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Chapter 1 

Introduction 

This paper describes CAM-7, a large, high-performance cellular automata 
machine that we plan to develop and construct soon. CAM-7 will be suit­
able for the emulation and study of fine-grained computational processes 
characterized by spatially adjacent interactions. 

The functional architecture of CAM-7 is that of synchronous cellular 
automata, with discrete space and time and a small state set at each site 
or cell. From an applications viewpoint, this machine may be visualized 
as a volume of simulated "programmable matter," in which a large variety 
of experiments can be performed rapidly and conveniently. Examples of 
this kind of use include a "silicon wind-tunnel" and simulations of physical 
phenomena such as diffusion. 

In addition, CAM-7 will constitute a powerful computer for many 
information-processing applications dealing with fine-grained structures 
having a high degree of regularity in at least two dimensions, e.g., a "silicon 
retina" with real-time performance. 

CAM-7 is modularly expandable. The initial realization will handle 
134 million sites, which can be arranged as a three-dimensional array of 
512x512x512 or a two-dimensional array of 8Kx16K, with two bits per site 
and an effective throughput of about 8 Giga-EPS ("Events Per Second"­
where an event is the updating of an individual site.1 ) 

1 A cellular-automaton event handles a smaller number of bits that a Boating-point 
operation (i.e., 10-20 vs. 16-64 bits); on the other hand, the manipulation performed on 
these bits is of a more general nature. 
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The design includes facilities for continuous monitoring of overall system 
parameters and detailed probing of the activity in selected areas of the 
array. Concurrently with simulation, the machine can also be used as a 
programmable parallel analyzer, to provide preprocessing of the current 
system state for subsequent analysis by more conventional means. 

Bot h in terms of it s architecture and intended applications, CAM-7 is 
the next generation in a line of cellular automata machines developed at 
the MIT Laboratory for Computer Science and used by many investigators. 

This activity is documented in a number of recent papers and books 
[3, 7,8,11,12,13,14,15,16,17 ,18]. 

Cellular automata provide, as an alternative to differential equations, 
new, powerful methods and techniques for studying a class of large 
systems[2][6l[14l[3]. These methods exploit the resources of digital comput­
ing in a more direct way than the methods of calculus, and are expected 
to lead to models that can be formulated more naturally and treated more 
efficient ly. 

In addition to providing an alternative modeling tool for the study of 
systems that are traditionally represented by continuous models , cellular 
automata offer a natural approach to the modeling of systems that are in­
trinsically discrete, and whose complexity arises from the presence of a large 
number of structural elements (parameters and state-variables)[12l[10]. 

The structure of cellular automata directly reflects those ult imate phys­
ical cont raints to large-scale computation (e.g. , topology and connectivity 
of physical space, finite speed of propagation of signals) that are already 
felt to some extent by current computers, and which are going to be more 
and more significant in the design of larger computers. In this context, 
the proposed machine will offer an advanced testing ground for developing 
modeling and programming concepts suit able for high-speed, large-scale 
computat ion. 
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Chapter 2 

Motivation and background 

2.1 A new approach to the computer mod­
eling of distributed systems 

To study the properties of a given "target" system we make extensive use of 
models, i.e., substitute systems that reproduce significant aspects of the tar­
get but can be handled and examined much more conveniently (in terms of 
scale, cost, safety, repeatability, accessibility, etc.). In a simulation model, 
the system we construct is one that can be made to "run," i.e., to evolve in 
time mimicking the evolution of the target. In this context, computation is 
the process that continually updates every element-or state-variable-of 
the system. As we increase the spatial resolution of the model, as well as 
its resolution in time and in the representation of the state-variables, the 
model demands larger and larger amounts of computation. 

The architecture of conventional computers imposes a strong bias on 
the nature of the models that one can efficiently handle. These computers 
greatly emphasize resolution in the domain of the individual state-variables, 
i.e. , they are optimized to handle fixed- or floating-point variables of sub­
stantial range. Processors of the kind required to update these variables 
to t heir full resolution (i.e., arithmetic /logic or floating-point processors) 
are intrinsically complex and expensive. As a consequence, the computer 
is typically equipped with a single processor, or at most a few as in some 
high-performance machines, which must be time-shared between all of the 
variables that make up the model. Since this complex processor is relatively 
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slow and entails substantial overhead to be time-shared, in a large model 
state-variables are updated at a low rate. 

What we propose here is a new kind of modeling facility, based on an 
approach that is complementary to that of conventional computers. In this 
approach, space and time in the target system are sampled at a higher 
resolution; on the other hand, the state of each element of the model is 
a symbol chosen from a small state-alphabet-individual state-variables 
make no attempt to emulate the precision of a real number. A processor 
that can handle such variables is much simpler and faster, and its cost is 
therefore comparable to that of storage for the variable itself. Thus, one 
can seriously consider implementations where each variable (or small group 
of variables) is served by its own processor .1 In this case, processing power 
grows in proportion to the number of variables, and large systems can be 
simulated at reasonable speed. 

2.2 Cellular automata 

Cellular automata are discrete dynamical systems whose behavior is com­
pletely specified in terms of a local relation, much as is the case for a 
large class of continuous dynamical systems defined by partial differential 
equations. In this sense, cellular automata are the computer scientist's 
counterpart to the physicist's concept of "field." 

A cellular automaton can be thought of as a stylized universe. It con­
sists of a uniform grid, with each site or cell containing a few bits of data; 
time advances in discrete steps; and the laws of the universe are represented 
by a single rule-e.g., a small look-up table-through which at each time­
step each cell computes its new state from that of its nearest neighbors . 
As a consequence, the system's laws are local and uniform. Given suitable 
rules, such a simple mechanism is sufficient to support a whole hierarchy of 
structures, phenomena, and properties[12l[20l[10]. Cellular automata pro­
vide eminently usable models for many investigations in natural science, 

1 While the processor for a given model might consist of a fixed arrangement of a 
few logic gates, in practice a general-purpose machine useful for exploring this approach 
requires a somewhat larger, more flexible processor. In CAM-7, the problem is solved by 
using a programmable look-up table; look-up is fast , and the table can be shared by a 
group of variables. 
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combinatorial mathematics, and computer science; in particular, they rep­
resent a natural way of studying the evolution of large physical systems. 
They also constitute a general paradigm for parallel computation, much as 
Turing machines do for serial computation. 

The generality and flexibility of the cellular-automaton approach are 
achieved at a cost. Instead of having relatively few lumped variables that 
interact in an arbitrarily assigned way, a cellular automaton uses many 
variables (i.e., one per cell) that interact only locally and uniformly. In or­
der to synthesize structures of significant complexity it is necessary to use 
a large number of cells, and in order for these structures to interact with 
one another and evolve to a significant extent it is necessary to let the au­
tomaton run for a large number of time-steps. For elementary applications, 
a satisfactory experimental run may require the computation of billions of 
events (an event is the updating of a single cell); for more substantial ap­
plications, a thousand or a million times this value may be desirable (i.e., 
1012- 1015 events): the limits are really set by technology rather than by 
the applications, which by virtue of their matter-like nature can occupy an 
arbitrarily large number of cells. 

In such applications, van-Neumann-architectures are of little use: when 
the simulation of a cellular automaton is carried out on a sequential com­
puter, an event may require some thirty machine operations each involving 
a few machine cycles-i.e., ~ 10 µsec on a fast machine. To compute~ 1013 

events under such an approach one would need several years. 
On the other hand, a cellular automaton is th_e ideal mathematical struc­

ture for a machine having a high degree of parallelism and local and uniform 
interconnections.2 In Chapters 3 and 4 we discuss in more concrete terms 
the design of this machine. 

2 The term "non-von Neumann architecture" is often used to stress the difference be­
tween a parallel computer of this kind and more conventional sequential computers. How­
ever, it should be noted that the theory of cellular automata originated with von Neumann 
himself. 
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2.3 Modeling with cellular automata 

2.3.1 Preview 

Cellular automata are most naturally used, and cellular automata machines 
most efficiently exploited, in modeling systems whose geometric and causal 
relations are close to those of ordinary space-time. These include: 

1. Problems of a direct physical nature: statistical mechanics, fluid dy­
namics, microscopic mechanics, etc. 

2. Problems governed by semi-empirical laws which are in principle re­
ducible to the laws of physics, such as those encountered in chemistry, 
biology, and geology: reaction dynamics, materials science, and land 
erosion. 

3. Problems analogous to the above, but entailing a higher level of ag­
gregation: population dynamics, epidemiology, and communications 
networks. 

4. Issues of self-organization, stability, resistance to noise, self­
reproduction, and evolution; chaotic behavior arising from simple 
laws and simple initial conditions; and, in general, nonlinear dynamics 
in complex systems. 

5. Problems satisfying realistic space-time constraints, but whose laws 
are arbitrarily assigned: simulation of large digital circuits; dis­
tributed computation and control; inventory and shipping, flows in 
networks; certain questions in graph theory, dynamic programming, 
operations research; certain board games; and, in general, simulation 
of universes provided with an ad hoc set of laws. 

6. Miscellaneous problems having a strong geometric component: image 
processing, analysis, and generation; parallel encryption and decryp­
tion; certain problems of pattern recognition. 

There are two additional contexts in which cellular automata machines 
of the kind described here may prove useful: 
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1. Miscellaneous combinatorial problems that can be decomposed into 
a large number of small independent subproblems. Here, the individ­
ual subproblems are parceled out to different portions of the cellular 
automata array and processed in parallel. This approach might be 
useful, for instance, in factoring. 

2. As we shall explain in Chapter 4, the specific implementation of the 
cellular automata architecture that we propose for CAM-7 provides 
in a natural way additional interconnection and processing features 
that go beyond those required for strictly local and uniform process­
ing. In particular, the 512 processors can each run a different pro­
gram; and schemes are available for achieving communication that is 
faster than linear propagation ( e.g., instant communication between 
selected sites, or log-distance communication between arbitrary sites). 
With these additional features, many problems that transcend the lo­
cal and uniform paradigm can be treated by CAM-7 with little, if 
any, degradation of performance. 

In the remainder of this chapter we shall highlight some aspects of 
modeling with cellular automata. 

2.3.2 An introductory physical example 

Let us consider the Navier-Stokes equation-the "master equation" of hy­
drodynamics. The conventional way to study the evolution of a system gov­
erned by this equation is to discretize space and time, rewrite the equation 
in terms of a finite-difference scheme acting on real variables attached to the 
points of the space-time grid, code this scheme as a FORTRAN program, and 
run the program on a general-purpose computer. On the other hand, by 
using CAM, in which a large number of binary variables are interconnected 
locally and uniformly (i.e., in a way that directly reflects the structure of 
the physical space-time in which the hydrodynamical system resides), all 
one has to do is give a small look-up table that specifies the behavior of 
an individual binary variable as a function of the state of its neighbors. 
This table, consisting of a dozen binary entries, bears no resemblance to 
the Navier-Stokes equation; yet on a macroscopic scale the resulting model 
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behaves isomorphically to the original physical system3 [6,14,9]. 
What has happened is that the "matter" of CAM has been programmed 

to be a fluid. The fluid's individual particles carry on their normal routine, 
which is simple and certainly not governed by the Navier-Stokes equation; 
rather, the latter is just a macroscopic consequence of the former. With 
the CAM approach, we directly capture the particles' activity, and we are 
able to model it so efficiently that we can effectively derive macroscopic 
features of the fluid. 

Using this approach on smaller cellular automata machines such as 
CAM-5, we have modeled a jet of gas fl.owing past an obstacle. With CAM-
7, experiments of a more realistic size-of the nature of a wind tunnel-will 
be possible. 

The above approach can readily be extended to problems of material 
science, thermophysics, and acoustics, by making direct use of known micro­
scopic interactions; and to problems of land erosion, ecology, and epidemi­
ology, by introducing interactions of a more macroscopic nature. Finally, 
one can set up phenomenological investigations of problems entailing em­
pirical interactions between a large number of entities, such as are studied 
in traffic, economics, voting theory, political science. 

2.3.3 Microscopic reversibility 

One isssue that is of fundamental importance in physics is that of mi­
croscopic reversibility-or invertibility, to use the standard mathematical 
term. 

As far as we know, reversibility is a universal characteristic of physical 
laws. In particular, it is a necessary prerequisite for the second law of 
thermodynamics to hold,4 and is a sufficient condition for the existence of 
conserved quantities. 5 

3 This model is also capable of dealing with compressible fluids; however, its behavior 
at Mach numbers close to unity has not yet been analyzed in detail. 

4 For systems having a discrete state set, such as cellular automata, reversibility directly 
yields Liouville's principle ("incompressibility of the phase space"), since each distinct 
initial state leads to a distinct final state. 

5 In physics, a reversible system having n degrees of freedom possesses 2n-1 conserved 
quantities, some of which (e.g., energy, momentum, etc.) are of special significance because 
of their connection with fundamental symmetries of the physical laws. The arguments that 
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Outside of scientific computing, reversibility considerations are relevant 
when dealing with the integrity of data in concurrent transactions, and 
in this context they provide tools for insuring proper synchronization and 
inter locking. 

The above considerations suggest that invertible cellular automata may 
play an important role in the study of reversible distributed dynamics. In 
fact, it is possible to construct cellular automata that are exactly invertible 
(in this respect, they suffer none of the approximations that are so common 
in conventional numerical simulations). Thus, one can arrive at models 
that, thought drastically stylized in other respects, make no compromises 
in the representation of certain fundamental aspects of a physical process 
or of a data transaction. 

For this and other reasons, invertible cellular automata show promise 
of becoming useful modeling tools in many areas of investigation. 

The theory of invertible cellular automata[16] has many open prob­
lems; in particular, no general decision procedure is known for determining 
whether a given rule has an inverse ( and this question may well be undecid­
able). Until recently, no examples at all were known of invertible cellular 
automata having better than trivial computational capabilities. 

We have developed theoretical methods and practical techniques for 
constructing invertible cellular automata having a variety of desirable com­
putational capabilities. Some of these techniques (second-order cellular 
automata, Margolus neighborhood, guarded context[15]) are suitable for 
implementation on cellular automata machines, and are directly incorpo­
rated in the design of CAM-7. 

2.3.4 Image analysis and synthesis 

The task of image analysis is substantially one of extracting specific features 
or correlations out of a picture. The representation of high-level correlations 
usually requires dealing with an abstract space having arbitrary intercon­
nections, and is better handled by AI techniques; on the other hand, the 

lead to these conservation laws can be generalized to cellular automata: the key idea is 
that a given state "encodes" all of the information necessary to identify the particular 
dynamical trajectory it lies on, and, if the system is reversible, none of this information is 
lost in the course of its evolution. 
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processing of low-level correlations ( e.g., classification of texture, outline, 
light levels, shape and size of small objects) entails operations of an essen­
tially local and uniform nature that can be carried out in parallel by cellular 
automata techniques. Of the several stages of computation involved in im­
age analysis, front-end processing involves the largest amount of raw data 
and provides the largest factor of data compression-and thus is the most 
obvious candidate for parallel computing techniques. 

Some simple image-analysis techniques based on cellular automata are 
already in use and have been incorporated in the design of special-purpose 
processors aimed, for instance, at robotic "vision" ( cf. [19]) . More sophis­
ticated analysis techniques require correlating data on areas wider than a 
few pixels and realizing convolutions having a substantial amount of lo­
cal memory. CAM-7 will provide ample resources suitable for this pur­
pose. In particular, each of CAM-7's two-dimensional bit-planes can be 
assigned a different transition function; in this way, complex sequences of 
image-processing steps can be pipelined, leading to real-time processing 
of a steady stream of visual data. Moreover, the structure and the size 
of CAM-7 will make possible the exploration of processing techniques for 
three-dimensional images of realistic size. 

Besides image analysis, CAM-7 will permit the exploration of new meth­
ods of image synthesis. A cellular automata machine can be though of as a 
universe synthesizer, and thus can naturally be used in a variety of contexts 
as a synthesizer of images or image sequences. Since the spatial and tempo­
ral textures of these images reflect definite microscopic laws, a high degree 
of internal consistency can be achieved by using fewer parameters than with 
conventional computer graphics methods (cf. Knuth's METAFONT approach 
to typographical font generation). 

2.3.5 Digital circuitry 

A cellular automaton can be thought of as an array of uniformly intercon­
nected logic elements. It is possible to choose a cellular-automaton rule 
such that each cell can act-depending on its state-as a gate, a section of 
wire, or a memory element. Thus, the generic array can be turned into an 
arbitrary digital circuit by downloading an initial configuration represent­
ing the schematics of the circuit itself. "Soft circuitry" of this kind naturally 
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extends to parallel computation the well-established role that "software" 
plays in sequential computation. 

To make the design of such gate arrays possible, one must simulate 
their behavior at a reasonable speed. A simulation on an ordinary sequen­
tial computer would run perhaps a trillion times slower than the target 
array ( cf. Appendix A.2) . A general-purpose cellular automata machine 
of the kind proposed here would run only a few million times slower than 
the target, and at the same time would provide the flexibility and the in­
teractivity required for experimentation and design iteration. (Unclocked, 
asynchronous cellular automata might run orders of magnitude faster­
these also can be studied on CAM-7 using random-number generators to 
control whether a given site gets updated during a given time-step.) 

More generally, CAM-7 will represent an ideal development system for 
designing target system based on cellular automata. Once a certain cellular 
automaton rule has been found useful in a particular application of wide 
practical interest (viz., hydrodynamics, image processing), it then becomes 
practical to build a VLSI chip that implements that rule in a fully-parallel 
way (cf. Appendix A.2), running thousands of t imes faster than CAM-7. 
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Chapter 3 

A cellular automata facility 

3.1 General considerations 

In designing a large cellular automata machine, it is important for us to 
anticipate the range of applications through which it will be put by the 
end user. We must therefore visualize it as the nucleus of a dedicated 
computational facility. Here, it may help to think of other experimental 
facilities built around a substantial piece of apparatus, such as a large 
telescope, a particle accelerator, or a wind tunnel. In such facilities, a 
number of experiments may be in progress at any given time, some directly 
using the core machine and monitoring it by real-time analyzers, event 
detectors, etc.; others processing off-line data from previous runs , setting 
up filters and detectors or preparing control programs for the next run, and 
so forth. 

The amount of resources invested in the facility demands careful plan­
ning of design and operation; on the other hand, it is in the nature of 
applications and experiments to run their course and be replaced by new 
ones, often suggested by the current results and thus hard to anticipate. 
Thus, our principal responsibility at the design stage is to insure versatility 
and robustness over a wide range of application types, rather than optimize 
for a known set of applications. 

In the facility we propose, the major resource will be represented by 
CAM-7-the cellular automata machine. As we have already remarked, 
one can visualize CAM-7 as a volume of simulated programmable matter. 
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By assigning the transition function, the user specifies what kind of laws 
will be in force within this volume; by assigning its initial configuration, 
one can place in this volume structures made out of different materials and 
surrounded by different media. By operating the machine, the volume of 
matter is made to run through time; structures and media will interact 
and evolve, and each experiment will realize the dynamic behavior of a 
particular world. 

3.1.1 Data reduction 

This volume of matter can be programmed to model a large variety of phe­
nomena over a wide space- and time-scale (cf. 2.3.1). The machine's basic 
architecture (cf. 3.3) guarantees that, independently of what is being mod­
eled, the state variables will be updated at great speed and in the specified 
way. However, the user's requirements for access, interpretation, and fur­
ther treatment of this information are strongly dependent on the nature of 
the model and on the particular experiment being conducted. Accordingly, 
one of the major design tasks will be to complement the machine's basic 
architecture with a number of built-in, analysis-oriented features that will 
help make this information useable. How much happens in an experiment 
is of value only in terms of how much the investigator can see, organize, 
and digest. 

We must stress here that while in most computations one is interested 
only in the final result, in a simulation the entire course of intermediate 
results is of potential interest to the investigator. Just as in many large­
scale physical experiments, one is confronted with a serious problem of data 
reduction. The bigger and faster the machine, the more important it is to 
equip it with appropriate data-reduction resources. 

The major channels for monitoring and analyzing the machine's 
throughput will inclu_de at least the following. 

1. Direct, real-time display on color monitors of any portions of the 
simulation volume (no frame "grabbers" or frame buffers are needed 
for this purpose, since data sequencing and formatting within each 
module are directly compatible with raster-scan monitors). 

This will provide a number of windows on the ongoing process, and 
will allow one to bring in the sophisticated real-time processing ca-
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pabilities of the human eye and brain. We have found this feature 
also invaluable as an aid for the timely detection of software bugs and 
hardware malfunctions. 

2. The machine itself can be turned into a programmable parallel proces­
sor for analyzing the configurations successively reached in the course 
of a simulation. This analysis channel is particularly important, since 
its capabilities grow in direct proportion to the size of the machine. 

3. In parallel with the updating of the bits and with no speed penalty 
CAM is capable of computing-via look-up tables quite similar to 
those used for the updating function-another local function of com­
parable complexity. The results of this function represent pre­
processed data that can be fed to built-in global counters (this is 
useful for event detection and counting, as needed for example in cor­
relation experiments) or made available to external analyzers. Thus, 
a substantial amount of real-time data analysis and/ or display pro­
cessing can be performed "piggy-back" on the simulation. 

4. CAM-7's architecture provides free and continuous access to the full 
data bandwidth (~16 Gbits/sec) of the simulation. This "flywheel" 
I/ O bus is a unique feature of the CAM approach. At each step, 
every bit of the model is made available to be examined and possibly 
changed by external devices, thus making it possible to couple the 
system to specialized forcing functions and/ or analyzers. 

5. A small volume within the overall simulation volume can be equipped 
with a probe, i.e., a small cellular automata machine constructed out 
of the same kind of components but dedicated to extensive on-line 
pattern recognition and/ or pattern generation-perhaps with a high­
bandwith connection to a conventional general-purpose computer. 

6. A general-purpose computer, the control host, will be intimately con­
nected with the cellular automata machine, and will be able to sense 
and set special hardware registers in each of the machine's modules. 
This computer will provide the operating system for the overall mon­
itoring and control of the simulation and the supervison of bulk in­
put/ output transfers . 
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7. In addition to the flywheel bus, a high-speed bus of conventional 
structure will be available for rapid data transfers (bulk I/ 0) between 
CAM-7 and storage or analysis devices. 

Having designed in the machine adequate flexibility and power for the 
first level of data access, reduction, and analysis, we need not discuss in 
detail at the design stage further levels of analysis, which will take place ex­
ternally to CAM-7. They can be handled by conventional general-purpose 
computers or, when necessary, by special-purpose configurations provided 
by the individual experimenters. In this context, the LCS Multiprocess­
ing Emulation Facility (MEF) may offer sufficient power and flexibility for 
the analysis of representative CAM-7 experiments, for the evaluation of 
analysis strategies, for emulating a variety of analysis configurations, and 
for evaluating the peformance of the high-speed bus under different load 
patterns. 

3.1.2 Configuration and control; interactivity 

Two important features of our approach to systems modeling are: 

1. The high level of interactivity that can be achieved ( and which is 
enhanced by the high-quality real-time display). 

2. The flexibility in composing, concurrently or sequentially, different 
kinds of dynamical and analysis steps and different kinds of in­
put/ output interventions (e.g., assignment of forcing terms in the 
boundary conditions, and detection of events for the purpose of con­
ditionally altering the course of a simulation). 

In order to insure efficient real-time support of these features, appropri­
ate provisions must be made in the hardware and in the interface wit h the 
host, mostly in the form of control channels and of software-reconfigurable 
hardware ("configuration" options). Since the number of potent ial opt ions 
in this context is enormous, here too it is necessary for us to anticipate at 
the design stage a range of realistic simulation circumstances, and try to 
reach a reasonable compromise between generality and flexibility on one 
hand, and hardware complexity on the other. A more detailed discussion 
of proposed configuration and control features is given in Chapter 4. 

15 



3.2 Alternative architectures 

Most of the architectural aspects of CAM-7 have already been realized and 
verified in earlier machines of the CAM family ( cf. A.1) . Keeping this in 
mind, we shall briefly review some alternative approaches. This should help 
make it clear why the proposed solution is appropriate, and why the other 
alternatives are not viable for the class of applications that interest us. 

The first alternative we will consider is, of course, the use of an ordi­
nary general-pupose computer for the simulation of cellular automata. For 
greater processing power, one could connect several such computers in par­
allel, each handling a part of the simulation space. However, to achieve a 
performance comparable to the proposed design one would need from thou­
sands to millions of such machines. Even if we were to disregard cost, the 
total bulk and power requirements would be prohibitive; interfacing and 
interconnection would demand enormous resources; and overall reliability 
would be nearly impossible to guarantee. 

There are array or vector processors on the market which execute the 
same machine instruction in parallel on a number of independent register 
sets; they can be programmed to run cellular automata one or two orders of 
magnitude faster than an ordinary computer. However, in these machines 
the emphasis is on general-purpose numerical computation; their control 
and arithmetic/logic machinery is more complex and less flexible than is 
desirable for computing cellular automata events. This approach entails a 
lot of unnecessary overhead, and is neither practical nor economical if such 
resources have to be multiplied by a thousand or a hundred thousand to 
achieve the desired performance. 

Other machines, which emphasize graphic display processing, have ded­
icated resources for performing logical operations in parallel on bit-plane 
representations of pictures. Taking advantage of this feature, certain simple 
cellular automata rules can be made to run quite fast; however, this tech­
nique is of little use in the more gener al case, which may require thousands 
of such parallel bit operations for a single update of the whole array. 

Two experimental architectures, namely those of the Yorktown Simula­
tion Engine (YSE) and the Connection Machine (CM), specifically address 
the modeling of large systems in which the individual state-variables rep­
resent discrete logical quantities. Both architectures stress generality of 
interconnection and generality of functions performed at each site. These 
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features are invaluable for the intended applications (namely, high-speed 
simulation of logic circuitry, for YSE, and handling of data structures typ­
ical of AI work, for CM). However, the same features tie up a very large 
amount of resources, slow operations down, prevent the possibility of mod­
ular expansion, and overall make both machines poorly suited to the task of 
modeling large systems with the cellular automata approach. In particular, 
YSE is much too small (roughly, by a factor of 1000) and CM much too 
slow (by a similar factor) for our purposes. 

Finally, certain research laboratories have developed special-purpose 
machines for computing statistical properties of magnetic crystals (Ising 
spin models). Optimal design criteria for this application come close to 
those for a cellular automaton; however, owing to the limited scope of 
the application, these machines are more specialized than the one we pro­
pose. They must be regarded substantially as custom tools, of little use for 
general-purpose cellular automata applications. 

From a conceptual viewpoint, the most natural architecture for a cellular 
automata machine is a fully-parallel one. That is, one can 

1. Design a circuit that implements a single cell, 

2. Fit as many copies as possible of this circuit on a large VLSI module, 
and finally 

3. Produce and interconnect as many of these modules as is technically 
and economically feasible. 

Since cells are small and all inteconnections are local, one can easily vi­
sualize an array of millions of such cells running in parallel at only a few 
nanoseconds per step. 

Attractive as it may appear at first, such a fully-parallel architecture 
raises serious difficulties, especially for a large, general-purpose machine. In 
particular, one encounters problems of flexibility and computing power of 
the individual cell, interconnection density, and data accessibility (see case 
study in Appendix A.2). This architecture may be suitable for specialized 
applications, or for use with new technologies ( e.g., molecular computers) . 
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3.3 Basic architecture of CAM-7 

The architecture of CAM-7 maintains the basic conceptual approach of 
the fully-parallel machine discussed above, but with certain variants that 
lead to a more practical and economical realization and a better utiliza­
tion of current technological resources. With reference to the fully-parallel 
approach, the CAM-7 architecture is still based on modules, an arbitrary 
number of which can be connected in parallel; and each module still spans a 
large number of sites. However, the individual module is a pipelined rather 
than a parallel processor. As we shall see, several features of this approach 
reinforce one another synergistically, making it more attractive than the 
competing alternatives. 

3.3.1 The module 

For the sake of the present discussion we shall restrict our attention to two­
dimensional cellular automata containing one bit of data at each site. More 
dimensions and larger state-sets are discussed in the following sections. 

The whole array is partitioned into rectangular portions of identical size 
called sectors, and a separate hardware module is assigned to each sector. 
Each module consists of three main sections-state-variable storage, data 
routing, and transition function. 

The storage section contains the state variables of the corresponding 
sector. In order to perform one updating step on this area, the current 
values of the state variables are read once, sequentially, and injected into the 
routing section. The corresponding new values, determined by table look­
up, are returned by this section in the same sequential order and written 
back onto the storage section. 

From the above sequential stream of data, the routing section extracts 
with the appropriate timing the nine values corresponding at each moment 
to the nine neighbor positions of a site: the site itself, or Center; its four 
nearest neighbors, North, South, East, and West; and its four next-nearest 
neighbors N.East, N. West, S.East, and S. West. This section also provides 
appropriate buffering to make the updating of sites appear synchronous 
even though realized in a sequential manner, and to achieve correct vertical 
and horizontal wrap-around. 

Any desired subset of the above nine signals, possibly augmented by 
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signals coming from other modules (cf. 3.3.3, 3.3.4), are submitted in par­
allel as arguments to the transition-function section, which uses a look-up 
table to compute the corresponding new value for the center cell. After 
a brief journey through the routing section, the new value is handed to 
the storage section, where it replaces the current value of that cell. Note 
that all ancillary tasks such as argument gathering are performed by the 
routing section; thus the look-up table, which is the most critical resource 
in the simulation, is exploited to its full bandwidth. Moreover, since each 
table is shared by a large number of cells (256K in the proposed design), it 
becomes practical to employ a very large look-up table (16K-64K entries), 
thus compressing a substantial amount of computation into a single step. 

3.3.2 Larger arrays: edge glueing 

An arbitrarily large two-dimensional array can be obtained by glueing sec­
tors edge-to-edge, i.e., by exchanging between the pipelines of two adjacent 
sectors data about those sites that are contained in one module but are 
neighbors of sites in the other module. The proposed size for a module is 
512x512 sites. In the fully-parallel architecture, this would entail a module 
with thousands of external terminations (cf. A.2); in the pipelined architec­
ture, instead, exchange of information at the edges is serial, and four bidi­
rectional lines, corresponding to the four adjacent sectors, are sufficient.1 

By glueing sectors in this way, one obtains an arbitrarily large sheet; 
typically, this sheet will be wrapped-around, i.e., the top edge will be joined 
to the bottom edge and the left to the right; thus, the overall topology of 
a sheet will be that of the surface of a torus. The same glueing technique 
is used both for array-expansion purposes and for boundary elimination by 
wraparound. 

Observe that the glueing of modules is done once at the routing stage. 
In this way, both from a logical and a physical viewpoint the transition­
function section is completely decoupled from a number of implementation 

1 This sector-joining technique relies on the fact that the cell memory of the individual 
modules is logically wrapped around-a cell at the physical edge of the sector sees cells on 
both that edge and the far edge as neighbors. Since the scanning pattern for cell updates 
is the same for all modules, all modules have the appropriate edge neighbors available 
simultaneously to be exchanged. By exchanging pipelines rather than neighbors, we get 
the same effect with one connection to each immediately adjacent sector independently of 
the size of the neighborhood. 
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details, namely, (a) the fact that a sheet consists of modules glued together, 
(b) that storage and routing are done on a two-dimensional basis, and 
independently for each bit plane, and (c) that operations are pipelined. 

3.3.3 More states per cell: sheet ganging 

Once sheets of the desired size have been assembled, further hardware con­
figuring of the cellular automata machine is done by selecting suitable sig­
nals as arguments to the transition-function. In particular, in order to have 
a larger state-set for· the automaton's cell it is sufficient to gang a set of 
sheets, i.e., connect as inputs to the look-up table of each sheet a selection 
of neighbor outputs from the other sheets of the group. Such a ganged set 
will then constitute a layer of the cellular automaton, containing a complete 
cell at each site. 

In practice, the CAM-7 modules will already handle four sheets each, 
so that further ganging will be required only in special situations. By 
combining several sheets in the same module, and thus making certain 
data paths internal to a module, it is possible to feed the look-up tables 
with particularly useful, wide-scoped neighbor configurations that would 
otherwise impose too large an interconnection burden. 

3.3.4 More dimensions: layer stacking 

Finally, layers can be stacked on top of one another, by connecting as inputs 
to the transition function of each layer a selection of neighbor outputs 
from the layers immediately above and below. This is possible because all 
modules will be updating corresponding cells at the same time. In this way 
we can configure CAM-7 into a three-dimensional cellular automaton. This 
construction can be further iterated in order to obtain cellular automata in 
four or more dimensions. 

3.4 Advantages of the proposed architecture 

3.4.1 Optimal use of resources 

No matter how much ingenuity is put into the design of a cellular automata 
machine (or, for that matter, of any computer), an upper bound to its 
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performance is set by two essential resources, namely, the storage available 
for representing the state variables, and the amount of processing power 
available for computing the transition function. The architecture of CAM-
7 allows us to make use of the least-expensive form of these two resources 
available on the market, and to exploit them to their fullest extent; it thus 
comes close to the theoretical optimum in terms of price/ performance. 

Specifically, the three main sections of a module (cf. 3.3.1) are quite 
naturally realized as three distinct integrated-circuit chips, each one per­
forming a function that is almost ideally catered to by the current st ate of 
silicon technology. 

Namely, the storage section can be realized directly as a large dynamic­
RAM chip-and thus take advantage of the investments made in developing 
this standard commodity. In the proposed design (see Chapter 4) , t he size 
and access time of the storage section are matched to the popular 256K 
DRAMs. 

Similarly, the transition function section, which in our design is a look­
up table, can be realized directly as a medium-size, fast static-RAM chip. 
This chip has also become a standard commodity, owing to heavy demand 
for it in caches, video refresh buffers, and microprogram control stores. 

Finally, the glue that ties all these circuits together, that is, the routing 
section, can be realized by a semi-custom VLSI chip. In fact, the speed, 
number, and kind of functions performed by this section can be accomo­
dated by routine fabrication techniques, and the design of the chip can take 
advantage of standard macro-cell libraries. 

3.4.2 Display and analysis 

Each module of CAM,7 generates new data at a rate of ~20 Mbits/ sec. If 
one had to do any substantial reformatting of this information for display 
purposes, one would need resources of the same order of magnitude as those 
used for producing it. 

In the pipelined architecture, scanning of the array is sequential; with 
an appropriate choice of scanning parameters this information can be made 
to appear in the correct framing format for display on a raster-scan device. 
In the CAM-7 module, the number of array rows and columns spanned by 
the module, the scanning sequence, and the timing are such that a tap on 
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the pipeline can directly feed a conventional CRT monitor running at 60 Hz 
with 525 non-interlaced lines. Of course, the outputs from a set of ganged 
modules (cf. 3.3.3), which collectively represent the value of a multi-bit 
state variable, can be combined into an RGB signal and displayed on a 
single color monitor.2 

The advantages of this set-up are not limited to raw display. On the 
module, all the neighbor information that is potentially available to the 
transition function is conveniently accessible, and can be fed to an addi­
tional look-up table. In this way, one can compute and send to the display 
an arbitrary output function, instead of just the value of the current cen­
ter cell. This allows one to do on-the-fly a substantial amount of graphic 
preprocessing ( this approach remainds us of the "staining" techniques used 
in microscopy for enhancing selected features of the tissue under examina­
tion) . 

Further, the stream of values supplied by such an output function can 
be sorted into a histogram, accumulated and compared with set threshold 
values, and in general used for real-time processing and control of the sys­
tem's dynamics. In particular, one can locate and count occurrences of any 
specified local pattern. 

Finally, since at each updating step all the data on each module are 
streamed through the p ipeline, a single bidirectional tap on this pipeline 
is sufficient to provide any external device with read and write access to 
the totality of the data. The collection of these taps, one per module, 
constitutes an extremely high-speed bus (with an overall word width of 1024 
bits and a synchronous word rate of 40 nsec) through which the entire state 
of the simulated system is continually made accessible to the experimenter 
while the simulation is in progress-and without slowing it down. This 
"flywheel bus" (cf. Section 3.1.1) is unique to the CAM architecture. 

In conclusion, a pipeline fed according to a well-chosen sequencing for­
mat and provided with a few well-placed taps constitutes a general-purpose 
bus on which one can hook up not only the transition function, but also a 
great variety of display, analysis, and control functions-without any over­
head on the simulation process. As in a physical experiment, any portion of 

2 When display is not required, CAM's clock can be decoupled from the video rate, to 
allow-for example- more frequent updating of a smaller array, say at a few thousand 
frames per second. 
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the system is potentially accessible to on-line stimulation and measurement. 

3.4.3 Modularity and expandability 

The flexibility of the proposed module, both in terms of internal architec­
ture and external interface, makes possible its use it in a variety of machine 
configurations and sizes. Moreover, out of the same modules one can con­
struct not only gene.ral-purpose simulators of distributed dynamical sys­
tems, but also distributed analyzers that are matched to the simulators in 
data-handling format and processing power. Thus, the observation power 
available to the experimenter can be made to grow hand-in-hand with the 
simulation power of the experiment. 

Initially, a typical CAM-7 realization will consist of 1024 modules, con­
figurable, for instance, as a 512x512x512 cube with two bits per site. How­
ever, unlike other current schemes for parallel computation, the CAM-7 ar­
chitecture is truly scale-independent, and a much larger cellular automata 
machine can be built simply by connecting together an appropriate num­
ber of modules. The limits are set by economic constraints rather than by 
electrical problems or issues of logic design. Since there are no "addresses" 
in a traditional sense, the data space is not limited by the size of an address 
word. The only timing signal that is distributed to each block of modules 
is the clock; and since signals are reclocked within each block, the system 
can cope with a timing slack between blocks comparable to the width of 
the clock pulse ( ~40 nsec) . 

Finally, we note that the single modules are by themselves useful experi­
mental tools. A miniature copy of the proposed cellular automata machine, 
consisting of a few modules, will be used as a prototype. Such reduced­
size machines could be made available for evaluation, training, experiment 
preparation, and software testing. In this way, full-scale experiments would 
be ported to a major facility in a ready-to-run state. 
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Chapter 4 

Technical issues 

The design of CAM-7 draws much on the experience gained from designing 
and operating smaller machines-such as CAM-5 and CAM-6 (Appendix 
A.l). In particular, the proposed architectural solution concerning the sim­
ulation process (see Section 3.3) will require only a refinement of t echniques 
that are known to us and are well tested. On the other hand, the size of 
CAM-7 poses a number of original problems (mostly concerning what in 
a smaller machine would be termed ancillary functions, such as configura­
tion, control, monitoring, data-analysis, error detection and correction, and 
testing) whose optimal solution will require substantial additional work, in 
collaboration both with experts in various aspects of electronic design and 
with potential users of the cellular automata facility. 

In this chapter we shall concentrate on those technical aspects which 
we believe will be of particular relevance to the operation of the machine 
as a flexible experimental tool, and on which we intend to do further study 
before finalizing design details. 

4.1 System control 

CAM-7 will be controlled by a dedicated host computer (control host) of 
adequate performance; t his computer will also coordinate the act iv ity of 
optional analysis hosts. In writing software for t he control host, attention 
will be given to the interactive nature of modeling work. 

Data transfers between the control host and the cellular automat a ma-

24 



chine will be through a high-speed control bus serving all modules. Certain 
data, such as configuration parameters and look-up tables, will be broad­
cast at the same time to all modules, or to large groups of them; other 
data will be written to or read from individual modules, sequentially or 
randomly. 

The following is a representative list of control functions: selection of 
neighborhood options (cf. 4.2), sector glueing (3.3.2), phase specification 
and channel selection[13], selection of display function and display color 
map (3.4.2), stepping(4.4), downloading of transition and display functions, 
selection of internal pattern-initialization modes, setting and reading of 
event counters, configuration of the random-number generators, and error 
handling. 

4.2 Neighborhoo d options 

An important and difficult decision, since it will perforce entail compromise 
between the exigencies of different users, concerns the choice of signals or 
groups of signals to be made available to a module's transition-function 
look-up table (cf. Section 3.3.1), so as to configure the machine for a 
given cellular-automaton neighborhood format. Many questions concerning 
this issue have already been answered in the design of CAM-6; additional 
questions presented by CAM-7 arise from its large scale and its emphasis 
on three-dimensional simulations. 

Let's consider a few typical configurations. In Conway's well-known 
game of "life" [5] one has a two-dimensional cellular automaton with one 
bit per cell and nine neighbors; thus, the look-up table requires 9 binary 
address lines, and contains 29 = 512 1-bit entries. In Codd's universal 
computer/ constructor[l ] there are 3 bits per cell and 5 neighbors, for a total 
of 15 address lines and 215 ( = 32, 768) 3-bit entries. A three-dimensional, 
1-bit cellular automaton in which each cell "sees" its 6 nearest neighbors in 
addition to itself requires 7 address lines for the look-up table (27 entries); 
if the cell contained 2 bits, one would need 14 lines. 

Since the size of the table grows exponentially with the number of ad­
dress lines, it is clear that a look-up table of practical size (say, 16 input 
lines, corresponding to 65,536 entries) cannot be permanently connected to 
the several dozen signals that at one time or another might be used as ar-
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guments to the transition function; in order to configure the machine for a 
particular cellular-automaton format one will have to connect the relatively 
few inputs of the look-up table to a particular set of relevant neighbors. By 
and large, the selection of such a set will be done by software-controlled 
hardware multiplexing. The real question is which and how many sets 
should be preselected at the design stage as multiplexing opt ions. 

The above problem is made more complex by the following factors: 

1. In addition to neighbors, there will be available many signals ( or 
pseudo-neighbors), generated within the module or externally, that 
can have an important use as inputs to the transition function. These 
include space- or time-dependent parameters, such as boundary con­
ditions, space or time "grids," or the output from a random number 
generator. 

2. There are many cases in which the number of relevant signals is too 
large for direct look-up, but can be brought within a practical range 
by a small amount of preprocessing. For instance, several variations 
of the Margolus neigborhood[8l[15], which has important application 
in the synthesis of microscopically reversible systems, compress 12-13 
signals down to 4 signals (in two dimensions), or 30-32 signals down 
to 8 (in three dimensions). Techniques of this kind greatly expand 
the range of systems that can be realized with a given size of look-up 
table; but it is clear that one should arrive quite early in the design 
stage at a decision as to which combinations of preprocessing tools 
will be provided by the hardware. 

3. Neighbors and pseudo-neighbors are used not only by the transition 
function but also by the output-function look-up tables ( cf. 3.4.2) . 
Here too one must resort to preselected sets of neighbors . Though 
generally one would use a set of neighbors quite similar to that sup­
plied to the transition function, there are many occasions where vari­
ants or additions to this set would greatly contribute to the processing 
power of the output function. As above, to avoid a combinatorial ex­
plosion, reasonable compromises will have to be made. 
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4.3 Initialization and read-out; short-term 
back-up 

In operating a simulator under control of a host computer, two functions 
will have to be performed habitually, i.e.: 

1. Initializing the system's state at the beginning of an experiment. 

2. Reading out the system's state at the end of the experiment, and 
possibly a number of times during the course of the experiment itself, 
for a permanent record or for off-line analysis. 

Of course, read-out and subsequent re-initialization are also required when 
a simulation task is suspended to make room for a higher-priority task. 

In addition, a simulation task may be interrupted and resumed several 
times on a short-term basis. Typical situations for this are the following. 

1. The machine is being briefly switched from simulation mode to anal­
ysis mode (cf. Section 3.1.1) .. 

2. Some real-time analysis is done in a pipelined fashion, and thus its 
stream of results lags behind the simulation. If an interesting event 
is detected that demands closer scrutiny, one would like to back up 
the simulation to the moment the event occurred. With reversible 
cellular-automaton rules (cf. Section 2.3.3) it is possible to make the 
simulation retrace its steps. In general, however, one would have to 
make frequent breakpoints, where the current state is saved and held 
until the next breakpoint, so that the missed event can be recon­
structed by re-running the simulation for a few steps starting from 
the last breakpoint. 

All of these cases entail saving the current state in some form of back-up 
memory and eventually restoring the system to a previously-saved state. 

Let us consider first the issue of data transfer. In a typical machine 
configuration (here, we are thinking of an initial realization, since the ar­
chitecture is modularly expandable) the state-variables of CAM-7 will col­
lectively amount to ~ 32 Mbytes. On one hand, this amount of information 
is comparable to the primary-storage capacity (physical RAM) of a typical 
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analysis host, and to a significant fraction of its secondary-storage capacity 
(hard-disk); on the other hand, merely transfering this information in or 
out of the host at, say, 100 nsec/byte will take ~ 3 seconds, that is, a time 
interval corresponding to 200 simulation steps. It is clear that, to avoid 
tying up valuable resources, one should strive to keep the number of such 
bulk serial transfers low. 

Since short-term back-up may be frequently required, perhaps the most 
reasonable solution to this problem is to let each module have an amount 
of shadow memory equal to that of state-variable-or object-memory. 
Swapping object and shadow can be done instantly, and copying object to 
shadow or vice versa can be done in a single step time for the whole array. 
In other words, one would replace bulk serial transfer by parallel back-up 
in situ. The shadow memory represents a moderate additional investment; 
moreover, its use is not limited to back-up. There are many cases, both 
during simulation and analysis, where even a one-level stack for the state­
variables would greatly enhance the machine's power and flexibility. 

Secondly, initialization data must be generated by a program as well 
as transfered to the state-variables; in general, this may take much longer 
than the transfer itself. However, in many cases a large share of the initial­
ization burden can be carried by the modules themselves, thus bypassing 
serial generation and transfer of data. In fact, distinguished, explicitly con­
structed initial patterns are usually specified only for a small portion of the 
array, while the rest is initialized with a "filler" of low information content 
(a "vacuum" of all zeroes, a uniformly random texture, a regular grid, etc.). 
We plan to provide the modules with a number of self-initialization modes 
covering the most common requirements; in particular, we may provide an 
adjustable-threshold random-number generator. 

Finally, the need for read-out and off-line analysis of the system's state 
can be reduced by using a number of on-line analysis techniques. 

4.4 Stepping 

It should be kept in mind that, even though within a module operations 
are pipelined, from a functional viewpoint the module behaves as a parallel 
device synchronously updating all the cells of its area. For this reason, a 
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simulation or analysis step must be treated as an indivisible, uninterrupt­
ible operation; that is, the registers containing the configuration parameters 
governing that step cannot be modified during the step itself, and the regis­
ters containing status parameters accumulated during a step will not have 
valid data until the end of that step. Thus, a complete cycle entails three 
phases: 

1. Write configuration registers. 

2. Perform step. 

3. Read status registers. 

While each module contains a small amount of configuration and status 
information, the time needed to write or read this information for all mod­
ules will add up to a .significant fraction of the time needed to perform a 
step. To avoid degrading the machine's performance, register data will be 
double-buffered in the module, and the three phases of the above cycle will 
be performed in a pipelined, overlapped fashion. That is, while time-step t 
is in progress- and thus has no use for the control bus- the host will collect 
through the bus status data from time-step t - 1, perform routine analysis 
functions on this data, and then ship configuration data for time-step t + l. 
In this way, the full bandwidth of the control bus is exploited not only 
during bulk 1/ 0 transfers, when the simulation is stopped, but also during 
the simulation. 

A well-known drawback of such a pipelined scheme is that "commands" 
for time step t + 1 will have to be issued before the results from time step 
t have been analyzed. Occasionally, one will discover a posteriori that the 
command just issued is not the appropriate one; hence the need for back­
tracking discussed in Section 4.3. 

4.5 D isp lay 

The basic display mode of CAM-7 will be through raster-scanned RGB 
monitors operating synchronously with the sequential scanning of a module. 
In this mode, the state of any plane or small group of bit-planes is color­
coded by a display map and directly sent to a monitor. No frame buffering 
or frame grabbing will be necessary in this mode. 
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The most challenging display problems arise when the machine is con­
figured for three dimensions. Given the large data rate of CAM-7, the 
reduction of a three-dimensional image to a two-dimensional projection by 
conventional ray tracing is out of the question, since adequate ray tracing 
would require computational resources orders of magnitude greater than 
those of the machine itself. 

CAM-7's output is produced in a format that is in principle directly 
usable for the presentation in real-time of of a true three-dimensional im­
age. Here, one problem is to identify a display device able to handle this 
information at the required data rate. Another problem is to preprocess the 
image-by highlighting and shading edges, surfaces, and other manifolds of 
low dimensionality- so that the human eye will be able to perceive it in an 
intelligible way. We have considered a number of approaches to the above 
problems, and we will refine and evaluate them in terms of effectiveness, 
practicality, and cost. 

4.6 Error handling 

We have given preliminary consideration to the problem of error-handling. 
The appropriate architectural and procedural solutions, such as error de­
tection, error correction, self-test, and experiment verification by statistical 
means, will be selected after reviewing with the contractors the machine's 
tentative specifications, and discussing with them conceivable error modes 
and likely error rates. 
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Chapter 5 

Plan of work 

Final design and realization of CAM-7 will be structured as six major tasks, 
of which the first three will progress concurrently. 

(A) Identification of an appropriate set of neighborhood options, using 
an emulator. One of the most important design issues concerns 
the choice of which neighbors or group of neighbors should be made 
available as arguments to the look-up tables, so as to configure the 
machine for a given cellular automaton "format." Many questions 
concerning this issue have already been answered in the design of 
CAM-6; additional questions presented by CAM-7 arise from it s large­
scale and its emphasis on three-dimensional simulations. 

We will be able to address these questions immediately, by assembling 
out of a number of CAM-6 modules (which are already in commercial 
production and are quite inexpensive) a small three-dimensional ma­
chine on which it will be possible to emulate and evaluate different 
sets of options. 

(B) Identifi.cation of appropriate interface, control, and I/ O protocols. 
Another import ant design issue arises from the combination of size 
and speed of the proposed machine. While the internal mechanics 
of the modules and their logical interconnection are well understood 
and have been tested on previous machines, putting together a large 
number of modules may present part icular problems in the areas of 
overall interfacing and control, with particular stress on bulk I/ 0 that 
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will make the totality of the information contained in the modules ac­
cessible in a reasonable time by the host computer. 

Issues of interface and control, as well as flexibility and expandability, 
will be substantially influenced by our choice-out of several workable 
schemes-of how to vary the size and shape of CAM's array. 

The study of these problems will proceed concurrently with Points 
{A} and {CJ, since the three tasks are to a great extent decoupled. 
At an appropriate moment, we plan to release a "Summary of CAM-
7's architecture," and to invite selected research groups to present 
proposals for significant initial uses of the machine. Timely feedback 
from these proposals may influence some final architectural details. 

( C) Design of the VLSI chips. The project will involve the design of 
one or two semi-custom VLSI chips, in addition to a few FPLA's 
(Field-Programmable Logic Arrays). For this, we plan to use tools 
and services that are readily available ( computer aided design and 
simulation, gate and function libraries, etc.) 

(D) Assembly of a reduced-scale prototype · As a milestone, and a 
demonstration of the major functional elements of CAM-7, we plan 
to assemble a 1/ 16 size prototype. In this prototype, the storage 
and pipeline sections will be essentially in their final form and will 
utilize one of the VLSI chips, while the transition function section, 
which may undergo further refinement, may be limited to essential 
functions and be realized with discrete !C's. 

(E) Construction of the full machine. The full machine will consist of 
an assembly of 1024 modules, coupled to a suitable host computer 
by a high-bandwidth control and data interface. Modules will be 
grouped into cards, each one provided with a module controller and 
a bus interface; in turn, cards will be hosted by a cage/ backplane 
assembly. Given the size of the project, cards and backplane will 
entail a substantial amount of design, assembly, and testing work. 

(F) Evaluation of the machine; sample experimental runs. We will fi-
nally start working on the machine as users, stressing sample experi­
mental runs that will exercise the machine's features and evaluate its 
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performance and flexibility. At this stage we will emphasize devel­
opement of user-oriented software, and we may experiment with ad­
ditional display and analysis devices ("transducers") and techniques. 
We may also implement additional hardware options to give higher 
performance in certain applications. These options require experi­
mentation and evaluation; while provisions for their addition have 
been made in the initial design, we do not want them to delay the 
realization of the main phase of the project. 

In the evaluation of the machine we plan to solicit significant test 
problem and collaboration from selected users in several research ar­
eas. 
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Appendix A 

Reference material 

A.1 The CAM family of cellular au-
tomata machines 

Versions of CAM have been in use for several years, and have been 
extensively demonstrated. Charles Bennett of IBM Research still 
nurtures a vintage CAM-2, with which he and his colleagues have 
obtained many results . CAM-5, now existing in several copies, is our 
current workhorse, and has been used for extensive investigations by 
Norman Packard and Stephen Wolfram[lO] and Gerard Vichniac[18], 
and for other studies of interest in theoretical physics (for instance, to 
implement models suggested by Pomeau[6] and Creutz[2]) . Popular 
articles related to CAM-5 have appeared in Scientific American[7], 
High Technology[17], and Discover[ll]. CAM-5 is on permanent ex­
hibit at the Boston Computer Museum. 

At the Cellular Automata workshop held in Los Alamos during March 
of 1983[3] we demonstrated CAM-3, a high-performance cellular au­
tomata machine. Many of the participants expressed interest in ar­
ranging to have copies of this machine produced so that they could 
use them in their work. This led us to look for an effective way to 
t ransfer this technology to the user community. 

Last year we commissioned Systems Concepts, of San Francisco, CA, 
to produce CAM-6-with the explicit intention that, after fulfilling 
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MIT's internal needs, further output of the production line would 
be made available to the scientific community as inexpensively as 
possible.1 

This machine is intended to serve as a laboratory for experimentation, 
a vehicle for communication of results, and a medium for real-time, 
interactive demonstrations of visual impact. 

CAM-6 consists of a module that plugs into a single slot of the IBM­
PC, -XT, or -AT, and of driving software operating under PC-DOS 2. 
While this readily-available host computer provides housing, shield­
ing, power, and a standard operating environment, the real work 
of simulating cellular automata at a very high speed is all done by 
the module itself, with a performance comparable-for this specific 
application-to that of a CRAY-1. 

The CAM-6 module consists of two 6-layer printed-circuit boards, 
piggy-backed on one another. Each module can simulate a two di­
mensional space of 64K cells arranged on a 256x256 grid with 4 bits 
of state per cell, or 128K cells configured as 256x512x2. Up to eight 
modules can be used together to provide more states at each site or 
bigger spaces (up to 2048x512x2) . In all cases the machine can up­
date the entire space 60 times per second, with simultaneous display 
on a color (RGB) monitor. 

Each module contains 256K bits of cell-state memory, eight look-up 
tables of 4K bits each for the transition function and related real­
time computations, extensive multiplexing for source selection (which 
neighbors, time-dependent parameters, and external signals are used 
by the look-up tables2

), a color-map table for controlling the display, 
and display multiplexing that allows CAM and PC to share the same 
color monitor, if desired. 3 

1 The description of CAM-5 in [13], together with Norman Margolus's discussion on 
"partitioning" neighborhoods[8] may be used for the moment to get an idea of CAM-6's 
functionality- though the latter differs from CAM-5 in many respects. 

2 Besides the familiar Moore and von Neumann neighborhoods and combinations or 
variants thereof, there are hardwired provisions for partitioning neighborhoods[8], which 
are quite useful, for example, in creating rules with particle-conserving collisions. 

3 CAM drives directly an IBM-PC compatible RGB monitor. If CAM and the PC use 
separate monitors, the monitor and display controller for the PC can be either color or 
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For users interested in specialized applications-or for those who want 
to use the CAM module as an OEM building block-the relevant 
inputs and outputs are brought out to a connector. Source selection 
includes user modes, where user-provided, external circuitry can be 
made an integral part of the update loop. 

CAM-6 fills a void in the computing machinery spectrum: for work on 
cellular automata, this machine has a performance vs price advantage 
of several orders of magnitude over machines not specifically designed 
for this application. 

A.2 Case study: Fully-parallel array 

Consider, as a simple but fairly representative case, a cellular automa­
ton where each cells requires two bits of memory to encode its state 
and several dozen gates to realize its transition function; this corre­
sponds to some 200 transistors. On a large VLSI chip, containing on 
the order of 1 million transistors, one could fit a patch of 64x64=4096 
( 4K) cells. In turn, a two-dimensional array of 64x64 chips would 
yield a total of about 16 million cells. At a clock rate of, say, 32 nsec, 
the array would be capable of 500,000 Giga-EPS! 

There are four major problems with this architecture. We shall briefly 
review them. 

Interconnection density: Consider the interface between two ad­
jacent chips in the array. There are 64 cells on the edge; each cell 
must send two bits of data to its neighbor across the edge, and re­
ceive two bits of data from it, for a total of 4 lines. Thus, aside from 
power, ground, and clock, each chips needs 256 contacts along each 
edge, to be mated with the corresponding contacts on the adjacent 
chip. For a one-inch chip, the spacing between contacts would be 100 
microns-too close for direct surface-mounting on a substrate, with 
today's technology. The conventional technique of running a wire 
from a bonding pad on the chip to a lead of a much larger carrier 

black-and-white. 
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would work, but we are contemplating now a chip with one-thousand 
discrete bonding pads, which would waste an emormous amount of 
silicon real-estate, and a carrier with many long rows of pins on ei­
ther side- measuring at least 4 inches across. The whole array would 
cover a 20-ft square and even with a reasonable amount of folding it 
wouldn't be easy to reliably distribute a 32 nsec clock! 

Thus, in the fully-parallel architecture, interconnection poses a ma­
jor obstacle-even in the two-dimensional case. If chips were to be 
connected as a three-dimensional array, signals from all 4096 cells on 
the flat sides as well as the 64 cells on the edges would have to be 
brought out of the chip. We would then have a matrix of 16-thousand 
contacts on each side of the chip, to be mated somehow with the cor­
responding contacts of the chips above and below. In conclusion, the 
more parallelism one puts in a single-chip, the harder it becomes to 
connect several of these chips in parallel, and the attractive aspects 
of very-large-scale integration are lost. 

Trade-offs between speed and size: A typical application of a large 
cellular automaton is to model a piece of a physical system in a direct 
way; that is, each cell of the automaton represents a small volume el­
ement of the system. In the simulation, the characteristic speed of 
the fastest relevant signals within the system (the speed of light, for 
microscopic physics; the speed of particles, for fluid dynamics; the 
speed of contagion, for an epidemic) is determined by the speed of 
propagation of information within the cellular automaton-one cell 
per time step. In a closed system, the novelty value of a signal pro­
duced by some significant event decreases as the news reverberates 
through and through; the time taken by a signal to traverse the sys­
tem several times gives a rough estimate of the time necessary to 
attain equilibrium. 

With the fully-parallel array considered in this section, which is only 
4096-cell wide, a signal will traverse the whole cellular-automaton in 
less than 100 µsec, and in one second will have looped through several 
thousand times. In other words, most experiments aimed at studying 
non-equilibrium behavior will last a fraction of a second, and those 
concerned with equilibrium properties will be over in a few seconds. 
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To sum up, for many applications the fully-parallel architect ure in­
vests on speed more resources than are justified by the relatively small 
size; a machine of this kind would lie idle most of the time. One would 
rather have many more cells even at the cost of slower processing, up 
to the point where a significant experiment may last several hours. 

Display: The above considerations also apply to the problem of 
displaying or otherwise extracting information in parallel from the 
simulation for evaluation and further processing. Real-t ime visual 
display from such a fast parallel array is virtually impossible (until 
such time when each cell can be equipped in situ with a light-emitting 
device), and at any rate experiments lasting a fraction of a second 
would not be rewarding from a visual viewpoint. Of course, at the 
end of an experiment data can be shifted out of the array in a serial 
way for more conventional processing, but in this case the internal 
architecture of the machine is of little relevance. 

Flexibility: Perhaps the most significant limitation of a fully­
parallel array is its lack of flexibility. Our discussion so far has as­
sumed that the transition function of a cell can be realized with a 
few dozen gates. This can be done only if one knows a priori which 
specific cellular automaton or small class of similar cellular automata 
one wants to realize. On the other hand, we would like to be able 
to program the array so as to realize any cellular automata law al­
lowed by the wired-in neighborhood interconnections, or at least a 
very large class of them. In other words, the next state of a cell 
should depend on that of its neighbors not through a small, fixed 
combinational network, but through a look-up table that can be ini­
tialized at the beginning of a simulation run. The number of b its in 
this table will be N = sn+l logs (wheres is the number of states per 
cell and n the number of neighbors) . Practical values for N range 
from a few hundred to a few millions. 

To sum up, in a general-purpose machine the memory required for 
the transition-function look-up table vastly overwhelms that required 
for the state variables of each cell, and the number of cells one can fit 
on a single chip shrinks from 4096 to esssentially 1!4 

4 1n a variant of this architecture, the entries of the look-up table (which is identical for 
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In conclusion, the fully-parallel architecture may be attractive now 
for certain asynchronous (unclocked) cellular automata schemes with 
very simple laws (few transistors per cell)-perhaps certain versions of 
soft-circuitry.5 This architecture may become more attractive some­
time in the future, when (a) a technology is available for glueing edge­
to-edge chips with thousands of contacts per side, (b) we know indi­
vidual cellular automata (presumably arrived at by using a general­
purpose machine) that are worth casting in silicon because the specific 
systems they model have important applications ( one can think of a 
large silicon wind-tunnel[4]), and (c) it will be practical to make ar­
rays containing millions rather than thousands of chips, and/ or fabri­
cate and interconnect chips containing millions of cells, so as to make 
machines whose size is better matched to their speed. 

all cells) are broadcast serially to the whole array at each time step. Individual cells can 
again be made very small without loss of flexibility, but operation of the machine is slowed 
down by a factor of a few hundred to a few millions. Interconnection problems remain the 
same. 

5VLSI chips whose circuit is "downloadable" as software. Individual cells of t he cellular 
automaton would become at will gates, pieces of wire, or memory elements depending on 
the initial setting of certain state bits. 
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