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ABSTRACT 

All previously known max-flow algorithms worked by finding aug

menting paths, either one path at a time (Ford and Fulkerson algorithm), 

or all shortest augmenting paths at once (by using the level network tech

nique of Dinic). We introduce an alternative way of dealing with the 

problem. Our method is to push flow through the original network. The 

algorithm and its analysis are simple and intuitive, yet the algorithm does 

as well as any other network flow algorithm on dense graphs, achieving 

0 ( n 3) running time. 

The algorithm admits distributed and parallel implementations as 

well as a sequential implementation. The algorithm requires less storage 

then the only other parallel max-flow algorithm known ( due to Shiloach 

and Vishkin), and its parallel running time is the same, 0 ( n 2logn ). In 

fact , our algorithm uses constant amount of storage for every edge or ver

tex of the network, allowing an implementation under a more realistic dis

tributed model. 

Keywords: 

network flow, combinatorial algorithm, distributed algorithm, parallel algorithm. 

1. Historical Background 

The problem of finding a maximum flow in a network with capacity constraints on 

edges arises in many applications in the fields of computer science and operations 

research. It is not surprising that efficient algorithms for the problem have received a 

great deal of attention. 

1s upported by a Fannie and John Hertz Foundation Fellowship. 
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As early as 1956, Ford and Fulkerson [FF 1956] formulated an algorithm to solve 

the problem based on finding flow-augmenting paths. The complexity of the algorithm 

was not analyzed until 1969, when Edmonds and Karp [EK 1972] proved that if the 

shortest flow-augmenting path is used at each iteration of the algorithm, the time com

plexity is O(nm 2
) (throughout this paper, n denotes the number of vertices and m the 

number of edges in the network). 

In 1970, Dinic introduced the level network method [Din 1970], which reduces the 

maximum flow problem to the problem of finding a maximal flow in the level network. 

Using this method, he constructed an O(n 2m) max-flow algorithm. In 1974, Karsanov 

[Kars 197 4] gave a new method of finding a maximal flow in a level network, which 

results in an O ( n 3) max-flow algorithm. This upper bound is still the best known for 

dense graphs. Karsanov's idea was to find maximal flow in a level network by pushing 

flow through it rather then by looking for augmenting paths one by one. 

Several algorithms have been developed for sparse graphs; the best so far is the 

( nm logn) algorithm of Sleator and Tarjan [Sl 1980J. 

In 1982, Shiloach and Vishkin [SV 1982] investigated a distributed version of the 

problem. They constructed an O ( n 2logn) parallel time algorithm with O ( n 3) sequen

tial implementation. We will refer to this algorithm as the S&V algorithm. 

All network flow algorithms with complexity O (n 3) (or better for sparse graphs) 

were based on Dinic's level network method; their analysis was quite involved, except for 

the O (n 3
) algorithm due to Malhotra, Kumar, and Maheshwari [MKM 1978]. 

The algorithm presented in this paper abandons Dinic's method; the new method is 

to push the flow through the original network. The algorithm does not use global con

cepts like augmenting path or level network, allowing natural implementations under 

distributive and parallel models of computation. The distributed and parallel implemen

tations of the algorithm have the same time complexity as the S&V algorithm, but 

require less memory, allowing a more realistic distributed model. 

For more information on the history of the problem, its applications, and underly

ing theory see [Even 1979], [Lawl 1976], [PS 1982], and [Tarj 1983]. 

2 . Definitions and Notation 

Let G = ( V , E) be a directed graph with a positive capacity c ( v , w) for every 

( v , w )EE . Let I V I = n and I E I = m . Define c ( v , w) = 0 for ( v , w )rf_E to 

extend the capacity function to V X V. Let source s and sink t be two distinguished 

vertices of the graph. A flow on G is a function f : V XV ---* R such that 

0 < f ( v , w ) < c ( v , w ) \--/ ( v , w )EE (1) 
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Ef (v,w)= O \iv EV -{s,t} (2) 
wEV 

f (v, w) =-! (w, v) (3) 

The value I / I of a flow f is the net flow in to the sink ( or out of the source), 

w 

The maximum flow is the flow with the maximum value. 

An important concept in the max-flow problem is the cut . A cut S ,S is a parti

tioning of the vertices such that S LJS = V, S ns = 0, s ES, and t ES. The capacity 

of the cut and flow across the cut are defined in a natural way: 

c(S,S)= E c(v, w) 
vES,wES 

c(S,S)= E f(v,w) 
vES, wE~ 

A pseudo-flow is a function g: V XV --+R which satisfies conditions (1) and (3), and 

a condition (4) given below (which is a relaxation of condition (2)). 

Ef(v,w)>O \ivEV (4) 
wEV 

The algorithm computes a sequence of pseudo-flows converging to the maximum flow. 

Given a pseudo-flow g , for each vertex v we define flow excess ev to be 

ev = Ef ( V, w ). 
w 

The residual capacity with respect to a pseudo-flow g is a function r9 : V XV --+R 

given by r9 (v , w)=c(v,w)-f(v,w). The residual graph is G9 =(V, E 9 ) , where 

E9 contains all pairs of vertices with positive residual capacity: E9 

{(v, w) I r9 (v, w) > O}. 

3. Algorithm Description 

The best way to understand the algorithm is to look at it from a distributed com

putational point of view. Assume that processors are located at vertices of the network , 

and they use local information to determine what to do next. Processors communicate 

with their neighbors along the network edges. Complexity measures are parallel time and 

communication; local computation is assumed to be instantaneous. 

The algorithm proceeds in pulses; each pulse consists of three phases. At the begin

ning of pulse p , each vertex v contains two pieces of information: flow excess ev (p) and 

distance label lv (p ). At the beginning of each pulse, there is a pseudo-flow g (p) on G . 

As we will see later, the distance label Iv (p) is a lower bound on the distance from v to 
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the sink in 0 9 (p) (the distance is in the residual graph with each edge of unit length). 

The excess ev (p) is the flow excess with respect to g (p ); excess is always non-negative. 

procedure STAGE_!; 
begin 

end; 

INITIALIZE; 
repeat 

\-jv 'f= t do PUMP( v ); 
p +--p +1; 

until \-jv (lv (p )=lv (p -1))&( ev (p )=ev (p -1)); 

procedure INITIALIZE; 
begin 

end; 

p +--1 ; 
g ( 1 )+-- zero pseudo-flow; 
Do breadth-first search from the sink; \:;Jv set lv ( 1) to the distance from v to the sink; 
ev (1 )+--0 for v EV - { s }; e8 (1)+--oo; 

procedure PUMP( V ); 

begin 

( * phase 1 *) 
if lv (p ),f=oo then begin 

W+--{w I rg (p)(v, w) > 0, lw(P) < lv(p)}; 
while W ,f,0 and ev (p ) > 0 do begin 

Pick w EW; 
W+--W - {w}; 
PUSH(v , w ); 

end; 
end; 
( * phase 2 *) 
S +--{w I rg (p)(v, w) > O}; 
if S =0 then lv (p + 1 )+--oo 
else lv (p + 1)+--minlw (p) + l ; 

wES 
if lv (p + 1 )> n then lv (p +1 )+--oo; 
( * phase 3 *) 
if lv (p )'f=lv (p + 1) then broadcast the new label to the neighbors; 

end; 

procedure PUSH( V , W ) ; 

ev (p )+--max(O, ev (p) - r g fp )( v, w )); 
r 9 (p )( v , w )+--max(O, rg(p )l v, w) - ev (p )); 

end; 

Figure 1: Summary of the Algorithm 
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Figure 1 summarizes the algorithm, which is described below. 

The intuition behind the algorithm is simple: each vertex tries to get rid of its flow 

excess by sending flow to its lower-labeled neighbors, i.e. towards the sink. This changes 

the residual flow and the residual graph, so the vertex updates its label based on the 

labels of vertices reachable from it in the new residual graph. 

We start with a null flow and infinite excess at the source. The breadth-first search 

is done from the sink to initialize the distance labels. During the first phase of a pulse, 

each vertex with a finite label and non-zero excess tries to get rid of the excess by send

ing flow to its neighbors with smaller distance labels. The vertex does this by selecting 

such a neighbor and sending as much of the excess to the neighbors as the residual capa

city of the corresponding edge allows. The vertex repeats this while it can, i.e. until its 

excess becomes zero or until the residual capacity of every edge from the vertex to 

lower-labeled vertices is zero. 

During the second phase, each vertex updates its label by adding 1 to the minimum 

of the current labels of the vertices reachable from it. If no vertices are reachable, the 

label is set to infinity. If a label becomes n or greater, it is also set to infinity. During 

the third stage, vertices whose labels have changed broadcast the new labels to their 

neighbors. 

This concludes the first stage of the algorithm. At the end of this stage, only ver

tices with distance label infinity can have positive excess. Then the second stage is per

formed. 

The second stage works the same way as the first stage, but initial pseudo-flow and 

flow excess at vertices is taken from the end of the first stage, and distances are com

puted from the source rather then to the sink. 

Remark: All previously known max-flow algorithms first find the maximum flow, 

then the minimal cut; however the algorithms do not "know" that max-flow has been 

found until they find min-cut. Our algorithm, on the other hand, first finds min-cut (in 

the first stage) and then max-flow (in the second stage). Also, min-cut is found gradu

ally: vertices that get infinite distance labels at the first stage will be at the source side 

of the minimum cut found by the algorithm. 

4. Correctness of the Algorithm 

In this section we prove that the algorithm terminates and finds the maximum 

flow. 

Claim 1: Distance labels of a vertex are non-decreasing: 
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Proof: Define lv (0) = lv (1), and g (0) = g (l). This definition is consistent with 

the way the algorithm computes distance labels. Then the claim is true for p = 0. 

Inductively assume that the claim is true for p < k , and prove it for p = k. Note that 

if a vertex gets an infinite label, it will retain it until the end of the stage; therefore the 

claim holds for infinite labeled vertices. We restrict ourselves to finite lv (p) and 

lv (p +l). 

Fix a vertex v. Define A= {w I (v, w)EEg (p)} and B = {w I (v, w)EEg(p+I)}

A is the set of vertices reachable from v at the beginning of pulse p , and B is the set 

of vertices reachable at the beginning of pulse p + l. Because flow is pushed to a lower

labeled vertices, we have 

aEA-B=>l0 (p )<lv(P) 

b EB -A =>lb (p ) > lv (p ) 

Using the induction assumption and unequalities (5) and (6) we obtain 

This proves the claim. • 

Claim 2: If in n pulses no distance labels change, stage terminates. 

(5) 

(6) 

Proof: Assume that the distance labels stay the same from pulse k + l to pulse 

k +n . The algorithm will terminate if all vertices with non-zero excess have infinite dis

tance label at some pulse from k + l to k +n . Let S (p) be the set of all finite labeled 

vertices with non-zero excess at pulse p : 

Let d (p) = max lv. For k + l < p < k +n distance labels do not change, and there-
v ES (p) 

fore each vertex always succeeds in getting rid of its excess; new access can come only 

from higher-labeled vertices. Therefore for k +l < p < k +n, d (p + l) < d (p ). It fol

lows that by pulse d ( k + l + d ( k + l )), S (p ) = { t } , and the algorithm terminates. • 

Claim 3: The total amount of distance label change does not exceed ( n - 1)2
. 

Proof: The distance label of the sink never changes; other distance labels start 

from a positive value and increase until they reach or exceed n; the total amount of 

change is (n-l)X(n -1). • 

Lemma 1: The algorithm terminates. 
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Proof: From claims 1-3 it follows that the first stage terminates. By a similar 

argument we can show that the second stage also terminates. • 

Definition: By dist09 (p)( a, b) we denote the distance from a to b in Gg (p )· 

Claim 4: Distance labels are lower bounds on the distance to the sink: 

Proof: We induct on the value of k = dist
0 9

(p)( v, t ). For k = 0, v must be the 

sink, and the claim holds. Assume claim holds for k < i. Let k = i . Then there is a 

v -t path, v -w 1- · · · -wk =t, of length k in Gg (P )· By claim 1 and the inductive 

assumption, we have 

lw
1
(p-l) < lwiP) < k-1. 

But ( V, w 1)EEg (p ), so lv (p) < lw
1
(p - 1) < k, Q.E.D. • 

The previous claim assures that distance labels are lower bounds on the distance to 

the sink in the current residual graph. The next claim is that at the end of the first 

stage, the distance labels are true distances to the sink. 

Claim 5: Let T be the last pulse of the first stage. Then 

lv ( T) = dista
9
cri v, t) 

Proof: By claim 4, lv ( T) < dist09 (T)( v, t ). It remains to show that the set 

is empty. 

Assume for contradiction that S =/= 0, let w be an element of S with the smallest 

distance label: lw ( T) = mindist0 < l( v, t ). Since t ft_S , and t is the only vertex with 
vES 9 T 

zero label, lw ( T) > 0. Since T is the last pulse, distance labels do not change during T; 

in particular lw(T) = lw(T-1). It follows that there is a w 1 such that 

By the choice of w, lw, ( T) = dist0 9cri w 1 , t ), and 

dista
9
cr/ w, t) < dista

9
cr/ w 1 

, t) + 1 = lw ( T) => w ft_S. 

Contradiction. • 
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Claim 6: Let T be the last pulse, and define 

S = { V I LV ( T ) = 00} 

S = { W I lw ( T ) < 00} 

Then \-jv ES , w ES cG
9

(T)( v, w) = 0. 

Proof: By the previous lemma, vertices in S have paths to t in the residual graph 

with respect to g ( T ), and vertices in S do not have such paths. • 

The next claim follows easily from the previous one. 

Claim 7: \-jv ES, w ES the residual capacity of ( v, w) does not change during the 

second phase of the algorithm. 

The following fact is true for every pseudo-flow. 

Claim 8: Let g be a pseudo-flow and let SC V be a subset of vertices. Then 

~ Cg ( V, W) > ~ eg ( V ). 
vES,wEV-S vES 

Proof: Using (1), (2), and (4) we obtain 

~ g(v,w)= E g(v,w)< E c(v, w) 
vES wEV vES wEV-S vES wEV-S 

Q.E.D. • 

Claim 9 : At the end of the second stage, all vertices other then s and t have a 
zero excess. 

Proof: Let V 00 = { v EV -{ s , t } I Lv = oo after the second stage}. Then \is EV 00 

and v EV - V 00 , cg ( s, v) = 0. By claims 6 and 9, t he vertices in V 
00 

must have zero 

excess. • 

Lemma 2: The algorithm computes a maximum flow. 

Proof: Claim 9 implies that the pseudo-flow computed by the algorithm is really a 

flow. Claims 6 and 7 imply that in the residual graph constructed with respect to the 

final flow, the sink is not reachable from the source, so by the augmenting path theorem 

the flow is maximum. 
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5. Analysis and Implementation Details 

5.1. Bound on the Number of Pulses 

By refining of the termination argument of the previous section we obtain an upper 

bound on the number of pulses in the algorithm. We provide the bound for the first 

stage of the algorithm; the same bound can be proven for the second stage by a similar 

argument. 

Theorem 1: The first stage of the algorithm takes at most 2n 2 pulses. 

Proof: Let a flow atom be a piece of flow that stays together during the execution 

of the algorithm. The notion of flow atom is well-defined because the algorithm ter

minates. At each pulse, one of the following three possibilities can occur to a flow atom: 

(1) An atom is sent to a lower labeled vertex, and the distance label of the vertex does 

not change. 

(2) An atom is sent to a lower labeled vertex, and the distance label of the vertex 

increases by d > 0. 

(3) An atom is not sent; in this case the distance label of the vertex at which the atom 

is must increase by d > 0. 

Consider an atom that moves last. During a pulse, in case (1) the atom moves 

closer to the sink, and in cases (2) and (3) it moves away by d or d -1, respectively. 

Since the initial distance from the sink is no greater then n -1, and the number of steps 

back is no greater then (n-1)2
, the atom moves for at most 

(n - 1)2 + (n-1)2 + (n-1) < 2n 2
- n pulses. After atoms stop moving, the residual graph 

remains fixed, and the algorithm must terminate in n pulses. • 

5.2. Sequential Implementation 

In this section, we propose specific data structures for sequential implementation of 

the algorithm, and show that the complexity of the implementation is O(n 3) (under the 

RAM model of computation [AHU 1974]). 

In the proposed sequential implementation, vertices are processed in a round-robin 

fashion. There are n buckets at each vertex; the i -th bucket contains a linked list of 

neighboring vertices with distance label i. Each vertex maintains the smallest non-empty 

bucket index. When this bucket becomes empty, the index is updated . Since distance 

labels on vertices never decrease, the index never decreases, so the index update t ime is 

0 ( n) per vertex, or O ( n 2) per stage. Index updates are not the bottleneck of the algo

rithm, so we will ignore them in further analysis. This also takes care of the distance 

label computations performed during phase 2 of the algorithm, since the distance label 

can be easily computed when the index is computed. 
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Lemma 3: The number of executions of the PUSH procedure is O (n 3). 

Proof: We distinguish two kinds of PUSH operations: one that saturates the resi

dual edge ( v , w) and one that does not saturate the edge. When a residual edge is 

saturated, no fl.ow is moved through the corresponding edge of G until its head vertex 

moves back so that its distance label exceeds the distance label of the tail vertex. For 

each edge of G , the corresponding residual edge can be saturated n times. The total 

number of saturating edge operations does not exceed nmEO(n 3). During each pulse, 

at most one non-saturating PUSH operation is performed from each vertex. Since the 

number of pulses is O ( n 2), the total number of non-saturating PUSH operations does 

not exceed O ( n 3). • 

Phase 3 of the PUSH procedure is implemented as follows. When a label of a vertex 

changes from i to j , it removes itself from the i - th bucket of its neighbors and inserts 

itself into the j -th buckets. Using right data structures, remove and insert operations 

take constant time. Given that, we can prove the following claim by an argument similar 

to the proof of the previous one. 

Claim 10: Broadcasting the new distance labels in phase 3 of the algorithm costs 

0 ( nm ) operations per stage. 

Lemma 3 and claim 10 give the following theorem: 

Theorem 2: The sequential implementation of the algorithm runs in time O ( n 3). 

5.3. Distributed Implementation 

We consider the following model of distributed computation. The model assumes 

that local computation is much faster then inter-processor communication, and that the 

amount of local memory of a processor is proportional to the number of its neighbors in 

the network. The processors are located at the vertices of the network, and communi

cate through the links. Each processor has unlimited computational speed, and its local 

memory is proportional to the degree of the corresponding vertex. We will consider both 

synchronous and asynchronous cases. In either case, we will be interested in two com

plexity measures of an algorithm: parallel time and the number of messages ( communica

tion complexity). For more details on the model, see [Awer 1984]. 

Theorem 1 gives an O ( n 2) running time under the synchronous model; 0 ( n 3) com

munication complexity bound follows from the Proof of Theorem 2. It has been noted 

by Awerbuch [Awer 1985] that using the synchronizer protocol [Awer 1984], the algo

rithm can be implemented under asynchronous model with O ( n 2logn) time complexity 
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and O ( n 3) communication complexity. 

If the rest riction on processor memory is omitted, the S&V algorithm can be imple

mented with the same time and communication complexity bounds. However the S&V 

algorithm seems to require D( n 2) storage at each vertex ( or D( n) storage at for each 

edge) and can not be implemented under the restricted memory model, which is better in 

many practical situations. 

5.4. Parallel Implementation 

The parallel computation model used is PRAM [FW 1978] without concurrent writ

ing. The implementation of the algorithm under this model is very close to synchronous 

distributed implementation, except that trees of processors are added at vertices to 

enable data access. Because of these trees, each pulse takes O (logn) time, and the total 

parallel running time of the algorithm is O ( n 2logn ). 

Again, the implementation is very similar to the S&V algorithm implementation, 

but requires less memory - in fact, it requites only constant amount of memory at each 

processor. 

6. Conclusions 

We have described a new algorithm for computing max-flow. The algorithm is very 

natural: it is both intuitive and robust with respect to an implementation machine. Per

formance of the algorithm on dense graphs and under parallel models of computation is 

as good as that of the best max-flow algorithms known before, and its parallel implemen

tation uses less memory then other parallel max-flow algorithms. 
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