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1 Introduction 

The critical section problem has been widely studied for its illust rative value 
in problems of synchronization as well as for its practical application to real 
concurrent systems [BJLFP82], [Bur81), [CH75], [CH78], [CH79], [deB67], 
[Dij65), [EM72), [FLBB79], [Knu66), [Lam74], [Lam76], [Lam77], [Lam80] , 
[Mor79], [Pet80], [Pet81], [PF77) , [RP76]. The problem is to devise protocols 
for each of several communicating asynchronous parallel processes t o control 
access to a designated section of code called the critical section. Such code 
might manipulate a common resource, in which case access to the critical 
section corresponds to allocation of the resource. In the simple case of a 
single nonsharable reusable resource such as a line printer or a t ape drive, 
the two basic properties desired of the access policy are mutual exclusion 
and impossibility of deadlock. Mutual exclusion means that two processes 
can never simultaneously be executing their critical sections. Deadlock is a 
situation in which one or more processes are attempting to enter or leave 
their critical sections, but none of them ever succeeds. Finding appropriate 
protocols to insure these two properties is the critical section problem. 

Two protocols comprise a solution. The trying protocol is the · section of 
code that a process executes before being admitted to its critical section , 
and the exit protocol is the code to be run when the process leaves its critical 
section and returns to the remainder of its code, called the remainder section. 
Equivalently, the trying protocol allocates the resource corresponding to the 
critical section and the exit protocol returns it to the system. 

In this paper, we generalize the critical section problem to the case where 
some number k ~ 1 of processes (but not more) are permitted to be simulta­
neously in their critical sections. Regarded as a resource-allocation problem, 
we consider k identical copies of a non-sharable reusable resource, where each 
process can request at most one copy of that resource. Again, entry to the 
critical section corresponds to allocation of a resource copy, but we ignore 
questions of just how the individual copies of the resource are managed. 

The exclusion property of the k-critical section problem, that at most 
k processes are ever simultaneously in their critical sections, we call k­
exclusion. To avoid degenerate solutions, we must also formalize the notion 
that "it should be possible for as many as k processes to be simultaneously 
in their critical sections." We interpret this to mean, roughly, that if fewer 
than k processes are in their critical sections, then it is possible for another 
process to enter its critical section, even though no process leaves its criti­
cal section in the meantime. We call this property "avoiding k-deadlock". 
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Precise definitions of these properties are deferred until Section 3, after the 
algorithms have been presented. 

A trivial generalization of a binary semaphore yields a system exhibiting 
k-exclusion and no k-deadlock. Assume a shared variable, COUNT, which at 
any time contains the correct count of the number of processes currently in 
their critical sections. A process wanting to enter its critical section performs 
an atomic transaction on COUNT which, in one indivisible step, reads the 
value of COUNT, increments it if it was less than k, and stores back the 
result. The process then proceeds to its critical section if it saw COUNT less 
than k, and it loops back and repeats the test otherwise (busy-waiting). A 
process leaving its critical section simply decrements COUNT. 

This algorithm imposes no fairness criteria on the order in which pro­
cesses enter their critical sections, and in fact it is possible that an individual 
process will always find the critical section "full" (i. e. COUNT = k) when­
ever it happens to examine COUNT and therefore will be "locked out" of its 
critical section forever. 

Rather than devise new algorithms for the k-critical section problem with 
stronger fairness conditions, an obvious approach is to try to reduce the k­
critical section problem to the 1-critical section problem and then apply 
known solutions to the latter problem, e.g. [BJLFP82], [CH75], [CH78] , 
[CH79], [Lam74]. Such a hybrid solution is commonly used in banks for 
scheduling people waiting for a teller. People entering the bank line up in a 
single queue. When one or more tellers become available, the person at the 
head of the queue goes to any free teller. 

To see the reduction that is illustrated by this simple example, think 
of the position at the head of the queue as a "resource". Only one person 
has this resource at a time, and the queue itself serves to allocate that 
resource in first-in-first-out (FIFO) order. Only the person holding the head­
of-queue resource is permitted to go to a teller, so the order of service by a 
teller is "essentially" FIFO, modulo possible delay between leaving the head 
of the queue and arriving at a teller1 . Such a reduction is possible given 
any I-critical section solution, and the number of values of shared memory 
increases by only a factor of ( k + 1) . 

The bank algorithm has a rather subtle defect which becomes apparent 
when several tellers become simultaneously free. If k ~ 2 tellers are free, one 

1By running, a person might actually arrive at a teller before another who was ahead 
of him in the queue. Nevertheless, we consider this to be a reasonable approximation 
of what people mean by FIFO since once one arrives at the front of the queue, one no 
longer has to wait for others. 
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would like the first k people in line to all move "simultaneously" to a teller, 
yet the algorithm requires them to file past the head of the queue one at a 
time. If the person at the front of the line is slow, the k - 1 people behind 
him are forced to wait unnecessarily. In fact , if the person at the front of the 
line "fails", then the people behind him wait forever and the system stops 
functioning. In this case, one failure can tie up all of the system's resources! 

We are thus led to generalize our requirements to include controlling the 
degradation of processing in the event that a limited number of processes 
fail during the execution of their protocols. 

Our notion of "failure" is quite different from the "shutdown" considered 
in [RP76] and [PF77]. Unlike a process which shuts down, a failed process 
does not announce to the world that it has failed. Rather, we say a process 
fails if there is a time after which it executes no more steps of its program. 
To distinguish a failed process from a correct one that is merely running very 
slowly, one must look infinitely far into the future and determine that it never 
takes another step. Thus, other processes have no way of distinguishing a 
failed process from a correct one in a finite amount of time. (In particular, 
timeouts won't work since we make no assumptions about the relative speeds 
of processes.) 

Our interest in this kind of failure stems partly from the practical prob­
lems of building fault-tolerant distributed systems and partly from the de­
sire to understand the dependencies among processes competing for entry 
to their critical sections. Each instance of one process waiting for another 
indicates a lack of concurrency in the whole solution. Taken together, these 
dependencies tend to cause the whole system to run at the speed of the 
slowest process. Algorithms which continue to operate correctly even when 
a limited number of processes fail cannot exhibit such simple dependencies. 
For example, if process A waits for process B to take some action and pro­
cess B were to fail, then process A would wait forever and make no further 
progress toward its goal. Hence, B's failure would cause the whole system 
to fail by locking out A. Insisting that algorithms be robust in the face 
of a certain amount of failure gives us a formal way of studying degrees 
of concurrency which in turn have implications for the running time of the 
system. 

At first sight, the concepts of robustness and fairness, say FIFO order­
ing, appear to be contradictory. Robustness says, for example, that if one 
process fails in its trying protocol, the system must continue to function. In 
particular, other processes which enter their trying protocols after the failed 
one will necessarily enter their critical sections ahead of it. Since the appar-
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ently failed process might actually be correct but slow, robustness implies a 
violation of the usual definition of FIFO ordering. 

The problem is circumvented by defining the fairness conditions not in 
terms of the order in which processes enter their critical sections but rather 
by the order in which they become "enabled" to enter their critical sections. 
By enabled, we mean that a process no longer needs to wait for action by any 
other process before it can go into its critical section, nor can the actions 
or inactions of other processes prevent it from so doing. Intuitively, when 
a process becomes enabled, a copy of the resource is reserved for it, and 
actions of other processes are no longer needed in order for the given pro­
cess to complete its trying protocol. The key distinction between enabling 
and actual entry to the critical section is that a process might become en­
abled passively by the action of some other process changing shared memory, 
whereas entry to the critical section can take place only by a positive action 
of the given process. 

In this paper, we describe an algorithm, the Colored Ticket Algorithm, 
for solving the k-critical section problem which is robust, enables processes 
in FIFO order, and uses O (N2) values of shared memory for fixed k. The 
algorithm can be thought of as a distributed implementation of a queue, for 
it simulates the behavior that would be achieved by explicitly storing the 
entire queue of waiting processes in shared memory, but it uses far less shared 
space and is fast and simple to implement. We also show our algorithm to be 
essentially optimal in terms of the amount of shared memory used by giving 
an O(N2) lower bound on the number of distinct shared memory values for 
any robust algorithm which so simulates a queue. 

If one weakens the robustness conditions to permit lockout to occur in 
case more than a prespecified number of processes fail, then more space­
economical solutions are possible [FLBB79]. However, these solutions lack 
the elegance and simplicity of the Colored Ticket Algorithm as well as its 
time efficiency. If one ignores robustness altogether, then O ( N ) values suffice 
[LF83}. 

The main technical content of the paper is contained in the next four 
sections. The Colored Ticket Algorithm is presented in Section 2. Section 3 
presents a formal model of computation and precise definitions of properties 
which characterize the k-critical section problem. Section 4 describes how 
to translate the Colored Ticket Algorithm to a process in the formal model 
and sketches how to prove that it solves the k-critical section problem in 
small shared space. Section 5 contains the lower bound proof that shows 
the Colored Ticket Algorithm to be space-optimal (to within a constant 
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factor) among all algorithms that satisfy the strong form of the k-critical 
section problem given in this paper. 
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2 k-critical Section Algorithms 

In this section, .we present four algorithms, each a refinement of the preced­
ing, the last of which is the Colored Ticket Algorithm. The algorithms run 
in an environment consisting of N processes, each with its own private mem­
ory, and a common shared memory (database) through which the processes 
communicate. Access to the shared memory is via atomic transactions that 
allow a process, in one indivisible step, to read the entire contents of shared 
memory and modify it in an arbitrary way, depending in general on the data 
just read. 

We specify our algorithms and the transactions they use in a Pascal-like 
language augmented with two new statements for specifying transactions, 
start and commit. Statements executed dynamically after start and before 
the next commit comprise a single atomic transaction. While it is possible 
in this language to write transactions of unbounded size (for example, by 
executing a loop between start and commit) , the transactions we actually 
use are all bounded, a fact that is important for the implementation in terms 
of "test-and-set" instructions which we give in Section 3. 

In order for our algorithms to have the desired correctness and robustness 
properties, we make two assumptions about the implementation of transac­
tions: 

1. A process crash in the middle of a transaction does not cause the sys­
tem to hang and leaves the shared memory as it was before beginning 
the transaction. 

2. The system never aborts transactions. (Alternatively, a transaction 
that is retried repeatedly will eventually succeed.) 

While these assumptions are difficult to implement exactly, they can be 
approximated in real systems, so we believe our algorithms will be useful in 
practice. 

A!5 a convenience, we use the construct "wait until C" as an abbreviation 
for "while not C do [commit; start]" . Thus, every time around the wait loop 
ends one transaction and begins another. 

2.1 The Queue Algorithm 

We first describe a simple but inefficient solution to the k-critical section 
problem. This basic algorithm, the Queue Algorithm, stores the entire queue 
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of waiting and critical processes in the shared variable. A process in any of 
the first k positions of the queue is permitted to enter its critical section. 
This algorithm requires no communication among processes other than that 
provided Dy the queue itself, and in fact, each process need only change 
shared memory at the moments of entry to the trying protocol and remainder 
section. 

In the code given in Figure 1, the shared memory contains a single queue 
which admits two operations. ENQUEUE places an element at the rear 
of the queue, and REMOVE deletes a particular element from the queue, 
regardless of where it occurs. Initially, the queue is empty. 

repeat forever 
start; 
ENQUEUE(i); 
wait until i is in one of the first k positions of Q.UEUE; 
commit; 

{ Critical Section } 

start; 
REMOVE(i); 
commit; 

{ Remainder Section } 

end repeat. 

Figure 1: Queue algorithm ( code for process i). 

Note that many transactions might be executed before the process 
reaches its critical section since each execution of the wait loop ends one 
transaction and begins another. However, only the first of these actually 
updates shared memory; the others are all "read-only". 

2.2 Ticket Systems 

While the Queue Algorithm satisfies all the correctness properties we want, 
keeping the queue in shared memory requires too much space to make the 
algorithm very interesting. Our goal is to find an algorithm equivalent to the 

8 



Queue Algorithm which keeps a lot less information in the shared variable. 
In other words, we wish to devise a space-efficient "distributed simulation" 
of the Queue Algorithm. 

All of o·ur remaining algorithms are modeled after the ticket systems 
often used in bakeries. A process wishing to enter its critical section takes 
the next available ticket from an ordered sequence of tickets and then waits 
until its ticket becomes valid, at which point it is enabled to enter its critical 
section and proceeds to do so on its next step. When it leaves its critical 
section, it discards its ticket and validates the next ticket in order, thereby 
allowing the next process in line to proceed. (In case no process is cur­
rently waiting, the next ticket is nevertheless validated, and when a process 
eventually takes that validated ticket, it will proceed directly to its criti­
cal section.) Once a ticket becomes valid, it remains valid until discarded. 
Tickets are validated in the same order as they are issued, and at any time, 
exactly k (non-discarded) tickets are valid, some of which may not have yet 
been issued. 

Since every process in its critical section holds a valid ticket, k-exclusion 
is satisfied. Since tickets are validated in the order in which they are issued, 
processes are enabled in FIFO order, so the algorithm satisfies our fairness 
condition. Robustness follows since a process does not modify shared mem­
ory from the time it enters its trying protocol until the time it returns to its 
remainder section; hence, whether or not it is alive in the meantime has no 
effect on the rest of the system. 

Any such ticket algorithm simulates the Queue Algorithm in the sense 
that if the natural correspondence is made between transactions of the two 
algorithms and those transactions are run in the same order, then processes 
enter and leave their critical and remainder sections in exactly the same 
order in both. Indeed, the simulated queue of the Queue Algorithm can 
be obtained by arranging the processes holding tickets in increasing order 
of their tickets. Issuing a ticket corresponds to adding a process to the 
end of the queue, and discarding a ticket together with validating the next 
corresponds to removing a process from the queue. The k valid tickets 
always correspond to the first k positions of the queue. 

Code to implement this basic paradigm is shown in Figure 2. Func­
tion TAKE_NEXT_TICKET issues the next available ticket and returns it to 
the calling program. Function IS_ VALID(T) returns a Boolean value telling 
whether or not the ticket Tis valid. Procedure VALIDATE_NEXT_TICKET(T) 
discards the ticket T and updates shared memory so as to cause the next 
invalid ticket in sequence to become valid. In order to fully specify a ticket 
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algorithm, one must specify these three subroutines. 

local variable TICKET; 

repeat forever 

start; 
TICKET := TAKE_NEXT_TICKET; 
wait until IS_ VALID(TICKET); 
commit; 

{ Critical Section } 

start; 
VALIDATE_NEXT_TICKET(TICKET); 
commit; 

{ Remainder Section } ; 

end repeat. 

Figure 2: Basic ticket algorithm ( code for process i ). 

2.3 The Numbered Ticket Algorithm 

The first ticket system we present, the Numbered Ticket Algorithm, uses an 
infinite number of values and hence requires an unbounded amount of shared 
memory for its implementation. The Colored Ticket algorit hm, which uses 
only finite shared memory, is then described as two furt her modifications of 
t his algorithm. 

In the Numbered Ticket Algorithm, tickets are nat ural numbers in their 
usual order. The algorithm maintains two variables in shared memory. 
ISSUE holds the most recently issued ticket, and VALID holds the most 
recently validated ticket. Initially ISSUE= 0 and VALID= k. An entering 
process takes a ticket by incrementing ISSUE and using the variable's new 
value as its ticket number. Ticket number t is valid whenever VALID ~ t; 

hence, any process can determine by looking in shared memory whether or 
not its ticket is valid . A process returning to its remainder section discards 
its ticket and increments VALID. 
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The code for the Numbered Ticket Algorithm is shown in Figures 2 and 
3. The initial value of the local variable TICKET does not matter to the 
operation of the algorithm. 

global variable ISSUE= 0, VALID = k; 

function TAKE_NEXT_TICKET: ticket; 
begin 

end; 

ISSUE := ISSUE+ 1; 
return ISSUE; 

function IS_ VALID(T) : Boolean 
begin 

return (T $ VALID) 
end; 

procedure VALIDATE_NEXT_TICKET(T); 
begin 

VALID :=VALID+ 1; 
end; 

Figure 3: Numbered ticket algorithm. 

The drawback to the Numbered Ticket Algorithm 1s, of course, that 
ISSUE and VALID grow without bound. 

2.4 Colored Ticket Algorithms 

We now give two variations of the Numbered Ticket Algorithm based on 
the idea of colored tickets, the second of which is the final Colored Ticket 
Algorithm. 

In the previous algorithm, either ISSUE or VALID could be larger than 
the other, and we say the larger one leads the smaller. (In case of equality, 
each leads the other.) However, they could never be too far apart. If VA LID 
leads ISSUE, then there are VALID - ISSUE valid but not-issued tickets; 
hence 

VALID - ISSUE$ k. 
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If ISSUE leads VALID, then all k valid tickets are held by processes, and 
there are ISSUE - VALID invalid tickets held by processes waiting in their 
trying protocols, Since there are only N processes in all, k of which hold 
valid tickets, we conclude that 

ISSUE - VALID~ N - k. 

Let M ~ I+ max(k , N - k). Then we can determine which variable 
leads the other given only the information: 

• B = (l VALID/ M J = l ISSUE/MJ) 

• V = VALID mod M 

• I = ISSUE mod M 

Namely, if B = true, then VALID leads ISS UE iff V ~ I, and if B = false, 
then VALID leads ISSUE iff V < I. 2 T hus, we divide the tickets into blocks 
of size M . Bis true iff VALID and ISSUE are in the same block; V and I are 
the relative positions of VALID and ISSUE withi~ their respective blocks. It 
is easy to see that if VALID and ISSUE are not in the same block, then they 
must be in consecutive blocks, and the condition on M insures that which 
block leads which can be determined by comparing V and /. 

The colored ticket algorithms replace numbered tickets by colored tickets 
that consist of ordered pairs T = (t, c), where t, the value of T , is a number 
between O and M - 1 indicating the position of the ticket within the block, 
and c, the color of T , is a non-negative integer indicating the block that 
contains the ticket. We write T.VALUE and T.COLOR to denote the two 
components of T. There is a natural one-to-one correspondence 1/J between 
numbered ticket i and colored ticket (i mod M, li/Mj). Using this corre­
spondence, a process can determine for colored tickets whether VALID leads 
ISSUE without using the ordering on colors by computing: 

• B :=(VALID.COLOR = ISSUE.COLOR) 

• V := VALID.VALUE 

• I := ISSUE.VALUE 
2

In case k # N - k, we can actually take M = max(k, N - k} and adjust the condit ions 
appropriately. 
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and then applying the above remarks. It also follows from the above remarks 
that !VALID.COLOR - ISSUE.COLOR! ~ l. 

Now, a process can easily determine whether or not a ticket T that it 
holds is valid. T is always valid if its color differs from both VALID.COLOR 
and ISSUE.COLOR, for then its color must be less than both. If T's color is 
the same as VALID.COLOR, then T is valid iff T.VALUE ~ VALID.VALUE. 
Finally, if T's color is the same as ISSUE.COLOR but different from 
VALID.COLOR, then T is valid iff VALID leads ISSUE. Using these ideas, 
the function IS_ VALID can be defined as in Figure 4. 

function LEADS(A, B ): Boolean; { Tests if A leads B } 
begin 

end; 

if A.COLOR= B .COLOR then 
return (A.VALUE~ B .VALUE) 

else 
return (A_.VALUE < B.VALUE); 

function IS_ VALID(T): Boolean; 
begin 

if T.COLOR = VALID.COLOR then 
return (T.VALUE ~ VALID.VALUE) 

else if T.COLOR = ISSUE.COLOR then 
return LEADS(VALID, ISSUE) 

else 
return true; 

end; 

Figure 4: Validity testing functions for colored tickets. 

Unbounded Colored Ticket Algorithm We complete the Unbounded 
Colored Ticket Algorithm by exhibiting in Figure 5 the definitions for 
the ticket issuing and validating functions. Initially, ISSUE = (0, 0) and 
VALID= (k,O). 

The Unbounded Colored Ticket Algorithm simulates the Numbered 
Ticket Algorithm using the correspondence 1/; between numbered tickets and 
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constant M = I+ max(k, N - k); 

global variable ISSUE= (0,0), VALID= (k,O) 

function TAKE_NEXT_TICKET: ticket; 
begin 

if ISSUE.VALUE< M - 1 then 
ISSUE.VALUE:= ISSUE.VALUE+ 1 

else begin 
ISSUE.VALUE:= O; 
ISSUE.COLOR := ISSUE.COLOR+ l ; 
end; 

return ISSUE; 
end; 

procedure VALIDATE_NEXT_TICKET(T); 
begin 

end; 

if VALID.VALUE< M - I then 

VALID.VALUE:= VALID.VALUE+ 1 
else begin 

VALID.VALUE:= O; 
VALID.COLOR:= VALID.COLOR+ l; 
end; 

Figure 5: Unbounded colored ticket algorithm. 
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colored tickets given above. Thus, we have bounded the set of ticket "val­
ues" at the cost of introducing an unbounded set of "colors". It may appear 
that no progress has been made, but the algorithm paves the way for the 
final modifi'cation which yields the space-efficient Colored Ticket Algorithm . 

Colored Ticket Algorithm We now present the main contribution of 
the paper, the Colored Ticket Algorithm. Like the previous algorithms, it 
simulates the Queue Algorithm, but it is very space efficient, requiring only 
0 (N2) values of shared memory. It is obtained by modifying the Unbounded 
Colored Ticket Algorithm so that only k + I different colors are used . This 
requires that tickets (and colors) be reused. 

The change from the unbounded version of the algorithm comes when 
ISSUE.COLOR or VALID.COLOR is to be incremented. The new algorithm 
instead considers two cases. If the leading pointer (ISSUE or VALID) is being 
incremented, then a new color is chosen that is different from the color of 
any currently issued or validated ticket and different from the color of the 
other pointer. This insures that no two processes ever simultaneously hold 
the same ticket. If the trailing pointer is being incremented , then it is set 
equal to the color of the leading pointer. That this is correct follows from 
the fact that the pointers (in the Numbered Ticket Algorithm) never differ 
by more than M. 

To see that it is always possible to select a new color when needed, we 
show (for the Unbounded algorithm) that every color in use at the time a 
new color is needed is the same as the color of some valid ticket; hence, 
at most k colors are then in use. A color is in use if it is the color of 
a valid or issued ticket that has not been discarded, or if it is equal to 
VALID.COLOR or ISSUE.COLOR. Note that in the exit protocol, a new 
ticket is validated immediately before the old one is discarded , so except for 
the brief moment between validating the new t icket and discarding the old 
one, exactly k tickets are valid , the most recently validated ticket T is still 
valid, and VALID.COLOR= T.COLOR. Hence, VALID.COLOR is always the 
color of one of the k valid tickets, so it suffices to show that when a new 
color is needed, both ISSUE.COLOR and the colors of all issued but not yet 
validated tickets are the same as VALID.COLOR. 

There are two cases. If a new color is needed because VA LID is about 
to be incremented, then VALID.VALUE = M - 1, VALID leads ISSUE, and 
a process is in its exit protocol attempting to validate a new ticket. Then 
ISSUE.COLOR = VALID.COLOR since ,J;- 1 (VALID) - ,J;- 1 (ISSUE) ~ k ~ 
M - 1. Since there are no issued but not validated tickets, the only colors 
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in use are those belonging to the k valid tickets. 
On the other hand, if a new color is needed because ISSUE is about to 

be incremented, . then ISSUE.VALUE = M - l , ISSUE leads VALID, and a 
ticket is ab6ut to be issued to an entering process. Again, ISSUE.COLOR = 
VALID.COLOR,for1µ- 1 (ISSUE) - 1/,-1(VALID) $ N - k $ M - 1.3 Moreover, 
any outstanding invalid tickets lie between VALID and ISSUE, so they also 
have color VALID.COLOR. Again, the only colors in use are t hose belonging 
to the k valid tickets. 

We conclude that with k + l colors altogether, t here is always a free color 
whenever a new one is needed. 

To permit a process to determine which color is free, we introduce an 
array QUANT of length k + 1 into the shared variable, where QUA T (c) E 
{O, 1, ... , k} gives the number of valid tickets of color c. There are exactly 
k valid tickets, so the total number of different values for the QUANT array 
is the number of partitions of k into k + l sets, or (2;) . While this number 
is exponential in k, it is independent of N. QUANT is updated whenever a 
ticket is discarded and a new one is validated. 

The code for finding a new color is shown in Figure 6. It simply scans 
for a color with QUANT = 0. 

function NEW _COLOR: integer; { Returns unused color } 
local variable C ; 
begin 

end; 

C :=0; 
while QUANT(C) > 0 do C := C + I ; 
return C 

Figure 6: Find unused color function (used by colored ticket algorithm). 

The final algorithm is contained in Figures 2, 4, 6 and 7. Initially, 
ISSUE = (0,0) and VALID= (k,0) . 

This algorithm simulates the Unbounded Colored Ticket Algorithm. To 
prove this, one shows that any two issued or validated (and not discarded) 
tickets T and T' have the same color in this algorithm iff they have the same 

3 
Actually, 1J,-

1 (ISSUE)- tJ,- 1 (VALID)::; N - k- l since the entering process does not 
yet hold a ticket, but we do not make use of this fact. 
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constant M = I.+ max(k, N - k); 

global variable ISSUE = (0,0), VALID= (k, O), QUANT[0j, . . . , QUA NT [k] = 0; 

function TAKE_NEXT_TICKET: ticket; 
begin 

end; 

if ISSUE.VALUE< M - 1 then 
ISSUE.VALUE:= ISSUE.VALUE+ 1 

else begin 
if LEADS(ISSUE, VALID) then 

ISSUE.COLOR := NEW _COLOR 
else 

ISSUE.COLOR := VALID.COLOR; 
ISSUE.VALUE:= 0 
end; 

return ISSUE; 

procedure VALIDATE_NEXT _TICKET(T ); 
begin 

end; 

if VALID.VALUE< M - I then 
VALID.VALUE:= VALID.VALUE+ 1 

else begin 
if LEADS(VALID, ISSUE) then 

VALID.COLOR := NEW _COLOR 
else 

VALID.COLOR:= ISSUE.COLOR; 
VALID.VALUE:= 0 
end; 

{ Update quantity information. } 

QUANT(VALID.COLOR) := QUANT (VALID.COLOR) + 1; 
QUANT(T.COLOR) := QUANT(T.COLOR) - I ; 

Figure 7: Colored ticket algorithm. 
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color in the Unbounded algorithm; hence, the two algorithms always make 
the same decisions. We leave the details to the reader. 

The total number of shared memory values needed by the Colored Ticket 
Algorithm ls the product of the number of values assumed by QUANT, 
ISSUE, and VALID. This works out to (2:)((k + l)M) 2 = 0 (N2 ) as de­
sired, since M = O(N). 
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3 A Formal Model for Systems of Processes 

We now present a formal model of computation and state the conditions 
that define the k-critical section problem. The model is derived from that 
of [BJLFP82]. It can also be regarded as a special case of the general model 
of [LF81]. 

3.1 Processes and Systems 

A process is a quadruple P = (V,X,c,R.), where 

• V is a set of values for a shared variable, 

• X is a (not necessarily finite) set of process states, 

• c5 is a total function from V x X to V x X, the transition function, 
and 

• R. is a total function from X to {R,T,C,E}, the region function. 

Assume process P is in state z and the shared n.iemory has value v. A step 
of P changes the state to r and the shared memory to v', where · ( v', r) = 
c(v,x). 

For a state z E X, R.(x) gives the region of z, where R denotes the 
remainder region, T the trying region, C the critical region and E the exit 
region. We assume that c5 respects R. as follows. For every ( v, x) EV x X: 

1. R.(z) E {R,T} implies R.(c(v,x)) E {T,C}, and 

2. R.(x) E {C,E} implies R.{c5{v,z)) E {E,R}. 

The allowed transitions are indicated in Figure 8. The transitions out of 
R and T comprise the trying protocol, and the transitions out of C and E 
comprise the exit protocol.• We "abstract away"' the steps comprising the 
critical and remainder sections treating only the protocols explicitly; hence 
the absence of self-loops on Rand C. Thus, the next step of a process in R 
takes it out of R, and similarly for C. 

4 Our formal model imposes a slight restriction on the form of protocols in that all 
transitions leaving a state of the trying region must belong to the trying protocol (and 
similarly for the exit region and protocol). Thus, a process, once permitted to begin 
its critical section, must first take a step to lea.ve the trying region before it begins 
executing steps of its critical sedion, and the step which takes it out of the trying 
region is considered to be a part of the trying protocol. This restriction is for technical 
convenience only and does not wea.ken the results, for a.ny protocol can be easily put 
into this form by adding dummy steps to the ends of the trying and exit protocols. 
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Figure 8: Possible region changes. 

For a natural number N, let [NJ denote {1, ... , N}. A system S of N 
processes is a collection of processes P; = (V, X;, 6;, R;), 1 ~ i ~ N, all 
having the same shared variable V. 

An instantaneous description (i.d.) q of Sis a snapshot of the configura­
tion of Sand completely determines S's possible future behaviors. Formally, 
q is an (N + 1)-tuple ( v, x1, .•. , XN ), where v EV is the contents of the shared 
variable and x; E X;, 1 ~ i ~ N, are the states of the N processes. We 
denote v by V(q) and x; by X;(q) , 1 ~ i ~ N. 

The functions 6; and R; of the individual processes are naturally ex­
tended to functions on the set of i.d.'s of S by defining 

6;(v,x1,• .. ,xN) = (v',x1,• .. ,x;-1,x',x;+1,• .. ,xN) 

where (v',x') = 6;(v,x;), and 

R;(v, xi, ... ,xN) = R;(x;). 

A schedule h for S is any finite or infinite sequence of elements of [N].5 

A schedule describes the interleaving of process steps in a particular "run" 
of the system. Since the processes are deterministic, the entire run is deter­
mined by the starting i.d. q of the system and a schedule h. Formally, the 

6 Note that h is not required to be "fair". Processes that take only finitely many steps 
in h are considered to have failed. 
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run determined by q and h = h1, h2, ... is the finite or infinite sequence of 
i.d.'s Q(q,h) = qo,q1,q2, ... such that: 

1. If his infinite then Q(q,h) is infinite, and if his finite then IQ(q, h)I = 
lhl + 1. 

2. qo = q. 

3. If qi-1,qi are successive elements of Q(q,h), then qi = Oh;(qi_i). 

If Q(q, h) is finite, then the last i.d., q., is the result of Q(q, h), and we 
denote q. by 6 ( q, h), extending 6 once again. I.cl. q1 is reachable from q via 
h provided 6 ( q, h) = q', and q' is reachable from q if q' is accessible from q 
via some finite schedule h. 

3.2 Equivalence of Systems 

Let S and S' be systems of N processes, with q and q' i.d. 's of S and S' 
respectively. We say that (S, q) and (S', q1

) are equivalent if for every finite 
schedule h, all processes are in the same regions in 6 ( q, h) and 6' ( q', h); that 
is, for every i E [N], R.i(6(q,h)) = Ra6'(q',h)). 

3.3 Dependencies Among Processes 

We have noted that processes are always free to leave their remainder or 
critical regions on their own, but the same is not true for the trying and 
exit regions. We next give some important definitions that describe possible 
dependencies among processes progressing through their regions. 

Let Z denote any region. A process Pi in a system of processes is Z ­
enabled in i.d. q if for every schedule h in which i occurs infinitely often, 
there is a finite prefix h of 7i such that R.i(o(q, h)) = Z. Thus, the Z-enabled 
i.d. 's are those in which a process is either already in Z or will eventually 
enter Z if it takes infinitely many steps, no matter what the other processes 
do. Note that a process Pi can become Z-enabled because of its own actions 
or because of actions of other processes. A Z-enabled process can be thought 
of as passively belonging to region Z. 

We say that Pi is T-waiting in q if it is in T but is not C -enabled in q. 
Similarly, we say that Pi is E-waiting in q if it is in E but is not R-enabled 
in q. 
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3.4 Properties of Systems 

We now state the properties that define the k-critical section problem. 
Throughout this section, S denotes a system of N processes, q an i.d. of 
S, k < N a natural number, and # Y the cardinality of the set Y. 

Our first condition is the basic k-exclusion condition. 

• k-Exclusion. l.d. q satisfies k-exclusion if #{i E [N] I .R;(q) = C} $ 
k. S satisfies k-ezclusion from q if every i.d. reachable from q in S 
satisfies k-exclusion. 

Note that any set of processes that are C-enabled but not in C can, by 
taking steps on their own, reach an i.d. in which all are simultaneously in C. 
Thus, if S satisfies k-exclusion from q, the number of C-enabled processes 
in any i.d. reachable from q is at most k. 

Our second condition describes our robustness requirements. We say 
that i.d. q is k-full if #{i E [N] I P; is C-enabled in q} ~ k. We say that a 
process P; makes progress in a run if, for some pair of i.d. 's q' and q" in the 
run, either 

1. .R;(q') =I= R;(q"), or 

2. P; is T-waiting in q' but not in q" , or 

3. P; is E-waiting in q' but not in q''. 

• AvQidance of k-Deadlock. An infinite schedule h exhibits k­
deadlock from q if no process makes progress in the run Q (q, h), and 
either 

1. some process is T-waiting in q and q is not k-full, or 

2. some process is E-waiting in q.6 

S avoids k-deadlock from q if no infinite schedule exhibits k-deadlock 
from any i.d. reachable from q. 

6 lntuitively, a schedule exhibits k-deadlock it some process "wants" to make progress 
and progress is possible, but no process actually does make progress. At first sight, 
it might seem necessary to exclude failed processes Crom consideration in the formal 
definition, for we do not consider that progress is possible for failed processes. However, 
it is unnecessary to distinguish between failed and non-failed processes because our 
convention or no selt-loops on R and C implies that every non-failed process "wants" 
to make progress {since it cannot continue taking steps and remain in R or C), and at 
least one process is non-failed in every infinite schedule. 
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Our third and final condition describes the fairness property, FIFO en­
abling. Intuitively, violation of FIFO enabling occurs if a process remains 
T-waiting while another process, beginning in its remainder region, becomes 
C-enabled. Similarly, a violation occurs if a process remains E-waiting while 
another process, beginning in its critical region, becomes R-enabled. For­
mally, let q be an i.d. and h a finite schedule. We say P; overtakes Pi in 
Q(q,h) if Pi is T-waiting in all i.d.'s of Q(q,h) , R;(q) = R , and P; is C­
enabled in 6(q, h), or if Pi is E-waiting in all i.d.'s of Q(q, h), R;(q) = C, 
and P; is R-enabled in 6(q,h). 

• FIFO Enabling. S achieves FIFO enabling from q if for all q1 reach­
able from q, all finite schedules h, and all i,j E [N], P; does not 
overtake Pi in Q(q' , h). 

The Problem Let q be an i.d. with every process in its remainder region. 
A system S solves the k-critical section problem starting from q if it satisfies 
k-exclusion, avoids k-deadlock, and achieves FIFO enabling from q. 
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4 Upper Bound 

The Colored Ticket Algorithm, when translated into the formalism of our 
model, shows that the k-critical section problem can be solved by a system 
S that uses only O (N2) values of shared memory. 

The translation requires a few comments. The transactions used in the 
algorithm make several accesses to the shared global variables, change inter­
nal variables, and branch to one of several possible exits depending on the 
values in shared and private memory at the start of the transaction. In our 
formal model, each transaction becomes a single process step. The program 
counter and all internal storage of a process is represented by the state x, 
and the entire contents of the global variables is represented by the value v 
of the shared variable. To construct the value ( v', r') of the transition func­
tion c5(v,x), if the program counter in x points to a start instruction, then 
run the algorithm until it encounters a commit statement, and move the 
program counter past the commit. r' is the state and v' the shared memory 
contents that results. If a commit is never reached, or if the program counter 
in x does not point to a start instruction, then c5(v,x) is defined arbitrarily. 
This translation is not fully general, but it is adequate for algorithms such 
as ours in which every transaction terminates, and the next instruction to 
be executed after a commit is always a start. 

Theorem 4.1 The Colored Ticket Algorithm, when translated into the for­
mal model as described above, solves the k-critical section problem and uses 
(k + 1)(2:)(1 + max(k, N - k))2 = O(N2 ) values of shared memory. 

A formal proof can be constructed following the development given in 
Section 2. Namely, one first proves that the Queue Algorithm solves the k­
critical section problem. Next one shows that each of the three successively­
presented algorithms is equivalent to the preceding in the sense formally 
defined in Section 3.2. Finally, one applies the following lemma, whose 
proof is straightforward. 

Lemma 4.2 Assume ( S , q) is equivalent to ( S', q'). If S satisfies the k­
critical section problem from q, then S' satisfies the k-critical section problem 
from q'. 
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5 Lower Bound 

In this section, we establish a lower bound on the size of the shared variable 
of any system of processes that solves the k-critical section problem. We 
assume throughout that k and N are natural numbers with N ~ k + 2, S is 
a system of N processes, and qo is an i.d. with every process in its remainder 
region such that S solves the k-critical section problem from q0 • 

Our method of proof is to construct a collection of runs and show that 
each leaves the shared variable in a distinct state. In order to carry out the 
construction, we need several "liveness" lemmas that show certain kinds of 
progress are always possible. 

5.1 Progress Lemmas 

We begin with some basic properties which follow from the fact that S 
solves the k-critical section problem. FIFO enabling places rather severe 
constraints on the order in which processes can become C-enabled, whiqi 
are expressed by the relation -<q that we next define. 

Consider any i.d. q and processes P; and P;. We define i -<q j to hold 
precisely if one of the following conditions holds at q: 

1. P; is C-enabled and P; is in Eu R; 

2. P; is C-enabled and P; is T-waiting; 

3. P; is T-waiting and P; is in E U R; 

4. P; and P; are both T-waiting, and in some run leading from qo to q, 
P; last entered T before P; did. 

We also define ahead;(q) = {i E [N] Ii -<q j}. The ordering -<.q is illustrated 
in Figure 9.7 

The first lemma says that the order in which processes become C-enabled 
from q respects -<q. 

Lemma 5.1 Let q be reachable from qo, and let i -<q j . Let h be a finite 
schedule such that P; is C -enabled in c5(q,h). Then P; is C -enabled in some 
i.d. in Q(q,h). 

1 One can show tha.t if q is rea.cha.ble from qo, then ~, is a. strict pa.rtial order which 
totally orders the T-wa.iting processes in q, a.s illustrated, but we do not need this fa.ct. 
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C-enabled T-waiting EuR 

Figure 9: The relation -<.q , 

Proof: Assume the conditions of the lemma. Since i -<.q j, P; is either C­
enabled or T-waiting in q. If P; is C-enabled, then we simply choose h' = >., 
the null schedule, and we are done. Hence, assume P; is T-waiting in q. 

Again since i -<.q j, P; is either in Eu R or is T-waiting in q. In either 
case, there exists an i.d. q1 (possibly equal to q) and schedules ho, h1 such 
that q1 is reachable from qo via ho, q is reachable from q1 via h1, P; is in 
Eu R in qi, and P; is T-waiting in every q1 E Q(q1,hi). P; is not T-waiting 
in every q1 E Q(q,h), for if it were, then P; overtakes P; in Q(q1,h1 •h), 
violating FIFO enabling. Hence, P; is C-enabled in some i.d. in Q(q, h). I 

The next lemma implies that among the T-waiting processes there is one 
that is "ahead" of all the others. 

Lemma 5.2 Let q be reachable from qo, and assume that at least one process 
is T-waiting in q. Then there is a T-waiting processes P; in q such that i -<.q j 
for all j :/- i such that P; is T-waiting in q. 

Proof: Let q be reachable from qo via h, and consider the run Q(qo, h ). 
Order the T-waiting processes in q according to the times of their most recent 
entry to T in Q(qo,h), and let P; be the first such process. By definition, 
i -<q j holds for all j #- i such that P; is T-waiting in q. I 
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Lemma 5.3 Let q be reachable from qo. 

1. If q i., not k-full, then no process i., T-waiting in q. 

2. No process i., E-waiting in q. 

Proof: 1. Assume tha.t q is not k-full but some process is T-wa.iting in q. 
We proceed to derive a. contra.diction. 

By Lemma. 5.2, there is a. T-wa.iting process Pi in q such tha.t i -<q j for 
a.11 j # i such tha.t P; is T-wa.iting in q. Since Pi is T-wa.iting in q, there is 
a. schedule h in which Pi ta.kes infinitely ma.ny steps but it remains in T in 
every i.d. of Q(q, h); hence Pi is T-wa.iting in every i.d. of Q(q,h). 

Suppose a. process P; becomes C-ena.bled during Q(q,h). Tha.t is, sup­
pose one ca.n write h = h1 · h2 · h3 such tha.t P; is not C-ena.bled in 
q1 = 6(q,hi), but P; is C-ena.bled in 6(q1 , h2). Then i --<q1 j holds by 
definition, so by by Lemma. 5.1, P; is C-ena.bled a.t some i.d. in Q(q1,h2), 
a. contra.diction. Hence, no process becomes C-ena.bled during Q(q,h) , so 
none of the i.d.'s in Q(q,h) a.re k-full. 

Now, for some suffix Q(q',h') of the run Q(q,h), no process ma.kes 
progress since ea.ch process ca.n change region or become R-ena.bled only 
a. finite number of times without becoming C-ena.bled. Thus, h' exhibits 
k-dea.dlock from q', contra.dieting the a.voida.nce of k-dea.dlock condition. 

2. The proof is similar (and simpler). Assume that P; is E-wa.iting in 
q. Then there is a. schedule h in which P; takes infinitely many steps but it 
remains in E in every i.d. of Q(q,h). It follows tha.t P; is E-wa.iting in every 
i.d. of Q(q,h). 

Only processes P; a.lrea.dy in E in q ca.n become R-ena.bled during 
Q ( q, h), a.nd that ca.n happen a.t most once per process, for otherwise P; 
would overtake P;, viola.ting the FIFO enabling condition. Hence, in some 
suffix Q ( q', h') of the run Q ( q, h), no process ma.lees progress since ea.ch pro­
cess ca.n change region or become C-ena.bled only a. finite number of times 
without becoming R-ena.bled. Then h' exhibits k-dea.dlock from q', contra.­
dieting the a.voida.nce of k-dea.dlock condition. I 

The following lemma. says tha.t a process ca.n only be C-enabled while it 
is in its trying or critical region. 

Lemma 5.4 Let q be reachable from qo. If process Pi i8 C -enabled in q, 
then P; i., in T U C in q. 
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Proof: Assume the contrary, that Pi is C-enabled in q, and Pi is in E U R 
in q. For each j E (NJ, j :/: i, run P; for zero or more steps until an i.d. 
is reached in which it is in TUC. This procedure must terminate after a 
finite number of steps, for otherwise P; remains forever in EU R. But that 
is impossible by Lemma 5.3 and the absence of self-loops on region R. Call 
the resulting i.d. q'. 

In q', every process other than Pi is either T-waiting or is C-enabled. At 
most k processes can be C-enabled (by the remark following the definition 
of k-exclusion). Thus, since we assume N 2: k + 2, some process Pt is T­
waiting in q'. Pi is still C-enabled in q' (by definition of enabling), so it 
enters C in the run Q(q1,im) for some m. By Lemma 5.3, q1 is k-full, so 
Pt remains T-waiting throughout Q(q', im). But then Pi overtakes Pt in 
Q ( q1

, im), violating FIFO enabling. I 

The next lemma says that, no matter what the other processes do, 
any process in its trying region that takes infinitely ·many steps eventually 
reaches its critical region, provided that there are not too many proc~ 
ahead of it. 

Lemma 5.5 Let q ~ reachable from qo, and let f'i be in T in q. Then 
#aheadi(q) < k if! f'i is C-enabled in q. 

Proof: Assume the conditions of the lemma. 
(~} Suppose #aheadi(q) < k but Pi is not C-enabled in q. Then Pi must 
be T-waiting in q, so by Lemma 5.3, q is k-full. But then all the processes 
which are C-enabled in q are in ahead;(q), so that #ahead;(q) 2:: k. This is 
a contradiction. 
(<=) If Pi is C-enabled in q, then P; is in TUC by Lemma 5.4. But then 
aheadi(q) = 0. I 

The next lemma says that it is always possible for all the processes to 
run so as to end up simultaneously in their remainder regions. 

Lemma 5.6 Let q be reachable from qo. Then there exists q' reachable from 
q such that every process is in its remainder region in q'. Moreover, q' can 
be reached from q via a schedule in which no process already in its remainder 
region in q takes any steps. 

Proof: It suffices to show that if not all processes a.re in their remainder 
regions, then there is some Pi not in R which is C- or R-ena.bled. Assuming 
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we have shown that such a P; exists, we run P; until it changes regions. We 
then repeat this construction on each resulting i.d. until an i.d. is reached in 
which all processes are in R. This procedure must eventually terminate since 
each process can change regions only finitely many times before entering its 
remainder region. 

Now suppose that every processes not in R is neither C- nor R-enabled 
in q. Then q is not k-full, since no process is C-enabled, by assumption and 
Lemma 5.4. By Lemma 5.3, no process is T- or E-waiting in q; therefore, no 
process is in TU E in q. But also no process is in C in q since no process is 
C-enabled. Hence, every process is in R. It follows that if not all processes 
are in R, then some such process is C- or R-enabled, as desired. I 

5.2 The Schedule h(i,j) 

Now choose any q reachable from qo in which all processes are in their 
remainder regions. q exists by Lemma 5.6. Fix i and j, with k $ j < i $ 
N - 1. Construct a schedule, h(i,j), as follows . . 

1. Starting at q, each of P1, .. . , P11: takes steps on its own, just until it 
enters its critical region. This is possible by Lemma 5.5. Then each 
of Pk+1 , ... , PN takes one step, going to its trying region. Let PN 's 
state after its entry be denoted by x , for future reference. (Note that 
x does not depend on i or j.) 

2. P 1 takes steps on its own, just until it returns to its remainder region, 
leaving one empty critical slot. This is possible by Lemma 5.3. Call 
the resulting i.d. </ for later reference. (Note that q1 does not depend 
on i or j.) 

3. Each of P11:+1, . . . , P; in turn takes steps on its own, just until it returns 
to its remainder region. This is possible by Lemmas 5.5 and 5.3. 

4. Ea.ch of P11:+i, ... , P; takes one step, thereby entering its trying region 
once again. The resulting i.d. is denoted q(i, j). 

This construction is diagrammed in Figure 10. Arrows are labeled by 
'O' , ' l ', or ' •' to indicate that the corresponding process takes O, 1, or an 
unspecified number of steps. 
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Pi P2.,.Pt Pt+1 • .. P; P;+1 .. . P; P;+1, .. PN I.D. ...__., .._ 
R R R R R q 

l· l· 11 11 11 
C C T T T 

l· lo lo lo lo 
R C T T T q' 

lo lo l· l· lo 
R C R R T 

lo lo 11 lo lo 
R C T R T q( i, j) 

Figure 10: The Lower Bound Construction. 

5.3 Distinctness of shared values 

We now relate the construction to the size of shared memory. 

Lemma 5.7 The shared variable h<Ul a distinct value in each q(i,j). 

Proof: Assume to the contrary that V(q(i,j)) = V(q(i',j')) for (i,j) '# 
( i' , j'). Without loss of generality, it suffices to consider two cases. 

Case 1: i < i'. 

Among all T-waiting processes in q(i',j'), P;,+1 was the first to enter its 
trying region, so #ahead;,+1 (q(i' , j')) = k - I. Then Pi'+I is C-enabled in 
q(i',j') by Lemma 5.5. Also P;,+l is in the same state in both q(i,j) and 
q(i',j'). Since also the shared variable has the same value in both i.d.'s, it 
follows that P;,+l, starting from q( i, j), can take some number m of steps 
and enter its critical region. We claim that the schedule h = h(i,j) • (i' + l)m 
violates FIFO enabling from q. This is because P;,+l goes from its remainder 
to its critical region during h while P;+l, which entered its trying region first, 
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remains T-waiting. (P;+1 does not become C-enabled during h, for if it did, 
then k-exclusion would be violated in the schedule h • (i + l)w.) 

Case B: i = i' and j < j'. 
Consider schedule h constructed as follows. Starting from q(i,j), 

P;1+1 takes one step, thereby entering the trying region. Then each of 
P;+l, ... , PN, PA:+l, ... , P;, in turn, takes sufficiently many steps to return 
to its remainder region, possible by Lemmas 5.5 and 5.3. Call the resulting 
i.d. q1. Then ahead;'+1(q1) = {2, . .. ,k}, so P;1+1 is C-enabled in q1 by 
Lemma 5.5. 

Now consider the application of h to q(i,j') and let q~ be the resulting i.d. 
Pi'+l is in the same state in both q1 and q~, and also the shared variable 
has the same value in both i.d. 's; thus P;'+1, starting from ti, can take 
some number m of steps and enter its critical region. Hence, Pi'+l enters 
its critical region in the run Q(q(i,j') , h') , where h' = h · (j' + l)m. The · 
schedule h' violates FIFO enabling from q(i,j'), for Pi'+l overtakes P;+1 in 
Q(q(i,j'),h'). I 

5.4 Lower bound theorem 

Finally we prove the main lower bound result. 

Theorem 5.8 Let N ~ k + 2, and let S be a system of N processes with 
value set V for its shared variable, and let qo be an i.d. such that S solves 
the k-critical section problem from qo. Then 

Proof: The proof proceeds by induction on k. 
Base: k = 1. 

By Lemma 5.7, there are at least (N;1) - 1 · (N;2) + N - 2 distinct 
values. 
Inductive step: k > I. 

By Lemma 5.7, there are (N-:-1) distinct values of the variable for the 
i.d.'s q(i,j) for i,j satisfying k ~ j < i ~ N - 2. Each such q(i,j) is k-full 
since P2, ... , PA: and P;+l are C-enabled in q(i,j). Hence, by k-exclusion, 
if v(i,j) is the value of the shared variable in q(i,j), then no finite number 
of applications of PN's transition function flN to the pair (v(i,j),x) can put 
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PN in its critical region. (Recall that PN is in the same state x in each 
q(i,j).) 

Now reconsider the construction of Section 5.2. Starting at q', let each of 
P2, ... , P1i: take steps until they return to their remainder regions, possible 
since all are R-enabled by Lemma 5.5. Now let each of P1i;+1 , .. . ,PN-l in 
turn enter their critical regions and then return to their remainder regions, 
again possible by Lemmas 5.5 and 5.3. Call the resulting i.d. q''. 

P1, ... , PN-1 are in their remainder regions and PN is in its trying re­
gion in q", so PN is C-enabled in q'' by Lemma 5.5. From q'', consider 
P1 , ... , PN-1 as comprising a system, S', of N - 1 processes. Since S solves 
the k-critical section problem from q, it can be shown that S' solves the 
( k - 1 )-critical section problem from ( the appropriate restriction of) q". 
Thus, by induction, the number of values that can be taken on by S''s 
shared variable is at least 

(
N- k- 1) . = (k - 1) 

2 
+ N - k - 1. 

Since PN is C-enabled in q", each value v that can be taken on by the shared 
variable in i.d.'s reachable from q" using only P1,••·,PN-1 has the property 
that some finite number of applications of ON to the pair ( v, x) will put PN 
in its critical region. Thus, these shared variable values are disjoint from 
the values v(i,j) considered above. 

We conclude that 

IVI ~ (N -;- 1
) + (k - 1) (N -;- 1

) + N -k - 1 

- k(N -;-
1
) + N - k- 1, 

as desired. I 
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6 Summary and Open Questions 

In this pa.per, we ha.ve described the k-critical section problem in genera.I 
terms a.nd ha.ve defined a.n extremely robust version of the problem: equiv­
alence with a particular simple but space-inefficient a.lgorithm, the Queue 
Algorithm. 

As our ma.in result, we have presented a.n interesting new algorithm, the 
Colored Ticket Algorithm, which solves the given version of the problem 
and uses only O ( N 2) values of the shared varia.ble. Our lower bound proof 
shows tha.t, for fixed k, this algorithm is optimal to within a constant factor 
in terms of number of values of shared memory. 

There is still a large gap between the consta.nts in the upper a.nd lower 
bounds. Both depend on k, but the consta.nt in the upper bound is expo­
nential ink, while the consta.nt in the lower bound is linea.r in k. It remains 
to close this ga.p. 
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