both " and r.' determine that
round k messages from Pi to Pi are delivered. By t he inductive assumpt ion Pi also has the
same view in (p, k - 1) and in (p', k - 1) . It follows that P requires Pi to act identically
in round k of both p and p1

• And if Pi is required to send Pi a round k message in p then
it is required to send Pi the same message in round k of p'. Processor Pi does not send a
round k message to Pi in p only if ri determines that Pi cannot send Pi such a message.
But then for similar reasons ri ' must also determine that Pi does not send Pi a round k
message. It follows that in this case Pi does not send Pi a round k message in p or in p'.
Thus, for all processors Pi it is the case that Pi receives a round k message from Pi in p iff
Pi receives an identical message from Pi in round k of p'. The inductive assumption also
implies that v(pi,p,k-1) = v(Pi,P',k-1), and it now follows that v(Pi,P,k) = v(Pi ,P',k)
and we are done with the claim. We now show how the theorem follows from this claim.
Assume that W(S,p) = j and that W(S1 ,p) < j. Then there is a time k such that
(S,p,k) p== I (D?: j), and (S,,p,k) [;t= I(D ?: j) . Let G = A(p,k) (notice that G = A(p,k)
as well). It follows that there is a run f/ E S 1 such that v(G,p,k) = v(G,p',k) and
D(p', k) < j . Let a' and 1r' be the initial configuration and failure pattern in p'. Let p'
be P(a',ri'). Since v(G,p,k) = v(G ,p',k), our claim implies that v(G,p,k) = v(G,p',k).
But since D(p' .k) = D(p' , k) < j and A(p,k) = G, we have that (S,p,k) t I(D ?: j),
contradicting our original assumption. C><J

Theorem 20 and Corollary 19 now imply that the protocol of Corollary 14 is indeed
optimal in the strong sense we intended: given any initial configuration and failure pattern,

20

it attains SBA as early as any t-resilient protocol for SBA can. In light of Theorem 20,
we can talk about the inherent wastefulness w (1r) of a failure pattern 1r, defined to be
W(S,., l (o-,1r)). That w(1r) is well defined follows from the fact that runs p of S,. have the
property that W(S,.,p,k) depends only on the pattern of failures and is independent of
the initial configuration. This can be proved by a somewhat tedious but straightforward
induction on k, and is left to the reader. Theorem 16 through Corollary 19 can now be
viewed as statements about the effect of t he fai lure pattern on the similarity of executions
and on what facts can become common knowledge at various times in the execution of an
arbitrary t-resilient protocol. Corollaries 14 and 19 tell us that exactly t--:- 1- w(1r) rounds
are necessary and sufficient to attain SBA in runs of any t-resilient protocol for SBA that
have pattern failure 1r (in the rest of the paper we will use 1r to refer to the failure pattern
of the run in question) . This provides a complete characterization of the number of rounds
required to reach SBA in a run, given the pattern in which failures occur.

We have seen that the only facts that can become common knowledge before time
t + 1 - w(1r) are facts about the wastefulness of the run. In the previous section we saw
that in runs of S,. the processors attain common knowledge of an identical view of the
initial configuration at time t - 1 - w(r,) . Thus . we have a complete description of when
facts about the initial configurat ion become common knowledge. It is interesting to ask
the more general question of when arbitrary facts become common knowledge. As we
have remarked in the previous section, the proofs of Lemma 11 and Theorem 12 can be
used to show that at time t , 1 - w(1r) in a run of S,. the active processors do not attain
common knowledge only of the fac t that they have a identical view of initial configuration,
Rather, there is a natural number k "2:: 0 such that at time t + 1 - w (1r) they attain common
knowledge of an identical view of the state of the system at time k. We denote this number
k by k 1 (7r) . There is some number, say ft, of processors that are commonly known at time
t + 1 - w (1r) to have failed by time k 1 (1r) . Let t 1 = t - / 1 . Roughly speaking, time k 1 (1r) + 1
can now be regarded as the start of a new run, and for appropriate definitions of d1 (k)
and W1 (1r), we get that at time (k 1 (r,) + 1) + t 1 + 1- w 1 (1r) the system will attain common
knowledge of a common view of the state of the system at time k 1 (7r) + 1. Interestingly,
it can be shown that (k 1 (1r) + 1) - t 1 + 1 - w 1 (1r) = t + 2 - w(1r). That is, one round
after the processors attain common knowledge of (a common view of) the state of the run
at time k 1 (1r), they attain common knowledge of a common view of the state of the run
at k 1 (7i) + 1. In fact, again we have some number k" "2:: 0 such that the processors have
common knowledge at time t + 2 - w(1r) of a common view of the state of the system
at time k". Denoting this number by k 2 , the above analysis can be repeated. We leave
further details to the interested reader.

The result of the analysis discussed in the preceding paragraph is that at any point
after time t-w(1r) in a run of l the active processors have common knowledge of a common
view of t he first k rounds, for a number k that can be computed given t he failure pattern
1r. Following every round after t ime t , 1 - w(1r) the active processors a ttain common
knowledge of a common view of at least one additional round. Consequent ly, there is a
window of common plausibility of a number of the most recent rounds about which no
non-trivial facts are common knowledge, and a common view of all preceding rounds is
common knowledge. The size of this window at a given point is t minus the number of

21

processors that (at that point) are not commonly known to have failed . This classification
of what facts are common knowledge in the runs of S, provide good upper bounds on
when a simultaneous action that depends on the firs t k rounds can then be carried out by
all active processors in a consistent way. The lower bound results of this section can imply
that these bounds are tight in all runs. and thus we have a complete characterization
of when simultaneous actions that depend on the firs t k rounds can be carried out, as a
function of the failure pattern.

5. Applications

T hroughout the paper we have shown how our results regarding when common knowl
edge of various facts is attained in a Byzantine system affect the SBA problem. We now
summarize our investigation of SBA. Every failure pattern 7i can be ascribed an inherent
waste w(ri) such that 0 :S w(ri) :S t - 1, with the property that no protocol for SBA can
reach SBA in less than t T 1 - w(r.) in a run that displays the failure pattern r.. Fur
thermore, we have provided a protocol that guarantees to always reach SBA in exactly
t + l-w(1r). The analysis presented in the previous sections applies to problems other than
SBA. In this section we discuss some of rhese app lications, in order to illust rate the types
of applications that the analysis can be used for. 'vVe start by considering some problems
that are closely related to SBA.

T he problem of Weak SBA, which differs from SBA in that clause (4) is changed so
that the act ive processors are required to decide on a value v only if a ll init ial values were v
and no processor fa ils, was int roduced by Lamport as a weakening of SBA. However, The
orem 16(b) immediately implies t hat the active processors do not have common knowledge
of any non-t riv ial fac t about the run before time t - 1 - w(ri), in any run of at-resilient
protocol wi th failure pat tern 1r . The WSBA requirement is a non-t rivial requirement,
since when the active processors decide 1 they must have common knowledge that it is not
the case that all processors started with 0 and no falure occured. Thus, WSBA cannot
be reached before time t + 1 - w (7r). And since SBA can already be performed at time
t + 1 - w(1r), we have that t-resilient protocols cannot attain WSBA any earlier than they
can SBA. Theorem 16 also describes why the variant of SBA used in this paper (which
was introduced by [FL]) is essent ially equivalent to the original version of the Byzantine
Generals problem of [P SL], in which only one processor initially has a value, and the pro
cessors need to decide on this value if the processor does not fail, and on a consistent value
otherwise.

It has been a folk conjecture that a t-resilient protocol that guarantees that a non
trivial action is performed simult aneously must require t T 1 rounds in t he worst case. We
now show that this is not the case. Let bivalent agreement be defined by clauses (1)-(3)
of SBA, and replacing clause (4) by:

41
. At least one run of the protocol decides 0 , and at least one run decides l.

Thus, at-resilient protocoi for bivalent agreement is a protocol P wit h the property that all
runs of the independent t-uniform system S for P in which the set of initial configurations
is {0, l}n satisfy clauses (1)-(3), and at least one run of S decides 0, and at least one

22

run decides 1. Proposition 7 imp lies that any ac tion that is guaranteed to be performed
simultaneously requires some fact to become common knowledge before the action can be
performed. Theorem 12(b) implies that at t he end of round 2 of S7 it is common knowledge
whether or not the wastefulness of the run is t - 1 (i.e., whether t processors were seen to
have failed in the first round). Thus, we can easily derive at-resilient protocol for bivalent
agreement: Each processor follows J for the first two rounds, and then decides 0 if it
knows that t processors failed in the first round, and 1 otherwise. This protocol attains
bivalent agreement in two rounds . and Theorem 17 implies that there is no fas ter protocol
for bivalent agreement so long as t ::; n - 2. Furthermore, it implies that in a precise sense
this is the only two-round protocol for bivalent agreement . We leave it to the reader to
check that if t 2: n - 1 then there is a protocol for bivalent agreement that requires only
one round. Thus, bivalent agreement is a truly easier problem than SBA. We note that
[FLP) and ~DDS: prove that in an asynchronous system there is no 1-resilient protocol for
an even weaker variant of bivalen t agreement. Ray Strong has pointed out that the above
protocol can be used to achieve zn- t_v:a lent agreement in two rounds.

We have stressed the connection between common knowledge and simultaneous ac
tions. Interestingly, the lower boun<ls on the time required for attaining common knowledge
imply worst-case bounds on the behavior oft-resilient protocols that perform coordinated
actions that are not required to be performed simultaneously. For example, Eventual
Byzant£ne Agreement (EBA) is defined by clauses (1), (2), and (4) of SBA: the processors'
decisions need not be simultaneous (c f. :DRS I) . There are well-known protocols that attain
EBA after two rounds in failure-free runs (for which w(7r) = 0). However , using Proposi
t ion 7 and T heorems 17 and 20 it is not hard to show that a t-resilient protocol for EBA
must require t - 1 rounds in some runs with w(7r) = 0 . .\1ore generally, these theorems
show that such a protocol must require t, 1 - j rounds in some runs with w(7r) = j.
This is a slight refinement of the well-known fact that EBA requires t + 1 rounds in the
worst case (cf. [DRS]) . Many very relevant and interesting aspects of EBA are not covered
by our analysis. We believe that an analysis of EBA should involve a study of when the
states of €-common knowledge and eventual common knowledge (cf. [HM]) are attained in
a Byzantine environment. This is an interesting open problem.

As our investigation centered around t-resilient protocols, we now briefly discuss some
other possible reliability assumptions. Recall that Corollary 10 states that all active pro
cessors are guaranteed to have an identical view of the system's initial configuration at
time t + 1 in every run of at-uniform system for J. This follows simply from the fact that
at time t , 1 it is common knowledge that one of the previous rounds was clean. Instead
oft-resiliency, we could require that a protocol for SBA be guaranteed t o attain SBA so
long as no more than k consecutive rounds are dirty. In the system corresponding to all
t he runs of l in which at most k consecutive rounds are dirty, it is common knowledge
at time k - 1 that a clean round has occurred, and J can be converted in to a protocol
for SBA that is guaranteed to attain SBA in no more than k _;_ 1 rounds. This means,
for example, that if processors in a Byzantine system are known to fail at least two at
a time, SBA can be achieved in t / 2 + 1 rouncis. Having a bound of k consecutive dirty
rounds seems in many cases to be a more appropriate assumption about a system than
having a bound oft on the total number of failures possible, since the latter is not a local

23

assumption. Of course, these two assumptions are not mutually exclusive, and we may
often have a small bound on the possible number of consecutive dirty rounds, and only a
much larger bound holds for the total number of failures. The bound on the number of
consecutive dirty rounds implies a good upper bound on SBA in the case of crash failures.

Another way we can consider varying the reliability assumptions about the system
is by restricting the number of possible processor failures that can occur in a round. For
example, let us consider the assumption that at most one processor can fail in any given
round of the computation. and at most t processors might fail overall. We are interested in
the question of whether such assumptions allow us to attain SBA quickly. unfortunately,
the lower bound proofs of Lemma 15 and Theorem 16 work very well for this re liability
model. In fact, since all of t he runs of such a system are guaranteed to have wastefulness
0, even bivalent agreement cannot be attained in any run of the system in less than
t + 1 rounds~ SBA and WSB .-\ clearly require t T 1 rounds in all runs of the system.
We now present a somewhat artificial variant of this assumption that provides us with a
non-uniform reliabili ty assumption whose behavior is interesting and somewhat counter
intuitive: v\"e say that a protocol for SBA is one visible failure resistant (1-VFR) if it is
guaranteed to attain SBA so long as no more than one processor failure becomes visible
to t he active processors in any given round. The set of possible runs of a protocol P t hat
display such behavior will be called a visibly restrained system for P. It is possible to show
that in the visibly rest rained system for the simple protocol 7 of Section 3 it is common
knowledge at t ime 2 whether round 1 is clean, and therefore WSBA can be attained in
two rounds. However , SBA can be shown to require n - 1 rounds in runs of 7 in which
one processor fails in every round except possibly the (n - l)st round. (If one adds a
bound oft '.S n - 2 on the total number of failures possible, n - 1 is replaced by t - 1.)
Interestingly, there is a 1-VFR protocol for SBA that is guaranteed to a ttain SBA in three
rounds (in all runs)! Thus, for the 1-VFR reliabili ty model, our simple protocol is no
longer a most general protocol. The reason for the odd behavior of 1-VFR protocols is
that the patterns of failures of the runs that satisfy 1-VFR are intimately related to the
structure of the protocol. Thus, the protocol can restrict the patterns of failures possible
and make effective use of the 1-VFR assumption.

6 . Conclusions

This paper analyzes the states of knowledge attainable in the course of the execution
of various protocols in the system, for the case of a particular simple model of unreliable
distributed systems that is fairly popular in the literature. Motivated by the work of
:HM], the analysis focused mainly on when various facts about the system become common
knowledge given an upper bound of t on the number of possible faulty processors. This
problem is shown to directly correspond to the question of when simultaneous actions of
various types can be performed by the processors in such a system. In particular, this is
a generalization of Simultaneous Byzantine Agreement and related problems. By deriving
exact bounds on the question of when facts become common knowledge , we immediately
got exact bounds for SBA and many other problems. An interesting fact that came out
of the analysis was that the pattern in which processors fail in a given run determines a
lower bound on the time in which facts about the system's initial configuration become

24

common knowledge, with different patterns determining different bounds . Ironically, facts
become common knowledge faster in cases when many processors fail early in the run.
The somewhat paradoxical argument for this is that, given an upper bound on the total
number of failures possible, if many processors fail early then only few can fail later . The
protocol can make use of the fact that the rest of the run is relatively free of failures. As
a by-product of the analysis, we were able to derive a simple improved protocol for SBA
that is optimal in all runs .

Our analysis shows that the essential driving force behind many of the phenomena
in unreliable syst ems seems to be the inherent uncertainty that a particular s ite in such a
system has abou t the global s t ate of the system. We come to grips with this uncertainty by
performing a knowledge-based analysis of such a system. We stress that our analysis was
by and large rest ric ted to protocols for simultaneous actions in a rather clean and simple
model of unreliable sys tems: synchronous systems with global clocks and crash failures .
We believe that performing similar analyses for nast ier models of failures will prove very
exciting, and wi ll provide a much better understanding of the true struct ure underlying
the richer failure models, and of the differences between the failure models . T he ideas and
techniques developed in t his paper should provide a sound basis on which to build such an
analysis, although it is clear t hat a number of additional ideas would be required.

In summary, the t reatment in this paper differs from the usual approach to Byzant ine
agreement type problems in that we make explicit and essential use of reasoning about
knowledge in order to reach conclusions about the possibility or impossibility of carrying
out certain desired actions in a distributed environment. T he generality and applicability
of our results suggest that this is a promising approach.

Acknowledgements: We wish to thank Brian Coan, Ron Fagin, Joe Halpern, Nancy
Lynch, Ray Strong, Mark Tuttle and Moshe Vardi for stimulating discussions .

References

[CD] B. Coan and C. Dwork, Simultaneity is harder than agreement, Proceedings of
the Fifth Symposium on Reliab£lity in Distributed Software and Database Systems ,
1986.

[CM] K. Yt:. Chandy and J. Misra, How processes learn, Proceedings of the Fourth AC.M
Symposium on the Principles of Distributed Computing, 1985, pp. 204-214.

[DLM] R. DeYt:illo, L· . A. Lynch, and M. Merritt, Cryptographic Protocols, Proceedings
of the Fourteenth Annual ACi'vf Symposium on the Theory of Computing, 1982,
pp . 383-400.

[DDS] D. Dolev, C. Dwork, and L. Stockmeyer, On t he minimal synchronizat ion needed
for distributed consensus, Proceedings of the 24th Annual Symposium on Founda
tions of Com puter Science , 1983, pp. 369-397.

25

[DRS!

[DS] ·

[F]

[FLP]

[H]

[HM2]

[LF]

[PR]

[PSLJ

D. Dolev. R. Reischuk, and H. R. St rong, Eventual is earlier than immediate,
Proceedings of the 23th Annual Symposium on Foundations of Computer Science,
1982, pp. 196-203 .

D. Dolev H. R . Strong, Polynomial algorithms for multiple processor agreement,
Proceedings of the Fourteenth Annual ACM Symposium on the Theory of Comput
ing, 1982. pp. 401-407.

R. f agin and ~ - Y . Vardi, Knowledge and implicit knowledge in a distributed
environment, Proceedings of the Conference on Theoretical Aspects of Reasoning
About K nowledge, Monterey, 1986, J.Y. Halpern ed., Morgan Kaufmann, pp. 187-

206.

M. J. Fischer, The consensus problem in unreliable distributed systems (a brief
survey). Yale Univers£ty Technical R eport YALEU/ DCS/ RR- 273, 1983.

~- J. fischer and N. A. Lynch, A lower bound for the time to assure interactive
consis tencY, Information Processing Letters, 14:4, 1982, pp. 183- 186.

YI . J. Fischer, N. A. Lynch, and M. Paterson, Impossibility of distributed consensus
wi th one fau lty process, Proceedings of the second Symposium on Principles of
Database Syste ms, 1983.

V. Hadzilacos, A lower bound for Byzantine agreement with fail-stop processors,
Harvard i·niversity Technical Report TR-21 -83.

J. Y. Halpern and Y. ~oses, Knowledge and common knowledge in a distributed
environment, Version of January 1986 is available as IBM research report RJ 4421.
Early ve rsions appeared in Proceedings of the Third ACM Symposium on the Prin
ciples of Distributed Computing, 1984 , pp . 50- 61; and as IBM research report RJ

4421, 1984.

J. Y. Halpern and Y. Moses, A guide to the modal logic of knowledge and belief,
Proceedings of the Ninth International Joint Conference on Artificial Intelligence ,
1985 , pp. 480-490.

L. Lamport and M. J. Fischer, Byzantine grenerals and transaction commit proto
cols, SRI Technical Report Op.62, 1982.

R. Parikh and R. Ramanujam, Distributed processes and the logic of knowledge
(preliminary report), Proceedings of the Workshop on Logics of Programs, 1985 ,
pp. 256-268.

M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of
faults, JACA1, 27:2 , 1980, pp. 228-234.

26

