
J

LABORATORY FOR tt· ~ ~ MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT /LCS/TM-295

ATOMIC DATA ABSTRACTIONS
IN A DISTRIBUTED COLLABORATIVE

EDITING SYSTEM (EXTENDED ABSTRACT)

Irene Greif

Robert Selinger

William Weihl

November 1985

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Atomic Data Abstractions in
a Distributed Collaborative Editing System1

(Extended Abstract)
Irene Greif

Robert Seliger2

William Weihl

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts
Abstract

This paper describes our experience
implementing CES, a distributed Collaborative
Editing System written in Argus, a language that
includes facilities for managing long-lived
distributed data.. Argus provides atomic actions,
which simplify the handling of concurrency and
failures, and mechanisms for implementing
atomic data types, which ensure serializability
and recoverability of actions that use them. This
paper focuses on the support for atomicity in
Argus, especially the support for building new
atomic types. Overall the mechanisms in Argus
made it relatively easy to build CES; however, we
encountered interesting problems in several areas.
For example, much of the processing of an atomic
action in Argus is handled automatically by the
run-time system; several examples are presented
that illustrate areas where more explicit control
in the implementations of atomic types would be
useful.

1. Introduction
~ distributed configurations of high-powered

workstations connected by networks become
prevalent, tools for writing distributed programs
take on increasing importance. This pa.per
describes our experience implementing CES, a
distributed Collaborative Editing System. CES

Ke y Words: CES, Collaborative
Ed iting, Argus, Atomic Data Ty~es

was written in Argus, a language that was
designed to support the construction of reliable
distributed programs. Argus provides atomic
actions, which simplify the handling of
concurrency and failures. Atomicity is ensured
by atomic data types; Argus provides some built
in atomic types, along with mechanisms to permit
users to build new atomic types. Our focus in
this paper is on the support for atomicity in
Argus, especially the support for building new
atomic types. Our goal is to evaluate the
expressive power provided by Argus and to
develop a better understanding of the
requirements of distributed applications.

Our analysis of Argus is based on three
examples taken from CES, a collaborative editing
system developed by the second author [14]. We
originally chose Argus as an implementation
language for CES because it provides a fast
prototyping environment that would allow us to
test our cerauthorship system on real users, and
then refine the design based Qn their input.
Argus did prove to be an excellent development
and debugging environment: the system manages
network communications and installation of
processes at remote sites, and provides a powerful
set of distributed debugging tools. In addition,
atomic actions proved to be v~ry convenient for

1This research was supported in part by the Advanced
Research Projects Agency of the Department of Defense,
monitored by · the Office of Naval Research under
Contract Number N00014-83-K-0125, and in part by the
National Science Foundation under grant DCR-8510014.

2on leave from Hewlett-Packard

controlling concurrency and handling failures
such as site crashes.

Although many aspects of Argus proved
extremely useful, we encountered interesting
problems in several areas. A question raised by
all three examples is how much of the processing
of an atomic action should be done automatically
by the language and run-time system, and how
much should be coded explicitly by the
programmer. For example, no user code runs in
Argus when an action commits or aborts. The
examples below illustrate that the lack of explicit
control over parts of action processing can lead to·
program structures that a.re awkward, indirect, or
inefficient.

Another problem involves the way in which the
Argus system propagates information a.bout the
commits and aborts of multi-site atomic actions
from site to site. This problem is illustrated by
the second example below. In this case it appears
that the current semantics of Argus make it
impossible to meet plausible application
requirements.

A third area. in which we encountered problems
is performance. In our initial experiments with
the editor, response time was slow enough for the
editor to be unusable in realistic testing. When
we ran the editor on machines with more physical
memory, however, we found that response time •
was sluggish, but the editor was usable. Thus, it
appears that inadequate physical memory was
one of the main ca.uses of the initial perf orma.nce
problems. The sluggish response time when
running with adequate physical memory can be
attributed to a number of ca.uses. For example,
the current Argus implementation is an untuned
prototype that is built on top of a kernel that in
many ways is not well suited to its needs. Also,
the structure of the editor itself may be a source
of some overhead. For example, the editor
checkpoints changes to stable storage every few
keystrokes. Most editors in use today save
buffers to a. file much less frequently than every
r ew keystrokes, so perhaps it is not surprising
that CES appears somewhat sluggish in
comparison. The current implementation of
stable storage may intensify this problem, since

stable storage is accessed across a network, more
than doubling the access time [11]. As of t his
writing, we are in the process of conduct ing
further experiments to gain a better
understanding of the precise causes of the
performance problems.

In the next section we provide an overview of
Argus, focusing on the aspects that a.re most
relevant to our examples. In Section 3 we
describe the functionality of the collaborative
editing · system and the organization of its
implementation. Next, in Section 4 we present
three examples - display management, version
stacks, ~d document management - that
illustrate_. the problems mentioned above. We
a.ls6 discuss possible solutions. Finally, in Section
5 we summarize our conclusions and make some
suggestions for further work.
2. An Overview of Argus

Argus is a programming language designed to
support the construction of reliable distributed
systems. It is targeted primarily at applications
in which the manipulation and preservation of
long-lived online data are of principal importance.
.CES is one such application; others include
banking systems, airline reservation systems,
data.base systems, and various components of
opera.ting systems. A major issue in such systems
is preserving the consistency of online data in the
presence of concurrency and hardware failures.
Argus provides mechanisms, discussed below, to
help the programmer cope with concurrency and
failures. It is based on CLU [10]; as with CLU,
abstraction, especially data abstraction, plays a
key role in the methodology Argus is designed to
support.

2.1. Guardians
A distributed system in Argus is composed of a

collection of guardians. A guardian is a resource
that is resilient to crashes and that can be
accessed using remote procedure calls. The
dermition of a guardian includes several
components:

• variables, which refer to objects that
represent the state of the guardian;

• creators, which are used to create new
instances of the guardian;

• operations (called handlers), which
can be invoked by other guardians to
examine or modify the state of the
guardian, and which are the only
means by which one guardian can
manipulate another guardian's state;

• a background process, which can be
used to perform periodic tasks; and

• recovery code, which is used to restore
the guardian to a consistent state
after a crash.

The background process in a guardian is started
automatically when the guardian is created and
when it recovers Crom a crash.

A guardian's variables can be designated as
either stable or volatile. Objects reachable Crom
the stable variables are kept on stable storage [7],
which is extremely likely to survive site failures.
When a guardian's site crashes, its stable
variables are restored Crom stable storage. The
volatile variables are useful for redundant
information, like an index for a database, that is
easy to reconstruct after a crash. After a crash
and before the background process or handlers ·
are allowed to run, the recovery code in a
guardian reinitializes the volatile variables.

A guardian can be viewed as a kind of virtual
node. Each guardian has a separate address
space of objects (similar to a CLU or Lisp heap).
These objects are completely local . to their
guardian; other guardians can access them only
through their guardian's handlers, which are call
using remote procedure call. Arguments to a
remote procedure call are passed by value, so
that there is no direct sharing between the
address spaces or distinct guardians. Data can be
shared among sites, however, at the level of a
guardian. A guardian is itself an object; the
value or a guardian is simply its name, so passing
a guardian as an argument of a remote procedure
call makes it possible for the receiver of the call
to access the guardian.

2.2. Atomic Actions
Concurrency and failures can be handled in

Argus by making the activities that use and
manipulate data atomic. Simple syntax is used
to indicate that a sequence or statements should
be executed atomically. Atomic activities, or
actions as they are called in Argus, were first
identified in work on data.bases. Actions are
characterized by two properties: serializability
and recoverability. Serializability means that
the concurrent execution of a. group of activities
is equivalent to some serial execution of the same
activities. Recoverability means that each
activity appears to be all-or-nothing: either it
executes successfully to completion (in which case
we say that it commits), or it has no effect on
data shared with other activities (in which case
we say that it aborts).

Atomicity simplifies the problem of maintaining
consistency by decreasing the number of cases
that need to be considered to understand the
behavior of a. program. Since aborted activities
have no effect, and every concurrent execution is
.equivalent to some serial execution, consistency is
ensured as long as every possible serial execution
of committed activities maintains consistency.
Thus, atomicity simplifies the visible failure
modes of a. system, and makes it possible to
ignore concurrency when checking for
consistency.

Atomicity ensures that if an activity cannot
complete successfully, it can abort and have no
effect. To ensure that the effects or committed
actions survive site crashes, the state of a
guardian is kept on stable storage. The Argus
system ensures that modifications made by an
action to any objects accessible through the
stable variables or a. guardian are saved on stable
storage before the action commits.

Argus also supports nested actions (or
subactions), which can be used to obtain
concurrency within a single action and to isolate
the effects of failures. For example, a remote
procedure call in Argus is executed as a. suba.ction
or the calling action; as a result, the call appears
to occur exactly zero or one times. If a failure
occurs during the call and ca.uses the call to be

aborted, the calling action need not be abo_rted.
Instead, it can try an alternative if one exists.

The main difference between a top-level action
(one with no parent) and a subaction is that
when a subaction commits, its effects need not be
saved on stable storage. Instead, if a crash
causes the effects or a committed subaction to be
lost, the effects or the subaction can be undone
everywhere by aborting the action's parent or
some other ancestor. A two-phase commit
protocol is used when a top-level action commits
to ensure that the effects or the action and all its
descendants are saved on stable storage before
the action commits; if some or the eCCects have
been lost in a crash, the action is Corced to abort.

2.3. Guardians versus Clusters
Argus provides two mechanisms Cor

implementing data abstractions. The cluster
' borrowed from CLU, is used to implement a data

type each or whose objects belongs to a single
guardian. A cluster consists or. a description or
the new type's representation, along with
implementations for each or the operations
provided by the type. A cluster's operations are
called using local procedure call: arguments are
passed by sharing (as in CLU and Lisp), the call
executes in the same guardian as its caller, and
no subaction is created for the call. A cluster's
objects cannot be the target or remote procedure
calls.

· A guardian also implements a kind of data
type. It differs Crom the data types implemented
by clusters in that its objects are always remote,
and its operations are called using remote
procedure call. Since remote access is likely to be
significantly more expensive than local access, the
designer or a distributed application will have to
think carefully about the distribution or data in
the system. Thus, the primary difference
between a cluster and a guardian - one provides
local objects, and the other remote objects -
arises naturally in the design or a distributed
system. Other difrerences between guardians and
clusters, however, can force a designer to use a
guardian where a cluster might be more
appropriate. For example, a guardian can be
active, in the sense that it can have a background

process. However, there is no similar way of
obtaining a process for a local object. A guardian
can also include recovery code for restoring its
representation to a consistent state after a crash;
no similar capability is available for a cluster.
The examples below illustrate the problems
caused by these differences between guardians
and clusters.

2.4. User-deimed Atomic Data Types
Atomicity of activities in Argus is ensured by

atomic data types, whose operations provide
appropriate synchronization and recovery for
actions using objects or the type.
Synchronization for the built-in atomic types in
Argus is accomplished using strict two-phase
locking [2, 8] with read and write locks. The
usual semantics applies: read locks can be
shared, but write locks conflict with read and
write locks. Recovery for the built-in atomic
types is ensured by making a copy of an object
the rirst time an action executes an operation
that changes the object's state, and then making
any changes on the copy. Ir the action aborts,
the copy is discarded; if the action commits, the
original version is discarded and replaced with
the changed copy.

The built-in types permit relatively little
concurrency among actions. Argus also provides
mechanisms for implementing new, highly
concurrent atomic types [20] . These mechanisms
are "implicit," in the sense that no user code is
run when actions commit and abort. Instead,
synchronization and recovery must be
accomplished by including some built-in atomic
objects at some level or the representation of a
user-dermed atomic object.

One important question in the design or a
language for distributed programs is how much or
the proces.5ing or an atomic action should be
handled automatically by the system and how
much should be handled explicitly by the
programmer. The Argus system handles many
things automatically: it keeps track of the sites
visited by an atomic action and the objects used
at each site, it handles the details or the two
phase commit used to ensure that the outcome of
the action is recorded consistently at all sites,

and it manages the locks and versions for built-in
atomic objects. It is clear that the programmer
does not want to handle most of these issues; for
example, the details of the two-phase commit
protocol and keeping track of the sites visited by
an action a.re easily handled by the system, and
there is no apparent reason for letting the
programmer handle them more directly.
However, the examples below show that more
explicit control over the processing or commits
and aborts a.t ea.ch object (i.e., lock and version
management) would be useful.

Weihl [18, 19] has already observed some
limitations or Argus's implicit handling or
commits and aborts, and has proposed an
alternative structure in which the programmer
can provide explicit commit and abort operations
as pa.rt of the implementation of a data. type.
Ea.ch operation on the type must inform the run
time system when an action uses an object; when
the action later commits or aborts, the system
invokes the commit or abort operation as
appropriate. The problems with Argus's implicit
approach illustrated by the first two examples
below are nicely solved by Weihl's approach.
The examples also illustrate other areas where
more explicit control might be useful.
3. Distributed Editor:

Functionality and Design
CES is a document editor that supports the

collaboration by a group of authors on a shared
document. A CES document consists of a.
structural component, viewed by the author as an
outline, and a set or textual components, referred
to as the document "nodes". The nodes a.re
arbitrarily sized blocks of text. A readable view
or the document is built by ordering the nodes
according to the outline in the structural
component. The operations in CES extend those
or a conventional real-time editor with functions
for creating and manipulating structured
documents and for modifying the structure of a
document indeoendently of the text.

CES is meant to be used in a. distributed
environment and allows sharing of documents
among multiple authors. Ea.ch document node is
"owned" by an individual author. All authors

share access to the document structure, but each
is the primary author for his own nodes. An
author's nodes reside at his own machine, so that
the text of the document is physically distributed
across all machines of all co-authors. To improve
availability, a. copy of a document's structure is
kept at all of the sites with access to the
document. The copies of this replicated data. are
kept consistent a.s users make local changes.

While authors a.re working on separate nodes of
the document, all can be working independently.
An author can read any node of a document at
any time. If someone else is writing that node,
the reader will see a slightly out-of-date version
of the node - CES coordinates the author's
activities and tries to minimize the delay in
making new versions available for reading. If two
or more authors try to write in the same node at
the same time, synchronization facilities are
invoked to prevent inconsistencies in the text by
locking out all but one author.

The nature of this application is such that an
author could accidentally keep a document
section locked for an arbitrarily long time. For
example, he might receive a phone call and stop
editing for a while. To protect against
unintentional holding of locks, "tickle" locks
were designed to be held r or as long as some
editing activity continues, and to be released if
requested by a co-author after an idle period.
Rather than abort changes made by the original
holder of the lock, small actions are committed
during the time that the lock is held, a.nd all of
these actions remain visible when the tickle lock
is released. The correct scope of such small
actions may vary for different situations and
different users [3]. The system currently commits
user activities after certain "significant" editing
commands such as word deletions a.nd carriage
returns.

When authors find themselves examining the
same node of a. document, they may want to
coordinate their work more closely, perhaps even
shifting into a real-time meeting [12, 13] in which
a group of co-authors talk to ea.ch other over a
voice connection while viewing the document on
their individual screens. To support this, we do

not prevent reading of text that is being
modified. Instead, screens of all readers are
updated at regular intervals as each small action
commits.

4. Examples from the Editor
In this section we present three examples of

user-defined data types to illustrate the problems
we encountered in using Argus to build CES. In
the first example, the physical screen is
encapsulated in an abstraction whose job is to
refresh the screen when an action that wrote on
the screen aborts. The techniques available in
Argus for detecting that an action has aborted
and then taking appropriate action are indirect
and awkward to use. A user-defined abort
operation would give a simpler and more direct
solution. The first example also illustrates a
problem arising from the differences between
guardians and clusters. A guardian can have a
background process, but there is no simple way of'
associating a background process with a local
object.

In the second example, we consider a data type
designed to permit a high level of concurrency
among users or a document. As in the first
example, the implicit handling or commits and
aborts leads to awkward program structures that
could be avoided by using a more explicit
approach. In addition, the way in which Argus
propagates information about the commits and
aborts of actions from site to site does not
provide a sufficiently strong semantics to permit
us to meet certain application requirements.

In the third example, we consider a large data
structure that is kept on stable storage. Because
stable storage is relatively slow, it is important to
minimize the amount or data written to stable
storage as part of the commit or each action.
Argus permits objects to be designated as either
stable or volatile, however, only at the level of a
guardian; if a local object is designated as stable,
then its entire representation is kept on stable
storage. In addition, recovery code to reconstruct
or reinitialize the volatile parts or an object can
only be provided for a guardian. This example
suggests that these facilities would also be useful
in a cluster.

4.1. Dis~laying Text

The display buff er and the physical screen for a
CES user are encapsulated in a single abstract
object, the display. The job of the display object
is to keep the screen consistent with the contents
of the buffer. As a user edits a document, the
objects representing the document are modified.
At the same time, text is written to that user's
display buffer, and a side-effect is made v~ible to
the user: text appears on the screen. This
immediate feedback is required to keep the user
apprised of the system's response to keyboard
input. Each change to the document (and the
corresponding change to the display) is made as
part of an atomic action. A user sees his changes
on his screen as he types characters; however, if
several users are editing the same document, one
user's changes do not become visible to other
users until the atomic action in which they are
made commits. Ir this atomic action instead
aborts, it is necessary to restore the first user's
screen to its state at the start of the action. To
accomplish this, we need to be able to detect that
an action has aborted and to take appropriate
action to refresh the screen. Since no user code
runs when an action commits or aborts, indirect
methods must be used to detect aborts . .

The display object is implemented as an Argus
guardian. The state of the display guardian
includes two counters. The first, the
commit_count, is used to keep track of the
number of actions that have used the display and
committed. The second, the action count is - '
used to keep track of the number of actions that
have used the display, regardless of whether they
committed or aborted. The state of the guardian
also contains a lock that is acquired by every
action that uses the display, and released when
the action commits or aborts. Ir the
action_count is greater than the commit_count,
then either some action is currently using the
display or some action used the display and
aborted. We can tell whether an action is
currently using the display by testing the lock in
the guardian's state. Thus, we can detect that
an action has used the display and aborted.

The background process in the display guardian

is dedicated to the task of checking for aborted
actions and, if necessary, refreshing the screen.
When an abort is detected and the screen has
been refreshed, the action_count and
commit_count are reset to indicate that all
aborts have been processed.

Unfortunately, the only way for the background
process to detect aborts in Argus is for it to busy
wait, checking periodically whether an abort has
occurred. To avoid the overhead of busy-waiting,
we added a new type, called a trigger _queue, to
Argus. A process can call an operation to wait
on a trigger_queue, causing the process to be
blocked until another process calls an operation
to wake up the waiting process. (This data type
could not be implemented in the language itself,
since Argus contains no primitives that permit
one process to wake up another process. We will
return to this issue in 8ection 4.4.)

The trigger_queue is used in the following
manner to avoid busy-waiting. The background
process in the display guardian begins by waiting
on a trigger_queue. When an action invokes a
handler to use the guardian, it acquires the lock
in the guardian's state, and then wakes up the
background process. When the background
process is scheduled to run (which might be
immediately after it is awakened and might be at
some later time depending on how the system
happens to schedule processes), it also attempts
to acquire this lock. If the handler action has not
yet committed or aborted, the background
process will be blocked, waiting for the lock, until
the action (not just the handler) completes. If
the action has completed, the background process
checks whether the action had aborted, and if so
it refreshes the screen. It then waits again on the
trigger_queue. With this program structure, the
background process only wakes up when a
handler action starts to use the guardian, and
only checks whether an action has aborted after
the action has actually completed. Thus, the
likelihood that the background process will do
unnecessary work is significantly less than it
would be if we used busy-waiting.

Using a background process to detect aborts,
however, has other problems besides the overhead

of busy-w~ting. First, in Argus a background
process can only be defined as part of the
background code of a guardian. This makes it
difficult to encapsulate the entire implementation
of a type whose objects need a background
process in a single module, unless that module is
a guardian. In other words, it is difficult to build
a cluster-based type, whose objects are local to a
guardian, and associate a background process
with each of the type's objects.

In the prototype of CES that was built, the
display abstraction is a guardian, but this choice
would have to be reconsidered to permit more
flexible use of windows on the display. We might
desire to manage each window on the display
separately. Each window should be a local object
in a single screen manager, so we would define a
cluster-based window data type to handle
window management. If, however, we need to
use a background process to detect the aborts of
actions that use windows, each window object
must be known to some background process in
the guardian. This means that any code that
creates a window object must also record the
object in some global data - structure in the
guardian so that the appropriate background
process can find it. Furthermore, the window
abstraction must provide operations that permit
a background process to detect aborted actions
and refresh windows on the screen. The
modularity of the system would be improved if
these details of using windows were hidden from
their users.

Second, there are timing problems with using a
background process to detect aborts. If the
background process does not wake up
immediately after an action that used the display
aborts, another action might attempt to use the
display before the background process detects the
abort and refreshes the screen. This means that
each action that uses the display must check
before updating the screen whether an earlier
action had aborted, and then refresh the screen if
necessary. We cannot eliminate the background
process, however, since if no new action attempts
to use the display for a long time, we need the
background process to ensure that the screen is

refreshed quickly. Thus, responsibility for
detecting aborts and refreshing the screen cannot
be allocated to a single piece o(code or a single
process.

The ability to associate a background process
with a. local object within a guardian, rather than
just with the guardian itself, would a.void the
modularity problems discussed a.hove. However,
the timing problems would not be solved. In
addition, using a background process for each
window object could be a. source or perCorma.nce
problems.

Ir the programmer could derme explicit commit
a.nd abort operations as pa.rt or the
implementation or each type, the abort operation
could refresh the screen as needed. With this
approach, there would be no need Cor a.
background process or Cor busy-waiting; instead,
the abort operation would run only when needed.
The modularity problems with multiple windows
would be avoided, since there is no need for a
background process, a.nd hence no need for
coordination between the window type a.nd the
guardian in which it is used. The timing
problems mentioned above would also be a.voided
iC the commit and abort operations explicitly
release locks, rather than having the system
release locks automatically a.s is currently the
case in Argus.

4.2. Version Stacks
CES maintains a stack or versions or each

document node a.s it is modified by the various
co-authors. The version stack is used to log
changes by different authors a.nd to allow a.n
author to back up to a previous version. Each
version stack provides operations to push a new
version onto the stack, to pop a version oCC the
stack, to read the top or the stack, and to reset
the stack (flushing the current contents and
pushing a single new entry). A checkpoint can be
taken by pushing a new version onto the stack
a.nd then modifying that version; operations since
the la.st checkpoint can be undone by popping the
top version off the stack. Version stacks a.re
atomic, so modifications to a. version stack do not
become permanent until the action that made
them commits. Thus, until an action commits,

changes made by the action can be undone
simply by aborting the action. The backup
capability provided by a version stack is use(ul
for undoing a sequence or operations that is
longer than a sinide atomic action.

One or the goals or CES is to permit each
author to read the entire document, even while
other authors a.re editing parts or the document.
Each author would like to see recent changes
made by other authors. However, if one author is
in the middle or some changes to a node, other
authors should not be permitted to read what
might be an inconsistent state or the node. In
such a situation authors read a version that is
not being modified by another author but is as
close to the top a.s possible. An extra. operation
on version stacks, f asttop, is provided (or this
purpose. The specification or the Ca.sttop
operation is nondeterministic: the version
returned is not necessarily the top one, but is
guaranteed to be no older than one returned in a
previous call unless there ha.s been a.n intervening
pop or reset operation. This specification permits
more concurrency among actions than would an
ordinary "top" operation. In particular, one
action ca.n execute Ca.sttop while another action
executes push or pop a.s long a.s the version
returned by Ca.sttop is not the pushed or popped
version.

The implementation or the version stack follows
the paradigm for highly concurrent atomic types.
in Argus, such as the semiqueue type, defined in
[20]. The representation or a version stack

consists or a non-atomic sequence or atomic
objects. The non-atomic sequence object in the
representation is used to achieve the concurrency
permitted by the type's specification; the
existence or this non-atomic object in the
representation is not visible outside the
implementation, so at the abstract level version
stacks appear atomic to their users. The objects
in the sequence must be atomic objects to ensure
that modifications made by aborted actions
appear to be undone.

When a.n action modifies a. version stack, it may
simply modify an atomic object in the
representation of the stack (e.g., when popping a

version off the stack), or it may create a new
atomic object and add it to the sequence (e.g.,
when pushing a new version onto the stack). If
the action later aborts, any modified atomic
objects are restored to their previous states.
Modifications to t he non-atomic sequence,
however, are not undone. Instead, the atomic
objects added to the sequence by the aborted
action are placed in a state that allows other
actions to detect that the objects' creator
aborted, and to act as if they were not present in
the sequence at all.

In implementing the version stack, we
encountered two problems. The first is once
again related to the inability to write explicit
commit and abort procedures for new types. The
second involves t he way Argus propagates
information about aborts and commits of actions
from site to site.

The first problem is that the representation of a
version stack gradually accumulates objects that
do not represent useful data. For example, as
mentioned above, when an action adds a new
atomic object to the representation and then
aborts, the atomic object is no longer needed.
However, it still uses space in the representation.
To prevent the representation of a version stack
from growing arbitrarily large with such useless
components, it is necessary to find and discard
such _gbjects.

This kind of garbage collection of
representations is typical of implementations of
user-defined atomic types in Argus; we have
observed it in many other examples (e.g.,
see [18, 201). It can be accomplished by cleaning
up the representation as part of some or all of the
operations on the object, or by using a
background process that performs this task
periodically. Using a background process for this
purpose has the same problems as for detecting
aborts. Cleaning up the representation a.s pa.rt of
the operations, however, al.so has problems.
Scanning the representation to (ind useless
components imposes some overhead, so it should
not be done too frequently. It should al.so not be
done too infrequently, however, since then the
representation will grow and the operations will

take longer to run. It can be difficult to decide
how frequently, and a.s part of which operations,
this cleanup task should be performed. Using
Weihl's alternative approach, in which the
programmer provides commit and abort
operations that are executed automatically by t he
system, it is possible to remove data from the
representation of an object exactly when it is no
longer needed, rather than having to notice at
some later time that the data is no longer needed
and then discard it.

The second problem reveals itself in some
surprising behavior visible on the screen to end
users of CES. Suppose the user is working on one
machine, and part of the document library is
stored on another machine. The user could make
a change to a document node stored on the
second machine in one action. Once that action
has committed, the user could ask to see that
pa.rt of the document (using the f asttop
operation). If the machine on which the
document node is stored does not yet know that
the rust action committed, the fasttop operation
might return an older version of the node. The
user knows that the node has been changed and
that the modifications have been committed, but
until the commit event is known at all machines
involved he may see information that is out of
date.

The delays that result in this behavior are due
to the way in which commits and aborts of
actions are processed by the Argus system.
When an action commits or aborts, the event is
recorded locally on the machine where the action
is running, but is not necessarily communicated
immediately to other machines at which the
action (or its subactions) might have run. If the
action holds a lock on other machines and
another action tries to acquire the lock, the Argus
system will send query messages to other
machines to rtnd out the outcome of the action
holding the lock. Ir the action that tries to
acquire the lock uses an operation that tests the
lock but does not wait for it, however, the action
will be told that the lock is unavailable. Such
tests are common in implementations of user
dertned atomic types; for example, the fasttop

operation scans the representation of the version
stack looking for a component atomic object that
is not locked.

There are two ways in which the semantics of
Argus could be changed to solve this problem.
One is to change the operation that tests whether
a lock is held so that rather than always
returning immediately, it waits until it receives a
message in response to its query. This response
could indicate that the action that holds the lock
is still active, or that it has committed, or that it
has aborted. Ir the action has committed or
aborted, the lock can be released in the
appropriate manner. Ir the action is still active,
then the action that is testing the lock should be
informed that the lock is still held. The problem
with this approach is that the delay until a
response is received could be long. Furthermore,
it is difficult to know how long to wait before
deciding that the other machine must be down or
that the network must be broken. In addition, if
we decide to stop waiting, it is not clear what
answer to give the action that is testing the lock.

The second solution is to require that
information about commits and aborts be
propagated among ma.chines more quickly. We
could require that if there is a. cha.in of events
lea.ding from the commit or abort of a.n action to
a. test for a. lock held by. that action, then the test
must indicate tha.t the lock is no longer held. (By
"chain of events" we mean events connected by
the "happens before" relation of [6], and
including events on a single ma.chine and
messages over the network.) The difficulty with
this approach is that it is not clear whether it can
be implemented efficiently enough. It appears to
require that each ma.chine keep track of all the
actions known by it to have committed or
aborted, and tha.t this information be propagated
on all messages.
4.3. Document Library

As mentioned earlier, a CES document consists
of a structural component, viewed by the author
as an outline, and a set of textual components,
referred to as the document "nodes". The nodes
are arbitrarily sized blocks of text. The CES
document library is a collection of documents

whose storage is distributed among guardians on
each author's site. In each guardian, the contents
of the library are kept on stable storage to
protect the data against crashes. Ir an atomic
action modifies the library, the modified objects
must be copied to stable storage by the time that
the action commits. Ir a guardian containing
pa.rt of the document library crashes, the copies
of objects on stable storage are used to restore
the objects to their most recent committed state.

Stable storage is expensive, and relatively slow
compared to virtual memory. Thus, it is
important to minimize the total amount of data
kept on stable storage, and to copy as little data
as possible when a given action commits. Argus
allows objects to be partitioned into pieces that
are copied to stable storage independently, so
that only those pieces that are actually modified
by an action need to be copied when the action
commits. Also, recall that the state of a guardian
can be partitioned into stable and volatile
va.ria.bles, so that information· tha.t can be
reconstructed after a. crash· need not be kept on
stable storage. (or course, there is a trade-off
here, since reinitializing the volatile variables of a
guardian ma.y cost more than keeping them on
stable storage.)

The representation or a CES document node
contains several fields: a unique identifier; a
version stack, which contains old versions of the
node for backing up over a scope larger than a
single atomic action; and a tickle lock, which
consists of the name of the user holding the lock
and the time at which it was last "tickled."
Some of this in!ormation does not need to be
recorded on stable storage. For example, tickle
locks are intended to be released whenever a
guardian crashes, so there is no need to record
the state of a. tickle lock on stable storaJ1:e.

The mechanisms in Argus can be used to avoid
writing the entire representation of a node to
stable storage, but it is awkward to do so. There
are two poss_ible approaches. The first is to use
the partitioning of a guardian's variables into
stable and volatile subsets. Since ea.ch document
node is identified by a unique identifier, the tickle
locks for nodes could be maintained in a separate

table that maps node identifiers to tickle locks
and is kept in a volatile variable. Whenever a
node is used, the table or tickle locks in the
guardian's state must be accessed to check and
update the node's tickle lock.

The second approach is to use the mutex type
in Argus. A mutex object is essentially a
container Cor another object. The mutex object
itself performs several functions. First, it can be
used to ensure mutual exclusion among processes
using the contained object. Second, each distinct
mutex object is written independently to stable
storage. Furthermore, when an action commits, a
mutex object is only copied to stable storage iC
the action had executed the changed operation
(provided by the mutex type) on the object.
Thus, if we enclose the tickle lock in the
representation or a document node in a mutex
object and never call the changed operation, the
tickle lock will be copied to stable storage only
once when it is created and never a.Cter that.

Both or these approaches, however, have
problems. The problem with the rirst approach is
that whenever a document node is created, a
tickle lock must be created Cor it in the
guardian's table. In addition, whenever the node
is used, the table must be accessed to get the
tickle lock. The variables holding a guardian's
state can be accessed ~irectly by code in the
guardian, but a.re not accessible to code in other
modules. Instead, the table must be passed as an
argument to any code that creates or uses a
document node. As in the previous example, this
need to coordinate use or local objects with the
rest or the code in the guardian leads to a loss or
modularity.

The problem with the second approach a.rises if
a node's tickle lock needs to be reinitialized a.Cter
a crash. The only way or reinitializing an object
after a crash is to do it in the recovery code or a
guardian. This means that a record or all objects
requiring reinitialization must be kept in part or
the guardian's state so the recovery code can find
the objects. As with the first approach, the part
or the guardian's state recording these objects
must be passed as an argument to all code that
creates a document node (though not to all code

that merely uses a document node). In fact,
tickle locks do not need to be reinitialized after a
crash, so the second approach would work well
for CES. Nevertheless, we can easily imagine
situations in which this approach would not
work.

The problems illustrated by this example are
similar to the problem discussed in the previous
section, in which a background process can only
be obtained as part of a guardian. Recovery code
can be written only Cor a. guardian, and objects
can be partitioned into stable and volatile sets
only at the top level or a guardian's state. This
means that it can be difficult to encapsulate all
details or an object's implementation inside a
single module, unless that module is a guardian.
This example suggests that explicit control over
recovery would be useful in clusters as well as in
guardians.
4.4. Summ.ary

All three examples illustrate problems with the
support in Argus Cor building user-defined atomic
data types. The rirst and second examples
illustrate problems that can be solved by
providing explicit commit and abort operations as
pa.rt or the implementation or a data. abstraction.
The rirst and third examples also illustrate
modularity problems caused by the diCCerences
between guardians and clusters.

We can imagine several possible solutions to the
problems with crash recovery illustrated by the
third example. As mentioned earlier, it seems
worth exploring alternative approaches that
provide more direct control over how an object is
stored on stable storage. Approaches that
obviate the need Cor such fine control are also
worth investigating; Cor example, it may be
possible to design a hardware stable storage
device with access times comparable to virtual
memory. Ir stable storage were cheap and Cast
enough, one would not need to be concerned with
optimizing its use. It may also be possible to
dispense with stable storage altogether by
replicating objects on several sites (though such
an approach may require complicated recovery
algorithms). It is not clear which of these

approaches will lead to the simplest and clearest
programs.

The problems with propagation of commit and
abort information illustrated by the second
example could be difficult to solve. As noted
above, a naive approach to implementing a
stronger semantics would require inordinate
amounts of communication. It is not clear to
what extent the communication can be reduced.
As an aside, we note that this problem is similar
to the orphan-detection problem [17, 9]; similar
solutions may work here as well.

The lack in Argus of a primitive for one process
to awaken another process makes it impossible to
program a type such as the trigger _queue, and
thus forces some applications to use busy-waiting.
A signalling primitive was not included in the
language primarily because the significant events
for synchronizing and scheduling atomic actions
are the completion (commit or abort) of other
actions. Since no user code runs when actions
commit and abort, there is no way for one action
to signal another when the first action rmishes.
Weihl's proposal for explicit commit and abort
operations includes a signalling mechanism that
provides much finer control over scheduling of
actions.
5. Conclusions

The main features of CES were suggested by
related work on cerauthorship [1, 16, 4] and on
systems that support collaboration in other .
applications such as calendar management [5],
real-time conferencing [13] and software
development [15]. Most of the details of the
design, including the basic structure of
documents and the user interface requirements,
were set out before we decided to use Argus.
Thus the CES experience was not preconceived as
an Argus-programming exercise and so provides
an objective test case for that programming
environment. It is the first large program written
in Argus.

The question of how much expressive power to
provide in a language is always a difficult one.
Much of the processing of an atomic action in
Argus is handled automatically by the run-time
system. The examples above illustrate that more

explicit control over some aspects might be
useful. More examples need to be studied to
decide exactly how much control is needed and
what form it should take. Nevertheless, the
examples presented here arose in a real
application, and thus indicate that serious
attention should be paid to the problems they
illustrate.
6. Acknowledgements

We thank Barbara Liskov for her many helpful
comments on drafts of this paper, Bob Scheiner
and Paul Johnson for their help during the
construction of CES, and all the members of the
Programming Methodology Group at MIT for
their feedback on the ideas presented in this
paper.

7. References

1. Englehart, D. C. Toward High-Performance
Knowledge Workers. Office Automation
Conference Digest, AFIPS, April, 1982, pp.
270-290.

2. Eswaran, K. P., et al .. "The notions of
consistency and predicate locks in a database
system". Comm. ACM 19, 11 (November 1976),
624-633.

3. Gifford, D. K. and J. E. Donahue.
Coordinating Independent Atomic Actions.
Proceedings of the IEEE CompCon85, IEEE,
February, 1985, pp. 92-94.

4. Greif, I. Computer Support for Cooperative
Office Activities. Proceedings of the 1982 Office
Automation Conference, AFIPS, San Francisco,
California, April, 1982.

5. Greif, I. Teleconferencing and the Computer
Based Office Workstation. Teleconferencing and
Interactive Media '82, Madison, Wisconsin, May,
1982.

6. Lamport, L. "Time, Clocks, and the
Ordering of Events in a Distributed System".
Communications of the ACM 21, 1 (July 1978),
558-565.

7. Lampson, B. Lecture Notes in Computer
Science. Volume 105: Atomic transactions. In
Distributed Systems: Architecture and

Implementation, Goos and Hartmanis, Eds.,
Springer-Verlag, Berlin, H>81, pp. 246-265.

8. Liskov, B. and R. Scheiner. "Guardians and
Actions: Linguistic Support r or Robust,
Distributed Programs". ACM Transactions on
Programming Languages and Systems 5, 3 (July
H)83), 381-404.

Q. Liskov, B. Lecture Notes in Computer
Science. Volume H>0: The Argus Language and
System. In Distributed Systems: Methods and
Tools for Specification; An Advanced Course,
Goos and Hartmanis, Eds., Springer-Verlag,
Berlin, H>85, pp. 343-430.

10. Liskov, B. et al. CLU reference manual. In
Lecture Notes in Computer Science, Goos and
Hartmanis, Ed., Springer-Verlag, Berlin, 1981.

11. Oki, B., B. Liskov, and R. Scheifler.
Reliable object storage to support atomic actions.
Proceedings or the Tenth ACM Symposium on
Operating Systems Principles, Rosario Resort,
Washington, December, H)85.

12. Sarin, S. and I. Greif. Software r or
Interactive On-Line Conferences. Proceedings or
the Second Conr erence on Office Information
Systems, ACM, Toronto, Canada, June, 1984, pp.
46-58.

13. Sarin, S. and I. Greif. "Computer-Based
Real-Time Conferences". IEEE Computer 18, 10
(October 1985), 33-45. Special issue on Computer
Based Multimedia Communication.

14. Seliger, R. The Design and Implementation
of a Distributed Program for Collaborative
Editing. Master Th., Massachusetts Institute of
Technology ,September H)85.

15. Sluizer, S. and P. Cashman. XCP: An
Experimental Tool for Managing Cooperative
Activity. Proceedings of the ACM Computer
Science Conference, ACM, New Orleans, LA,
March, H>85.

16. Trigg, R.H. A Network-Based Approach to
Text Handling. Ph.D. Th., University of
Maryland, November H)83.

17. Walker, E. Orphan detection in the Argus
system. Master Th., Massachusetts Institute of

Technology,June H>84. Available as
NITT / LCS/ TR-326.

18. Weihl, W. E. Specification and
Implementation of Atomic Data Types. Ph.D.
Th., Massachusetts Institute of Technology,
March H)84. Available as Technical Report
NITT / LCS/ TR-314.

19. Weihl, W. Lingt•.istic Support for Atomic
Data Types. Proceedings of the Workshop on
Persistence and Data Types, Scotland, August,
1985.

20. Weihl, W. and B. Liskov. "Implementation
of Resilient, Atomic Data Types". ACM
Transaction on Programming Languages and
Systems 7, 2 (April 1985).

