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Abstract 

This paper describes our experience 
implementing CES, a distributed Collaborative 
Editing System written in Argus, a language that 
includes facilities for managing long-lived 
distributed data.. Argus provides atomic actions, 
which simplify the handling of concurrency and 
failures, and mechanisms for implementing 
atomic data types, which ensure serializability 
and recoverability of actions that use them. This 
paper focuses on the support for atomicity in 
Argus, especially the support for building new 
atomic types. Overall the mechanisms in Argus 
made it relatively easy to build CES; however, we 
encountered interesting problems in several areas. 
For example, much of the processing of an atomic 
action in Argus is handled automatically by the 
run-time system; several examples are presented 
that illustrate areas where more explicit control 
in the implementations of atomic types would be 
useful. 

1. Introduction 
~ distributed configurations of high-powered 

workstations connected by networks become 
prevalent, tools for writing distributed programs 
take on increasing importance. This pa.per 
describes our experience implementing CES, a 
distributed Collaborative Editing System. CES 

Ke y Words: CES, Collaborative 
Ed iting, Argus, Atomic Data Ty~es 

was written in Argus, a language that was 
designed to support the construction of reliable 
distributed programs. Argus provides atomic 
actions, which simplify the handling of 
concurrency and failures. Atomicity is ensured 
by atomic data types; Argus provides some built
in atomic types, along with mechanisms to permit 
users to build new atomic types. Our focus in 
this paper is on the support for atomicity in 
Argus, especially the support for building new 
atomic types. Our goal is to evaluate the 
expressive power provided by Argus and to 
develop a better understanding of the 
requirements of distributed applications. 

Our analysis of Argus is based on three 
examples taken from CES, a collaborative editing 
system developed by the second author [14]. We 
originally chose Argus as an implementation 
language for CES because it provides a fast 
prototyping environment that would allow us to 
test our cerauthorship system on real users, and 
then refine the design based Qn their input. 
Argus did prove to be an excellent development 
and debugging environment: the system manages 
network communications and installation of 
processes at remote sites, and provides a powerful 
set of distributed debugging tools. In addition, 
atomic actions proved to be v~ry convenient for 

1This research was supported in part by the Advanced 
Research Projects Agency of the Department of Defense, 
monitored by · the Office of Naval Research under 
Contract Number N00014-83-K-0125, and in part by the 
National Science Foundation under grant DCR-8510014. 
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controlling concurrency and handling failures 
such as site crashes. 

Although many aspects of Argus proved 
extremely useful, we encountered interesting 
problems in several areas. A question raised by 
all three examples is how much of the processing 
of an atomic action should be done automatically 
by the language and run-time system, and how 
much should be coded explicitly by the 
programmer. For example, no user code runs in 
Argus when an action commits or aborts. The 
examples below illustrate that the lack of explicit 
control over parts of action processing can lead to· 
program structures that a.re awkward, indirect, or 
inefficient. 

Another problem involves the way in which the 
Argus system propagates information a.bout the 
commits and aborts of multi-site atomic actions 
from site to site. This problem is illustrated by 
the second example below. In this case it appears 
that the current semantics of Argus make it 
impossible to meet plausible application 
requirements. 

A third area. in which we encountered problems 
is performance. In our initial experiments with 
the editor, response time was slow enough for the 
editor to be unusable in realistic testing. When 
we ran the editor on machines with more physical 
memory, however, we found that response time • 
was sluggish, but the editor was usable. Thus, it 
appears that inadequate physical memory was 
one of the main ca.uses of the initial perf orma.nce 
problems. The sluggish response time when 
running with adequate physical memory can be 
attributed to a number of ca.uses. For example, 
the current Argus implementation is an untuned 
prototype that is built on top of a kernel that in 
many ways is not well suited to its needs. Also, 
the structure of the editor itself may be a source 
of some overhead. For example, the editor 
checkpoints changes to stable storage every few 
keystrokes. Most editors in use today save 
buffers to a. file much less frequently than every 
r ew keystrokes, so perhaps it is not surprising 
that CES appears somewhat sluggish in 
comparison. The current implementation of 
stable storage may intensify this problem, since 

stable storage is accessed across a network, more 
than doubling the access time [11]. As of t his 
writing, we are in the process of conduct ing 
further experiments to gain a better 
understanding of the precise causes of the 
performance problems. 

In the next section we provide an overview of 
Argus, focusing on the aspects that a.re most 
relevant to our examples. In Section 3 we 
describe the functionality of the collaborative 
editing · system and the organization of its 
implementation. Next, in Section 4 we present 
three examples - display management, version 
stacks, ~d document management - that 
illustrate_. the problems mentioned above. We 
a.ls6 discuss possible solutions. Finally, in Section 
5 we summarize our conclusions and make some 
suggestions for further work. 
2. An Overview of Argus 

Argus is a programming language designed to 
support the construction of reliable distributed 
systems. It is targeted primarily at applications 
in which the manipulation and preservation of 
long-lived online data are of principal importance. 
.CES is one such application; others include 
banking systems, airline reservation systems, 
data.base systems, and various components of 
opera.ting systems. A major issue in such systems 
is preserving the consistency of online data in the 
presence of concurrency and hardware failures. 
Argus provides mechanisms, discussed below, to 
help the programmer cope with concurrency and 
failures. It is based on CLU [10]; as with CLU, 
abstraction, especially data abstraction, plays a 
key role in the methodology Argus is designed to 
support. 

2.1. Guardians 
A distributed system in Argus is composed of a 

collection of guardians. A guardian is a resource 
that is resilient to crashes and that can be 
accessed using remote procedure calls. The 
dermition of a guardian includes several 
components: 

• variables, which refer to objects that 
represent the state of the guardian; 



• creators, which are used to create new 
instances of the guardian; 

• operations (called handlers), which 
can be invoked by other guardians to 
examine or modify the state of the 
guardian, and which are the only 
means by which one guardian can 
manipulate another guardian's state; 

• a background process, which can be 
used to perform periodic tasks; and 

• recovery code, which is used to restore 
the guardian to a consistent state 
after a crash. 

The background process in a guardian is started 
automatically when the guardian is created and 
when it recovers Crom a crash. 

A guardian's variables can be designated as 
either stable or volatile. Objects reachable Crom 
the stable variables are kept on stable storage [7], 
which is extremely likely to survive site failures. 
When a guardian's site crashes, its stable 
variables are restored Crom stable storage. The 
volatile variables are useful for redundant 
information, like an index for a database, that is 
easy to reconstruct after a crash. After a crash 
and before the background process or handlers · 
are allowed to run, the recovery code in a 
guardian reinitializes the volatile variables. 

A guardian can be viewed as a kind of virtual 
node. Each guardian has a separate address 
space of objects (similar to a CLU or Lisp heap). 
These objects are completely local . to their 
guardian; other guardians can access them only 
through their guardian's handlers, which are call 
using remote procedure call. Arguments to a 
remote procedure call are passed by value, so 
that there is no direct sharing between the 
address spaces or distinct guardians. Data can be 
shared among sites, however, at the level of a 
guardian. A guardian is itself an object; the 
value or a guardian is simply its name, so passing 
a guardian as an argument of a remote procedure 
call makes it possible for the receiver of the call 
to access the guardian. 

2.2. Atomic Actions 
Concurrency and failures can be handled in 

Argus by making the activities that use and 
manipulate data atomic. Simple syntax is used 
to indicate that a sequence or statements should 
be executed atomically. Atomic activities, or 
actions as they are called in Argus, were first 
identified in work on data.bases. Actions are 
characterized by two properties: serializability 
and recoverability. Serializability means that 
the concurrent execution of a. group of activities 
is equivalent to some serial execution of the same 
activities. Recoverability means that each 
activity appears to be all-or-nothing: either it 
executes successfully to completion (in which case 
we say that it commits), or it has no effect on 
data shared with other activities (in which case 
we say that it aborts). 

Atomicity simplifies the problem of maintaining 
consistency by decreasing the number of cases 
that need to be considered to understand the 
behavior of a. program. Since aborted activities 
have no effect, and every concurrent execution is 
.equivalent to some serial execution, consistency is 
ensured as long as every possible serial execution 
of committed activities maintains consistency. 
Thus, atomicity simplifies the visible failure 
modes of a. system, and makes it possible to 
ignore concurrency when checking for 
consistency. 

Atomicity ensures that if an activity cannot 
complete successfully, it can abort and have no 
effect. To ensure that the effects or committed 
actions survive site crashes, the state of a 
guardian is kept on stable storage. The Argus 
system ensures that modifications made by an 
action to any objects accessible through the 
stable variables or a. guardian are saved on stable 
storage before the action commits. 

Argus also supports nested actions ( or 
subactions ), which can be used to obtain 
concurrency within a single action and to isolate 
the effects of failures. For example, a remote 
procedure call in Argus is executed as a. suba.ction 
or the calling action; as a result, the call appears 
to occur exactly zero or one times. If a failure 
occurs during the call and ca.uses the call to be 



aborted, the calling action need not be abo_rted. 
Instead, it can try an alternative if one exists. 

The main difference between a top-level action 
(one with no parent) and a subaction is that 
when a subaction commits, its effects need not be 
saved on stable storage. Instead, if a crash 
causes the effects or a committed subaction to be 
lost, the effects or the subaction can be undone 
everywhere by aborting the action's parent or 
some other ancestor. A two-phase commit 
protocol is used when a top-level action commits 
to ensure that the effects or the action and all its 
descendants are saved on stable storage before 
the action commits; if some or the eCCects have 
been lost in a crash, the action is Corced to abort. 

2.3. Guardians versus Clusters 
Argus provides two mechanisms Cor 

implementing data abstractions. The cluster 
' borrowed from CLU, is used to implement a data 

type each or whose objects belongs to a single 
guardian. A cluster consists or. a description or 
the new type's representation, along with 
implementations for each or the operations 
provided by the type. A cluster's operations are 
called using local procedure call: arguments are 
passed by sharing (as in CLU and Lisp), the call 
executes in the same guardian as its caller, and 
no subaction is created for the call. A cluster's 
objects cannot be the target or remote procedure 
calls. 

· A guardian also implements a kind of data 
type. It differs Crom the data types implemented 
by clusters in that its objects are always remote, 
and its operations are called using remote 
procedure call. Since remote access is likely to be 
significantly more expensive than local access, the 
designer or a distributed application will have to 
think carefully about the distribution or data in 
the system. Thus, the primary difference 
between a cluster and a guardian - one provides 
local objects, and the other remote objects -
arises naturally in the design or a distributed 
system. Other difrerences between guardians and 
clusters, however, can force a designer to use a 
guardian where a cluster might be more 
appropriate. For example, a guardian can be 
active, in the sense that it can have a background 

process. However, there is no similar way of 
obtaining a process for a local object. A guardian 
can also include recovery code for restoring its 
representation to a consistent state after a crash; 
no similar capability is available for a cluster. 
The examples below illustrate the problems 
caused by these differences between guardians 
and clusters. 

2.4. User-deimed Atomic Data Types 
Atomicity of activities in Argus is ensured by 

atomic data types, whose operations provide 
appropriate synchronization and recovery for 
actions using objects or the type. 
Synchronization for the built-in atomic types in 
Argus is accomplished using strict two-phase 
locking [2, 8] with read and write locks. The 
usual semantics applies: read locks can be 
shared, but write locks conflict with read and 
write locks. Recovery for the built-in atomic 
types is ensured by making a copy of an object 
the rirst time an action executes an operation 
that changes the object's state, and then making 
any changes on the copy. Ir the action aborts, 
the copy is discarded; if the action commits, the 
original version is discarded and replaced with 
the changed copy. 

The built-in types permit relatively little 
concurrency among actions. Argus also provides 
mechanisms for implementing new, highly 
concurrent atomic types [20] . These mechanisms 
are "implicit," in the sense that no user code is 
run when actions commit and abort. Instead, 
synchronization and recovery must be 
accomplished by including some built-in atomic 
objects at some level or the representation of a 
user-dermed atomic object. 

One important question in the design or a 
language for distributed programs is how much or 
the proces.5ing or an atomic action should be 
handled automatically by the system and how 
much should be handled explicitly by the 
programmer. The Argus system handles many 
things automatically: it keeps track of the sites 
visited by an atomic action and the objects used 
at each site, it handles the details or the two
phase commit used to ensure that the outcome of 
the action is recorded consistently at all sites, 



and it manages the locks and versions for built-in 
atomic objects. It is clear that the programmer 
does not want to handle most of these issues; for 
example, the details of the two-phase commit 
protocol and keeping track of the sites visited by 
an action a.re easily handled by the system, and 
there is no apparent reason for letting the 
programmer handle them more directly. 
However, the examples below show that more 
explicit control over the processing or commits 
and aborts a.t ea.ch object (i.e., lock and version 
management) would be useful. 

Weihl [18, 19] has already observed some 
limitations or Argus's implicit handling or 
commits and aborts, and has proposed an 
alternative structure in which the programmer 
can provide explicit commit and abort operations 
as pa.rt of the implementation of a data. type. 
Ea.ch operation on the type must inform the run
time system when an action uses an object; when 
the action later commits or aborts, the system 
invokes the commit or abort operation as 
appropriate. The problems with Argus's implicit 
approach illustrated by the first two examples 
below are nicely solved by Weihl's approach. 
The examples also illustrate other areas where 
more explicit control might be useful. 
3. Distributed Editor: 

Functionality and Design 
CES is a document editor that supports the 

collaboration by a group of authors on a shared 
document. A CES document consists of a. 
structural component, viewed by the author as an 
outline, and a set or textual components, referred 
to as the document "nodes". The nodes a.re 
arbitrarily sized blocks of text. A readable view 
or the document is built by ordering the nodes 
according to the outline in the structural 
component. The operations in CES extend those 
or a conventional real-time editor with functions 
for creating and manipulating structured 
documents and for modifying the structure of a 
document indeoendently of the text. 

CES is meant to be used in a. distributed 
environment and allows sharing of documents 
among multiple authors. Ea.ch document node is 
"owned" by an individual author. All authors 

share access to the document structure, but each 
is the primary author for his own nodes. An 
author's nodes reside at his own machine, so that 
the text of the document is physically distributed 
across all machines of all co-authors. To improve 
availability, a. copy of a document's structure is 
kept at all of the sites with access to the 
document. The copies of this replicated data. are 
kept consistent a.s users make local changes. 

While authors a.re working on separate nodes of 
the document, all can be working independently. 
An author can read any node of a document at 
any time. If someone else is writing that node, 
the reader will see a slightly out-of-date version 
of the node - CES coordinates the author's 
activities and tries to minimize the delay in 
making new versions available for reading. If two 
or more authors try to write in the same node at 
the same time, synchronization facilities are 
invoked to prevent inconsistencies in the text by 
locking out all but one author. 

The nature of this application is such that an 
author could accidentally keep a document 
section locked for an arbitrarily long time. For 
example, he might receive a phone call and stop 
editing for a while. To protect against 
unintentional holding of locks, "tickle" locks 
were designed to be held r or as long as some 
editing activity continues, and to be released if 
requested by a co-author after an idle period. 
Rather than abort changes made by the original 
holder of the lock, small actions are committed 
during the time that the lock is held, a.nd all of 
these actions remain visible when the tickle lock 
is released. The correct scope of such small 
actions may vary for different situations and 
different users [3]. The system currently commits 
user activities after certain "significant" editing 
commands such as word deletions a.nd carriage 
returns. 

When authors find themselves examining the 
same node of a. document, they may want to 
coordinate their work more closely, perhaps even 
shifting into a real-time meeting [12, 13] in which 
a group of co-authors talk to ea.ch other over a 
voice connection while viewing the document on 
their individual screens. To support this, we do 



not prevent reading of text that is being 
modified. Instead, screens of all readers are 
updated at regular intervals as each small action 
commits. 

4. Examples from the Editor 
In this section we present three examples of 

user-defined data types to illustrate the problems 
we encountered in using Argus to build CES. In 
the first example, the physical screen is 
encapsulated in an abstraction whose job is to 
refresh the screen when an action that wrote on 
the screen aborts. The techniques available in 
Argus for detecting that an action has aborted 
and then taking appropriate action are indirect 
and awkward to use. A user-defined abort 
operation would give a simpler and more direct 
solution. The first example also illustrates a 
problem arising from the differences between 
guardians and clusters. A guardian can have a 
background process, but there is no simple way of' 
associating a background process with a local 
object. 

In the second example, we consider a data type 
designed to permit a high level of concurrency 
among users or a document. As in the first 
example, the implicit handling or commits and 
aborts leads to awkward program structures that 
could be avoided by using a more explicit 
approach. In addition, the way in which Argus 
propagates information about the commits and 
aborts of actions from site to site does not 
provide a sufficiently strong semantics to permit 
us to meet certain application requirements. 

In the third example, we consider a large data 
structure that is kept on stable storage. Because 
stable storage is relatively slow, it is important to 
minimize the amount or data written to stable 
storage as part of the commit or each action. 
Argus permits objects to be designated as either 
stable or volatile, however, only at the level of a 
guardian; if a local object is designated as stable, 
then its entire representation is kept on stable 
storage. In addition, recovery code to reconstruct 
or reinitialize the volatile parts or an object can 
only be provided for a guardian. This example 
suggests that these facilities would also be useful 
in a cluster. 

4.1. Dis~laying Text 

The display buff er and the physical screen for a 
CES user are encapsulated in a single abstract 
object, the display. The job of the display object 
is to keep the screen consistent with the contents 
of the buffer. As a user edits a document, the 
objects representing the document are modified. 
At the same time, text is written to that user's 
display buffer, and a side-effect is made v~ible to 
the user: text appears on the screen. This 
immediate feedback is required to keep the user 
apprised of the system's response to keyboard 
input. Each change to the document (and the 
corresponding change to the display) is made as 
part of an atomic action. A user sees his changes 
on his screen as he types characters; however, if 
several users are editing the same document, one 
user's changes do not become visible to other 
users until the atomic action in which they are 
made commits. Ir this atomic action instead 
aborts, it is necessary to restore the first user's 
screen to its state at the start of the action. To 
accomplish this, we need to be able to detect that 
an action has aborted and to take appropriate 
action to refresh the screen. Since no user code 
runs when an action commits or aborts, indirect 
methods must be used to detect aborts . . 

The display object is implemented as an Argus 
guardian. The state of the display guardian 
includes two counters. The first, the 
commit_count, is used to keep track of the 
number of actions that have used the display and 
committed. The second, the action count is - ' 
used to keep track of the number of actions that 
have used the display, regardless of whether they 
committed or aborted. The state of the guardian 
also contains a lock that is acquired by every 
action that uses the display, and released when 
the action commits or aborts. Ir the 
action_count is greater than the commit_count, 
then either some action is currently using the 
display or some action used the display and 
aborted. We can tell whether an action is 
currently using the display by testing the lock in 
the guardian's state. Thus, we can detect that 
an action has used the display and aborted. 

The background process in the display guardian 



is dedicated to the task of checking for aborted 
actions and, if necessary, refreshing the screen. 
When an abort is detected and the screen has 
been refreshed, the action_count and 
commit_count are reset to indicate that all 
aborts have been processed. 

Unfortunately, the only way for the background 
process to detect aborts in Argus is for it to busy
wait, checking periodically whether an abort has 
occurred. To avoid the overhead of busy-waiting, 
we added a new type, called a trigger _queue, to 
Argus. A process can call an operation to wait 
on a trigger_queue, causing the process to be 
blocked until another process calls an operation 
to wake up the waiting process. (This data type 
could not be implemented in the language itself, 
since Argus contains no primitives that permit 
one process to wake up another process. We will 
return to this issue in 8ection 4.4.) 

The trigger_queue is used in the following 
manner to avoid busy-waiting. The background 
process in the display guardian begins by waiting 
on a trigger_queue. When an action invokes a 
handler to use the guardian, it acquires the lock 
in the guardian's state, and then wakes up the 
background process. When the background 
process is scheduled to run (which might be 
immediately after it is awakened and might be at 
some later time depending on how the system 
happens to schedule processes), it also attempts 
to acquire this lock. If the handler action has not 
yet committed or aborted, the background 
process will be blocked, waiting for the lock, until 
the action (not just the handler) completes. If 
the action has completed, the background process 
checks whether the action had aborted, and if so 
it refreshes the screen. It then waits again on the 
trigger_queue. With this program structure, the 
background process only wakes up when a 
handler action starts to use the guardian, and 
only checks whether an action has aborted after 
the action has actually completed. Thus, the 
likelihood that the background process will do 
unnecessary work is significantly less than it 
would be if we used busy-waiting. 

Using a background process to detect aborts, 
however, has other problems besides the overhead 

of busy-w~ting. First, in Argus a background 
process can only be defined as part of the 
background code of a guardian. This makes it 
difficult to encapsulate the entire implementation 
of a type whose objects need a background 
process in a single module, unless that module is 
a guardian. In other words, it is difficult to build 
a cluster-based type, whose objects are local to a 
guardian, and associate a background process 
with each of the type's objects. 

In the prototype of CES that was built, the 
display abstraction is a guardian, but this choice 
would have to be reconsidered to permit more 
flexible use of windows on the display. We might 
desire to manage each window on the display 
separately. Each window should be a local object 
in a single screen manager, so we would define a 
cluster-based window data type to handle 
window management. If, however, we need to 
use a background process to detect the aborts of 
actions that use windows, each window object 
must be known to some background process in 
the guardian. This means that any code that 
creates a window object must also record the 
object in some global data - structure in the 
guardian so that the appropriate background 
process can find it. Furthermore, the window 
abstraction must provide operations that permit 
a background process to detect aborted actions 
and refresh windows on the screen. The 
modularity of the system would be improved if 
these details of using windows were hidden from 
their users. 

Second, there are timing problems with using a 
background process to detect aborts. If the 
background process does not wake up 
immediately after an action that used the display 
aborts, another action might attempt to use the 
display before the background process detects the 
abort and refreshes the screen. This means that 
each action that uses the display must check 
before updating the screen whether an earlier 
action had aborted, and then refresh the screen if 
necessary. We cannot eliminate the background 
process, however, since if no new action attempts 
to use the display for a long time, we need the 
background process to ensure that the screen is 



refreshed quickly. Thus, responsibility for 
detecting aborts and refreshing the screen cannot 
be allocated to a single piece o( code or a single 
process. 

The ability to associate a background process 
with a. local object within a guardian, rather than 
just with the guardian itself, would a.void the 
modularity problems discussed a.hove. However, 
the timing problems would not be solved. In 
addition, using a background process for each 
window object could be a. source or perCorma.nce 
problems. 

Ir the programmer could derme explicit commit 
a.nd abort operations as pa.rt or the 
implementation or each type, the abort operation 
could refresh the screen as needed. With this 
approach, there would be no need Cor a. 
background process or Cor busy-waiting; instead, 
the abort operation would run only when needed. 
The modularity problems with multiple windows 
would be avoided, since there is no need for a 
background process, a.nd hence no need for 
coordination between the window type a.nd the 
guardian in which it is used. The timing 
problems mentioned above would also be a.voided 
iC the commit and abort operations explicitly 
release locks, rather than having the system 
release locks automatically a.s is currently the 
case in Argus. 

4.2. Version Stacks 
CES maintains a stack or versions or each 

document node a.s it is modified by the various 
co-authors. The version stack is used to log 
changes by different authors a.nd to allow a.n 
author to back up to a previous version. Each 
version stack provides operations to push a new 
version onto the stack, to pop a version oCC the 
stack, to read the top or the stack, and to reset 
the stack (flushing the current contents and 
pushing a single new entry). A checkpoint can be 
taken by pushing a new version onto the stack 
a.nd then modifying that version; operations since 
the la.st checkpoint can be undone by popping the 
top version off the stack. Version stacks a.re 
atomic, so modifications to a. version stack do not 
become permanent until the action that made 
them commits. Thus, until an action commits, 

changes made by the action can be undone 
simply by aborting the action. The backup 
capability provided by a version stack is use(ul 
for undoing a sequence or operations that is 
longer than a sinide atomic action. 

One or the goals or CES is to permit each 
author to read the entire document, even while 
other authors a.re editing parts or the document. 
Each author would like to see recent changes 
made by other authors. However, if one author is 
in the middle or some changes to a node, other 
authors should not be permitted to read what 
might be an inconsistent state or the node. In 
such a situation authors read a version that is 
not being modified by another author but is as 
close to the top a.s possible. An extra. operation 
on version stacks, f asttop, is provided (or this 
purpose. The specification or the Ca.sttop 
operation is nondeterministic: the version 
returned is not necessarily the top one, but is 
guaranteed to be no older than one returned in a 
previous call unless there ha.s been a.n intervening 
pop or reset operation. This specification permits 
more concurrency among actions than would an 
ordinary "top" operation. In particular, one 
action ca.n execute Ca.sttop while another action 
executes push or pop a.s long a.s the version 
returned by Ca.sttop is not the pushed or popped 
version. 

The implementation or the version stack follows 
the paradigm for highly concurrent atomic types. 
in Argus, such as the semiqueue type, defined in 
[20]. The representation or a version stack 

consists or a non-atomic sequence or atomic 
objects. The non-atomic sequence object in the 
representation is used to achieve the concurrency 
permitted by the type's specification; the 
existence or this non-atomic object in the 
representation is not visible outside the 
implementation, so at the abstract level version 
stacks appear atomic to their users. The objects 
in the sequence must be atomic objects to ensure 
that modifications made by aborted actions 
appear to be undone. 

When a.n action modifies a. version stack, it may 
simply modify an atomic object in the 
representation of the stack ( e.g., when popping a 



version off the stack), or it may create a new 
atomic object and add it to the sequence (e.g., 
when pushing a new version onto the stack). If 
the action later aborts, any modified atomic 
objects are restored to their previous states. 
Modifications to t he non-atomic sequence, 
however, are not undone. Instead, the atomic 
objects added to the sequence by the aborted 
action are placed in a state that allows other 
actions to detect that the objects' creator 
aborted, and to act as if they were not present in 
the sequence at all. 

In implementing the version stack, we 
encountered two problems. The first is once 
again related to the inability to write explicit 
commit and abort procedures for new types. The 
second involves t he way Argus propagates 
information about aborts and commits of actions 
from site to site. 

The first problem is that the representation of a 
version stack gradually accumulates objects that 
do not represent useful data. For example, as 
mentioned above, when an action adds a new 
atomic object to the representation and then 
aborts, the atomic object is no longer needed. 
However, it still uses space in the representation. 
To prevent the representation of a version stack 
from growing arbitrarily large with such useless 
components, it is necessary to find and discard 
such _gbjects. 

This kind of garbage collection of 
representations is typical of implementations of 
user-defined atomic types in Argus; we have 
observed it in many other examples ( e.g., 
see [18, 201). It can be accomplished by cleaning 
up the representation as part of some or all of the 
operations on the object, or by using a 
background process that performs this task 
periodically. Using a background process for this 
purpose has the same problems as for detecting 
aborts. Cleaning up the representation a.s pa.rt of 
the operations, however, al.so has problems. 
Scanning the representation to (ind useless 
components imposes some overhead, so it should 
not be done too frequently. It should al.so not be 
done too infrequently, however, since then the 
representation will grow and the operations will 

take longer to run. It can be difficult to decide 
how frequently, and a.s part of which operations, 
this cleanup task should be performed. Using 
Weihl's alternative approach, in which the 
programmer provides commit and abort 
operations that are executed automatically by t he 
system, it is possible to remove data from the 
representation of an object exactly when it is no 
longer needed, rather than having to notice at 
some later time that the data is no longer needed 
and then discard it. 

The second problem reveals itself in some 
surprising behavior visible on the screen to end
users of CES. Suppose the user is working on one 
machine, and part of the document library is 
stored on another machine. The user could make 
a change to a document node stored on the 
second machine in one action. Once that action 
has committed, the user could ask to see that 
pa.rt of the document ( using the f asttop 
operation). If the machine on which the 
document node is stored does not yet know that 
the rust action committed, the fasttop operation 
might return an older version of the node. The 
user knows that the node has been changed and 
that the modifications have been committed, but 
until the commit event is known at all machines 
involved he may see information that is out of 
date. 

The delays that result in this behavior are due 
to the way in which commits and aborts of 
actions are processed by the Argus system. 
When an action commits or aborts, the event is 
recorded locally on the machine where the action 
is running, but is not necessarily communicated 
immediately to other machines at which the 
action (or its subactions) might have run. If the 
action holds a lock on other machines and 
another action tries to acquire the lock, the Argus 
system will send query messages to other 
machines to rtnd out the outcome of the action 
holding the lock. Ir the action that tries to 
acquire the lock uses an operation that tests the 
lock but does not wait for it, however, the action 
will be told that the lock is unavailable. Such 
tests are common in implementations of user
dertned atomic types; for example, the fasttop 



operation scans the representation of the version 
stack looking for a component atomic object that 
is not locked. 

There are two ways in which the semantics of 
Argus could be changed to solve this problem. 
One is to change the operation that tests whether 
a lock is held so that rather than always 
returning immediately, it waits until it receives a 
message in response to its query. This response 
could indicate that the action that holds the lock 
is still active, or that it has committed, or that it 
has aborted. Ir the action has committed or 
aborted, the lock can be released in the 
appropriate manner. Ir the action is still active, 
then the action that is testing the lock should be 
informed that the lock is still held. The problem 
with this approach is that the delay until a 
response is received could be long. Furthermore, 
it is difficult to know how long to wait before 
deciding that the other machine must be down or 
that the network must be broken. In addition, if 
we decide to stop waiting, it is not clear what 
answer to give the action that is testing the lock. 

The second solution is to require that 
information about commits and aborts be 
propagated among ma.chines more quickly. We 
could require that if there is a. cha.in of events 
lea.ding from the commit or abort of a.n action to 
a. test for a. lock held by. that action, then the test 
must indicate tha.t the lock is no longer held. (By 
"chain of events" we mean events connected by 
the "happens before" relation of [6], and 
including events on a single ma.chine and 
messages over the network.) The difficulty with 
this approach is that it is not clear whether it can 
be implemented efficiently enough. It appears to 
require that each ma.chine keep track of all the 
actions known by it to have committed or 
aborted, and tha.t this information be propagated 
on all messages. 
4.3. Document Library 

As mentioned earlier, a CES document consists 
of a structural component, viewed by the author 
as an outline, and a set of textual components, 
referred to as the document "nodes". The nodes 
are arbitrarily sized blocks of text. The CES 
document library is a collection of documents 

whose storage is distributed among guardians on 
each author's site. In each guardian, the contents 
of the library are kept on stable storage to 
protect the data against crashes. Ir an atomic 
action modifies the library, the modified objects 
must be copied to stable storage by the time that 
the action commits. Ir a guardian containing 
pa.rt of the document library crashes, the copies 
of objects on stable storage are used to restore 
the objects to their most recent committed state. 

Stable storage is expensive, and relatively slow 
compared to virtual memory. Thus, it is 
important to minimize the total amount of data 
kept on stable storage, and to copy as little data 
as possible when a given action commits. Argus 
allows objects to be partitioned into pieces that 
are copied to stable storage independently, so 
that only those pieces that are actually modified 
by an action need to be copied when the action 
commits. Also, recall that the state of a guardian 
can be partitioned into stable and volatile 
va.ria.bles, so that information· tha.t can be 
reconstructed after a. crash· need not be kept on 
stable storage. ( or course, there is a trade-off 
here, since reinitializing the volatile variables of a 
guardian ma.y cost more than keeping them on 
stable storage.) 

The representation or a CES document node 
contains several fields: a unique identifier; a 
version stack, which contains old versions of the 
node for backing up over a scope larger than a 
single atomic action; and a tickle lock, which 
consists of the name of the user holding the lock 
and the time at which it was last "tickled." 
Some of this in!ormation does not need to be 
recorded on stable storage. For example, tickle 
locks are intended to be released whenever a 
guardian crashes, so there is no need to record 
the state of a. tickle lock on stable storaJ1:e. 

The mechanisms in Argus can be used to avoid 
writing the entire representation of a node to 
stable storage, but it is awkward to do so. There 
are two poss_ible approaches. The first is to use 
the partitioning of a guardian's variables into 
stable and volatile subsets. Since ea.ch document 
node is identified by a unique identifier, the tickle 
locks for nodes could be maintained in a separate 



table that maps node identifiers to tickle locks 
and is kept in a volatile variable. Whenever a 
node is used, the table or tickle locks in the 
guardian's state must be accessed to check and 
update the node's tickle lock. 

The second approach is to use the mutex type 
in Argus. A mutex object is essentially a 
container Cor another object. The mutex object 
itself performs several functions. First, it can be 
used to ensure mutual exclusion among processes 
using the contained object. Second, each distinct 
mutex object is written independently to stable 
storage. Furthermore, when an action commits, a 
mutex object is only copied to stable storage iC 
the action had executed the changed operation 
(provided by the mutex type) on the object. 
Thus, if we enclose the tickle lock in the 
representation or a document node in a mutex 
object and never call the changed operation, the 
tickle lock will be copied to stable storage only 
once when it is created and never a.Cter that. 

Both or these approaches, however, have 
problems. The problem with the rirst approach is 
that whenever a document node is created, a 
tickle lock must be created Cor it in the 
guardian's table. In addition, whenever the node 
is used, the table must be accessed to get the 
tickle lock. The variables holding a guardian's 
state can be accessed ~irectly by code in the 
guardian, but a.re not accessible to code in other 
modules. Instead, the table must be passed as an 
argument to any code that creates or uses a 
document node. As in the previous example, this 
need to coordinate use or local objects with the 
rest or the code in the guardian leads to a loss or 
modularity. 

The problem with the second approach a.rises if 
a node's tickle lock needs to be reinitialized a.Cter 
a crash. The only way or reinitializing an object 
after a crash is to do it in the recovery code or a 
guardian. This means that a record or all objects 
requiring reinitialization must be kept in part or 
the guardian's state so the recovery code can find 
the objects. As with the first approach, the part 
or the guardian's state recording these objects 
must be passed as an argument to all code that 
creates a document node ( though not to all code 

that merely uses a document node). In fact, 
tickle locks do not need to be reinitialized after a 
crash, so the second approach would work well 
for CES. Nevertheless, we can easily imagine 
situations in which this approach would not 
work. 

The problems illustrated by this example are 
similar to the problem discussed in the previous 
section, in which a background process can only 
be obtained as part of a guardian. Recovery code 
can be written only Cor a. guardian, and objects 
can be partitioned into stable and volatile sets 
only at the top level or a guardian's state. This 
means that it can be difficult to encapsulate all 
details or an object's implementation inside a 
single module, unless that module is a guardian. 
This example suggests that explicit control over 
recovery would be useful in clusters as well as in 
guardians. 
4.4. Summ.ary 

All three examples illustrate problems with the 
support in Argus Cor building user-defined atomic 
data types. The rirst and second examples 
illustrate problems that can be solved by 
providing explicit commit and abort operations as 
pa.rt or the implementation or a data. abstraction. 
The rirst and third examples also illustrate 
modularity problems caused by the diCCerences 
between guardians and clusters. 

We can imagine several possible solutions to the 
problems with crash recovery illustrated by the 
third example. As mentioned earlier, it seems 
worth exploring alternative approaches that 
provide more direct control over how an object is 
stored on stable storage. Approaches that 
obviate the need Cor such fine control are also 
worth investigating; Cor example, it may be 
possible to design a hardware stable storage 
device with access times comparable to virtual 
memory. Ir stable storage were cheap and Cast 
enough, one would not need to be concerned with 
optimizing its use. It may also be possible to 
dispense with stable storage altogether by 
replicating objects on several sites (though such 
an approach may require complicated recovery 
algorithms). It is not clear which of these 



approaches will lead to the simplest and clearest 
programs. 

The problems with propagation of commit and 
abort information illustrated by the second 
example could be difficult to solve. As noted 
above, a naive approach to implementing a 
stronger semantics would require inordinate 
amounts of communication. It is not clear to 
what extent the communication can be reduced. 
As an aside, we note that this problem is similar 
to the orphan-detection problem [17, 9]; similar 
solutions may work here as well. 

The lack in Argus of a primitive for one process 
to awaken another process makes it impossible to 
program a type such as the trigger _queue, and 
thus forces some applications to use busy-waiting. 
A signalling primitive was not included in the 
language primarily because the significant events 
for synchronizing and scheduling atomic actions 
are the completion ( commit or abort) of other 
actions. Since no user code runs when actions 
commit and abort, there is no way for one action 
to signal another when the first action rmishes. 
Weihl's proposal for explicit commit and abort 
operations includes a signalling mechanism that 
provides much finer control over scheduling of 
actions. 
5. Conclusions 

The main features of CES were suggested by 
related work on cerauthorship [1, 16, 4] and on 
systems that support collaboration in other . 
applications such as calendar management [5], 
real-time conferencing [13] and software 
development [15]. Most of the details of the 
design, including the basic structure of 
documents and the user interface requirements, 
were set out before we decided to use Argus. 
Thus the CES experience was not preconceived as 
an Argus-programming exercise and so provides 
an objective test case for that programming 
environment. It is the first large program written 
in Argus. 

The question of how much expressive power to 
provide in a language is always a difficult one. 
Much of the processing of an atomic action in 
Argus is handled automatically by the run-time 
system. The examples above illustrate that more 

explicit control over some aspects might be 
useful. More examples need to be studied to 
decide exactly how much control is needed and 
what form it should take. Nevertheless, the 
examples presented here arose in a real 
application, and thus indicate that serious 
attention should be paid to the problems they 
illustrate. 
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