
LABO RA TORY FOR tt1 MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT /LCS/TM-299

THE APPLICATION OF DIGITAL
BROADCAST COMMUNICATION TO

LARGE SCALE INFORMATION SYSTEMS

DA VID K. GIFFORD
JOHN M . LUCASSEN
STEPHEN T. BERLIN

APRIL 1986

545 TECHNOLOGY SQUARE. CAMBRIDGE. MASSACHUSETTS 02139

The Application of Digital Broadcast
Communication to Large Scale

Information Systems
DA YID K. GIFFORD, MEMBER, IEEE, JOHN M. LUCASSEN, MEMBER, IEEE, AND STEPHEN T. BERLIN

Abstract -A new type of information system is described that combines
personal computers, broadcast data communication, and bidirectional com
munication. 1lie system is designed to use broadcast communication
whenever possible to deliver information to personal computers, which are
used for data storage, indexing, and retrieval.

This paper starts with an overview of the system, and then discuss the
problem of reliable digital broadcast communication in some detail. A
parameterized broadcast protocol is described, and we show how to choose
protocol parameters based on observed channel error characteristics. A
flexible encryption-based protection system is included in the protocol. We
discuss the implementation of the system on contem;,orary personal com
puters. A broadcast system based on these ideas is now operating in Boston
area homes.

I. INTRODUCTION

T HE goal of the research reported here is to use com
puters to improve communication between people.

Our view is that the computer is an excellent communica
tion medium because of its ability to process, index, edit,
and display information, and that this capability can be
well applied on a large scale to communication within a
community.

However, building a computer system large enough to
serve a community is a difficult problem. This paper
describes a design for a decentralized system to meet this
need. Our major design goals were the following. We
wanted the system to

• economically serve a major metropolitan user com
munity

• provide a high-quality user interface
• give its users access to a wide variety and a large

volume of information
• allow its users to add value to the information pro

vided by the system by specifying filtering and further
processing

• safeguard the privacy of users
• be easily extensible to new services.
Two contemporary designs for community information

systems, Teletex (5], and Viewdata (2], are now being tried

out in various commumt1es. Let us consider how these
systems address the goals that we have established.

Teletex is the broadcast transmission of information for
display in fixed-format pages on user's TV screens. Teletex
succeeds in our goals of scale, economy, and privacy (there
is no user-specific information to keep private), but it fails
on several counts: the user interface is limited; the user has
access to only a few hundred screenfuls of information: the
information cannot be processed according to the user's
specifications; and expansion to new services, such as
interactive services, is not readily possible.

The second contemporary technology. called either
Videotex or Viewdata, is based on central time-sharing
systems that use TV-like terminals with a protocol that
includes graphics (4]. The design gives users access to a
wide variety of information and the services provided can
be easily expanded. However, the Viewdata approach fails
to some extent on all of our other goals. Viewdata relies
heavily on large central systems, and thus it may not be an
economical way to provide sophisticated services to an
entire metropolitan area. Its user interface suffers from
communication bandwidth problems and the response time.
limitations of time-sharing. Users are not able to add value
to information by specifying additional processing and can
not easily customize the system to their own interests.
Finally, the system has troublesome privacy implications
because all the user's requests can be monitored and re
corded by the system.

Based on the analysis given above we have concluded
that neither Teletex nor Viewdata, in their present forms.
meet our goals. However, both have attractive properties.
The broadcast nature of Teletex allows the system to
economically accommodate an arbitrary number of users.
With Viewdata, on the other hand, each user has direct
access to the database, which ensures immediate access to a
wide variety of information.

Our design seeks to combine the economy of Teletex
with the broad-spectrum access provided by Viewdata. To
meet this goal, our design combines personal computation
and communication. A personal computer is located at
every user site. Information is transmitted to these personal
computers via broadcast communication. The personal
computers retain information of interest to their owners

and provide a personalized information service. Because
each user station has local processing and storage capabil
ity, the user can gain effective access to much more data
than in the Teletex system without resort to the central
per-user processing required for Viewdata.

The approach of sending information to the user's loca
tion and processing it there has a number of advantages.
First. the central site can support any number of broadcast
service users. Second, locating processing power with the
user allows for a high-quality user interface. Third, local
processing and storage can be used to assist the user in
managing a larger volume of available information. Fourth,
the user can choose how to add value to information,
integrating received information with local computational
tools and databases. Fifth, the local processing of informa
tion keeps private information confined to the user's site.
Finally, because the personal computers are fully program
mable, the system is easily extensible to new services.

We have built a prototype based on these ideas, namely
the Boston Community Information System. The central
site for the system is located at our laboratory and users
are scattered throughout the Boston area. Presently, our
digital broadcast channel is on the subcarrier of a normal
FM broadcast station. The information that we transmit to
our test audience includes two wire services (the New York
Times and the Associated Press). We are presently integrat
ing remote database access into our system, using dialup
telephone lines for two-way communication. In the coming
year we plan to expand our service to include computer
software distribution, general interest bulletin boards, and
local community and event information.

The remainder of the p2per is organized in five sections.
Section II describes the overall architecture and functional
ity of the system. Section III describes a parameterized
protocol for reliable broadcast communication. Section IV
describes our encryption-based protection scheme for use
on a broadcast channel. Section V describes our imple
mentation and operational experience. Section VI contains
a brief summary and concludes with a look toward the
fu ture.

II. SYSTEM OVERVIEW

We will provide an overview of the system in two stages.
First, we will discuss the database component of the sys
tem, including the data model and the query facility that
allows users to retrieve information of interest. The second
part of our overview describes how this service is imple
rnen ted on a decentralized hardware base.

When considering how to provide access to community
information one soon realizes that it is a problem that
cannot be solved by the application of standard commer
cial database techniques. Relational and hierarchical data
models are far too restrictive to allow users to locate
information of interest because of the relatively unstruc
tured information (such as newspaper articles) that the
system must handle.

We have chosen an approach that builds on ideas from
full-text retrieval systems to fill our needs. Our database
design is capable of handling a wide variety of information,

2

including text-oriented data (news stories and electronic
mail), information that has somewhat more structure (com
munity event descriptions and city guides), and other kinds
of data, including computer programs. In order to put all
of this information into a single database we have adopted
a fairly simple data model.

Every entry in our database, whether it be a New York
Times article or a restaurant review, consists of a number
of fields. The specific fields found in an entry depend on
the type of the entry. For example, a newspaper article has
a source identifier (e.g., "New York Times"), along with
category, subject, priority, section, title, author, date, and
text fields. The text field contains the body of the article.
Likewise, an event listing includes location, time, title, and
abstract fields.

A user can find out what information is available in the
database by submitting queries that are Boolean combina
tions of words and phrases that may occur in various
fields. Some fields can only contain certain words: for
example, the priority field of a news article is chosen from
the words flash , bulletin, urgent, regular, and deferred.
Other fields, such as the author or text field, contain
arbitrary text, and a user query can include arbitrary words
and phrases. This is in contrast to controlled vocabulary
systems where information is only indexed on a predefined
set of index terms and the user is limited to these terms
when formulating a query.

When the user submits a query to the system, a list of
matching database entries is displayed along with a
summary of each entry. Fig. 1 is a picture of the user
interface that shows the result of entering the query " tech
nology & (category financial)." Once the menu of available
entries is displayed, the user may enter the number of the
desired entry on the end of the query and press the return
key. Fig. 2 shows the display of the second entry from the
menu of Fig. l.

We decided against basing our system solely on menus
because we felt- that free text searching provides more
expressive power and is easy to understand and use. Other
work [3] has suggested that novices may in fact prefer
keyword-based searching to menu systems. Menu-based
systems do have the advantage that the user can easily
browse the database to see what is available without having
something specific in mind. We have tried to retain this
advantage of menu systems.

Our personal database system uses both free text and
menu-based retrieval in an effective way. A user specifies
what information should be kept in the local database by
composing a set of free text queries. Because the system
knows nothing a priori about the user's interests (and the
user knows little about the system's capabilities and the
scope of available information), unrestricted text is the
more efficient medium for expressing such information
filters.

However, when it comes to examining the local database
that was compiled with the aid of these filters, the system
"knows" what the user's interest profile is. This makes
menu-based retrieval the m·ore efficient medium. The infor
mation filters defined by the user serve as a menu of what
is available in the local database; furthermore, the user can

GIFFORD et a/. 3

S 111tching arti cles found . lints 1: 18 of 18

1 sep 19 , 10 :48 (121 lines) regular (Flnoncial)
NEW YOAK - - After a r ecord year , t he market for pub lic st ock
offe1"i ngs by pr ivate compani es has gone into a s lump, forcin g many of
t hest coinpanies to bypass the new- i ssue market and seek capital
often through creat ive deals - - e l sewhere .

2 sep 18 , 22:37 (80 lines) regular(FinancialJ
NEW YORK -- Technol ogy s tocks took a beating Tuesday . for t wo
un relat ed reasuns. and helped to keep the marke t on t he downs ide.

3 sop 18 , 21 : 18 (82 lincs) urgent (Financial)
A d i gest o f business and f inanc ial news f or Wednesday, Sept. 19.
1984 :

4 up 18, 18:22 (70 lines) urgent (Fi nancial)
NEW YORK -- Stock pr i cts dropped Tuesday 1n 1cc11trated t rad ing . with
some of t he te chno logy and large cap itali zat ion i ssues reg istering
the biggest decl ines .

5 sop 18 , 7:4 1 (113lines) dolerred (Financlal)
London - The Amer i c an lawyer woul d have been r ubb inCJ hts h.- n111 .
1 :c.cept that he was j ogg ing in Hyde Park. so he was swing ing his ar ms .

technology & (category f inanc ial);

Fig. 1. User interface: menu screen (© 1984, New York Times).

Article N409187.727 :

type: Hew Yo rk Times genera l news copy
priority: r egular
date: 09- 18-84 2237t dl
ca t egory: Financ ial
subject: MARKETPLACE
title: (Bi z0ay)
author: DANIEL F. CUFF
sourc:,: (c) 1984 N. Y. Times News Se r v i ce
te:c.t:

lines 1:23 o f 80

NEW YORK • Technology stoc ks t ook a beat i ng Tues day . for two
unre lated reasons, and hel ped t o ktep t he ma r ket on tht downs ide.

firs t, worry over problems with a d isk d ri ve hur t Con t r a l Da t a and
Burrough s . Second , t he semiconductor i s sues were ba t tered by a
bP.arish broke rage house report on -~otorola.

Burroughs opened down 2 318 Tuesday morni ng afte r an order imbalance.
Tl'lii drop in Bur roughs . wh i c h close d the day at 53 , o f f 3 5/ 8 . followed
C:,ntrol Data's slide. On Monday. C:on t rol Oat ~ dr opped 2 1/8, ""l'.I it lost
an add it;ona l 3/8 Tues day. to c l ost_ at 26 t/8.

Control Data . according to ana lysts. encour. te r ed p rob lc111s with a
t hin coating on the d is k. ·· If that chemical compound is not
virt1.ally perract. trcub le ensues." ~a id Ulri c We il. an ana lyst at
Horgan Stanley & Co . ''We are ta lking abou t to le r ances t he thickness
o r t. numan ha i r. · '

tec hnology & (cate gor y f inanc i a l): 2

Fig. 2. User interface: article display(© 1984, New York Times).

use any of the filters, or any query, for example " (category
news)," to obtain a list of matching articles, and then
browse through that list. We find that most of our users
use their information filters to browse the database.

The greatest asset of our data model is that it is simple
to understand. Thus, our users have a good conceptual
model of precisely what the system can and will do when
they compose a query. This in turn allows them to use the
system effectively. However, our users still need to know
certain things about the database in addition to the access
mechanisms. Consider the problem of locating movie re
views. Is the query " movie & review" appropriate, or might
"(subject review) & movie" be better? To help users learn
about the database and about composing queries, we pro
vide printed and on-line documentation, and we also pro
vide a library of preplanned queries that users can incorpo
rate into their personal database system_

This concludes our discussion of the facilities that we
provide for organizing and locating information in the
system. We will now turn our attention to the implementa
tion of the system_

As shown schematically in Fig. 3, information arrives at
our central database machine from a variety of sources.

,►:\\
\ORK
Tl\lfS

\P

\ RP.\:S-IT

LO<. \L \RL\~H

n" r.,
RAS[

\l\(111,t:

\I
0
I>
t:
\I

11►-R~O\.\I.

(O\ll'l I FR

PrR~O:'\.\I.
< O)ll'L 11:R

l'Ht~O, \l
(()\ll'l lt:R

Fig. 3. Block diagram of the system.

Dedicated telephone circuits deliver information to our
machine from the New York Times and the Associated
Press. Our link to the Arpa Internet delivers certain Ar
panet digests. We also have dial-up telephone lines that can
be used to transfer input files from personal computers to
the central database.

For each information source, there is a separate back
ground process that parses information from that source
and creates entries in a standard format, filling in field
values as appropriate. This way, information from all
sources is converted into a single stream of data. This
stream serves as input to three other background processes:
the clipping service, the central database system. and the
scheduler.

The clipping service is a program that automatically
forwards newspaper articles and other database entries to
users via electronic mail based on each user's interest
profile.

The central database system maintains a complete_
database of all information and a full-text index into this
database. The clipping service and the central database
system are not required for the operation of the broadcast
system, but as we mentioned earlier, we are integrating
access to the central database into our personal computer
database system.

The scheduler transmits entries from the central data
base to personal computers over the broadcast channel.
Currently the entire database is transmitted approximately
every 4 h, but as we add new information sources this cycle
time will increase. Information from the database is trans
mitted in round robin fashion_ Newly arrived database
entries are placed at the head of the transmit queue.
High-priority database entries are transmitted more fre
quently. The latency of an entry from the time it arrives at
the central system to the time it is transmitted is less than 5
min.

All of the central site software has been designed to
recover in the event of a system crash. Database entries
and transmit queues are maintained on secondary storage
and are recovered upon system restart.

We will now tum our attention to the processing that
takes place at the remote personal computers_ The personal
database system is a software package that runs on a user's
personal computer and implements the user interface to the

community information system. When a user submits a
request, the personal database system will display the list
of local database entries that match the query. In our
current prototype the personal database software uses only
local information to satisfy user requests. When two-way
communication is added, the system will attempt to de
termine whether a query can be completely answered with
information from the local database, and if not, it will offer
to search the central database as well.

The personal database system performs two tasks con
currently: receiving data and managing the user interface.
These two processes share the personal computer by using
a simple nonpreemptive multiprogramming system.

The reception process in the personal database system
listens to the digital information broadcasts from the central
system and keeps the local database up to date. As de
scribed in the next section, every database entry is
transmitted as a series of packets. The personal computer
software reassembles these packets into a complete data
base entry, decrypts the entry, filters the entry to see if it
should be kept locally, and if so, enters it into the local
database.

The user interface process is idle, except when the user
submits a request through the keyboard. Requests are
parsed and processed by the database component, and
relevant information is displayed on the screen.

4

II I. A PROTOCOL FOR RELIABLE BROADCAST

COMMUNICATION

In this section we present an algorithm for managing a
digital broadcast communication channel. A digital broad
cast channel delivers an unreliable byte stream in a very
econoroical way to a large number of users. The problem is
lo make communication as reliable as desired without
using acknowledgments.

The algorithms that we outline are independent of the
precise type of digital broadcast medium that is employed.
Current digital broadcast technology encompasses many
alternatives. One example is the vertical blanking interval
of TV transmissions. The resulting TV plus data transmis
sions can be delivered via a cable system or normal RF
broadcast techniques. It is also possible to use an entire TV
channel or other portion of the RF spectrum for higher
bandwidth broadcast digital communication. One problem
with high bandwidth communication is that contemporary
personal computers can not process data at megabit rates.
These channels could be employed by implementing packet
selection in hardware, or by buffering information as it
arrives and processing it later.

A. A Broadcast Transmission Protocol

We have designed and implemented a three-layer pro
tocol for use on unidirectional byte channels characterized
by burst errors. The protocol has a low implementation
complexity, and is efficient enough to permit continuous
error detection and correction at 4.8 kbits/ s on a personal
computer without any special-purpose hardware, using only

a fraction of the available CPU power. The three layers of
the protocol are depicted in Table I.

I) The Byte String Layer: The first and lowest layer of
our protocol is the byte string layer. A byte string is
defined as a finite sequence of arbitrary bytes. There is no
guarantee that a byte string is delivered to the receiving
sites or that it is delivered without errors, but all byte
strings that are delivered are guaranteed to arrive in the
order in which they were transmitted. ·

The byte string layer is implemented directly on top of
the byte channel, and the end of each string and the
beginning of the next is indicated by one or more bytes
serving as separator tokens. Since the contents of the byte
string can be arbitrary, any instances of the separator
token in the byte string itself are mapped into other values
by means of byte-stuffing.

2) The Packet Layer: The packet layer of the protocol is
implemented on top of the byte string layer. It provides for
transmission of packets of arbitrary contents, up to a
certain length. (In our implementation, the length in bytes
must be a multiple of four not exceeding 4*255.) The
packet layer serves as an error detection layer: there is no
guarantee that individual packets are delivered, but all
packets that are delivered are guaranteed to be complete,
free of errors, and in order. To accomplish this, the packet
layer transmits each packet as a byte string, prefixing it
with a length field and a checksum. The header format is
given in Fig. 4.

If the length field of a received packet does not match
the actual length of the received byte string, the packet is
rejected. Otherwise, the checksum is computed. If the
checksum does not match, the packet is also rejected.
Otherwise, the packet is accepted.

Note that the guarantee of error-free transmission is
merely probabilistic: if a packet has been corrupted, it will
nevertheless be accepted if the length field and the check
sum both match. With a 32 bit checksum, an error can go
undetected with a likelihood of no less than 2 - 32.

3) The Data Layer: The data layer of the protocol is
implemented on top of ·the packet layer. It provides for the
transmission of data blocks of arbitrary contents up to an
implementation dependent length. The data layer serves as
an error correction layer: although it provides the same
guarantees as the packet layer (delivered data blocks are
complete, free of errors, and in order), it has the potential
for greater useful throughput when channel errors are
likely to occur.

For transmission, each data block is divided into a
number of fixed-sized packets. (The last packet may be
shorter than the others if the block length is not an even
multiple of the packet length.) The fragmentation is per
formed subject to the length constraint on packets and the
implementation-defined limit (currently 100) on the maxi
mum number of packets.

Recall that the underlying packet layer does not guaran
tee that individual packets are delivered. To increase the
likelihood that a packet is delivered intact, it may be
transmitted more than once. Because the physical channel

GI HORD er al.: APPLICATION OF DIGITAL BROADCAST COMMUNICATION 5

TABLE!
PROTOCOL LAYERS

Name of Layer Unit of Transmission Purpose o f Layer

Data Layer
Packet Layer
Byte String Layer
(Byte Channel)

Data Blocks
Packets
Byte Strings
(Bytes)

Error Correction
Error Detection
Framing
(Transport)

The 1hree layers o f the broadcast protocol built on top of the byte channel.

0:.1

6:7

8:9

Fig. 4. The format of packet headers. including header information
attached by both the packet layer (bytes 0- 4) and the data layer (bytes
5-9).

exhibits burst errors (and no apparent periodicity), we
create time diversity by interleaving these redundant
transmissions: all the packets of the data block are
transmitted once, and then this sequence is repeated as
many times as is necessary to achieve the desired expected
level of reliability.

The data layer appends a header containing reassembly
information to each packet. The header format is as fol
lows (see also Fig. 4).

4 bytes Checksum (part of the packet layer)
1 byte Length of packet in 4 byte words (part of the

1 byte
1 byte
1 byte
2 bytes

--packet layer)
Reserved to specify the protocol that is used
Sequence number of the data block (mod 256)
Reserved for future use
Packet number (within the data block). The
high-order bit indicates whether this is the
highest numbered packet Qf the data block.

Using this information, data blocks can be straightfor
wardly assembled as follows. Since packets are guaranteed
not to be delivered out of order, and cannot contain
erroneous data, the arrival of a packet with a data block
serial number different from that of the previous packet
signals the start of a new data block. The bit vector that
records which packets of the data block have been received
is initialized to all zeros and the expected number of
packets (for the new data block) is initialized to "un
known."

For each packet that arrives, this bit vector is consulted.
If the packet contents are already present, the packet is
ignored and the system waits for the next packet. Other
wise, the packet contents are copied into the data buffer,
starting at a location determined by the packet length and
the packet number, and the packet's presence is noted in
the bit vector. If the packet is tagged as the highest
numbered packet of the data block, the expected number

of packets is filled in. Each time a packet is copied into the
data buffer, the bit vector and the expected number of
packets are examined to determine whether a complete
data block has been received.

Whenever a complete data block is received it is handed
over for further processing. In our system this processing is
performed in place, so control is not returned to the data
layer until all processing has been completed. This may
include decrypting the data block, scanning it to see if it
matches the user's filter, and possibly saving the contents
on disk. When the data layer regains control. it directs its
attention to the incoming packet stream. and is ready to
assemble the next data block.

Note that the correctness guarantee on data blocks is
once again a probabilistic one: if any packet has been
undetectably corrupted, the data block of which it is part
may reflect the error, either directly or indirectly through
incorrect assembly. Moreover, the one-byte data block
serial number does not allow detection of transmission
outages that last 255 data blocks (mod 256). Such outages
must be detected by a timeout mechanism.

B. Engineering a Specific Channel

The digital broadcast system that we operate in Boston
uses an FM Subsidiary Communications Authority (SCA)
channel. SCA channels are subcarriers that can by used by
an FM radio station without interfering with normal
broadcasting. Typical uses of SCA channels include Muzak.
stock quote services, and reading for the blind.

In our application the SCA of WMBR-FM is modulated
with a frequency shift keyed signal (FSK) that carries
RS-232 compatible asynchronous data at 4.8 kbits/s. An
FSK system that uses asynchronous signalling is particu
larly simple to demodulate and to interface to existing
serial ports on personal computers. The cost of the receiv
ing equipment (not including the personal computer) is
under $200 per receiver. A similar SCA data communica
tion system is described by Anderson et al. [l].

The SCA channel transports a byte stream to our users.
The time-average byte error rate of the channel varies.
depending on the receiver configuration (the type of an
tenna and receiver circuit employed) and receiving condi
tions (distance between transmitter and receiver, multipath
interference, interference from appliances, weather). The
time-average byte error rate is given in Section III-C-2) for
several receiver sites.

Currently, the transmission rate of our broadcast subsys
tem is limited to 4.8 kbits/ s. This is not a limiting factor

6

since a typical personal computer can just accommodate
continuous 4.8 kbitjs transmissions.

C. Choosing Values for Protocol Parameters

In this section, we describe the procedure used to de
termine appropriate values for the packet size and the
number of repetitions to be employed by the data layer of
the protocol. The parameters of the underlying byte chan
nel, such as the transmission rate and the byte format, are
presumed to be fixed and are not considered here.

1) Objective Functions: The first step of the process is to
determine what objective function (of the parameters in
question) we wish to maximize. We have considered the
following functions in particular.

• The packet-level throughput rate: this is the ratio
between the number of data bytes in a packet and the total
packet size, times the probability that a packet arrives
intact.

• The block-level throughput rate: this is the ratio be
tween the number of data bytes in a data block and the
total number of bytes it takes to transmit the data block,
times the probability that the data block arrives intact. We
will refer to this quantity as the channel utilization.

• The block delivery probability: this is the likelihood
that a transmitted data block arrives intact.

The packet-level throughput rate would make a poor
objective function because it reflects neither the number of
repetitions nor the effects of the block size.

The block-level throughput rate, or channel utilization,
makes a much better objective function. In fact, if a fixed
set of data blocks is transmitted repeatedly in round robin
fashiop, and block delivery errors are statistically indepen
dent, we can minimize the mean latency from the time a
data block is first transmitted until the time it is first
correctly delivered by maximizing the channel utilization.
Channel utilization will be our primary objective function.

The block delivery probability always approaches unity
as the number of repetitions is increased. Therefore, it is
not a useful objective function for choosing parameter
values. It is, nevertheless, a useful quantity and we monitor
it to avoid wasteful use of the channel.

2) Estimating Packet Error Rates: To calculate the chan
nel utilization and the block delivery probability for a
particular channel, we begin by estimating the packet error
rate of the byte channel for various packet sizes. We define
a k-burst (of errors) as a maximal-length sequence of bytes
terminated by bytes transmitted incorrectly that does not
contain a subsequence of k error-free bytes.

Fig. 5 shows the distribution of error burst lengths
observed on our noisy channel for k = 5, along with the
distribution that would be expected if byte errors were
statistically independent, with the same byte error rate. The
plateau in the expected distribution is an artifact corre
sponding to the definition of burst errors, but is neverthe
less expected in the actual data. Instead, the observed
distribution has a secondary peak at a burst length of 4 or
5, and has a much higher tail than the expected distribu-

tion. Therefore, we conclude that byte errors on the chan
nel are not independently distributed, and that we cannot
calculate packet error rates directly from the byte error rate
of the channel.

Instead, we estimate packet error rates by means of a
data collection program that maps the observed sequence
of byte errors into (simulated) continuous packet streams
of various packet sizes. We have run this program at
several receiver sites, analyzing one Mbyte of received data
at each site. The number of byte errors varied from 4870
(in a windowless, partially shielded, electrically noisy room
near the transmitter) to 55 (in the suburbs 7.4 miles west of
the transmitter), to 12 (7.5 miles north). A fourth test site,
located 9.8 miles southeast of the transmitter, proved to
have such poor reception that we could not deliver data
blocks to that site reliably.

The relationship between packet size and packet error
rate is determined by the extent to which byte errors are
clustered. This dependence is best illustrated by our noisest
set of observations.' Table II shows the observed packet
error rate as a function as packet size. For comparison, we
have included estimated packet error rates based on the
(erroneous) assumption that byte errors are independent
with a byte error rate of 4870 errors per 1 Mbytes. It is
clear from the table that byte errors are not independent,
and that assuming independence would lead one to con
sistently overestimate the packet error rate. This confirms
our earlier conclusion based on the distribution of error
burst lengths.

The observed relationship between packet size and packet
error rate indicates that even packet-level errors are not
independently distributed over the time span investigated,
up to 16K bytes. (This can be illustrated by comparing the
delivery probability of two lK packets, (1-0.415)2 = 0.342,
with the delivery probability of one 2K packet (1- 0.570)
= 0.430. Since a 2K packet can be viewed as two adjacent
1 K packets, we find that the delivery probability of two
adjacent lK packets is greater than the delivery probability
of two independently chosen lK packets. Thus, packet
errors are not independent.)

Because packet errors on the channel are not indepen
dently distributed, we cannot calculate the block delivery
probability directly from the packet error rate of the chan
nel. We could proceed as before and estimate the block
delivery probability by mapping the observed sequence of
packet errors into a (simulated) continuous stream of data
blocks. However, to obtain accurate estimates in this way,
we would need data collection runs lasting several orders
of magnitude longer than those used to estimate the packet
error rates.

Therefore, we are forced to estimate the block delivery
probability directly from the packet error rates anyway, as
a function of the block size, the packet size, and the
number of repetitions. We have made these calculations
using the channel model described below.

3) The Channel Model: In this section we describe the
channel model used to choose suitable parameter values for
the data level protocol. The model is based on the assump-

GIFFORD et al.: APPLICATION OF DIGITAL BROADCAST COM.\flJNICATION 7
Bu rs t
Length:

No . of
Bursts: Observed Bursts, • = 10

Expected
1
2
3
4
5
6
7
8
9

4400
20
20
20
20
20

Observed
736

54
123
138
137
110

··••11•
..........••
........•..••.
............•.
···········

10-14
15 - 19
20-26
65

so
41
21

29
7
4
1

•.....•..
...

fig. 5. Histogram of error burst lengths expected and observed on one
megabyte of data received over a noisy channel.

TABLE II
EsTJMATED PACKET ERROR R.AT:ES BASED ON 4870 INDEPENDENT

byte ERRORS PER MEGABYTE OF DATA, AND PACKET ERROR R.AT:ES
ACTUALLY OBSERVED ON lMbyte OF DATA WITH 4870 bytes

ERRORS

Packet Est i■-ted Observed
Siu Packet Packet

(i n bytes) Error Rate Error Rate

4 0. 018 0.009
8 0. 037 0, 014

18 0.072 0 . 026
32 0 . 138 0.044
64 0.258 0. 076

128 0.449 0 . 126
258 0.898 0. 193
512 0. 908 0 . 288

1024 0.991 0. 416
2048 1.000 0. 670
4098 1.000 0. 711
8192 1.000 0.836

18384 1.000 0.963

tion that paeket errors are independent. To the extent that
this is not true, our reliance on average values at the packet
level tends to produce an overestimate of the error rates at
the data block level, especially for small packet sizes and
high repetition rates.

Let us call the block size N, the packet size n , the
number of packets per data block k, and the number of
repetitions r. Assume that the probability of packet error,
p (n), is given for all packet sizes of interest. Assume
further that each packet contains a header of H bytes,
leaving room for (n - H) bytes of data. We will use H = IO
throughout.

The number of packets per data block (not counting
repetitions) is

k=[N/ (n - H)].

W~n the block size is not an exact multiple of the
packet size, the last packet may be shorter than the rest.
Because the packet error rate as a function of packet size is
well-behaved, we can account for this by using a nonin
teger approximation of the number of packets per data
block, namely the total number of bytes transmitted per
repetition of the data block divided by the packet size:

k'= N + H[N/(n - H)]
n

The potential channel utilization (which is achieved when
there are no errors) is the ratio between the block size and
the total number of bytes transmitted to get each data
block across

N
r(N + H[N/ (n - H)l) .

If each packet of a block is transmitted r times, the
probability that all r copies of a given. packet are damaged
or lost in transmission is p(n)' (assuming independence of
individual packet errors). Thus, the probability that at least
one copy of a packet arrives intact (which is all that is
needed) is 1- p (n)'. If a block is fragmented into k '
packets (not counting repetitions), then the block delivery
probability is equal to the probability that all k' packets
can be reconstructed, or (1- p(nYl'-

The channel utilization is the product of the potential
channel utilization and the block delivery probability:

channelutilization= (N(l[p(n)'(]
r N+H N/ (n-H))"

Note that H is fixed, N is fixed for each block, N and n
together determine k ', and the function p(n) is fixed given
the receiver site. Thus, we can now maximize channel
utilization over all possible values of n and r, subject to
the restriction that p(n) is known only for selected values
of n.

4) Observations Made Using the Channel Model: Table
III gives the combinations of packet size and number of
repetitions that maximize the channel utilization for selected
block sizes, for the high-error channel mentioned before.
Packet sizes of successive powers of two were considered,
up to 1024 bytes or the block size (whichever was less).
Suboptimal parameter choices, included for comparison,
are indicated with (<). Note again that this channel does
not reflect realistic receiving conditions, which are up to
three orders of magnitude better.

In this table we can distinguish three different operating
regions, namely those with optimal repetition rates of 1, 2,
and 3.

TABLE lII
OPTIMAL PAC KET SIZf. ANO NUMBER 0t RI.TRANS~IISSI0NS. AND

Rl:SUI.TING BLOCK DELIVERY PR0BABll.11 Y ANO CHANNI.I.

UTJI.IZATION, AS A FUNCTION m 81.0('K S1z1: t0R A PARTJ('l ll.AR

NOISY CHANNH

Optimal Optimal Block Corresponding
Block Packet Number of Delivery Channe 1
Sue Sue Re pet it 10ns Prob ab i 1 i ty Utilization

256 256 . 7940 . 7365
512 512 . 7045 . 6780
1K 1K . 5 789 .5678

2K 128 . 7615 . 3500
3K 128 . 6645 . 3054 <
3K 64 . 7246 . 3056
4K 64 . 6508 .2745 <

4K 128 3 .9349 . 2871
6K 128 3 .9039 . 2774
BK 128 3 . 8740 . 2684
!OK 128 3 . 8452 . 2597
10K 64 3 .9227 . 2594 <
12K 64 3 . 9079 . 2553
14K 64 3 . 8~~~ . 2512
16K 64 3 . 8792 . 2472

For very small data blocks, it does not pay to retransmit
packets more than once because the error rate on single
transmission is so low that a channel utilization greater
than 0.5 can be achieved. which is not possible when each
packet is transmitted more than once. For such small data
blocks. the largest possible packet size is always optimal.

Next. there is a crossover region where r = 2 is optimal.
So mewhere within this region, it pays to reduce the packet
size from 128 bytes to 64 bytes, as indicated. The model
does not allow for accurate comparisons between error
rates obtained with and without retransmission. so it is
hard to determine the precise block size at which retrans
mission becomes worthwhile.

Next. for block sizes of 4K and up. the model yields a
remarkably stable optimum with r = 3 throughout our
range of measurement. The model indicates that throughout
our range of actual block sizes (4K- 10K). a packet size of
128 bytes is optimal. For very large blocks, the packet size
should be reduced to 64 bytes.

Table IV shows how the block delivery probability and
the channel utilization vary with the packet size and the
number of repetitions for a given block size (4K bytes).
Note that for r = 1, there is no error correction and there
fore channel utilization is maximized with the largest possi
ble packet size, because it yields the most compact encod
ing and thus minimizes the probability of error.

For r = 2, the block delivery probability is maximized
with a packet size of 32. However, the overhead on these
packets due to headers is substantial. Indeed, the channel
utilization is maximized with a packet size of 64, despite a
somewhat lower block delivery probability. Note also that
channel utilization is bounded above by 0.5.

For r = 3, the channel utilization is bounded above by
1/ 3. This value is most nearly reached with a packet size of
128. This combination of repetition rate and packet size
happens to be the best value in Table IV. In particular,
nothing can be gained by increasing r since this would
limit channel utilization to 0.25 (for r = 4), 0.20 (for r = 5)
and so on.

Finally, compare the data for r = 2 and r = 3 for a
packet size of 64 bytes. The channel utilization rates differ

8

Pkt
Siu

16
32
64

128
256
512

102'

TABLE IV
Bux K Dl·.J.IVJ:RY PR0IIABII.ITY A I) CHANNfl. U 11I.IZA 110 AS ,\

Ft I CTI0N 0t PA<·Kn SIZI. AND NlJMlll:R ot Rl:PI: l'ITI0NS. l·0 R

l!i.(X'KS OI- 4 khytcs TRANSMl'JTt.l) OVl:R A PARTl('l ll.AR NOISY

C HANNf.l.

Number of repttltions (r):
r• I r• 2 r•3 r•4 r•6

0,1 ; .., . Chann. Del iv. Chann . Oel iv. Cl'l&nn . Otliv. Chinn. 0,1 iv. Chann.
Prob . Ut i 1 H Prob . UUln: Prob . Ut i1 it Prob. Ut t1 iz Prob. Ut111z

0. 0000 0. 0000 0.6441 0. 1207 0.9889 0. 1236 0 . 9997 0 . 0937 I. 0000 0. OHO
0 . 0002 0.0001 0.6936 0 . 2381 0 . 9839 0. 2252 0 . 9993 0 . 1715 1.0000 0.137J
0.0027 0.0023 0.6508 0.2745 0 . 9683 0.2723 0 . 9976 0.2104 0.9998 0 . 1&87
0. 0098 0. 0090 0.5805 0.2674 0.9349 0.2871 0.9917 0 . 2284 0.9990 0.1841
0.0283 0.0272 0. 5325 0.2557 0.8873 0.2840 0.9773 0.23•6 0.9956 0. 1912
0.0636 0.0622 0 . 4974 0 . 243' 0.8238 0.2687 0.9465 0 . 2315 0.9844 0. 1927
0 . 1141 0.1127 0. 4651 0. 2298 0 . 7408 0.2439 0. 8852 0.2186 0 . 9511 o. 1879

only minimally, but the block delivery probability is much
greater for r = 3. In fact, it is about 50 percent greater.
which nearly compensates for the fact that each packet is
transmitted three times instead of twice.

5) Choosing Appropriate Parameter Values: If we had
complete and accurate information regarding packet error
rates for all receiver sites. we might be able to choose the
packet size and retransmission rate for each data block so
as to maximize some function of the channel utilization
observed at all receivers. A policy decision would have to
be made regarding the relative level of service to be de
livered to nearby and distant users.

Resource limitations have prevented us from collecting
accurate packet error rate estimates for all receiver sites.
Moreover, the channel utilization figures computed with
the aid of the model are only approximate. We presently
set our operating parameters on the basis of available
packet error rate estimates for several receiver sites we
believe to be representative.

Note that for large block sizes, the channel utilization
and the delivery probability decline exponentially with
increasing block size, regardless of the packet size and
retransmission rate. Thus, the broadcast protocol without
acknowledgments is not effective for very large block sizes.

IV. INFORMATION PROTECTION

Since our broadcast system uses a public medium. we
cannot prevent unauthorized users from listening to the
broadcasts. Yet. the dissemination of information must
often be limited. For example, there may be copyrights and
other restrictions attached to the information to be broad
cast. Moreover, in a commercial environment it is often
desirable to o ffer the service only to paying customers. To
enable such control over the dissemination of information.
we encrypt all data blocks that are intended for a restricted
audience.

A. The Encryption Protocol

Each block is encrypted using a combination of a master
key and a randomly generated data block key. The data
block key is different for each data block, and is trans
mitted along with it. The master key is secret: it is made
available only to the legitimate users of the service. In
practice, we employ a table of master keys, identified by
number. Each encrypted data block carries a number iden
tifying the master key that was used to encrypt it. Unen-

-- - - -- - - -- - - - - - -

G IHO RD er al.: APPLICATION O F DIGITAL BROADCAST _ _ ·:.i.¼UNICATION

crypted data blocks are identified by a key number of zero.
This scheme has the following properties.

• The information that is broadcast can be thought of as
being separated into distinct logical streams, each with its
own master key. Consequently, users can subscribe to
certain services without having access to all services.

• The master key used for the encryption of a certain
information stream may be changed periodically, for exam
ple once a month. Paying subscribers can be provided with
the keys for the duration of their subscription. Since the
key number changes along with the key, the receiver will
automatically switch to the new key whenever a switch
takes place. The key numbers in the table may be reused.

B. The Encryption Algorithm

Because of the hardware limitations of our receiver
stations, we are unable to utilize better-known encryption
techniques such as DES or RSA. Instead, we have imple
mented an algorithm which is very efficient and appears to
afford a level of security commensurate with the value of
the information we seek to protect. At an effective data
rate of 2.2 kbits/ s, the decryption utilizes about 6.8 per
cent of the available CPU time on an IBM PC. (All
performance figures pertain to implementations written
entirely in C.)

Data are encrypted as follows. Without loss of gener
ality, assume that the key number is given, so that the 64
bit master key is known to both sender and receiver. To
encrypt a data block, proceed as follows.

• Generate a random 64 bit key (the data block key). Its
purpose is to ensure that a different key stream will be
generated for each data block that is to be encrypted.
Encrypt- this key with the master key, using some standard
method. The encrypted value will be transmitted along
with the data block.

• Load the data block key into a 64 bit linear feedback
shift register. For implementation efficiency, this register
will be shifted one byte at a time, rather than one bit at a
time (see Fig. 6 and discussion below).

• On each shift of the register, a nonlinear function is
used to obtain a 1 byte quantity based on the contents of
the register. Successive bytes from this stream are used as a
key stream, and are combined with the bytes of the data
stream using XOR, yielding the ciphertext.

The procedure for decryption is identical, except for the
fact that the block key is not randomly chosen; instead, the
value that accompanies the data block is decrypted with
the master key, and loaded into the shift register. Succes
sive outputs of the nonlinear function are combined with
the bytes of the ciphertext using XOR, yielding the original
message text.

The security of the system depends on the period of the
shift register, and on the ability of the nonlinear function
to hide the contents of the register. Fig. 6 shows the
byte-oriented shift register in detail. On each shift, the new
byte in the shift register is obtained by tapping three bytes
from the register, shifting one of them right, shifting another
left, and combining the three resulting bytes using XOR.
The resulting shift register assembly can be pictured as a

9

Fig. 6. The byte-oriented linear feedback shift register.

bank of eight 8 bit shift registers, flanked by two 8 bit shift
registers containing only zeros, where the new bit in each
of the eight registers is an XOR combination of 1 bit from
the previous register, 1 bit from the register itself, and 1 bit
from the next register (with identical tap arrangements for
each register).

The tap positions were chosen to yield the longest period
that could be obtained without shifting the bytes before the
XOR operation. With shifting, the period has consistently
been found to exceed 109

•

The nonlinear filter is currently implemented as follows:
four bytes from the register are combined into two 16 bit
integers, which are multiplied; a single byte is extracted
from the product, and returned. This method may be too
structured to resist cryptanalytic attack. A system based on
noninvertible table lookups may be more secure.

V. IMPLEMENTATION EXPERIENCE

In this section, we describe our experiences in imple
menting the software of the receiver station on the IBM
PC.

Throughout the design, we were constrained by the
limited capabilities of contemporary personal computers
(as embodied in the IBM PC). These limitations appeared
in several areas.

1) Processing Power: It is essential that the system be
able to keep up with transmissions: receiving characters,
unstuffing control characters, checksumming packets,
copying them into the data block buffer to assemble data
base entries, decrypting database entries, and matching
them against the user-specified filter. We found that without
resort to Assembly language programming, we were able to
operate at a sustained data rate in excess of 4.8 kbits/ s,
except as indicated below. Responding to user queries did
not significantly contribute to the computational load on
the system.

2) Disk Access: The ultimate purpose of the software is
to store database entries on the disk, and to read them
back for display on request. We found that ordinary disk
operations, such as opening a file, took several seconds.
This posed a problem in the processing of incoming en
tries: while an entry is being saved on disk, the memory
holding the entry cannot yet be released for incoming data,
nor is the CPU available to process incoming data (except
for individual characters, which are handled at interrupt
level). Thus, a backlog of incoming data is created whenever
an entry is written to disk or read from disk, or whenever
the system state is checkpointed. Despite a buffer of 5000

bytes, capable of holding about 10 s worth of data, and
despite a design that initiates a checkpoint only when the
system is idle and the input buffer empty, packets are
occasionally lost when the input buffer overflows. Due to
error correction, this does not necessarily lead to loss of
data.

3) No Multitasking with the Operating System: Some of
the problems cited above would be alleviated if a user
program could continue to run while a disk access is in
progress. Unfortunately, the operating system does not
allow this.

4) Disk Size: At present, a floppy disk can hold only
about 320 kbytes. The object module and the on-line
documentation file occupy about 70K. This leaves room
for just about 40 average-size newspaper articles. We de
cided not to maintain a full-text index into those articles in
part because of storage limitations. As more PC's become
equipped with hard disks, this limitation will disappear.

5) Operating System Flexibility: The operating system
does not facilitate integration of the receiver software into
existing programs beyond the interface offered by the file
system. Thus, our system has to provide all the functions
that a user might desire, including performance analysis,
building indexes to the database, and so on.

Despite these constraints, we feel that the system we
have built is very usable. The most important performance
problem in our first prototype was the delay due to disk
access when reading files for display at the user's request.
This has been remedied through the use of read-ahead and
caching. Response times are now as follows:

• to create a menu of 5 database entry summaries and
display it: < 0.5 s

• to create a menu of 25 database entry summaries and
display tfie first page: < 2 s

• to fetch the first page of an article from the disk:
< 3.5 s

• to display subsequent pages: < 0.5 s each provided
read-ahead has quiesced.

VI. SUMMARY

We have outlined a new type of mass communication
that uses broadcast digital communication to transmit in
formation of general interest to a very large user popula
tion at a low cost. Personal computers are used to isolate
users from the time of transmission, to filter the incoming
information, and to maintain a personalized database.

Our plans call for the addition of two-way communica
tion between users and the central system to give users
access to specialized and historical information as well as
for interactive services. The two-way communication facili
ties will be integrated into our existing personal database
system. Thus, users will not necessarily need to know
whether their query is being processed locally or whether it
has been forwarded to the main system.

This project brings together research from several disci
plines. Based on the goals we outlined (Section I), we

designed a database system that provides a hybrid of
free-text and menu-based access (Section II). To deliver
information reliably to remote computers over an unreli
able broadcast channel, we use a parameterized communi
cation protocol that incorporates packet-level redundancy
(Section Ill). For one particular communication channel,
we.showed how to choose the parameters for the broadcast
protocol by optimizing an objective function. For a given
data block size the optimal packet size and number of
packet transmissions depend on the error characteristics of
the channel. Because the system uses broadcast communi
cation, we have adopted a protection system based on
encryption to allow fine grained access control (Section
IV). We needed a bulk encryption algorithm that was
reasonably secure yet that was efficient enough to be
implemented in software on contemporary personal com
puters. The method that we chose uses a linear feed back
shift register with a nonlinear output stage. Finally. we
discussed our implementation experience (Section V). De
spite the hardware limitations of contemporary personal
computers, we feel that we have produced a very useful
system, and technological advances will allow us to im
prove our user interface and maintain a larger local data
base.

Looking toward the future, we can see that the technol
ogy that we have used-digital mass communication and
personal computation-can be employed for many appli
cations in addition to home and business information
services. One can imagine cars equipped with computers
for monitoring traffic conditions, street corner kiosks that
provide up-to-date information on community events, and
electronic mail delivery to portable computers.

REFERENCES

[l] H . Anderson and R. Crane, '"A rcchnique fer digital information
broadcasting using SCA channels." IEEE Trans. Broadcast .. vol.
BC-27. pp. 65- 70. Dec. 1981.

[2] R. D. Bright. " Prestel- The world's first public viewdata service."'
IEEE Trans. Consum. Electron .. vol. CE-25. pp. 251- 255. July I 979.

[3] M. Lesk. "Combining data bases: National and cartographic file~ ...
in Proc. Office Automation Conj.. San F rancisco, CA. Apr. 5-7.
I 982. pp. 415- 426.

[4] Videotex S tandard: Presentation Lepe/ Protocol. AT&T. Rell Sy~t ..
Parsippany, NJ, May 1981.

[5] N . E. Tanton. "Teletex-Evaluation and potential," !EtE Trans.
Consum. Electron. , vol. CE-25. pp. 246- 250, July 1979.

David K. Gifford (S"78- M'81) received the Ph.D.
degree from Stanford University. Stanford. CA.
in 1982.

Since 1982 he has been with the Massachusetts
Institute of Technology. Cambridge. where he is
an Assistant Professor of Computer Science.
From 1978 to 1982 he was with the Xerox Palo
Alto Research Center. Palo Alto. CA. His re
search interests include computer systems and
programming systems.

Dr. Gifford is a case study editor of the Com
munications of the A C M, and a member of the Association for Computing
Machinery.

GIFFORD et al.: APPLICATION OF DIGITAL BROADCAST COM.>.ruNICATlON 11

John M. Lucassen (M'84) received the S.B. and
S.M. degrees in computer science and engineer
ing from the Massachusetts Institute of Technol
ogy, Cambridge, in 1983, based in part upon
research done at the IBM Thomas J . Watson
Research Laboratory, Yorktown Heights, NY.

He is currently working toward the Ph.D. de
gree in computer science at the Laboratory for
Computer Science at M.I.T. His interests include
systems, programming languages, speech recogni
tion, and policy issues.

Stephen T. Berlin received the B.A. degree in
mathematics from Wesleyan University, Middle
town, CT, in 1979.

He has been a researcher in the Laboratory for
Computer Science at the Massachusetts Institute
pf Technology since 1981.

Mr. Berlin is on the Board of Directors of
Computer Professionals for Social Responsi
bility.

Also published in IEEE Journql on Selected Areqs in Communicqtion~. Yol. SAC-3,
No. 3, May 1985.

