
LABORATORY FOR tt·~ MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT /LCS/TM-281

WH/-\T PRICE FOR ELIMINATING

EXPRESSION SIDE-EFFECTS?

Max Hailperin

June 1985

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

~

What Price for Eliminating Expression Side-effects?~

Abstract

Max Hailperin
Laboratory for Computer Science,

Massachusetts Institute of Technology

Separating a programming language into side- effect- free expressions and
effect- only statements should make the language more amenable to
axiomatization, as well as providing benefits for style, pedagogy, and
implementation efficiency (particularly in parallel- computing environments).
This paper shows that such a division does not come at an unreasonable cost in
programming convenience. First a dialect of Lisp is defined, in which a
distinction is made between statements, which may have side-effects, and
expressions, which may not. Next, a representative collection of examples
from Abelson and Sussman's Structure and Interpretation of Computer Programs
is coded in this dialect of Lisp. Most of the examples divide neatly into
functional and imperative portions, and a few relatively clean transformations
prove sufficient for the more stubborn cases .

CR Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Functional) Programming; D.1.4
[Programming Techniques]: Sequential Programming; D. l.m [Programming
Techniques]: Miscellaneous; D.3 . 1 [Programming Languages]: Formal Definitions
and Theory -- semantics, syntax; D.3 . 2 [Programming Languages]: Language
Classifications - - applicative languages, Lisp; D.3.3 [Programming Languages]:
Language Constructs -- procedures, functions and subroutines; D.3.m
[Programming Languages]: Miscellaneous; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Programs -
assertions, logics of programs, pre- and post-conditions; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages -- operational
semantics, denotational semantics; F.3 . 3 [Logics and Meanings of Programs]:
Studies of Program Constructs -- control primitives, functional constructs,
program and recursion schemes.

General Terms
Experimentation, Human Factors, Languages, Design, Theory, Verification.

Additional Key Words and Phrases
Side- effects, Programming Style.

'~ Max Hailperin, 1985 . This paper is a revised version of the author's
bachelor's thesis of the same title . It owes much to his thesis supervisor,
Albert R. Meyer, who is supported in part by NSF grant MCSS0- 10707.

-2-

Table of Contents

Abstract ... 1
Keywor ds ••.....•....•••••••....••..........••.•. • .••••.......... .•. ..•... 1
Table of Contents ..•.••••••..•••...•..•...•....••.•••....•.....•..•........•. 2
Introducti on•...•.•.•.................•..•..•.......•............•.••... 3
A Lisp Variant .••..••••••••.•••.•.......•••.•.....••..•.........••.....••..•. 4

Kernel language •••••..........•...••....... . •.•....••..•••............. 4
Primiti ves . .. 7
Sugarings ..••••..• •.•...•.•.•••........... • 9
Interpreter user interface •.••.••••.•...•...•••••...•...•.... . 9
Types . ••••... . .•• • •...........•. •..............• 10
Operational semantics •••.....••••••..•.•...•.....•.••••.•......••..•.• 11

Building Abstractions with Procedures ..•.... .••...•••...•.......•.•...• 11
Building Abstractions with Data •....••.•...• . • • • • ••.•.••.••••.••....• .•••••• 14
Modularity, Objects , and State . • .•..•.••.•...........•.••... •.•.. 18

Assignments and local state •••••••.•.•.•..••.•••••••......••..•.•..••. 18
Modeling with mutable data •...•....•.......•.......••••........ • •..•. • 19
The composition of constructors •...•.•...••.••..•.•.•.•••.•.......•.•. 21
Streams 25

Metalinguistic Abstract ion••••.•.•.•....••..•••.•.•.•••••......•..•••••• 25
Conclusion •....•..•.....••••....•.••....•.•.•..... .. .••.•............... 25
References 27
Appendix A: A Simple Scheme- ES Interpreter ..• . .•..•....•••........ ..•.•. 28

Kernel interpreter .••••••••..••••.•.•....••...••••••••.•••.••.••. • 28
Interpreter user interface ...••............ . ..•....•...••....• . •. • •••• 33
Sugars 35
Environments and stores .•....•......••.•.•••• . 38
Syntax 40
Prirni ti ves 45

Appendix B: Composing Mutable- Object Constructors : Constraint- Propagation ••• 57

-3-

Introduction
This paper provides representative empirical evidence as to the cost in

lost programming convenience to be paid for ridding expressions of side

effects. First a dialect of Lisp is defined, in which a distinction is made

between statements and expressions, only the former being allowed to have

side-effects. Next, a representative collection of examples and exercises

from Abelson and Sussman's Structure and Interpretation of Computer Programs1

is coded in this dialect of Lisp . Certain programming styles are found to be

negligibly affected, for example stream processing, while others are found to

show slightly greater impact, for example object- oriented programming. Even

the latter, though, can be handled by a r elatively clean transformation.

This paper should be read in conjunction with the above- mentioned book,

as no attempt is made to provide adequate explanations of the intent or

context of the examples.

The primary motivation for separating a language into value-returning

and effect- causing parts is that side- effect free expressions can be easily

axiomatized. Eliminating all mingling of effects with values facilitates the

axiomatization of the entire language. This approach has previously been

2 taken with Algol- like languages by Meyer and others . The essential

difference between Algol- like languages and Lisps is that the former employ

the local storage discipline (allocation from a stack rather than a heap).

Secondary motivations for the separation are that it can improve the

understandability of code, provide a useful pedagogical aid, and help

compilers for parallel architectures generate efficient code.

1
Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure and

Interp2etation £i Computer Programs, Cambridge: MIT Press, 1985.
B. A. Trakhtenbrot, Joseph Y. Halpern, and Albert R. Meyer . "From

Denotational to Operational and Axiomatic Semantics for Algol- like Languages :
An Overview," MIT/LCS/TM-246, Cambridge: MIT, 1983.

-4-

The motivations listed above explain the decision to depart from

conventional Lisp; the contrast between the language discipline investigated

here and pure functional programming is an attempt to apply "Einstein's

razor" : "Everything should be made as s i mple as possible, but not simpler . "

,! Lisp Variant
The dialect of Lisp used for this paper , referred to henceforth as

"Scheme- ES," is intended to resemble Scheme as far as possible , aside from the

separation of statements from expressions . Other major differences are t hat

argument passing is call- by- name rather than call- by-value (so that, for

example, cons- stream
3

can be a normal f unction), that environments and stores

are treated separately, and that identifiers and symbols are considered

independent (so that , for example , EVAL does not make any sense).

Scheme- ES is defined in levels as a kernel language, primitives,

sugarings, and lastly an interpreter user interface . The kernel language is

not s t rictly speaking minimal, but does contain a fairly sparse set of

constr ucts. The sugarings are intended to make the language more reasonable

to express programs in statically , while the interpreter user interface exists

solely to facilitate the dynamic creation of programs .

Kernel language
The syntax of the kernel language is given in Figure 1, and the informal

semantics of each construct in Figure 2.

3
Abelson and Sussman, p . 261 .

- 5-

Figure 1 : Syntax of the Scheme- ES Kernel Language

lexi cal categories a r e in bold :
(begin list
) end list

identifier id
atom
func
proc

atom: number, string, symbol, pr imitive function or procedure
reserved word

if
local
cont
letrec
new
set
sequence
call

"
"
"
"
"
"
"
"
"

"
"
"
"
"
"
"

"
metachar acters are in roman :

. . - is defined as
{} zero or more repetitions of
I or

and nonter minals are i n italics :
expr expr ession
stmt statement

s tmt . ·.. -

atom I id I (exp!
expr expr e xpr)
expr) }) expr)

{expr}) I (func ({id }) expr) I (proc stmt) I (if
(l ocal s t mt expr) I (cont expr) I (letrec ({(id

(call expr)
{st mt})

(new ({id}) stmt) I (set expr expr) I (sequence

Figure 2 : Semantics of the Scheme- ES Kernel Language

a t om An atom evaluates to itself .

id An identifier evaluates to whatever it is bound to at its most closely
surrounding binding . Calling is by- name , so if this binding is by a
function appl icat ion , rather than a l et or letrec, the bound expression
must be evaluated in the calling environment .

(expr {expr})
The first expression is evaluated , and must evaluate to a function
object ; it is then applied by- name to the remaining expressions . This
is accomplished by evaluating its body expression in i t s definition
environment , augmented by binding the formal s to the uneval uated
arguments .

-6-

(func ({id}) expr)

(proc

A function definition evaluates to a function object with the
identifiers as its formals, the expression as its body expression, and
the current environment as its definition environment.

stmt)
A procedure definition evaluates to a procedure object with the
statement as its body statement and the current environment as its
definition environment.

(if expr expr expr)
The first expression of a conditional is evaluated; if it evaluates to
the special symbol NIL, the third expression is evaluated to provide the
value of the conditional expression, otherwise, the second expression
is.

(local stmt expr)
The expression is evaluated in a private copy of the store, in which the
statement has first been executed. The resulting value is the value of
the local expression . This definition is somewhat faulty in the
presence of primitive procedures, such as PRINT, that have side- effects
other than on the store. Therefore , it is illegal to call such
procedures from within a local.

(cont expr)
The expression is evaluated, and must have a location object as its
value. The value of the overall expression is the value associated in
the store with that location object .

(letrec ({(id expr)}) expr)
A letrec binds the identifiers to the results of evaluating the
corresponding expressions, and then evaluates the body expression. The
scope of the bindings includes both the body expression and the
expressions whose values are being bound.

(call expr)
A procedure call, when executed, forces the evaluation of the
expression, whose value must be a procedure object . That procedure
object's body statement is then executed in its definition environment.

(new ({id}) stmt)
To execute a new, extend the store t o include as many new locations as
there are identifiers, and bind the identifiers to the new locations.
Then execute the statement. Note that while the scope of the
identifiers is the body statement , the extent of the locations is semi
infinite.

(set expr expr)
Execution of a set forces evaluation of both expressions. The first
expression's value must be a location, and the second expression's value
is stored into that location.

(sequence (stmt})
Executing a sequence executes the statements in order.

- 7-

Pri mitives
Only three aspects of the primitive functions and procedures warrant

discussion :

- the handling of CONS, CAR, CDR, SET- CAR!, and SET- CDR !

- the definition of EQ?

- the handling of ERROR.

There are both immutable- pair and mutable- pair primitive constructors .

The function of two arguments CONS cons tructs immutable pairs, while the

procedure of three arguments (the last of which is a location into which to

store the result) MUTABLE- CONS constructs mutable pairs . The functions CAR

and CDR can be applied to either form of pair. The procedures SET- CAR! and

SET- CDR!, on the other hand, may only be used with cons-cells produced by

MUTABLE- CONS . Note that mutable- structure constructors must be procedures , as

they have the side- effect of allocating storage. Immutable- structure

constructors, by contrast, do not affect the store (their implementation may

consume memory, for example to build closures, but this memory is not part of

the explicit store (that which is accessed by cont) and its allocation is not

considered a side- effect) .

EQ? is defined in Scheme (and in other Lisps) as being true of two

objects if and only if they share the same representation . As a consequence,

whether it is true of two particular objects may be implementation dependent .

This definition clearly has no place in a language such as Scheme-ES, which is

designed for expositional purposes . Instead, something more like Common

Lisp's EQL is in order ; "EQL tells whether two objects are conceptually the

same, whereas EQ tells whether two objects are implementationally identical. 114

4 Guy L. Steele Jr ., Common LISP: The Language, Burlington: Digital
Press, 1984, p. 78 .

- 8-

Thus we define Scheme- ES's EQ? operator to be true of

- two primitive objects (symbols, numbers, strings, locations, primitive

functions, or primitive procedures) if they are ''the same'' in the obvious,

visual sense,

- two pairs if they are indistinguishable; mutable cons- cells must have

originated from the same call to MUTABLE- CONS, but immutable pairs mus t

merely have EQ? cars and cdrs.

It is illegal to test whether a compound function or procedure is EQ? to

anything, including itself, as there is no reasonable , implementation

independent, decidable definition for functional equality .

In order not to divert too much attention to error handling, which is

really a side issue, ERROR will be left as a function for the purpose of this

paper . In order to bring this into the Scheme- ES framework, it is defined as

returning an error object encapsulating the given arguments, where error

objects are treated as follows:

all primitive functions return an error object if given one

- if the test in an if evaluates to an error object, the value of the

conditional expression is that error object

- if the function of an application evaluates to an error object, the value

of the application is that error object

- the contents of an error object is that error object

- if an error object is c alled, the text is printed and the program stops

if either the location or the value in a set is an error object, the text

is printed and the program stops.

This version of error handling is imperfect, but is good enough for most

purposes, and avoids wasting too much attention on the issue .

- 9-

Sugarings
The sugarings fall into five categories:

- enriching statements by sugars for (call expr)

- allowing procedures to have arguments

- facilitating the entry of s - expression data

- allowing cond as a short-hand for nested ifs and let as a non-recursive

letrec

- allowing multiple statements in proc, local, and new as implicit sequences.

There is a rather sparse set of statements in the kernel language.

However, letrec and if can be extended to statements as well as expressions by

treating them (polymorphically) as sugars for (call expr); for example:

(if expr stmt stmt) ==> (call (if expr (proc stmt) (proc stmt))).

Procedures can be allowed t o have arguments by the trio of sugars:

(paramproc (id {id}) {stmt}) ==> (func (id {id}) (proc {stmt}))

(paramproc () {stmt}) ==> (proc {stmt})

(call expr expr {expr}) ==> (call (expr expr {expr})).

S- expressions may be entered using the fol l owing sugaring:

(quote (s- expr. s-expr)) ==> (CONS (quote s-expr) (quote s - expr))

(quote atom)==> atom.

The first case is merely a convenient shorthand for the primitive CONS, but

the second case may be the only way to enter a symbol if the interpreter uses

the same lexica l conventions for symbols and identifiers (as is traditional).

Interpreter user interface
In order to allow the incremental construction and testing of programs,

the interpreter allows the user to type in three kinds of forms:

- interpreter commands

- Scheme- ES s t atements

Scheme-ES expressions

-10-

The interpreter commands include such housekeeping commands as load, and

also two special commands, define and global. (define id expr) is a command

to associate the identifier with the expression in a database of definitions.

Similarly, (global id) is a command to enter the identifier into a database of

globals. The purpose of these interpreter databases will become clear below.

Additionally, (define (id {id}) expr) is a shorthand for (define id (func

({id}) expr)), and (define (id {id}) {stmt}) is a shorthand for (define id

(paramproc ({id}) {stmt})).

When the user enters a Scheme-ES statement, the interpreter wraps it

first in a letrec consisting of all of the entries in the definitions

database, and then around that wraps it in a new which lists all of the

identifiers in the globals database. The interpreter then executes the

resulting statement in an empty environment (primitives are treated as atoms,

not as identifiers globally bound to the primitive) and an empty store.

Lastly, if the user enters a Scheme- ES expression, the interpreter first

turns it into a statement by making it the argument to a call to the primitive

PRINT procedure, and then proceeds as above.

Types
Certain aspects of this language definition are clearer when viewed in

terms of the types involved. Most notably, the definition of local above

seems rather complex and ad hoc, but when viewed in terms of types it proves

to be a very primitive operation.

There are primitive types number, symbol, string, and loc; and two

methods of combining types: cartesian product (x) and function mapping(+).

We will call the universal type any, and abbreviate loc + any as store.

An expression whose value is of type a is of type store+ a, and

statements are of type store+ store. Functions take expressions as their

arguments and may depend on the store, so+, for example, is of type

-11-

((store ➔ number) x (store ➔ number)) ➔ store ➔ number. A procedure object is

of the same type as a statement, so a procedure-object-valued expression, such

as (if (cont x) (proc •.•) {proc •••)) is of type store ➔ store ➔ store.

Where does this help? It helps explain local. Viewed in terms of

types, local is as primitive as sequence: they are both just functional

composition. Local composes a function of type store ➔ a with one of type

store ➔ store to get one of type store ➔ a. Sequence, on the other hand,

composes a function of type store ➔ store with one of type store ➔ store to

get one of type store ➔ store.

Operational semantics
A simple interpreter for Scheme-ES, written in Scheme , is included as

Appendix A. This provides a more precise definition of the semantics of

Scheme-ES . All the examples have been run using this interpreter.

Building Abstractions with Procedures
The material covered in chapter one of Abelson and Sussman, "Building

Abstractions with Procedures, 115 translates directly into Scheme-ES, with the

exception of the Monte- Carlo tests for primality. This includes

straightforward function definition , and also the use of functions as both

arguments to and values of higher order functions. Figure 3 illustrates

examples from chapter one.

Figure 3: Examples from Chapter One

Straightforward function definition6

(define (square-root x)
(sqrt- iter 1 x))

(define (sqrt- iter guess x)
(if (good-enough? guess x)

guess
(sqrt-iter (improve guess x) x)))

5
6

Abelson and Sussman, pp . 1- 70 .
Abelson and Sussman, pp. 21-22 .

-12-

(define (good- enough? guess x)
(< (abs (- (square guess) x)) . 001))

(define (improve guess x)
(average guess(/ x guess)))

(define (average x y)
(/ (+ X y) 2))

(define (square x)
(*Xx))

F
. 7 unctions as parameters

(define (sum term a next b)
(if (> a b)

0
(+ (term a)

(sum term (next a) next b))))

(define (integral fa b dx)
(* (sum f

dx))

(+ a (/ dx 2))
(func (x) (+ x dx))
b)

Functions as returned values8

(define (deriv f dx)
(func (x)

(/ (- (f (+ x dx)) (f x))
dx)))

(define (newton f guess)
(if (good- enough? guess f)

guess
(newton f (improve guess f))))

(define (good- enough? guess f)
(< (abs (f guess)) . 001))

(define (improve guess f)
(- guess(/ (f guess)

((deriv f .001) guess))))

7
8

Abelson and Sussman , pp. 54- 55 .
Abelson and Sussman, pp. 68- 69.

- 13-

The troublesome case: Monte- Carlo primality testing9

(define (expmod be m)
(cond ((= e O) 1)

((even? e)
(remainder (square (expmod b (/ e 2) m))

m))
(else
(remainder(* b (expmod b (- e 1) m))

m))))

(define (square x)
(*Xx))

(define (fermat-test n result)
(new (rand- loc)

(call random (- n 2) rand- loc)
(let ((a(+ 2 (cont rand- loc))))

(set result(= (expmod an n) a)))))

(define (fast- prime? n times result)
(if(= times O)

(set result t)
(new (test- result)

(call fermat-test n test-result)
(if (cont test- result)

(call fast- prime? n (- times 1) result)
(set result nil)))))

Note that RANDOM has a side- effect, namely changing its own internal

state, so it, FERMAT- TEST, and FAST- PRIME? all have to be procedures, rather

than functions, and return their results by storing them into specified

locations .

The major problem with this approach is that it eliminates some of the

black-boxness of FAST-PRIME? -- it would be nice if FAST- PRIME?s callers had

no need to know that it used Monte- Carlo methods . One approach to restoring

its modularity, based on the observation that only the values of RANDOM

within each call to FAST- PRIME? need be independent, is to limit the extent of

the side-effects with the local construct . Unfortunately , this requires using

a global variable, as in Figure 4 .

9 Abelson and Sussman , pp . 47- 48.

-14-

Figure 4: An Approach to Monte-Carlo Functions

(global *local- result*)
(define (fast- prime- f unc? n times)

(local (new (result)
(call fast- prime? n times result)
(set *local- result* (cont result)))

(cont *local-result*)))

The necessity of a global variable is ameliorated by the fact that

LOCAL-RESULT can be shared among any number of such cases, provided they

follow the same discipline illustrated in Figure 4: '~LOCAL-RESULT'~ is only set

as the last statement of the local, and t he expression of the local is simply

(cont *LOCAL-RESUlT*). These two restrictions avoid trouble in recursive

cases .

Building Abstractions with Data 0
The techniques of chapter two , "Building Abstractions with Data ,"1

should be amenable to translation into Scheme- ES , as mutation is not

introduced until chapter three. This is indeed true of data abstraction,

manifest types , a nd message passing ; data-directed programming, on the other

hand , foreshadows mutation to a limited extent in its use of PUT and GET.

If the table maintained by PUT and GET is allowed to be dynamically

modified in the course of execution, then we have entered the realm of

mutation , the topic of the next chapter. In this chapter, however, Abelson

and Sussman use PUT only in the very limited context of top- level immediate

commands used to an establish a static table . For this , the PUTs need only be

grouped together into a definition for GET. This chapter intentionally tries

to gloss over the PUT and GET issue, saying "For now, we can assume that PUT

11 and GET are primitive operators included in our language ." Thus, it is

10
11Abelson and Sussman, pp . 71- 166.

Abelson and Sussman , p . 138.

-15-

closest to the spirit of this chapter to "cop out" and suggest that PUT be

added as an additional interpreter user interface command, like define and

global, that causes the automatically generated letrec to include an

appropriate definition for GET.

Examples from chapter two, including the "cop out" version of data

directed programming suggested above , are shown in Figure 5.

Figure 5: Examples from Chapter Two

D b
. 12 ata a straction

(define (+rat x y)
(make- rat(+(* (numer x) (denom y))

(* (denom x) (numer y)))
(* (denom x) (denom y))))

(define (-rat x y)
(make- rat (- (* (numer x) (denom y))

(* (denom x) (numer y)))
(* (denom x) (denom y))))

(define (*rat x y)
(make- rat(* (numer x) (numer y))

(* (denom x) (denom y))))

(define (/rat x y)
(make- rat(* (numer x) (denom y))

(* (denom x) (numer y))))

(define (=rat x y)
(= (* (numer x) (denom y))

(* (numer y) (denom x))))

(define (make- rat n d)
(let ((g (gcd n d)))

(cons(/ n g) (/ d g))))

(define (numer x)
(car x))

(define (denom x)
(cdr x))

12 Abelson and Sussman, pp . 76- 79.

(define (print- rat x)
(call newline)
(call princ (numer x))
(call princ "/")
(call princ (denom x))
(call princ ""))

M "f 13 ani est types
(define (attach- type type contents)

(cons type contents))

(define (type datum)
(if (not (atom? datum))

(car datum)

- 16-

(error "Bad typed datum - - TYPE" datum)))

(define (contents datum)
(if (not (atom? datum))

(cdr datum)
(error "Bad typed datum -- CONTENTS" datum)))

(define (rectangular? z)
(eq? (type z) 'rectangular))

(define (polar? z)
(eq? (type z) 'polar))

(define (make- rectangular x y)
(attach- type 'rectangular (cons x y)))

(define (make- polar r a)
(attach- type 'polar (cons r a)))

(define (real- part z)
(cond ((rectangular? z)

(real - part- rectangular (contents z)))
((pol ar? z)
(real- part-polar (contents z)))))

(define (imag- part z)
(cond ((rectangular? z)

(imag- part- rectangul ar (contents z)))
((polar? z)
(imag- part- pol ar (contents z)))))

(define (magnitude z)
(cond ((rectangular? z)

(magnitude- rectangular (contents z)))
((polar? z)

(magnitude- polar (contents z)))))

13
Abelson and Sussman, pp . 133- 135.

- 17-

(define (angle z)
(cond ((rectangular? z)

(angle- rectangular (contents z)))
((polar? z)
(angle- polar (contents z)))))

(define (real- part- rectangular z)
(car z))

(define (imag-part- rectangular z)
(cdr z))

(define (magnitude-rectangular z)
(sqrt(+ (square (car z))

(square (cdr z)))))

(define (angle- rectangular z)
(atan (cdr z) (car z)))

(define (real- part- polar z)
(* (car z) (cos (cdr z))))

(define (imag- part- polar z)
(* (car z) (sin (cdr z))))

(define (magnitude- polar z)
(car z))

(define (angle- polar z)
(cdr z))

(define (square x)
(>~Xx))

M . 14 essage passing
(define (make-rectangular x y)

(func (m)
(cond ((eq? m 'real- part) x)

((eq? m 'imag- part) y)
((eq? m 'magnitude)
(sqrt(+ (square x) (square y))))

((eq? m 'angle) (atan y x))
(else
(error "Unknown op -- MAKE- RECTANGULAR" m)))))

(define (operate op obj) (obj op))

(define (square x) (*xx))

14
Abelson and Sussman, pp. 141.

- 18-

The troublesome case : data- directed programming15

(put 'rectangular 'real- part real- part-rectangular)
(put ' rectangular 'imag- part imag- part-rectangular)
(put 'rectangular 'magnitude magnitude- rectangular)
(put 'rectangular 'angle angle- rectangul ar)

(put 'polar 'real- part real- part- polar)
(put ' polar 'imag- part i mag- part- polar)
(put 'polar 'magnitude magnitude- polar)
(put 'polar 'angle angle- polar)

(define (operate op obj)
(let ((function (get (type obj) op)))

(if (not (null ? function))
(function (contents obj))
(error "Operator undefined for this type -- OPERATE"

(list op obj)))))

(define (real- part obj) (operate 'real- part obj))
(define (imag- part obj) (operate 'imag- part obj))
(define (magnitude obj) (operate ' magnitude obj))
(define (angle obj) (operate 'angle obj))

Modularity , Objects, and State
In chapter three, "Modularity , Objects , and State , 11 16 Abelson and

Sussman introduce the concept of change , making Scheme- ES ' s separ ation of

side- effects from expression evaluation an issue for the f i rst time (aside

from tangentially in the Monte- Carlo primali ty tests of chapter one and the

data- directed programs of chapter two) . We will see that stream processing

(as expected) is not adversely affected , and (more surprisingly) that even

object- oriented programming is only mildl y affected .

Assignments and local state
Abelson and Sussman start by using a bank account as an example of the

use of local state variables. 17 In their version , making a withdrawal r esults

in the remaining balance being returned , or an "Insufficient funds" message.

This means that WITHDRAW has both an effect and a val ue -- an impossibility in

15
16Abelson and Sussman, pp. 138 .

17Abe l son and Sussman , pp. 167- 292 .
Abelson and Sussman , p . 169 ff .

- 19-

Scheme- ES. One possible solution is to store the value into a location passed

as an additional argument, as in Figure 6.

Another approach is to change the specifications of the problem to fit

the action/value dichotomy of Scheme- ES. This could be done by separately

providing a procedure and a function. The procedure would only make the

withdrawal, if possible; the function would only return the account balance.

Figure 6: Procedures with Local State18

(define (make- withdraw starting- balance result)
(new (balance)

(set balance starting- balance)
(set result (paramproc (amount result)

(if(>= (cont balance) amount)
(sequence (set balance (- (cont balance) amount))

(set result (cont balance)))
(set result "Insufficient funds"))))))

Example of use
(new (WlW2result)

(call make- withdraw 100 Wl)
(call make- withdraw 100 W2)
(call (cont Wl) 50 result)
(call print (cont result))
(call (cont W2) 70 result)
(call print (cont result))
(call (cont W2) 40 result)
(call print (cont result))
(call (cont Wl) 40 result)
(call print (cont result)))

Result of example
so
30
"Insufficient funds"
10

Modeling with mutable data
The examples of mutable data given in this chapter all respect the

action/value dichotomy, except for creation, so they can be easily converted

into Scheme-ES, as illustrated below for queues. This is not a coincidence:

18
Abelson and Sussman, p. 172 .

- 20-

it is good style to separate the operations of an abstract data type into

constructors, selectors, and mutators. The selectors are pure functions, and

the mutators are pure procedures . Only the constructors pose a problem: they

have a value (the constructed mutable data object), but they also have an

effect (the allocation of storage) . This must typically be worked around by

storing the result, as in the queue example of Figure 7, below ,

Figure 7: A Mutable Data Type 19

(define (front- ptr queue) (car queue))

(define (rear- ptr queue) (cdr queue))

(define (set- front- ptr! queue item) (call set- car! queue item))

(define (set-rear- ptr! queue item) (call set- cdr! queue item))

(define (empty- queue? queue) (null? (front- ptr queue)))

(define (make- queue result) (call mutable- cons 1
() '() result))

(define (front queue)
(if (empty- queue? queue)

(error "FRONT called with an empty queue" queue)
(car (front- ptr queue))))

(define (insert- queue! queue item)
(new (new- pair)

(call mutable- cons item nil new- pair)
(cond ((empty- queue? queue)

(call set- f r ont-ptr! queue (cont new- pair))
(call set- rear-ptr! queue (cont new- pair)))

(else
(call set-cdr! (rear- ptr queue) (cont new- pair))
(call set-rear-ptr! queue (cont new- pair))))))

(define (delete- queue! queue)
(cond ((empty- queue? queue)

19

(call error "Delete called with an empty queue" queue))
(else
(call set- front- ptr! queue (cdr (front- ptr queue))))))

Abelson and Sussman, pp. 210-212 .

- 21-

The composition of constructors
The approach described above, storing results, works ok in simple cases,

but it lacks the ability for composition that expression evaluation provides.

The advantage of functional composition is that it allows the structure of a

program that constructs hierarchical data to parallel the structure of the

data. A solution to this problem is illustrated below by the simple example

of mutable cons-cells; a more sophisticated example from Abelson and Sussman

(an object- oriented implementation of constraint propagation) is deferred to

Appendix B.

The primitive Scheme- ES constructor for mutable cons- cells is a

procedure, so the only way to bui l d mutable trees with it is by explicitly

allocating temporaries for each node in the tree and building it step by step.

Figure 8 illustrates this with a procedure, make- tree, which makes a complete

binary tree of depth two.

Figure 8: Building a Mutable Tree Step by Step

(define (make- tree caar-leaf cdar- leaf cadr- leaf cddr- leaf result)
(new (car- node cdr-node)

(call mutable-cons caar- leaf cdar-leaf car- node)
(call mutable- cons cadr-leaf cddr- leaf cdr-node)
(call mutable-cons (cont car- node) (cont cdr- node) result)))

This worrying about step- by- step computation and temporaries for

intermediate results is clearly more reminiscent of an assembly language then

of a higher-level language. We should be able to rewrite make- tree as in

Figure 9. Notice t hat the MUT- CONS calls in Figure 9 form a complete binary

tree of depth two themselves.

Figure 9: Building a Mutabl e Tree by Functional Composition

(define (mk- t ree caar- leaf cdar-leaf cadr- leaf cddr- l eaf)
(mut- cons (mut-cons caar-leaf cdar- l eaf)

(mut-cons cadr- leaf cddr-leaf)))

- 22-

At first glance, the MK-TREE function of Figure 9 looks like it couldn't

possibly be legal in Scheme-ES, as constructing a mutable object implies the

allocation of storage. But there is a solution: in order to protect the

separation of values from effects, we must separate composition from

construction by introducing an additional level of abstraction.

If MUT- CONS (and thus MK- TREE) doesn't return a mutable cons-cell, but

rather a procedure to create one and store it into a given location , then it

will not have a side- effect. The allocation of storage does not occur until

the returned procedure is called. Lastly, to allow the result of one MUT- CONS

to be used as an argument to another one, the arguments must also be

constructor procedures, rather than actual mutable cons- cells. Given this re

typing of its result and arguments, MUT- CONS can be expressed in Scheme- ES as

in Figure 10.

Figure 10: A Function to Make Procedures to Construct Mutable Cons- cells

(define (mut- cons car- constructor cdr- constructor)
(paramproc (result)

(new (the- car the-cdr)
(call car- constructor the- car)
(call cdr- constructor the- cdr)
(call mutable- cons (cont the-car) (cont the- cdr) result))))

This retyping can be viewed as a rather straightforward transformation

on types. Suppose, for the sake of exposition, that the store is typed, such

that to every type a there corresponds a location type lac, where only as can
a

be stored into locas . Then the retyping of mut- cons is just a transformation

from

((store + a) x (store + 8)) + store + y

to

((store+ (loc + proc)) x (store + (lac,.., + proc))) + store + (lac + proc) .
a P Y

-23-

(Where proc is store+ store.) In other words, we replace each type a , 6, y

20 by the ability to store an object of that type: loca + proc, for example.

The semantics of the retyped function, f, can be defined in terms of the

originally typed function , f', which is the " functi onal essence" off, and a

procedure (of type store ➔ store) f'', which is the "procedural essence" of f.

To do this, we will need a semantic model for the new statement. New can be

viewed as a function of type store+ (store x loc), but for our purposes it

will be more convenient to decompose it into two functions , NEW, of type store

+ loc, and ALLOC, of type store+ s tore. Furthermore, in keeping with our

fiction of a typed store, we will subscript NEW and ALLOC with the type of the

location: NEWa is of type store+ loca. We will use o, T, o' , etc. for

stores, and ia, etc. for locas, etc . ASSIGNa will be the assignment

primitive; its type is loca +a ➔ store ➔ store. Given this notation, we can

define the semantics off by f (x, y) o i = o''' ''', wher e:
y

ia = NEWa o

o ' ALLOCa o

i 6 = NEWS o'

o' I = ALLOCs 0 1

o''' = x a'' i 0 1 I
a

O' I I I = y O' I I is O' I I

o' I I I I = f I I o' I I I

(allocate locations for arguments)

(call arguments with their locations)

(do the "procedural essence")

o""" = ASSIGN i (f' (,\T . (T i), AT,(T i)) o""') 0 11111

y y (set giveg location ~o value of "functional essence")

20
This transformation from functions on objects to functions from

constructors to constructors is not merely general enough to be used with any
mutable-data- structure constructor, it is in fact general enough to serve as
the basis of a mechanical translation from Scheme to Scheme- ES. The fact that
such a translation exists does not mean that Scheme- ES provides no additional
leverage, but rather merely that it is equally general . The advantage of code
written directly in Scheme- ES is that it is clear where side- effects occur and
where they don't, while the mechanical translation f rom Scheme mentioned above
would conservatively assume that every function has a side- effect.

- 24-

Given this new view of what kind of objects mut-cons should deal in, the

definition of MK- TREE shown in Figure 9 is a completely correct and legal

Scheme- ES function . The only detail remaining is how to form bridges between

the abstracted world of procedures that make mutable cons- cells and the real

world of mutable cons- cells and other objects. We need to cons arbitrary

objects into our tree at the leaves , and we need ultimately to construct the

actual mutable cons- cells and store the top-level one somewhere. Figure 11

shows these two bridges: MC- LEAF and MC- SET. Figure 12 then summarizes by

illustrating an example usage .

Figure 11 : Bridges between the Abstracted and Real Worlds

(define (me- leaf object)
(paramproc (result)

(set result object)))

(define (me- set location me)
(call me location))

Figure 12: An Example Construction of a Mutable Tree

Executing :
(new (tree)

(call me- set tree (mk- tree (me- leaf
(me- leaf
(me- leaf
(me-leaf

print (cdar (cont tree)))

'the-caar)
'the-cdar)
'the-cadr)
'the-cddr)))

(call
(call
(call

set- cdr! (car (cont tree)) 'new- cdar)
print (cdar (cont tree))))

Results in :
THE- CDAR
NEW- CDAR

-25-

Streams
The above cases exhaust the various ways Abelson and Sussman use

assignment and mutation to model change. The last remaining programming

style, streams, is different, in that it is purely functional . Thus, there

are absolutely no difficulties converting to Scheme- ES.

Metalinguistic Abstraction
The last two chapters of Structure and Interpretation of Computer

Programs are concerned with the additional abstraction technique of

metalinguistic abstraction, i.e. defining new languages . While this is a

powerful tool, it is purely a conceptual hurdle, and not a distinguished

programming style. From the point of view of gathering evidence on how

various programming styles fair in Scheme- ES, chapters four and five merely

provide further examples of the styles introduced in the first three chapters .

Conclusion
Ridding expressions of side-effects is not only theoretically and

practically interesting, it is a viable language design option. A wide

variety of programming techniques have been examined, and the elimination of

expression side- effects has been shown to have only mild consequences. Most

programming divides neatly into pure procedures and pure functions. There are

only a limited number of borderline cases that have both effects and values:

- Monte-Carlo experiments

- inappropriately specified data- structur e operations (such as WITHDRAW) that

combine features of both mutators and selectors

- mutable data- structure constructors.

- 26-

These borderline cases must be handled by the "hack" of storing their

results into a location passed as an additional argument . While this hack is

normally merely a bother , in two cases it is more serious :

- whether a routine uses Monte- Carlo methods or not cannot be completely

hidden from its callers

- mutable data-structure constructors can not be composed .

The former problem can be handled by limiting the extent of the side

effects to the minimum range over which the random number s must be

independent . This generally provides adequate hiding of the Monte- Carlo

nature of a computation , as in FAST- PRIME- FUNC? in Figure 4 .

The latter problem can be handled by composing functions returning

constructors , rather than the constructors themselves. Once the ultimate

constructor has been synthesized, which will construct all the nested mutable

data structures, then it can be called with the location into which to store

the whole mess . This technique is illustrated above by the mutable- cons

example of Figures 9- 11 .

- 27-

References

Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure and
Interpretation of Computer Programs, Cambridge : MIT Press, 1985. --

Guy L. Steel e Jr . , Common LISP: The Language, Burlington: Digital Press, 1984,
p. 78.

B. A. Trakhtenbrot, Joseph Y. Halpern , and Albert R. Meyer . "From Denotational
to Operational and Axiomatic Semantics for Algol- like Languages : An Overview,"
MIT/LCS/TM- 246, Cambridge: MIT, 1983.

- 28-

Appendix A: A Simple Scheme-ES Interpreter

WARNING: The division of Scheme- ES between kernel and sugars has shifted
somewhat since this interpreter was written.

**
These functions constitute the kernel interpreter. Kernel-exec and
kernel- eval are the interpreter proper. Next appear specialized
interpreters for each statement or expression type . Lastly , there are a
few supporting routines for data- directed dispatching and to implement
the closure data- types : thunks, procedures , and functions.
**

(defi ne (kernel- exec stmt env store)
(dispatch (stmt- type stmt) 'exec stmt env store))

(define (kernel-eval expr env store)
(dispatch (expr- type expr) 'eval expr env store))

(define (exec- call stmt env store)
(let ((proc (kernel- eval (call-stmt- proc stmt) env store)))

(cond ((primitive- proc? proc)
(call- primitive proc store))

((error- object? proc)
(error (unparse-s-expr (error-object-message proc))

(unparse- s - expr (error- object- irritant proc))))
(else

(do- for- each (lambda (stmt)
(kernel- exec stmt (proc- env proc) store))

(proc- body proc))))))
(put!-prop 'call 'exec exec- call)

(define (exec-set stmt env store)
(let ((loc (kernel- eval (set- stmt- loc stmt) env store))

(val (kernel-eval (set- stmt- val stmt) env store)))
(if (error-object? loc)

(error (unparse- s - expr (error- object- message loc))
(unparse- s- expr (error- object- irritant loc))))

(if (error-object? val)
(error (unparse-s- expr (error- object- message val))

(unparse- s - expr (error- object- irritant val))))
(assign! loc val store)))

(put! - prop 'set 'exec exec-set)

- 29-

(define (exec- new stmt env store)
(let ((ids (new- stmt- ids stmt))

(stmts (new- stmt- stmts stmt)))
(let ((new- env (extend- environment ids

(alloc! store
(length ids))

env)))
(do- for- each (lambda (stmt)

(kernel- exec stmt new- env store))
stmts))))

(putt-prop 'new 'exec exec- new)

(define (exec-sequence stmt env store)
(do-for- each (lambda (stmt)

(kernel- exec stmt env store))
(sequence- stmt- stmts stmt)))

(put! - prop 'sequence 'exec exec- sequence)

(define (eval- atom expr env store)
(atom-expr- atom expr))

(define atom- type (gensym 'atom- type))
(put! - prop atom- type 'eval eval- atom)

(define (eval-id expr env store)
(let ((value (lookup- variable- value (id- expr- id expr) env)))

(if (thunk? value)
(kernel- eval (thunk- expr value) (thunk-env value) store)
value)))

(define id- type (gensym 'id- type))
(put!-prop id-type 'eval eval- id)

(define (eval-application expr env store)
(let ((func-expr (application- expr- func expr))

(args (application- expr- args expr)))
(let ((func (kernel- eval func- expr env store)))

(cond ((primitive- func? func)
(apply- primitive func args env store))

((error- object? func)
func)

(else
(kernel- eval (func- body func)

(extend-environment (func- formals func)

store))))))

(mapcar (lambda (arg)
(make- thunk arg

env))
args)

(func-env func))

(define application- type (gensym 'application- type))
(put! - prop application- type 'eval eval- application)

(define (eval-func expr env store)
(make- func (func- expr- ids expr) (func- expr- expr expr) env))

(put! - prop 'func 1eval eval- func)

-30-

(define (eval- proc expr env store)
(make- proc (proc- expr- stmts expr) env))

(put! - prop 'proc 'eval eval- proc)

(define (eval- if expr env store)
(let ((test- expr (if-expr- test expr))

(true- expr (if-expr- true expr))
(false- expr (if- expr- false expr)))

(let ((test (kernel- eval test- expr env store)))
(cond ((error- object? test)

test)
(test
(kernel- eval true- expr env store))

(else
(kernel- eval false- expr env store))))))

(put! - prop 'if 'eval eval- if)

(define (eval- local expr env store)
(let ((stmts (local- expr- stmts expr))

(expr (local- expr- expr expr))
(new-store (copy- store store))
(old- effects- flag effects-allowed?)
(old- randomize- to randomize- to))

(set! effects- allowed? nil)
(do-for- each (lambda (stmt)

(kernel- exec stmt env new- store))
stmts)

(set! randomize- to old- randomize-to)
(set! effects- allowed? old- effects- flag)
(kernel-eval expr env new- store)))

(put! - prop 'local 'eval eval- local)

(define (eval- cont expr env store)
(let ((loc (kernel- eval (cont- expr- loc expr) env store)))

(if (error- object? loc)
loc
(fetch loc store))))

(put! - prop 'cont 'eval eval-cont)

(define (eval-let expr env store)
(let ((ids (mapcar let- pair- id (let- expr- pairs expr)))

(values (mapcar (lambda (expr)
(kernel-eval expr env store))

(mapcar let- pair- expr (let-expr- pairs expr))))
(expr (let- expr- expr expr)))

(kernel-eval expr (extend- environment ids values env) store)))
(put! - prop 'let 'eval eval- let)

- 31-

(define (eval- letrec expr env store)
(let ((ids (mapcar letrec- pair- id (letrec- expr- pairs expr)))

(exprs (mapcar letrec- pair- expr (let- expr- pairs expr))))
(let ((outer- values (mapcar (lambda (expr)

(make- func ids
'((func ,ids

,expr)
. ,(mapcar (lambda (id)

'(,id. ,ids))
ids))

env))
exprs)))

(let ((outer- env (extend- environment ids outer- values env)))
(let ((inner-values (mapcar (lambda (id)

(kernel- eval '(,id. ,ids)
outer- env
store))

ids)))
(let ((inner- env (extend- environment ids

inner-values
outer- env)))

(kernel- eval (letrec-expr- expr expr) inner- env store)))))))
(put! - prop 'letrec 'eval eval- letrec)

(define (dispatch type op. args)
(let ((proc (get-prop type op)))

(if (null? proc)
(error "DISPATCH: operation undefined for type" (list op type))
(apply proc args))))

(define (make-thunk expr env)
'(thunk ,expr ,env))

(define (thunk? x)
(if (atom? x)

nil
(eq? (car x) 'thunk)))

(define thunk- expr cadr)

(define thunk- env caddr)

(define (make- proc body env)
'(compound- proc ,body ,env))

(define (compound- proc? x)
(if (pair? x)

(eq? (car x) 'compound- proc)
nil))

(define (proc- body x)
(if (atom? x)

- 32-

(error "PROC- BODY: non- procedure" x)
(if (eq? (car x) 'compound- proc)

(cadr x)
(error "PROC- BODY: non- procedure" x))))

(defi ne (proc- env x)
(if (atom? x)

(error "PROC- ENV: non- procedure" x)
(if (eq? (car x) 'compound- proc)

(caddr x)
(error "PROC- ENV: non- procedur e" x))))

(define (make- func formals body env)
'(compound- func ,formals ,body ,env))

(define (compound- func? x)
(if (pair? x)

(eq? (car x) 'compound- func)
nil))

(define (func- formals x)
(if (atom? x)

(error "FUNC- FORMALS: non- function" x)
(if (eq? (car x) 'compound- func)

(cadr x)
(error "FUNC- FORMALS: non- function" x))))

(define (func- body x)
(if (atom? x)

(error "FUNC- BODY: non- function" x)
(if (eq? (car x) 'compound- func)

(caddr x)
(error "FUNC- BODY: non- function" x))))

(define (func- env x)
(if (atom? x)

(error "FUNC- ENV: non- function" x)
(if (eq? (car x) 'compound-func)

(cadddr x)
(error "FUNC- ENV: non-function" x))))

(define (do- for- each proc list)
(if (not (null? list))

(sequence (proc (car list))
(do-for-each proc (cdr list)))))

-33-

**
These functions form the interpreter itself: the read- eval- print loop
and the interpreter user- interface commands .
**

(define (interpreter)
(initialize)
(r- e- p))

(define (initialize)
(set! effects- allowed? t)
(set! the- definitions'())
(set! the- globals'())
(set! the- get- cases '((else nil))))

(define (r- e- p) ; the read- eval- print loop
(newline)
(princ "Scheme- ES>")
(process- input (read))
(r- e- p))

(define (process- input form)
(cond ((command? form)

(do- command form))
((stmt? form)
(kernel- exec (unsugar (wrap form))

the- empty- environment
(make- store)))

(else
(kernel- exec (unsugar (wrap '(call print ,form)))

the-empty- environment
(make-store)))))

(define (command? form)
(if (pair? form)

(not (null? (get- prop (car fo rm) 'command)))
nil))

(define (do- command form)
((get- prop (car form) 'command) form))

(define the- definitions '())
(define the-globals '())
(define the-get-cases '((else nil)))

(define (wrap stmt)
'(new ,the- globals

(letrec , (cons '(get (func (tagl tag2) (cond . ,the- get - cases)))
the- definitions)

,stmt)))

(put !-prop 'global
'command
(lambda (form)

(if (atom? (cdr form))

- 34-

(error "Illegal GLOBAL syntax" form)
(if (not (memq (cadr form) the- globals))

(set! the- globals (cons (cadr form) the- globals))))))

(put! - prop 'put
'command
(lambda (form)

(if (atom? (cdddr form))
(error "Illegal PUT syntax" form)
(let ((old- case (member ' (and (eq? tagl ,(cadr form))

(eq? tag2 ,(caddr form)))
the- get- cases)))

(if (null? old- case)
(set! the- get-cases (cons '((and (eq? tagl

, (cadr form))
(eq? tag2

,(caddr form)))
, (cadddr form))

the-get-cases))

(put! - prop

(set- car! (cdr old-case) (cadddr form)))))))

'define
'command
(lambda (form)

(let ((old-def (memq (definition- name form) the-definitions)))
(if (null? old- def)

(set! the- definitions (cons '(,(definition- name
,(definition- expr

the-definitions))
(cdr old-definition) (set- car!
(definition- expr form))))))

(define (definition-name form)
(if (atom? (cdr form))

(error "Illegal DEFINE syntax" form)
(if (atom? (cadr form))

(cadr form)
(caadr form))))

(define (definition-expr form)
(if (atom? (cddr form))

(error "Illegal DEFINE syntax" form)
(if (atom? (cadr form))

(caddr form)
(if (stmt? (caddr form))

'(paramproc ,(cdadr form) • ,(cddr form))
'(func ,(cdadr form) ,(caddr form))))))

form)
form))

(put! - prop 'load
'command
(lambda (form)

-35-

load in from a Scheme variable

(do- for - each process- input (eval (cadr form) (current- env)))))

(define (current- env)
(frame- parent (frame- parent (make- envir onment))))

**
These functions unsugar syntactic sugars .
**

(define (unsugar form)
(if (stmt? form)

(dispatch (stmt- type form) 'unsugar- stmt form)
(dispatch (expr-type form) 'unsugar- expr form)))

(put!-prop 'call
'unsugar-stmt
(lambda (form)

(let ((args (call- stmt- args form)))
(if (null? args)

'(call ,(unsugar (call-stmt-proc form)))
' (call (,(unsugar (call-stmt-proc form))

. ,(mapcar unsugar args)))))))

(put! - prop 'new
'unsugar-stmt
(lambda (form)

'(new ,(new-stmt-ids form)
. ,(mapcar unsugar

(new- stmt- stmts form)))))

(put! - prop 'set
'unsugar-stmt
(lambda (form)

'(set ,(unsugar (set-stmt-loc form))
,(unsugar (set-stmt-val form)))))

(put!-prop 'sequence
'unsugar-stmt
(lambda (for m)

' (sequence ,(mapcar unsugar (sequence-stmt- stmts form)))))

(put!-prop 'if
'unsugar- stmt
(lambda (form)

'(call (if ,(unsugar (if-expr-test form))
(proc ,(unsugar (if-expr-true form)))
(proc ,(unsugar (if-expr-false form)))))))

(put! - prop 'let
'unsugar- stmt
(lambda (form)

- 36-

' (call (let ,(unsugar- let-pairs (let- expr- pairs form))
(proc . ,(mapcar unsugar (let- stmt- stmts form)))))))

(define (unsugar- let- pair s pair s)
(if (null? pairs)

I()
' ((,(let- pair- id (car pairs))

,(unsugar (let - pair- expr (car pairs))))
• , (unsugar- let-pa i rs (cdr pairs)))))

(put! - pr op 'letrec
'unsugar- stmt
(lambda (form)

' (call (letrec ,(unsugar- letrec- pairs
(letrec- expr- pai rs form))

(proc . ,(mapcar unsugar
(letrec- stmt-stmts form)))))))

(define (unsugar- letrec- pairs pairs)
(if (null? pairs)

I()

' ((,(letrec- pair- id (car pairs))
,(unsugar (letrec- pair- expr (car pairs))))

. , (unsugar- letrec- pair s (cdr pairs)))))

(put !-prop 'cond
'unsugar- stmt
(lambda (form)

' (call ,(ifize- cond- stmt- clauses (cond-expr- clauses form)))))

(define (ifize- cond- stmt- clauses clauses)
(if (null? clauses)

'(proc)
(if (eq? (cond- clause- test (car clauses)) 'else)

' (proc. ,(mapcar unsugar (cond- clause-stmts (car clauses))))
' (if ,(unsugar (cond- clause- t est (car clauses)))

(proc • , (mapcar unsugar (cond- clause- stmts (car clauses))))
, (ifize- cond- stmt- clauses (cdr clauses))))))

(put! - prop atom- type
'unsugar- expr
(lambda (form)

(if (quoted? form)
' (quote , (parse- s- expr (quoted- expr- body form)))
form)))

(put! - prop id-type 'unsugar- expr (lambda (form) form))

\put! - prop application-type
'unsugar- expr
(lambda (form)

- 37-

'(,(unsugar (application- expr- func form))
• ,(mapcar unsugar (application- expr- args form)))))

(put!-prop 'func
'unsugar- expr
(lambda (form)

'(func ,(func- expr- ids form)
,(unsugar (func- expr- expr form)))))

(put!-prop 'proc
'unsugar- expr
(lambda (form)

'(proc . ,(mapcar unsugar (proc- expr- stmts form)))))

(put! - prop 'paramproc
'unsugar- expr
(lambda (form)

(let ((formals (paramproc- expr- ids form)))
(if (null? formals)

'(proc. ,(mapcar unsugar (paramproc- expr-stmts form)))
' (func , formals

(proc
. ,(mapcar unsugar

(paramproc- expr- stmts form))))))))

(put!-prop 'if
'unsugar- expr
(lambda (form)

' (if ,(unsugar (if-expr- test form))
,(unsugar (if- expr- true form))
,(unsugar (if- expr- false form)))))

(put! - prop 'local
'unsugar- expr
(lambda (form)

'(l ocal. ,(mapcar unsugar
(local- expr- stmts-and-expr form)))))

(put! - prop 'cont
'unsugar- expr
(lambda (form)

'(cont ,(unsugar (cont- expr-loc form)))))

(put!-prop ' l et
'unsugar- expr
(lambda (form)

' (let ,(unsugar- l et- pairs (let- expr- pairs form))
,(unsugar (let- expr-expr form)))))

- 38-

(put!-prop 'letrec
'unsugar- expr
(lambda (form)

'(letrec ,(unsugar- letrec- pairs (letrec- expr- pairs form))
,(unsugar (letrec- expr- expr form)))))

(put! - prop 'cond
'unsugar- expr
(lambda (form)

(ifize-cond-expr- clauses (cond- expr- clauses form))))

(define (ifize- cond- expr- clauses clauses)
(if (null? clauses)

nil
(if (eq? (cond- clause- test (car clauses)) 'else)

(unsugar (cond- clause- expr (car clauses)))
' (if ,(unsugar (cond- clause- test (car clauses)))

, (unsugar (cond- clause- expr (car clauses)))
,(ifize-cond-expr- clauses (cdr clauses))))))

**
These functions implement environments and stores . Stores are trivially
implemented as environments (with one frame per local), and environments
are copied from Abelson and Sussman , Structure and Interpretation of
Computer Programs, pp. 306- 309.
**

(define (alloc! store n) ; extend store by n locations and return them
(if(=n0)

I()

(let ((new- loc (gensym 'loc)))
(define- variabl e! new- loc '*unassigned* store)
(cons new- loc (alloc! store (- 1+ n))))))

(define (copy- store store)
(extend- environment '() '() store))

(define (fetch loc store)
(lookup- variable- value loc store))

(define (assign! loc val store)
(lookup- variable- value loc store)
(define- variable! loc val store))

(define (make-store)

signals error if non- location

(extend- environment'() '() the- empty- environment))

(define (lookup- variable- value var env)
(let ((b (binding- in- env var env)))

(if (found- binding? b)
(binding- value b)
(error "Unbound variable or non- location" var))))

(define (binding-in-env var env)
(if (no- more- frames? env)

no- binding

- 39-

(let ((b (binding- in- frame var (first- frame env))))
(if (found- binding? b)

b
(binding- in- env var (rest- frames env))))))

(define (extend- environment variables values base- env)
(adjoin- frame (make-frame variables values) base- env))

(define (set- variable- value! var val env)
(let ((b (binding- in- env var env)))

(if (found- binding? b)
(set- binding- value! b val)
(error "Unbound variable" var))))

(define (define-variable! var val env)
(let ((b (binding-in- frame var (first- frame env))))

(if (found- binding? b)
(set- binding-value! b val)
(set- first- frame! env

(adjoin- binding (make- binding var val)
(first- frame env))))))

(define (first-frame env) (car env))

(define (rest- frames env) (cdr env))

(define (no-more- frames? env) (null? env))

(define (adjoin- frame frame env) (cons frame env))

(define (set- first- frame! env new- frame)
(set-car! env new-frame))

(define (make- frame variables values)
(cond ((and (null? variables) (null? values)) '())

((null? variables)
(error "Too many values supplied" values))

((null? values)
(error "Too few values supplied" variables))

(else
(cons (make- binding (car variables) (car values))

(make- frame (cdr variables) (cdr values))))))

(define (adjoin-binding binding frame)
(cons binding frame))

(define (assq key bindings)
(cond ((null? bindings) no- binding)

((eq? key (binding- variable (car bindings)))
(car bindings))

(else (assq key (cdr bindi ngs)))))

(define (binding- in- frame var frame)
(assq var frame))

(define (found- binding? b)
(not (eq? b no- binding)))

(define no- binding ni l)

(define (make- binding variable value)
(cons variable value))

(define (binding- variable bi nding)
(car binding))

(define (binding- value binding)
(cdr binding))

- 40-

(define (set- binding- value! binding value)
(set-cdr! binding value))

(define the- empty- environment '())

**
These functions define the syntax of Scheme- ES by provi ding selectors for
the various statement and expression types , as well as tests for
determining whether a form is a statement or an expression, and of what
type . Additionally , these functions are responsible for providing error
messages in case of illegal syntax .
**

(define (stmt- type stmt)
(if (atom? stmt)

(error "Statement syntax error" stmt)
(if (null? (get- prop (car stmt) 'unsugar-stmt))

(error "Statement syntax error" stmt)
(car stmt))))

legal keyword?

(define (expr- type expr)
(if (pair? expr)

(if (eq? (car expr) 'quote)
atom-type
(if (atom? (car expr))

-41-

(if (not (null? (get- prop (car expr)
'unsugar- expr)))

(car expr)
application- type)

application- type))
(if (symbol? expr)

(if (or (eq? expr 'nil)
(eq? expr 't)
(primitive- func? expr)
(primitive- proc? expr)
(string? expr))

atom- type
id- type)

atom- type)))

keyword?

(define (string? x) horrible kludgey workaround due to horrible kludgey
implementation of strings in Scheme- in-Maclisp

(if (symbol? x)
(= (ascii (car (lisp-eval '(explode ' , x)))) 34)
nil))

(define (call-stmt- proc stmt)
(if (atom? (cdr stmt))

(error "CALL without procedure" stmt)
(cadr stmt)))

(define (call- stmt- args stmt)
(if (atom? (cdr stmt))

(error "CALL without procedure" stmt)
(cddr stmt)))

(define (set- stmt- loc stmt)
(if (atom? (cdr stmt))

(error "SET without location" stmt)
(cadr stmt)))

(define (set- stmt- val stmt)
(if (atom? (cddr stmt))

(error "SET without value" stmt)
(caddr stmt)))

(define (new- stmt- ids stmt)
(if (atom? (cdr stmt))

(error "NEW without identifiers" stmt)
(cadr stmt)))

(define (new- stmt-stmts stmt)
(if (atom? (cdr stmt))

- 42-

(error "NEW without identifiers" stmt)
(cddr stmt)))

(define sequence- stmt- stmts cdr)

(define (atom- expr- atom expr)
(if (quoted? expr)

(quoted-expr- body expr)
expr))

(define (quoted? expr)
(if (pair? expr)

(eq? (car expr) 'quote)
nil))

(define (quoted- expr- body expr)
(if (atom? (cdr expr))

(error "QUOTE without form" expr)
(cadr expr)))

(define (id- expr- id expr)
expr)

(define application- expr- func car)

(define application- expr- args cdr)

(define (func- expr- ids expr)
(if (atom? (cdr expr))

(error "FUNC without identifiers" expr)
(cadr expr)))

(define (func- expr- expr expr)
(if (atom? (cddr expr))

(error " FUNC without body" expr)
(caddr expr)))

(define proc- expr- stmts cdr)

(define (if- expr-test expr)
(if (atom? (cdr expr))

(error "IF without test" expr)
(cadr expr)))

(define (if-expr-true expr)
(if (atom? (cddr expr))

(error "IF without true-cl ause" expr)
(caddr expr)))

(define (if- expr- false expr)
(if (atom? (cdddr expr))

- 43-

(error "IF without false- clause" expr)
(cadddr expr)))

(define (local- expr- stmts expr)
(all- but- last (cdr expr)))

(define (all- but- last list)
(if (null? (cdr list))

I()
(cons (car list) (all- but- last (cdr list)))))

(define (local- expr- expr expr)
(if (atom? (cdr expr))

(error "LOCAL without expression" expr)
(car (last expr))))

(define local- expr- stmts- and- expr cdr)

(define (cont- expr- loc expr)
(if (atom? (cdr expr))

(error "CONT without location" expr)
(cadr expr)))

(define (let- expr- pairs expr)
(if (atom? (cdr expr))

(error "LET without bindings" expr)
(if (list? (cadr expr))

(cadr expr)
(error "LET- bindings not a list" expr))))

(define (let- expr-expr expr)
(if (atom? (cddr expr))

(error "LET without body" expr)
(caddr expr)))

(define (let-stmt-stmts stmt)
(if (atom? (cdr stmt))

(error "LET syntax error" stmt)
(cddr stmt)))

(define (let- pair-id pair)
(if (atom? pair)

(error "LET- binding syntax error" pair)
(car pair)))

(define (let- pair- expr pair)
(if (atom? (cdr pair))

(error "LET-binding syntax error" pair)
(cadr pair)))

(define letrec-expr- pairs let- expr-pairs)
(define letrec- expr- expr let- expr- expr)

- 44-

(define letrec- stmt- stmts let- stmt- stmts)
(define letrec- pair- id let- pair- id)
(define letrec- pair- expr let- pair- expr)

(define (paramproc- expr- ids expr)
(if (atom? (cdr expr))

(error "PARAMPROC without formals" expr)
(cadr expr)))

(define (paramproc- expr- stmts expr)
(if (atom? (cdr expr))

(error "PARAMPROC without formals" expr)
(cddr expr)))

(define cond- expr- clauses cdr)

(define (cond- clause- test clause)
(if (atom? clause)

(error "Illegal COND clause syntax . " clause)
(car clause)))

(define (cond- clause- expr clause)
(if (atom? clause)

(error "Illegal COND clause syntax ." clause)
(if (atom? (cdr clause))

(error "Illegal COND clause syntax . " clause)
(cadr clause))))

(define (cond-clause- stmts clause)
(if (atom? clause)

(error "Illegal COND clause syntax . " clause)
(if (atom? (cdr clause))

(error "Illegal COND clause syntax . " clause)
(cdr clause))))

(define (stmt? form)
(if (atom? form)

nil
(if (pair? (car form))

nil
(if (not (null? (get- prop (car form) 'exec)))

t
(polymorphically-stmt? form)))))

(define (polymorphically- stmt? form)
(let ((test (get-prop (car form) 'polymorphically-stmt?)))

(if test
(test form)
nil)))

(put! - prop 'if
'polymorphically- stmt?
(lambda (form)

(stmt? (if- expr- true form))))

(put! - prop 'let
'polymorphically- stmt?
(lambda (form)

- 45-

(stmt? (let-expr- expr form))))

(put! - prop ' letrec
'polymorphically- stmt?
(lambda (form)

(stmt? (letrec- expr- expr form))))

(put! - prop 'cond
'polymorphically- stmt?
(lambda (form)

(let ((clauses (cond- expr- clauses form)))
(if (null? clauses)

nil
(stmt? (cond-clause- expr (car clauses)))))))

**
This section of the code is a long , boring definition of all the
Scheme- ES primitives. They are all identical to their Scheme cousins
except MUTABLE- CONS, EQ?, ERROR , and MAPCAN. The handling of MUTABLE
CONS, EQ? , and ERROR is described in the text of the paper; MAPCAN uses
APPEND instead of CONC! . The only additional primitives are CALLABLE? ,
which is to procedures as APPLICABLE? is to functions, SET- PRINT- DEPTH
and SET- PRINT- BREADTH, which replace the corresponding globals, and
STRING?, which does the obvious thing . (In Scheme, strings are symbols,
which caused this interpreter writer some pain.)
**

(define effects-allowed? t) ; Not inside a LOCAL?

(define (primitive- proc? x)
(if (symbol? x)

(not (null? (get- prop x 'primitive-proc)))
nil))

(define (primitive- func? x)
(if (symbol? x)

(not (null? (get-prop x 'primitive- func)))
nil))

(define (call- primitive proc store)
((get- prop proc 'primitive- proc) store))

(define (apply- primitive func args env store)
((get-prop func 'primitive- func) args env store))

- 46-

(define (import- func Scheme- ES- name func)
(put! - prop Scheme- ES- name

'primitive- func
(lambda (args env store)

(let ((args (mapcar (lambda (arg)
(kernel- eval arg env store))

args)))
(let ((err- objs (filter error- object? args)))

(if (null? err- objs)
(apply func args)
(car err- objs))))))) arbitrarily pick first one

(define (filter predicate list)
(cond ((null? list)

'())
((predicate (car list))

(cons (car list) (filter predicate (cdr list))))
(else
(filter predicate (cdr list)))))

(define (import- proc Scheme- ES- name proc)
(put! - prop Scheme- ES- name

'primitive- proc
(lambda (store)

(proc))))

(define (scheme-ES- and
(if (null? args)

t

args) in maclisp- scheme AND is a special form

(and (car args) (apply scheme- ES- and (cdr args)))))

(define (scheme-ES-or
(if (null? args)

nil

• args) ; in maclisp-scheme OR is a special form

(or (car args) (apply scheme- ES- or (cdr args)))))

(import- func 'and scheme- ES- and)
(import-func 'or scheme- ES- or)
(import- func 'not not)
(import- func 'nil? nil?)
(import- func '+ +)
(import-func 'l+ l+)
(import- func ' - -)
(import-func ' - 1+ - 1+)
(import-func '* *)
(import- func '/ /)
(import- func 'quotient quotient)
(import- func 'mod mod)
(import- func 'remainder remainder)
(import- func 'integer-divide integer-divide)
(import- func 'gcd gcd)
(import- func 'abs abs)
(import- func 'floor floor)
(import- func 'ceiling ceiling)

(import- func 'truncate truncate)
(import- func 'round round)
(import- func ' max max)
(import-func 'min min)
(import- func 'sin sin)
(import- func 'asin asin)
(import-func ' cos cos)
(import- func 'acos acos)
(import- func 'tan tan)
(import- func 'atan atan)
(import- func 'log log)
(import- func 'exp exp)
(import- func 'expt expt)
(import- func 'sqrt sqrt)
(import- func 'number? number?)
(import-func 'integer? integer?)
(import- func 'odd? odd?)
(import- func 'even? even?)
(import- func 'zero? zero?)
(import- func 'negative? negative?)
(import- func 'positive? positive?)
(import- func '= =)
(import-func ' > >)
(import- func '>= >=)
(import-func '< <)
(import-func ' <= <=)
(import- func 'null? null?)
(import- func 'alphaless? alphaless?)
(import- proc 'newline (lambda()

- 47-

(if effects- allowed?
(newline)
(error "Can't do I/0 inside a LOCAL"

' newline))))
(import- func 'char char)
(import- func 'ascii ascii)
(import-func 'peekch peekch)
(import- func 'tyipeek tyipeek)
(import- func ' %in (lambda() last- read-in))
(import-func ' %out (lambda() last- printed- out))
(import- func 'string? string?)

(define
(cond

(Scheme- ES-eq? x y)
((or (compound- func? x)

(compound- func? y)
(compound- proc? x)
(compound- proc? y))

- 48-

(error "Can't test equality of compound procedures and functions"

((eq?
t)

((and
(= X

((and
(and

(list (unparse- s - expr x) (unparse- s - expr y))))
X y)

(number? x) (number? y))
y))
(immutable- cons? x) (immut able- cons? y))
(Scheme- ES- eq? (cons- cell- car x) (cons- cell- car
(Scheme- ES- eq? (cons- cell-cdr x) (cons- cell- cdr

(else
nil)))

y))
y))))

(import- func ' eq? Scheme- ES- eq?)

(import- func 'random (lambda (first. rest)
(let ((proc (gensym 'random))

(result (if (null? rest)
first
(car rest)))

(args (if (null? rest)
I()

(list first))))
(put! - prop proc

'pri mitive-proc
(lambda (store)

proc)))

(import- func 'randomize (lambda (q)

(randomize randomize- to)
(assign! result

(let ((r (apply random
args)))

(set! randomize-tor)
r)

store)))

(let ((proc (gensym 'randomize)))
(import- proc proc (lambda()

(set! randomize- to q)))
proc)))

(define randomize-to nil) ; exists for sake of LOCAL

(import- f unc 'extend? (lambda (obj)
(or (primitive-func? obj)

(compound- func? obj)
(primitive- proc? obj)
(compound- proc? obj))))

- 49-

(import- func 'applicable? (lambda (obj)
(or (primitive- func? obj)

(compound- func? obj))))

(import- func 'callable? (lambda (obj)
(or (primitive- proc? obj)

(compound- proc? obj))))

(import- func 'read (lambda (result)
(let ((proc (gensym 'read)))

(put! - prop proc
'primitive- proc
(lambda (store)

proc)))

(if- (not effects- allowed?)
(error

"Can't do I/O inside a LOCAL"
'read)

(assign result
(let ((val (parse- s - expr

(read))))
(set! last- read- in val)
val)

store))))

(define (parse-s-expr s - expr)
(if (pair? s - expr)

(immutable- cons (parse- s- expr (car s-expr))
(parse- s - expr (cdr s- expr)))

s- expr))

(define last- read-in nil)

(import-func 'print (lambda (val)
(let ((proc (gensym 'print)))

(import- proc proc
(lambda()

proc)))

(if (not effects- allowed?)
(error

"Can't do I/O inside a LOCAL"
'print)

(sequence
(set! l ast- printed- out val)
(print (unparse-s-expr

val))))))

- 50-

(define (unparse- s - expr x)
(cond ((cons- cell? x)

(cons (unparse- s - expr (cons- cell- car x))
(unparse- s- expr (cons- cell - cdr x))))

((compound- func? x)
' (<COMPOUND- FUNCTION> , (func- formals x) , (func- body x)))

((compound- proc? x)
' (<COMPOUND- PROCEDURE> . , (proc- body x)))

(else
x)))

(define last- printed- out nil)

(impor t - func 'princ (lambda (val)
(let ((pr oc (gensym 'princ)))

(import- proc proc

proc)))

(import- func 'tyi (lambda (result)

(lambda ()
(if (not effects- allowed?)

(error
"Can ' t do I / 0 i nside a LOCAL"
' princ)

(sequence
(set! last- print ed- out val)
(princ (unpar se- s - expr

va l))))))

(let ((proc (gensym ' tyi)))
(put! - prop proc

' primit ive- proc
(lambda (store)

proc)))

(import-func 'tyo (lambda (n)

(if (not effects- allowed?)
(error

"Can ' t do I/0 inside a LOCAL"
' tyi)

(assign! result
(tyi)
store))))

(let ((proc (gensym ' tyo)))
(import- proc proc

(lambda()

proc)))

(if (not effects- allowed?)
(error

"Can't do I/0 i nside a LOCAL"
' tyo)

(tyo n))))

- 51-

(import- func 'readch (lambda (result)
(let ((proc (gensym ' readch)))

(put! - prop proc
' primitive- proc
(lambda (store)

(if (not effects- allowed?)
(error

"Can't do I/0 i nside a LOCAL"
' readch)

(assign! result
(readch)
store))))

proc)))

(import - func ' set- print- breadt h (lambda (n)
(let ((proc (gensym

'set- print- breadth)))
(impor t - proc proc

proc)))

(import- func ' set- print- depth (lambda (n)

(lambda()
(set ! *print- breadth*

n)))

(let ((proc (gensym ' set - print- depth)))
(import- proc proc

(define (immutable- cons x y)
' (immutable- cons , x , y))

(define (immutable-cons? x)
(if (pair? x)

proc)))

(eq? (car x) 'immutable- cons)
nil))

(define cons- cell-car cadr)

(define cons- cell- cdr caddr)

(define (cons- cell? x)
(or (immutable- cons? x)

(mutable-cons? x)))

(import- func ' cons immut able- cons)

(define (Scheme- ES- cons* x y . rest)
(if (null? rest)

(immutable- cons x y)

(lambda()
(set! *print- depth* n)))

(immutable- cons x (apply Scheme- ES- cons* (cons y r est)))))

(import- func ' cons* Scheme- ES- cons*)

(define (Scheme- ES- list . args)
(if (null? args)

I()

- 52-

(immutable- cons (car args) (apply Scheme- ES- cons (cdr args)))))

(import- func 'list Scheme- ES- list)

(import- func 'car cons- cell- car)
(import- func 'cdr cons-cell- cdr)
(import- func 'caar (lambda (x) (caar (unparse- s - expr x))))
(import- func 'cadr (lambda (x) (cadr (unparse- s- expr x))))
(import- func 'cdar (lambda (x) (cdar (unparse- s - expr x))))
(import- func ' cddr (lambda (x) (cddr (unparse- s - expr x))))
(import- func 'caaar (lambda (x) (caaar (unparse- s - expr x))))
(import-func ' caadr (lambda (x) (caadr (unparse- s - expr x))))
(import- func 'cadar (lambda (x) (cadar (unparse- s - expr x))))
(import- func 'caddr (lambda (x) (caddr (unparse- s - expr x))))
(import- func 'cdaar (lambda (x) (cdaar (unparse- s - expr x))))
(import- func 'cdadr (lambda (x) (cdadr (unparse- s - expr x))))
(import- func 'cddar (lambda (x) (cddar (unparse- s - expr x))))
(import- func 'cdddr (lambda (x) (cdddr (unparse-s- expr x))))
(import- func 'caaaar (lambda (x) (caaaar (unparse- s- expr x))))
(import- func 'caaadr (lambda (x) (caaadr (unparse- s - expr x))))
(import- func 'caadar (lambda (x) (caadar (unparse- s - expr x))))
(import- func 'caaddr (lambda (x) (caaddr (unparse- s - expr x))))
(import- func 'cadaar (lambda (x) (cadaar (unparse- s - expr x))))
(import- func 'cadadr (lambda (x) (cadadr (unparse-s- expr x))))
(import- func 'caddar (lambda (x) (caddar (unparse- s-expr x))))
(import- func 'cadddr (lambda (x) (cadddr (unparse-s- expr x))))
(import- func 'cdaaar (lambda (x) (cdaaar (unparse-s-expr x))))
(import- func 'cdaadr (lambda (x) (cdaadr (unparse- s-expr x))))
(import- func 'cdadar (lambda (x) (cdadar (unparse-s- expr x))))
(import- func 'cdaddr (lambda (x) (cdaddr (unparse-s-expr x))))
(import- func 'cddaar (lambda (x) (cddaar (unparse- s-expr x))))
(import-func 'cddadr (lambda (x) (cddadr (unparse- s - expr x))))
(import- func 'cdddar (lambda (x) (cdddar (unparse- s - expr x))))
(import- func 'cddddr (lambda (x) (cddddr (unparse- s - expr x))))

(define (mutable- cons x y)
'(mutable- cons ,x ,y))

(define (mutable- cons? x)
(if (pair? x)

(eq? (car x) 'mutable- cons)
nil))

(define (Scheme- ES- set- car! pair newcar)
(if (mutable- cons? pair)

(set! - car (cdr pair) newcar)
(error "can't set-car!" pair)))

- 53-

(define (Scheme- ES- set- cdr! pair newcdr)
(if (mutable- cons? pair)

(set! - car (cddr pair) newcdr)
(error "can't set- cdr!" pair)))

(import- func 'mutable- cons (lambda (x y result)
(let ((proc (gensym 'mutable- cons)))

(put! - prop proc

proc)))

'primitive- proc
(lambda (store)

(assign! result
(mutable- cons x y)
store)))

(import- func 'set- car! (lambda (pair newcar)
(let ((proc (gensym 'set- car!)))

(import- proc proc

proc)))

(lambda()
(Scheme- ES- set- car! pair

newcar)))

(import-func 'set- cdr! (lambda (pair newcdr)
(let ((proc (gensym 'set- cdr!)))

(import-proc proc

proc)))

(lambda ()
(Scheme- ES- set- cdr! pair

newcdr)))

(import- func 'atom? (lambda (x) (not (cons- cell? x))))

(import- func 'symbol? (lambda (x)
(and (symbol? x)

(not (string? x))
(not (primitive-proc? x))
(not (primitive- func? x)))))

(import- func 'pair? cons- cell?)

(import- func 'list? (lambda (x) (or (null? x) (cons-cell? x))))

(define (Scheme- ES-equal? x y)
(cond ((Scheme- ES- eq? x y)

t)
((and (cons- cell? x) (cons- cell? y))
(and (Scheme- ES- eq? (cons- cell- car x) (cons- cell-car y))

(Scheme- ES-equal? (cons- cell- cdr x) (cons- cell- cdr y))))
(else
nil)))

(import- func 'equal? Scheme- ES- equal?)

(define (Scheme- ES- nthcdr n 1)
(if(= n O)

1

- 54-

(Scheme- ES- nthcdr (- 1+ n) (cons- cell- cdr 1))))

(import- func ' nthcdr Scheme- ES- nthcdr)

(i mpor t - func ' nth (lambda (n 1) (cons- cell- car (Scheme- ES- nthcdr n 1))))

(define (Scheme- ES- last 1)
(if (null? (cons- cell- cdr 1))

1
(Scheme- ES- l ast (cons- cell- cdr 1))))

(import- func ' last Scheme- ES- last)

(define (Scheme- ES- length 1)
(if (null? 1)

0
(l+ (Scheme- ES- length (cons- cell- cdr 1)))))

(import- f unc ' length Scheme- ES- length)

(define (Scheme- ES- append 11 12)
(if (null? 11)

12
(immutable-cons (cons-cell- car 11)

(Scheme- ES- append (cons-cell-cdr 11) 12))))

(import- func ' append Scheme- ES-append)

(define (Scheme-ES-reverse 1)
(define (reverse- and- append 11 12)

(if (null? 11)
12
(reverse- and- append (cons- cell- cdr 11)

(immutable- cons (cons- cell- car 11) 12))))
(reverse-and-append 1 ' ()))

(i mport-func 'reverse Scheme-ES- reverse)

(import- func ' cone!
(lambda (11 12)

(let ((proc (gensym ' cone!)))
(import-proc proc

(lambda()

proc)))

(Scheme-ES- set-cdr! (Scheme-ES- last 11)
12)))

- 55-

(define (Scheme-ES- mapcar f 1 env store)
(cond ((error- object? f)

f)
((error- object? 1)
1)

((null? 1)
' ())

(else
(immutable- cons (kernel- eval ' (f (car 1))

(extend- environment ' (f 1)
'(, f ,1)
I ())

store)
(Scheme- ES- mapcar f

(put! - prop 'mapcar
'primitive- func
(lambda (args env store)

(cons- cell- cdr 1)
env
store)))))

(Scheme- ES- mapcar (kernel- eval (car args) env store)
(kernel- eval (cadr args) env store)
env
store)))

(defi ne (Scheme- ES- mapcan f 1 env store)
(cond ((error- object? f)

f)
((error- object? 1)
1)

((null? 1)
I())

(else
(Scheme- ES- append (kernel- eval ' (f (car 1))

(extend- environment ' (f 1)
' (,f , 1)
' ())

store)
(Scheme- ES- mapcan f

(put! - prop ' mapcan
'primitive- func
(lambda (args env store)

(cons- cell- cdr 1)
env
store)))))

(Scheme- ES- mapcan (kernel- eval (car args) env store)
(kernel- eval (cadr args) env store)
env
store)))

(define (Scheme- ES- memq obj list)
(cond ((null? list)

nil)

- 56-

((Scheme- ES- eq? obj (cons- cell- car list))
list)

(else
(Scheme- ES- memq obj (cons- cell- cdr list)))))

(import- func 'memq Scheme- ES- memq)

(define (Scheme- ES- member obj list)
(cond ((null? list)

nil)
((Scheme- ES- equal? obj (cons- cell- car list))
list)

(else
(Scheme- ES- member obj (cons- cell- cdr list)))))

(import- func 'member Scheme- ES- member)

(define (Scheme- ES- assq obj alist)
(cond ((null? alist)

nil)
((Scheme-ES- eq? obj (cons- cell- car (cons- cell- car alist)))
(cons- cell- car alist))

(else
(Scheme-ES- assq obj (cons- cell- cdr alist)))))

(import- func 'assq Scheme-ES-assq)

(define (Scheme- ES- assoc obj alist)
(cond ((null? alist)

nil)
((Scheme- ES- equal? obj (cons- cell- car (cons- cell- car alist)))
(cons-cell-car alist))

(else
(Scheme- ES- assoc obj (cons- cell- cdr alist)))))

(import- func 'assoc Scheme- ES- assoc)

(define (make-error- object message irritant)
'(error-object ,message ,irritant))

(define (error- object? x)
(if (pair? x)

(eq? (car x) 'error- object)
nil))

(define error-object- message cadr)

(define error- object- irritant caddr)

(import-func 'error make- error- object)

- 57-

Appendix B: Composing Mutable- Object Constructors: Constraint- Propagation

The section on composing mutable- data- structure constructors uses

mutable cons- cells for its example , but it was inspired by a more complicated

example from Abelson and Sussman . After presenting an object- oriented

constraint- propagation system21 , they pose Exercise 3 . 3722 , which is a typical

example of the composition problem explained in the text (with message- passing

objects for the mutable data- structures) . The goal is to be able to avoid the

step by step computation and explicit allocation of temporaries of CENTIGRADE

FAHRENHEIT- CONVERTER below, and instead write the converter functionally , as

in C- F- CONVERTER below. In addition to these t wo procedures, the solution by

abstraction is shown below, and also a example usage with its output .

(define (centigrade- fahrenheit- converter c f) 23

(new (u v w x y)
(call make- connector u)
(call make- connector v)
(call make- connector w)
(call make- connector x)
(call make- connector y)
(call multiplier c (cont w) (cont u))
(call multiplier (cont v) (cont x) (cont u))
(call adder (cont v) (cont y) f)
(call constant 9 (cont w))
(call constant 5 (cont x))
(call constant 32 (cont y))))

(define (c-f-converter c) 24

(c+ (c* (c/ (cvalue 9) (cvalue 5))
c)

(cvalue 32)))

21
and Sussman, 230- 242 . 22Abelson pp .

23Abelson and Sussman, p. 241 .

24Abelson and Sussman , pp . 232- 233 .
Abelson and Sussman, p . 241.

- 58-

(define (c+ xconstructor yconstructor)
(paramproc (sum)

(new (x y)
(call xconstructor x)
(call yconstructor y)
(call make- connector sum)
(call adder (cont x) (cont y) (cont sum)))))

(define (c* xconstructor yconstructor)
(par amproc (product)

(new (x y)
(call xconstructor x)
(call yconstructor y)
(call make- connector product)
(call multiplier (cont x) (cont y) (cont product)))))

(define (c- xconstructor yconstructor)
(paramproc (difference)

(new (x y)
(call xconstructor x)
(call yconstructor y)
(call make- connector difference)
(call adder (cont difference) (cont y) (cont x)))))

(define (c/ xconstructor yconstructor)
(paramproc (quot)

(new (x y)
(call xconstructor x)
(call yconstructor y)
(call make- connector quot)
(call multiplier (cont quot) (cont y) (cont x)))))

(define (cvalue value)
(paramproc (result)

(call make- connector result)
(call constant value (cont result))))

(define (cconnector connector)
(paramproc (result)

(set result connector)))

(define (cset loc constructor)
(call constructor loc))

- 59-

(new (CF)
(call make- connector C)
(call cset F (c- f - converter (cconnector (cont C))))
(call probe "centigrade temp" (cont C))
(call probe "Fahrenheit temp" (cont F))
(call set-value! (cont C) 25 'user)
(call forget - value! (cont C) 'user)
(call set-value! (cont F) 212 'user))

Probe: centigrade temp = 25
Probe : Fahrenheit temp = 77
Probe : centigrade temp = ?
Probe : Fahrenheit temp = ?
Probe : Fahrenheit temp = 212
Probe : centigrade temp = 100

