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Abstract

Glassy polymers constitute a large class of engineering solids. In order to success-
fully analyze the warm (near the glass transition temperature) mechanical processes
by which many glassy polymeric products are manufactured, as well as to ascertain
the resulting products’ response to service life loading conditions, a constitutive law
that properly accounts for the large, inelastic deformation behavior of these materials
is required. Such behavior is known to exhibit rate, temperature, and pressure depen-
dent yield, as well as true strain softening and hardening after yield. This thesis work
develops a constitutive model based on the macromolecular structure of these materials
and the micromechanism of plastic flow which encompasses the above dependencies.
The model is numerically integrated and incorporated into an existing finite element
code in order to enable the analysis of real boundary value problems involving inho-
mogeneous deformation. The model is then used in the numerical simulation of a real
forming process - the hydrostatic extrusion of polymethylmethacrylate. Manufactured
polymeric products generally contain residual texture, i.e. preferred directions of ori-

entation. The effect of such texture on subsequent inelastic behavior is also examined.
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PREFACE

Industrial and commercial products manufactured from glassy polymers are done
so primarily by warm mechanical processes such as extrusion, drawing, blow moulding,
and calendering. These processes usually produce a textured solid. The design of the
actual process neces .ry to create a particular product can be an expensive trial and
error procedure. This is because the material behavior of glassy polymers at large
deformations is not yet well characterized or understood. It is therefore of interest
to quantify the large inelastic deformation behavior of these materials in order to
better predict the development of texture and residuval stresses under various processing
conditions as well as to ascertain the effect of this texture on the inelastic behavior of
the resulting product during its typical operating conditions.

The following chapters and appendices of this thesis will discuss the development,
numerical implementation, and practical application of a constitutive model describing
the large inelastic deformation of glassy polymers. In Chapter One, the development
of a physically based constitutive model which describes the large inelastic deformation
of initially isotropic glassy polymers is detailed. This model properly accounts for such
characteristics as the rate, pressure, and temperature dependence of yield, as well as the
occurrence of true strain softening and hardening after yield. Chapter Two will give an
example of a standard industrial polymer process, hydrostatic extrusion, analyzed with
this model. The results of this analysis are compared with documented experimental
results. Chapter Three will discuss the incorporation of the effect of pre-orientation
into the model. An analysis of a preoriented solid is then conducted where the effect
of orientation on the initiation of such localization phenomena as shear banding is

examined. There will also be three appendices: the first will discuss the numerical



implementation of the model into a finite element code; the second will discuss the
finite strain kinematics of this model and its application to the single crystal problem:;
the third will be a simple heat transfer analysis determining the exit temperature proile
of the extrudate of Chapter Two. Finally, the concluding chapter will summarize this

work as well as discuss its value and suggest future avenues of related research.



Chapter 1
CONSTITUTIVE MODEL

1.1 Background

The development of the constitutive model is begun by first defining exactly what is
meant by a glassy polymer and then by identifying the general response O.f such glassy
polymers to loading via their true stress-strain curves. A plot of the log of the elastic
modulus of these materials vs temperature (Figure 1.1a) generally exhibits a drop
of several orders of magnitude at a specific temperature termed the glass transition
temperature, ©,. This temperature may also be obtained from a plot of specific volume
as a function of temperature (Figure 1.1b) and for a reference rate of measurement is a
material property. An amorphous polymer is considered glassy at temperatures below
its O, and “rubbery” at temperatures above its 8,. The difference in the response
of the material to loading when in the glassy and rubbery regimes is schematically
illustrated in the true stress-stretch curves of Figure 1.2. When the material is at a
temperature @ > O, i.e. in the rubbery regime. the material behaves as a nonlinear
elastic solid. In the glassy regime, i.e at 8 < ©,, the initially isotropic solid exhibits a
linear elastic response followed by yielding. The initial yielding of the material is known

to depend on pressure, strain rate, and temperature. After yielding, the material may
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possess the response of true strain softening. This is a drop in the true stress with
plastic straining and is the giobal response to small-scale inhomogeneous deformation
such as shear banding. As larger strains are approached, the material strain hardens.
In this chapter, a physically-based constitutive law is developed which models these
traits of the inelastic behavior of glassy polymers at finite strains.

It has been previously documented that a glassy polymer must overcome two phys-
ically distinct sources of resistance before large strain inelastic flow may occur [1, 2].
Below the glass transition temperature, ©,, prior to initial yield, the material must be
stressed to exceed its intermolecular resistance to segment rotation. Once the material
begins to flow, molecular alignment occurs, altering the configurational entropy of the
material. This is the second source of deformation resistance. Haward and Thackray
[1] have modelled these resistances in 1-D using an Eyring dashpot to represent the
intermolecular resistance and a Langevin spring (as derived from a non-Gaussian sta-
tistical mechanics theory of rubber elasticity [23]) to represent the entropic resistance.
Argon (2] developed a micro-mechanical model describing the rate-dependent inter-
molecular resistance and suggested that the subsequent hardening was due to ertropic
resistance resulting from molecular alignment. Parks, Argon and Bagepalli [4] later
extended these models to incorporate full 3-D effects. In this case, the intermolecular
resistance was taken to be constant, and therefore modelled as ideally plastic. The
entropic resistance was modelled as suggested by Argon and by Haward and Thackray.
This material description yields a back stress tensor which has a unique correspondence
to the inelastic distortion in the polymer. The inelastic extension ratios describe the
texture developed in the material. This constitutive model could be broken into two

distinct parts: the elastic, ideally plastic response and the entropic hardening response.
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Here, the Parks, et al. 3-D model is extended to include the effects of rate, pressure,
true strain softening, and temperature on the plastic resistance. The incorporation of
these effects will enable the realistic simulation of forming processes (Chapter Two),
as well as other boundary value problems of inhomogeneous deformation. The finite
strain kinematics that were used here are those followed by Parks, et al. as originally
detailed by Fardshisheh and Onat [4]. These are reviewed below for completeness.
Experiments necessary for the systematic identification of material constants used in
the material model are identified. The constants for one such amorphous polymer,
polymethylmethacrylate (PMMA), are determined from experimental data found in

the literature.

1.2 Three Dimensional Constitutive Model

The constitutive model begins with an overview of the kinematic formulation used to ap-
propriately account for finite strain effects. The modelling of the physics of this class of
material is then discussed. This begins with the assumption that the plastic resistance
to flow may be decomposed into two parts as previously described: the intermolecu-
lar resistance to segment rotation and the entropic resistance to molecular alignment
(Figure 1.3). The intermolecular resistance model begins with the rate-depenrlent mi-
cromechanical model developed by Argon 2], which is subsequently modified o include
additional effects on yielding which, previously, had not been specifically accounted for
in the model. The 3-D entropic resistance is modelled by the Wang and Guth [5]

non-Gaussian statistical mechanics network model of rubber elasticity.

12
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1.2.1 Kinematics of Finite Strain

The finite strain formulation begins with a description of the deformed body va its
deformation gradient, F = Vxx, where X represents the reference position and 3 the
current position of a material point. For the polymers under consideration here, the
reference configuration is the isotropic state of the material consisting of randomly
oriented molecular chains (Figure 1.4). We assume that, during plastic flow, these
molecules deform affinely on a scale larger than the strain-producing, rotating molec-
ular segments. The deformation gradient is multiplicatively decomposed into elastic
and plastic components [39], F = F°F?. The plastic deformation gradient, F?, repre-
sents the configuration obtained by complete elastic unloading to a stress free state,
and physically indicates the degree of permanent molecular orientation existing in the
material. The deformation gradient may also be expressed as the product of the elas-
tic stretch, the rotation, and the plastic stretch: F = V¢RU?. The elasticity and/or
plasticity of the rotation tensor is indeterminate. We may decompose R into the prod-
ucts of elastic and plastic components, R = R°RP?, where F* = V°*R®* = R°U* and
F? = RPU? = VPRP via the polar decomposition theorem. If we choose R = RP and
R* = 1, we are lumping all rotation effects into the affine plastic deformation response
of the material. This results in a symmetric and, therefore, unique elastic deformation
gradient, FeT = Fe, Also, the tensorial resistance associated with the inelastic defor-
mation may be computed in an already rotated configuration (see section 1.2.3). If we
choose R = R*® and R? = 1, F* will be unique, but the tensorial resistance to flow
will have to be rotated when used in future calculations. Here, we take R = RP and
R* = 1. This will also simplify the rate kinematics as will be shown below. It is also

assumed that plastic flow is an incompressible process, thereby requiring det¥® = 1.
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The rate-kinematics are now examined beginning with the velocity gradient, I,

which is given by:
L=Vxv =FF ' =D+ W, (1.1)

where D, the rate of deformation, is the symmetric portion of L; and W, the spin, is
the anii-symmetric portion of L. The foilowing expression for the velocity gradient is

obtained after incorporating the product decomposition of the deformation gradient:
L =FF + FLF, (1.2)
where, L? == FPF?"' = DP + WP, (1.3)

The tensor L? is called the “plastic” velocity gradient. The tensor D? describes the
rate of change of shape of the unloaded configuration ¥?. Due to the symmetry of F¢,
it is easily shown that W? is uniquely defined by W, D + D?, and F*, and therefore

may not be constitutively prescribed. W? is given by:
WP =W - W [D + D?], (1.4)

where W is a fourth order tensor, defined in reference 3, which is a function of £¢ only,
and is of the order of the elastic strain. Had we not chosen F¢ to be symmetric, it is
probable that W? would have had to somehow be “constitutively” defined. This would
alter the integration of these equations (Appendix A), but should not affect the overall
solution because the choice of R = R? rather than R = R°® is, in principle, arbitrary
for this material. However, it does warrant further investigation in future research. We
must constitutively prescribe a rate of plastic shape change, DP, for the material which
is either in the loaded configuration given by F, or the unloaded configuration given

by FP. The configuration does not need to be defined at this point. By arguments
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A isotropic representation theorems [40, 44], the rate of plastic shape change may be

expressed as:
D? = 3" 6iZ;, (1.5)

where the coefficients ¢; are a function of the irreducible set of scalar invariants for an

anisotropically hardening material:
[trT*,tr(T°)%, tr(T°)%,trB,trB?,trB®, trT°B, tr(T°)*B, tr T°B?, tr(T°)*B?).(1.6)

The tensor T* is the driving stress state, which is schematically shown in 1-D in Figure
1.3, and is given in the continuum by:

1

T =T -
T-3

F°BF*, (1.7)

where: B is the back stress tensor due to entropic hardening, which will be constitu-
tively defined below; J is the volume change given by detF¢, and T is the Cauchy stress

tensor. The tencors Z; are given by the functionally irreducible set of tensors:

L, T, (T°)%B,B*, BT +T'B, (T")*B+B(T")?, T°B*+B*T", (T*)*B*+B*(T*)*|(1.8)
For a first approximation, we take the reduced case of:

D? = ¢,1 + ¢, T* + ¢5B. (1.9)

Assuming plastic incompressibility and zero plastic straining at zero effective equivalent

stress (see sections 1.2.2 and 1.2.5) results in:
D? = ¢,(T*)', (1.10)

where ¢; is proportional to the plastic shear strain rate for which a physically-based
constitutive model is developed in later sections. The question of whether this ex-

pression applies to the loaded or unloaded configuration is not easily resolved. The

16



unloaded and loaded configurations differ by an elastic stretch, F* = (F¢)T. The rate
of plastic shape change is given by D? = sym/[L*] in the unloaded configuration, and
D? = sym[F*LP(F¢)~!] in the loaded configuration. Therefore, for the case of a rigid-
“plastic® material, D = DP = D?P. When the material exhibits an elastic response,
the difference between DP and DP will be of the order of the elastic strain which we
assume to be small. It has also been shown by Onat that a thermodynamic analysis

suggests a flow rule of the sort:
D’ = ¥’ (T - B*), (1.11)
1 ~ -
D = §[F°D’(F‘)‘l + (F°)"'DfF), (1.12)

where B* = 1 3[F*B(F¢)~! + (F¢)~'BF*|. Again, for the rigid case, D? = Df = Dr =
D, and, including elasticity, the differences will be of the order of the elastic strain.

It seems unlikely that such differences are experimentally measurable. Here, we take

D?f = f)’, or:
D? = 4PN, (1.13)
N=_L qpw (1.14)
=T ,
1 n i
r=[S(T). (1.15)

The Cauchy stress tensor is taken to be uniquely defined by the elastic modulus tensor

acting upon the natural logarithm of the elastic deformation gradient:
1 e e
T= 73 [inF¢|, (1.16)

where, the isotropic elastic moduli are given by:

17



L6 =2u] + (K - ;u)l 3 (1.17)

where p is the shear modulus, K is the bulk modulus, and J and I are the fourth
and second order identity tensors respectively. It is noted that isotropic elasticity is
taken to hold for all time since the magnitude effects of developing elastic anisotropy
in glassy polymers is small [24] especially in the overall soluticn of a problem involving
large strain plasticity.

In order to demonstrate its wider applicability, the basic finite strain formulation
employed here has also been used to analyze the problem of single crystal deformation,
which has previously been analyzed in the context of a different finite strain plasticity
formulation [41]. This is done in Appendix B where the results are also compared with
the other formulation. With :he description of the kinematics and the constitutive
connection between stress and elastic deformation complete, we now move on to the
development of a constitutive law for the plastic strain rate, 47, and the back stress

tensor, B, already mentioned in this section.
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1.2.2 Intermolecular Resistance:
Rate and Temperature Dependence

At temperatures below the glass transition temperature of an amorphous polymer, it
is assumed that plastic flow and subsequent molecular chain alignment does not com-
mence until the intermolecular resistance of the material to segment rotation has been
overcome. This deformation resistance is due to the restriction imposed on molecular
chain motion due to neighboring chains (Figure 1.4). Flow commences once the free
energy barrier to molecular mobility is overcome through the thermally activated ro-
tation of these segments under stress. Argon (2] has derived an expression for the free
energy change, AG*, necessary to produce segment rotation based on a double-kink
model of a chain segment rotating against the elastic impedance of surrounding chains

which are modelled as an equivalent elastic medium (Figure 1.5):
8

. 3muwlaed r \°
1-»

The corresponding plastic strain rate is given by!:

o AG®
'7P - '70355? (_ ke ) .

(1.19)

The material properties in these expressions include the shear modulus, u (©)?; Pois-
son’s ratio, v () ; the net angle of rotation, w, of the molecular segment between the
initial configuration and the activated configuration, w; the mean molecular radius, a;
and the pre-exponential shear strain rate factor, 4o. The absolute temperature is given

by ©, and k is Boltzmann’s constant. These values may be consolidated as follows, let:

1This form is appropriate at the plastic limit. It can be generalised, if desired, for the low stress limit
by subtracting from it a term representing the “reverse flux” of configurations to obtain a hyperbolic
sine dependence on stress.

3The shear modulus is also dependent on strain rate through distributed anelastic processes. This
dependence will be ignored here.

19
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_ 0.077u

8 = 1 (1.20)
397rwlad

Equation (1.12) may then be rewritten as:

om0 (12 (2)1)]. 0

or, alternatively as:

e ()]
T =8 [1 - :is_oln (3—:)] . (1.23)

It is noted that as the temperature approaches absolute zero, r approaches s, if non-
negligible plastic strain rates are to be sustained. Therefore, s, may be termed the
athermal slear yield strength of the material.

The rate and temperature dependence of the intermolecular shear resistance of
the material are described by equation (1.23), where s, is also implicitly a function
of temperature because of the temperature dependence of the elastic moduli. This
expression will be used later as the basic building block for the incorporation of pressure
and strain softening effects. However, having introduced the intermolecular resistance,
it is now important to complete the picture of the total deformation resistance with a

description of the second component, the entropic resistance.
1.2.3 Entropic Resistance

The modelling of the entropic resistance was previously reported by Parks, et al. [3] and
is briefly summarized below. The basic macromolecular structure of isotropic glassy
polymers consists of randomly oriented molecular chains connected by physical entan-

glements (Figure 1.4). As these polymers are stretched, and once the intermolecular
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resistance has been overcome, the chains begin to orient themselves in an affine man-
ner. If these materials with high molecular weight (M, > 10°) have been permanently
deformed below ©,, and subsequently heated to a temperature above ©, (i.e., the rub-
bery region) without constraint, the isotropic structure and macroscopic shape are fully
recovered(see Figure 1.6). These and related observations motivate our modelling of
the orientation hardening in these materials by the statistical mechanics network mod-
els of rubber elasticity [23]. Therefore, the entropic resistance is determined by finding
the external stress state resulting when the raaterial is stretched at temperatures above
6,, i.e. the “rubbery” regime, and assuming that this state represents an internal re-
sistance which is “locked” in the material, i.e. not recoverable, at temaperatures below
6,. Our intiernal variables, B;, or principal back stress components, are defined by this
state and are uniquely related to the texture or “locked-in” plastic stretches, V?; in
the glassy regime. The stress state is found by beginning with the expression for the

Helmholtz free energy, F:
F=U-8sSs, (1.24)

where U is the internal energy of the material, S is the configurational entropy of the
material, and © is the absolute temperature of the system. The internal energy of
the system may be further decomposed into intermolecular and intramolecular compo-
nents. The intermolecular component, as described earlier, is due to resistance to chain
mobility imposed by surrounding chains; while the intramolecular component is due to
resistance imposed by the chain itself, e.g. from its own bulky side groups and energy
barriers between different isomeric states. Well below ©,, the intermolecular compo-
nent is usually the more dominant of the two. The case of isothermal deformation is

now examined and it is seen that the change in the Helmholtz free energy, AF, is:

22
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AF = AUnter + AU, 05 — OAS. (1.25)

The external stresses are equal to the gradient in the Helmholtz free energy, A F, with
respect to the corresponding strain. In the rubbury regime, changes in the intermolec-
ular (and often in the intramolecular energy) are negligible compared to the change in
the configurational entropy which is large due to the orienting of the chains. Therefore,
these energy changes may be neglected in the determination of the external stresses at
temperatures above 6,. In the adaptation of these results to the material in the glassy
regime, the resulting principal back stress components, B;, are accordingly related to
the gradient of the entropy change with respect to the principal plastic stretch, V?;, in

that tensorial direction3:

0AS
s = P,
B; eV Bve

(1.26)

The Wang and Guth non-Gaussian statistical mechanics network model [5] is used to
describe the change in entropy. This model accounts for the orientation effects up to
large stretches, properly describing the “locking” of these materials which is induced
by network constraints. At low stretch ratios, this model reduces to the more standard
Gaussian statistical mechanics model of rubber elasticity [23]. After incorporation of
the Wang and Guth network model into equation (1.26), a detailed expression for the

back stress in terms of specific molecular characteristics is obtained:

B; = C"—\;E [V,-"z:“ (:/,']:v) - %gvj"r‘ (%)} , (1.27)

31t may be argued that a configurational entropy model for temperatures above 8,, where different
configurational states can be freely sampled by thermal fluctuations, should not be applicable below
6,, where configurations are frosen-in. However, in amorphous polymers, if for each state of defor-
mation below 6;, an excursion to a temperature above 6, is taken, the material will return to its
original state of maximum entropy. Therefore, the Wang and Guth model adopted here is considered
a very good measure of the back stress.

24



where: N is the number of rigid chain links between entanglements; C? is essentially
the rubbery modulus which is equal to nk®; where n is the number of chains per unit

volume; k is Boltzmann’s constant; and £ is the Langevin function defined by:

L (8:) = coth (B;) — 51: = \;/z_'.;_v’ (1.28)

with the inverse given by [’."l(%) = f;. The temperature dependence of the back
stress enters the model through the rubbery modulus CF. As will be discussed below,
it is also worth noting that experiments indicate that strain rate affects the back stress
of some amorphous polymers at very large deformations, but then only at sufficiently
high temperatures and very low strain rates. This is indicative of some relaxation phe-
nomenon, possibly due to entanglement drift produced by reptation at large stretches
and over longer periods of time. This effect is not modelled here, but is discussed in
a later section. It should not have a significant influence on most forming processes
which are usually conducted at moderate to high strain rates (% > 0.01sec™?).
Operationally, the back stress tensor, B, is computed by noting that it is coaxial
with the left plastic stretch tensor, VP, which is determined from the polar decompo-

sition of the plastic deformation gradient, F?:
F? = RPUP = VPRP, (1.29)

The principal components, V?;, and axes of V? are then found and the associated B;
are calculated from equation (1.27). The back stress tensor B is then found by rotating
the diagonal tensor consisting of elements B; to the unloaded configuration F? from
the eigen space of VP. We note here that if we had chosen R? = 1 and R = R?, then
F? = UP. The resulting principal components of the back stress tensor, B;, would be

identical, but the tensor would be coaxial with UP not VF. We could call this tensor
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By:. In future calculations, such as determining the driving stress state T*' (equation
1.4), By, would have to be rotated by R = R* to obtain B: B = RBy,R7. This is

one of the reasons for having chosen R = R? and R® = 1 in section 1.2.1.

1.2.4 Intermolecular Resistance:
Softening and Pressure Dependence

As mentioned previously, the yield and post-yield behavior of glassy polymers exhibit
pressure dependence and true strain softening, as weil as rate and temperature depen-
dence. Temperature and rate effects have already been modelled. It is now of interest
to model the effects of strain softening and pressure on the intermolecular resistance.
The expression for this resistance, equation (1.23), will now be modified to incorpo-
rate these effects. The intermolecular resistance is now interpreted as the effective

equivalent shear strese, 7, present at a material point:

r= [%tr (T"’)]% , ) (1.30)
where T is the driving stress state defined earlier.

Strain softening is the term given to the drop in true stress with strain upon initi-
ation of deformation, which is characteristic of many polymers, whether amorphous or
semi-crystalline. Other materials, including granular solids, also exhibit this behavior.
Softening is invariably accompanied by inhomogenous deformation on small scale in
the form of shear banding. We incorporate softening into the constitutive law for 4* by
modifying the athermal yield strength, s, of the material as plastic straining occurs.
We assume that as the material begins to undergo plastic deformation, there is some
average restructuring of the molecular chains in the “flowing state” that causes an ac-

tual fall in the athermal shear resistance of the material. This assumption is motivated
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by examining experiments on companion polycarbionate (PC) samples which have been
given different heat treatments and, therefore, different initial structures. Under iden-
tical testing conditions, these test specimens initially yield at different stress levels and
subsequently soften to approximately the same level [6]. In particular, PC quenched
from ©, will yield at a low stress level and show little softening. On the other hand,
if this same material is first annealed somewhat below ©,, it will yield at a much
higher stress level and subsequently soften until it reaches the lower stress level at
which its quenched companion flows. This strength level is thought to be associated
with a “preferred” structure being reached during plastic straining, possibly due to the
attainment of a local flow dilatation, i.e. increased local free volume, associated with
the shear banding on a small scale. That this is indeed so has been established in
amorphous metallic alloys [17].

In order to construct an evolution equation for the athermal shear resistance, so, cer-
tain characteristics of strain softening are identified by examining stress-strain curves.
Such curves {7, 12, 13] indicate that softening is dependent on plastic strain rate, tem-
perature, and structure. We define the total yield drop to be the difference between the
peak stress prior to softening and the lowest stress level reached subsequent to plastic
flow. In general, this drop depends on the strain rate and temperature. The rate of
the drop depends on the structure and strain rate. The following phenomenological

softening evolution equation encompasses most of the above dependencies:

s5=h (1 — M) P, (1.31)

where the quantity s is the current athermal deformation resistance of the material
indicating the current state of the structure. The initial structure is represented by the

value of s at the upper yield point, so; k is the slope of the yield drop with respect to
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plastic strain; s,, is the value s reaches at steady state, i.e. the “preferred” structure,
and, as indicated, s,, may depend on temperature and strain rate.

The instantaneous elastic shear modulus, g, s a fundamental scaling factor of the
intermolecular resistance, as can be inferred from equation (1.20). Therefore, a de-
crease in the intermolecular resistance with plastic straining must be accompanied by
a decrease in the elastic shear modulus. We may hypothesize that this reduction in
p is indeed the basic cause of the effect in the localization zone. At the flow state,
the steady state flow dilatation results in a decreased intermolecular interaction that
reduces the shear modulus of the material in the flow state (possibly by only 10%)
which then lowers the athermal flow resistance by a corresponding amount. The effect
on the plastic flow of the material is large as seen in the amount of strain softening
exhibited by glassy polymers. However, the effect on the large strain response of the
solid is negligible.

Amorphous polymers are also known to age under certain pressure and temperature
conditions. In these materials, aging apparently leads to the recovery of the initial
resistance 8o after some time. Thus, after aging, the yield stress increases with no
additional plastic straining. The aging of polyviaylchloride (PVC) under sustained load
is discussed in reference [7]. When this material is taken past yield in tension, partially
unloaded and held for some time at a stress level insufficient to further propagate the
neck, and then reloaded, an initial increase in the yield stress is observed. However,
when unloaded to zero load and then reloaded, no increase is observed. The holding
times were not given. This is indicative of aging in PVC. This aging phenomenon
was also observed by Kramer [50] in nylon where he concluded that the stress caused

better interchain packing in the amorphous regions of the nylon. This suggests our
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assumption that aging increases the athermal shear resistance of the polymer. For

future applications, equation (1.31) may be generalized to include aging:

s=h (1 - i) 4 + a(s, ©, p), (1.32)

o
where the function a represents the rate of aging which is presumed to depend on the
current structure, s, the temperature, ©, and the hydrostatic pressure, p = —%tr('E‘).
The rate of aging tends to increase as the temperature, 8, approaches 8, as demon-
strated by the results of annealling. Currently, for most amorphous polymers, more
experimental data is required before an appropriate function for a may be determined.
In this current application, it will not be included.

The peak shear yield strength of amorphous polymers has been found to be essen-
tially linearly dependent upon pressure for moderatéiy large hydrostatic stresses. This
has been shown experimentally by comparing the peak yield stress in compression at
constant strain rate with that in tension as well as by superposing pressure on various

tests [8,9,10]. This dependence may be linearized in the rate-independent case as:

T, = Ty (1 + a;%) , (1.33)

where: 7,9 is the peak shear yield strength at zero pressure level; p is the hydrostatic
pressure; a is the pressure coefficient, and r, is the shear yield strength under pressure.
The pressure dependence of the effective equivalent shear stress necessary to sustain
(visco-)plastic strain rate 4P may be similarly obtained by once again modifying the
expression for the athermal shear resistance, s. To this end, we introduce the parameter

&, dependent on pressure as well as the evolving athermal shear resistance s:

i=s (1 + af) : (1.34)
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In applications, this parameter, the “effective” athermal shear resistance, will be used
in equation (1.15) rather than sg, to provide a constitutive law for 4? which accounts

for the effects of temperature, pressure, rate and strain softening:

i = een |42 (1- (2)1)]. (139

This law for the rate of plastic straining is incorporated into equation (1.13) of the 3-D

continuum model providing D, the rate of plastic deformation.
1.2.5 Secondary Relaxation Effects: Entanglement Drift

Experiments indicate that strain rate and temperature affect the back stress of some
amorphous polymers at very large deformations but only at sufficiently high temper-
atures and very low strain rates. ’i‘his is indicative of the occurance of additional
material relaxation due to entanglement drift at large stretches when given an appro-
priate amount of time or a high enough temperature.

The strain rate effect is apparent in the Hope, et al [12] stress-strain data for
PMMA which is at fixed temperature and over several decades of strain rate. Here
the slope of the stress-strain curves (Figure 1.7) for the lower strain rates is notably
lower than those of the higher strain rate curves at large stretches. This suggests
that an additional relaxation process such as entanglement drift is occurring in the
material, thereby increasing the number of rigid links between entanglements, N, or
the effective locking stretch, which simultaneously decreases the rubbery modulus, CE,
by decreasing the molecular chain density, n. A change in the chain density is inversely
related to a change in the number of rigid links betweén»‘ entangiements due to the
conservation of the total number of rigid links in a material sample, nN. Therefore,

any increase in the number of rigid links between entanglements due to entanglement
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drift must be accompanied by a decrease in the overall chain density because the
average length of a chain has increased, thus decreasing the number of chains in the
material sample. These changes in the macromolecular structure of the material have
the experimentally observable effect of decreasing the back stress at any particuler
value of imposed stretch.

The temperature effect is apparent in the Kahar [15] analysis of birefringence data
where he determines the molecular chain density at various temperatures above and
below the glass transition temperature for PMMA. This data is given in Table 1.1. A
slight decrease in n occurs with increasing temperature before 6, = 110°C is reached
and after which a dramatic decrease in r occurs. This results in a lower C® which, as
discussefi earlier, is equal to nk©.

A similar relaxation phenomenon has been observed in vulcanized rubber by Rivlin
and Thomas [18]. They proposed modelling this behavior with the Green and Tobolsky
[19] modification to the James and Guth [20] non-Gaussian statistical mechanics model
of rubber elasticity. This modification essentially states that when the material is
in a deformed state, the chain density and the number of rigid segments (our rigid
links) between crosslinks (our entanglements) changes such that a two-network system
develops. This suggests that only portions of the material are relaxing and these
portions relax to a new and fixed number of rigid segments between crosslinks, thereby
creating a second network which coexists with the original network. The relaxation
occurs such that the density of rigid segments in the material is preserved. This model
gives a simple but physically realistic picture of what may actually be occuring in the
material. This model is simple in the sense that there are probably many coexisting

networks in the material, rather than just two. The model also does not account for
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TABLE 1.1
PMMA Chain Density [15]

Temperature Chain Density
6 (°C) n -10728 (m~3)

50 15.1
90 8.4
100 6.4
116.5 2.4
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the evolutinn of the material to this new state of two fixed coexisting networks. Here,
we propose a phenomenological model of this relaxation process where the effect of
the development of coexisting networks which contain different numbers of rigid links
between entanglements is averaged into a single network model which contains an

evolving N such that the rate of change of N may be functionally represented as:
N=f(r®,0,N). (1.36)

where N is taken to depend on the equivalent back stress, r8 = \/ﬁﬁ’ the absolute
temperature, and the current number of links between entanglements. We note that 72
is itself dependent on V;?, ©, N, and n, but consider N to also be explicitly dependent
on © and N. A specific function for N is proposed in the next paragraph. The initial
conditions are taken to be Ny and ng giving noN, as the density of rigid links in the
material. Therefore, if N represents the newly evolved average number of links between
entanglements, then the corresponding current chain density is given by n = %ﬂno. This
model] does not explicitly contain the physical picture of different coexisting networks
within the material as does the Rivlin-Thomas model; however, it does represent the
average, relaxed state of the material and accounts for the evolution of this state.
Since we are considering N to be evolving because of entanglement drift, we may
view the function j, to be derivable from a viscous dashpot formulation, where IV is

given by:

N= q_(léjra’ (1.37)

where 7 (8) is a temperature dependent viscosity-like term with dimensions of stress-
time. This rate is proportional to the relaxation creep rate of the material, 4°, i.e.
4¢ « N. In one dimension, we can express the total strain rate as the sum of its elastic,

plastic, and creep components:
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Y= +¥ +4" (1.38)

In order to generalize this to three dimensions, the creep rate must be mod 972 tensorial
direction. Since the driving stress state for this relaxation phenomenon is the back
stress, the tensorial direction must be the normalized back stress tensor. We now
consider the tensor D? to represent the rate of permanent deformation in the material.
Therefore, the expression fer D? must be modified to inciude this additional relaxation

phenomenon and becomes:

1
V2r®

This proposed function for the evolution of N, although simple, encompasses the ob-

D’ = 4’N + 4° B. (1.39)

served effects of both strain rate and temperature on the back stress. The effect of
strain rate is appropriately accounted for by noting that at high rates of deformation
the first term of equation (1.39) dominates the second term and, therefore, there will
not be enough real time for any significant evolution of N. At lower strain rates, the
two terms in equation (1.39) will be of the same order of magnitude, and enough time
will elapse for N to evolve and have a marked impact on the back stress. The effect of
temperature on this relaxation is taken into account through the temperature depen-
dent viscosity term which decreases with decreasing temperature in a manner similar
to the temperature dependence of the elastic modulus which exhibits a gradual drop
before ©, and a large drop in the O, region. Therefore, at temperatures near e,, ¥°
would become of order 4* and N would have enough time to evolve and significantly
impact the back stress.

This proposed phenomenological model for the relaxation of amorphous polymers
due to entanglement drift qualitatively accounts for the experimentally observed ten-

dencies in the behavior of these materials at large stretches. This model has not been
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numerically incorporated into the constitutive model described earlier where both CE
and N are taken to be constant. The implementation of this relaxation effect into
the current numerical model would be complicated because we now have an evolving
C® and N, as well as a more complicated (no longer associative) constitutive law for
D?. However, the basic framework of the numerical integration and overall FORTRAN

program would remain essentially intact.

1.2.6 Additional Temperature Effects

Here, we briefly note that temperature may also be “evolving” during deformation.
At high strain rates, adiabatic heating may have a significant impact on the material
response. In this case, plastic dissipation would result in a rate of change of temperature
6 = ’%tr[T"D’]. Here, p is the density of the material, ¢ is the specific heat, and w is
the fraction of heat dissipated. The plastic working term due to the back stress tr[BD?]
is not dissipative but stored in the material due to the locked in orientaiion.

Another limiting case is the case of isothermal deformation where & = 0. In general,
thermo-mechanical coupling should be considered where ® may be both a loading
parameter as well evoloving due to adiabatic heating, and the thermal properties of the
material must be considered. In this thesis work, we take temperature to be a specified

parameter of current state.

1.3 Summary of Model

For completeness, the basic equations necessary to implement this constitutive model,
with the exclusion of the secondary relaxation effects, are summarized below:

Elastic-Plastic Decomposition of the Deformation Gradient:
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F = F°F?;

FQT - FG;

Polar Decomposition of the Plastic Deformation Gradient:

F? = V’R?;
Cauchy Stress Tensor:
T = Lot inFe;
J )

Driving Stress Tensor:

1

T=T-—-J

F°BF*;

Principal Components of the Back Stress Tensor:

P 3
B,' — CR@ ‘/‘pﬁ-l ( Vo ) _ %Zv’?ﬂ—l (
=1

vN

Rate of Deformation referred to the Unloaded Configuration:

DP = 4*N;
Plastic Spin:
WP =W — W D + DP|;

Rate of Plastic Straining:

Y’ = Yoezp [—%3 (1 - (%) J'Il)] ;

Initial Value of the Athermal Shear Resistance:

_ 0.077u
T 1-v!
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(1.41)

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)



Evolution Equation for the Athermal Shear Resistance:

s=h (1 - WST’T) s (1.50)

Pressure Dependence of the Effective Athermal Shear Resistance:
3=3s+ap. (1.51)

All quantities used here havz been defined earlier in the paper.

In order to faciutate the solving of boundary value problems for inhomogeneous
deformation, this constitutive model has been numerically integrated and incorporated
into the finite element code ABAQUS [16] (see Appendix A). The integration of these
equations, while complex, can be simplified to some extent by considering the temper-
ature and deformation range of the boundary value problems for which this model is
primarily applicable. Most forming processes on glassy polymers are conducted near
©, where plastic flow occurs at relatively low stress levels resulting in very small elastic
strains. For the example to be considered in the next section, the magnitude of the

elastic strains, €, is approximately given by:
= e = 0015, (1.52)

This magnitude is negligible when we consider deformation processes where the plastic
strain will be as great, and often greater than 1.0. Neglecting terms of order ¢ simplifies
the governing equations of the problem. This is observed by noting the following

relevant approximations:
WP = W, (1.53)

FP = T, (1.54)
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T =T -B. (1.55)

These approximations carry through the entire integration procedure, reducing the
computational complexity of the problem, and give a clearer conceptual understand-
ing of the elastic-plastic decomposition of the deformation gradient. By neglecting
elastic deformations, we are also better able to associate the operation of lumping all
of the system rotation into the plastic deformation gradient with the notion of affine

deformation during plastic flow.

1.4 Identification of Material Properties

In order to successfully implement the constitutive model, the material constants must
be appropriately identified. The constants which must be obtained experimentally in-
clude those that model the temperature, pressure, strain rate, softening and hardening
effects. The necessary experiments are described here, and the constants for PMMA

are then determined from such experiments reported in the literature.

1.4.1 Temperature

Temperature affects both components of resistance. It affects the intermolecular resis-
tance explicitly and strongly in the k@ term and implicitly since the initial athermal
shear resistance, 8o, is dependent upon temperature. Recalling equation (1.20), the
temperature dependenc= of sy is proportional to the temperature dependence of the
shear modulus which is shown in Figure 1.8 for PMMA. The fizure depicts the charac-

teristic large drop in shear modulus at 8, = 110°C. The value for sy at & = 90°C in
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the annealed state was computed from the shear modulus and Poisson’s ratio at this

temperature [14] giving:
8 = 88.0M Pa. (1.56)

The explicit temperature dependence of the entropic resistance represented by the
back stress tensor, B, enters through the rubbery modulus, C®, which is proportional
to temperature, C® = nk©. Here, n is taken to be constant, but, as discussed in section

1.2.5, n evolves with both temperature and back stress.

1.4.2 Pressure

The effect of pressure on yield can be measured by superposing various levels of pressure
on stress-strain tests conducted at constant strain rate, either in tension, compression
or shear, and recording the peak yield stress. A less extensive method would be to
test the material in tension and then in compression since these contain two different
pressure levels. The peak yield stress is then plotted against the pressure. The slope
of this curve gives the pressure coefficient a. Rabinowitz, Ward, and Perry [8] have

conducted the more extensive series of tests on PMMA giving a = 0.20.

1.4.3 Strain Rate

The material constants which model the strain rate effects consist of the pre-exponential
factor, 4p,and the lumped parameter, A. There are two different series of tests which
can be used to determine these constants. One series which was used by Argon and
Bessonov [11] consists of stress-strain tests at a fixed strain rate over a range of temper-
atures. The second series which we adopt here involves conducting stress-strain tests

at a fixed temperature at various levels of strain rate.
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In order to determine the constants from the tests at various strain rates, equation

(1.47) is first rearranged to be the equation of a line:

r :
ny =B +C ; 1.67
ny + (80 " ap) (3.57)
. A
where : B = In4, — Y (80 + ap), (1.58)
A
C= Y (80 + ap). (1.59)

Here it is understood that for initial (peak) yield stress, s has yet to evolve substantially

from its initial value, s,. The values at peak yield for 7 and 4 are used to obtain In4?

vs. (‘olap)%. The slope and intercept of the resulting line are the values of C and B
from which the constants 49 and A may be extracted.

The true stress-strain data of Hope, Ward, and Gibson [12] on PMMA at 8 = 363K
for various strain rates (Figure 1.7) are now used to obtain values for 4o and A for this
material. This data is from tensile tests. Since our equations are in terms of plastic
shear strain rates, 4?, and effective shear stress, 7, the values of ¢ and oy, where oy is
the peak true tensile stress, must first be modified on the basis of a Mises criterion by
multiplying and dividing, respectively, by v/3. Also, since the tests are tensile, there
is a pressure component p = —%o, at yield which is taken into account. The resulting

data points for In4? and (”—'a;)% are plotted in Figure 1.9. One can see that they do

indeed form a straight line from whose slope and intercept we obtain values for A and
Yo:

4o = 1.13 (10") sec™?, (1.60)

A =161.0°K/MPa. (1.61)
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The fact that this experimental data lies on a straight line gives further support to the
Argon model, since it was obtained independently from the theoretical development.
It is also of interest to point out that the Hope, et al. data exhibit the rate effects
on terminal hardening at the lower imposed strain rz‘es as discussed in section 1.2.5.
As mentioned previously, this effect has not been included in the model and would
not have much impact on high deformation rate processes. However, a model of this
effect was suggested, and, one can see from Figure 1.7 that at lower strain rates, this

phenomenon would have some impact on the level of texture developed in the material.

1.4.4 Strain Softening

This material, PMMA, exhibits a large amount of initial strain softening at @ = 363K
as is evident from Figure 1.7. It is apparert from this data that the percent softening,
gmg:—:ﬂh, is indepe:(dent of strain rate, so, s,, (8,4") in equation (1.49) will be taken as
a function of temperature only. Softening is generally highly dependent on teraperature.
This effect has been experimentally observed both on the global level by examinring
stress-strain curves, and on the local level by examining the degree »nd coarseness
of shear band formation in various amorphous polymers at different temperatures [7].
True stress-strain curves illustrating the temperature dependence of strain softening for
PMMA are shown in Figure 1.10. It is to be noted that these tests were not conducted
at constant strain rate, but at constant displacement rate. Subsequent rate effects,
alihough present due to the inhomo-eneous deformation of test specimens, are not
apparent in the resulting curves. Therefore, these curves can only give an indication

of the trend which strain softening {ollows with temperature. For temperatures below

90°C, the percent softening is relatively constant. However, for temperatures above
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this range, i.e., as © approaches ©,, the amount of softening decreases rapidly with
increasing temperature. For the extrusion analyses conducted in the following chapter,
we are corsidering the material in the temperature range, 20°C < € < ¢0°C, and
will therefore take the ratio, s,,/80, to be constant. By comparing the maximum yield
stress with the minimum yield stress after softening, the ratio, s,,/sy, was inferred to

be:

e~ 0.875. (1.62)
So

The rate of the yield drop with respect to deformation is measured by h which can be
computed by rearranging equation (1.49) and estimating from Figure 1.7 the increment

in plastic shear strain, A4?, over which the drop, As = s,, — 59, occurs:

As 1

For PMMA at © = 363K, h was found to be 900M Pa.

1.4.5 Stroin Hardening

The material properties required to model the entropic resistance are the rubbery mod-
ulus, C%®, and ihe number of rigid links between entanglements, N. An approximate
value for the rubbery modulus, C®, may in principle be measured by taking the mate-
rial to a temperature, .., slightly above 8, and testing it in tensicn at a moderately
rapid rate to minimize entanglement drift. The initial slope of the resulting stress-
strain curve is CF at this temperature. The value for CF at the temperature, ©, under

consideration could be obtained by re-scaling as:

CR(8) = C® (B1n) ( e?,.‘) . (1.64)
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This value will be lower than the actual value at 8., if O, is in the glassy regime. The
modulus C® may also be found by measuring the number of chain segments per unit
volume, n, at this temperature with, e.g., analysis of birefringence data, and calculating
C® from CR = nk®. A value for n at © = 363K (Table 1.1) was determined using this

method by Kahar, et al. [15] for PMMA:
n =8.4(10%) m™*, (1.65)
from which the rubbery modulus at @ = 362K was found to be:

CR =4.2MPa. (1.66)

The number of rigid links between entanglements, N, may be computed from any
tensile test taken to the limiting stretch of the material. For the Langevin model used,
N is cqual to the square of the terminal or locking stretch, Az. From Figure 1.7 one
can see that locking occurs at a true strain of approximately 1 at strain rates greater
than 0.01sec™*. This corresponds to a locking stretch of A\, = e = 3, where e is the

base of the natural logarithm, giving:
N=A\]=09. (1.67)

All of the required material constants have now been identified.

The true stress-strain results of our model are superposed over the Hope, et al.
experimental curves in Figure 1.11 and show very good agreement. The maximum and
minimum flow stresses of the constitutive model match the experimental results over
the range of imposed strain rates very well, as does the plastic strain increment over
which the drop in flow stress occurs. The strain at which the maximum flow stress
occurs is slightly off due to some small discrepancy in the elastic moduli. The effect

of hardening is also well modelled as is shown by the siope of the stress-strain curves
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at the larger stretches and the stretch at which locking occurs. We can see that the
strain rate effect of hardening was not accounted for in the model by observing that
the theoretical stress-strain curves at the lower strain rates reach terminal locking at
the same AL as those at the higher strain rates, whereas the experimental curves at the
lower rates have an effectively larger locking stretch and smaller slope.

The temperature dependence of the true stress-strain relation at a constant strain
rate of ¢ = 0.005sec™! as predicted by the constitutive model is depicted in Figure
1.12. The experimental curves of Figure 1.10 resulted from testing at a normalized
displacement rate of 0.005sec™!. Therefcre, the peak stresses prior to strain softening
of Figure 1.12 may be compared with those of Figure 1.10. The model predictions are
found to be in very good agreement with the experimental results. The remainder of
the curves are not comparable because the experiments were not conducted at constant

strain rate.

1.5 Conclusion

In this chapter, a constitutive model describing the large i: .elastic deformation of glassy
polymers has been developed based on the macromolecular structure of these materials
and the corresponding micromechanism of plastic low. The effects of strain rate,
pressure, temperature, true strain softening and strain hardening have been accounted
for in this model. The physical mechanism associated with each of these phenomena has
been described. The kinematic formulation used to properly account for finite strain
and rotation effects has also been detailed, noting that the conceptual complexity of
the elastic-plastic decomposition of the deformation gradient is significantly reduced

from that of poly-crystalline metals due to the affine molecular deformation that these
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polymers exhibit. As an aside, the elastic-plastic decomposition used was also applied
to the case of the single crystal in Appendix B in order to demonstrate the general
scope of this representation. The commercial glassy polymer PMMA was then suc-
cessfully modelled with this constitutive formulation. The model was then numerically
integrated and incorporated into the general purpose non-linear finite element code
ABAQUS enabling the solution of boundary value problems involving inhomogeneous
deformations such as the hydrostatic extrusion of glassy polymers analyzed in the next
chapter. In Chapter Three, the model will be further modified to inciude effects of

pre-orientation on the material behavior.
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Chapter 2

Numerical Simulation of
Hydrostatic Extrusion

2.1 Introduction

The manufacturing of products of industrial importance from giassy polymers by warm
(near ©,) mechanical processes such as extrusion, drawing, and blow moulding usually
produces a textured solid containing residual stresses. These processes generally im-
pose very large and inhomogeneous deformations on the polymer making it difficult to
predict and/or assess the degree of texture and residual stresses remaining in the prod-
ucts after manufacturing. In this chapter, we will analyze one such mechanical process,
hydrostatic extrusion, using the constitutive model of Chapter One which describes the
large inelastic deformaticn of amorphous polymers. The analysis will examine the de-
velopment of texture in the material during processing, the effect of rate, temperature,
pressure, and friction on the processing, as well as unloading effects as the processing
nears completion. These results will be compared with experimental results wherever
possible.

Oriented polymers may be successfully manufactured by the process of hydrostatic

extrusion. This process essentially consists of forcing a continuous billet of material
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through an appropriately shaped die via hydrostatically induced pressure. In particular,
we will be analyzing the axisymmetric extrusion of a cylindrical billet of the isotropic
amorphous polymer polymethylmethacrylate (PMMA) through a conical die, thereby
producing a longer cylinder of smaller radius of what has now become oriented PMMA
(Figure 2.1). The two major kinematic parameters of the process are the nominal
extrusion ratio, Ry, which is the ratio of the cross-sectional area of the cylindrical
billet (7 Ro®) to that of the die exit (7R.?), and the die angle, ay, which is the half
angle of the conical portion of the die.

Extensive experimental studies on the hydrostatic extrusion of both semi-crystalline
and amorphous polymers have been conducted by a research group at the University
of Leeds. The results of such experiments on a.rqorphous PMMA are well documented
in references [12] and [.5]. These experiments cover a wide range of nominal extrusion
ratios and examine such features as pressure vs. extrudate velocity, die swell, and
shrinkage force. These experimental results will be used as a base for comparison with
our numerical results.

The analysis of the extrusion of PMMA will be conducted using the constitutive
model developed in Chapter One. This physically-based model accounts for the effects
of strain rate, pressure, temperature, strain softening, and strain hardening. The mate-
rial properties corresponding to these effects as characterized by PMMA'’s stress-strain
curves [12] were identified in section 1.4. This constitutive model has been numerically
integrated and incorporated into the finite element code ABAQUS [16] with the user-
defined material law option (see Appendix A). This chapter will concentrate on the
modelling of the hydrostatic extrusion boundary value problem, the interpretation of

the numerical results of this problem, and the examination of the impact of the
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Figure 2.2. Finite element model of the hydrostatic extrusion
of PMMA. Nominal extrusion ratio: Ry=2.5.
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material behavior and boundary conditions on the results. In particular, the effects
of rate, friction and temperature on the process are examined. The numerical results
are directly compared with the experimental results of the Leeds University research
group. These comparisons will show that our constitutive model can accurately predict
the rate and temperature effects of the mai:eria.l behavior, as well as correctly assess
the development of texture within the material as it undergoes large inhomogeneous

deformation processing.

2.2 Description and Modelling of Boundary Value
Problem

The hydrostatic ex.trusion of solid cylindrical rods of material is schematically illus-
trated in Figure 2.1. A long cylindrical rod with a “plug” tapered to correspond to the
die angle is fitted into the die. A pressure transmitting fluid, castor oil, is then pumped
into the apparatus until a relatively constant pressure is attained and the billet is then
moving through the die at a relatively constant velocity. The plug at the end of the
billet helps to prevent any initial leakage of fluid. The surface of the billet of PMMA
has been treated in order to alleviate such processing problems as “stick-slip”. The
reader is referred to references [12] and [15] for a detailed description of the surface
preparation of the material and the set-up of the experimental equipment.

Our analysis of the extrusion process takes full advantage of the axisymmetry of the
geometry and boundary conditions. The finite element model for the case of a nominal
extrusion ratio of 2.5 is shown in Figure 2.2. The mesh of the billet (Figure 2.2) consists
of 8-node, reduced-integration, axisymmetric elements (ABAQUS type CAXS8R). The

elements are arranged three deep through the radius and are evenly spaced in the axial
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direction throughout the cylindrical portion of the billet. The elements in the plug
portion of the billet generally have greater axial spacing because they do not undergo
as large a deformation as the main portion of the billet. The length of the billet
modelled was chosen such that steady state was reached while a significant portion of
the billet still remained to enter the dic angle region.

The die is modelled as a stationary rigid surface with dimensions corresponding to
those of the experimental apparatus:

R, = exit radius = 0.0035m;

L = barrel length =0.20m;

ap = die angle = 15°.
Inteljface elements (ABAQUS type IRS22A) identify those sections of the billet which
may contact the die. As these sections contact the die boundary, a reaction pressure
is applied to prevent penetration of the rigid surface. To ease the convergence of
the abruptness of this contact problem, an exponential pressure-clearance relationship
(see ABAQUS User Manual, p.6.6.24-1) is defined such that the contact pressure is
gradually applied beginning at a distance of 0.0lmm from the die surface. Analyses
are conducted considering both a free-sliding interface between the billet and the die,
as well as assuming Coulomb friction between these two bodies. The results of these
two boundary conditions are later compared.

All nodes along the axis of symmetry are constrained to have no radial motion.
The nodes at the trailing end of the billet are constrained to have the same axial
displacement. A pressure boundary condition is applied along the trailing end and
side of the billet mesh to simulate the pressure-transmitting fluid. The pressure along

the side is gradually tapered to zero as the billet approached contact with the die (see
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Figure 2.2). The applied pressure is ramped from zero to a constant value over a time
period of 10 seconds. As the trailing end of the billet approaches contact with the die
angle region, the boundary condition is switched from one of constant pressure to one of
constant displacement rate at the trailing end of the billet. The constant displacement
rate applied is that previously obtained at steady state. This boundary condition
change is made at this point in the deformation in order to simulate the behavior of
an even longer billet of material. If this change had not been made and the same level
of pressure had been applied, the billet would have begun to move through the die at
a faster rate because there would be less material in contact with the die surface, and,
therefore, less resistance to the applied pressure. Since the rate of imposed deformation
has a strong impact on the material response, it is important to either keep the velocity
constant or uee a very long mesh.

The extrusion is carried out at a temperature of 90°C. Since the processing of
the material occurs at relatively low magnitudes of strain rate (~ 103sec™!), adiabatic
heating effects are negligible, and we can consider the material to deform under isother-
mal conditions while in the die. However, as the billet exits from the die, it enters an
environment at room temperature. After observing the large temperature dependence
of the behavior of PMMA as shown in the preceding chapter and reference [13], we
considered the temperature change upon exiting an important boundary condition to
model. A simple heat transfer analysis considering natural convection boundary condi-
tions was conducted to calculate a suitable temperature profile (Figure 2.3) modelling
the cooling down of the extrudate from 90°C to 25°C as it exits the die (see Appendix
C). Analyses for the case of an extrusion ratio of 2.5 are conducted using both this exit

temperature profile, as well as isothermal 90°C exit conditions. Effects of the exit
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temperature conditions are found to be important, and are discussed later in this

chapter.

2.3 Results

Our numerical analysis of the hydrostatic extrusion process accurately predicts the
end state and global response of the material as wiil be shown by comparisons of the
computed texture, back stress tensor, and pressure vs. steady state velocity with ex-
perimental results. The analysis also reveals many inieresting details of the material
behavior during processing while active plastic deformation is occurring. These include
the evolution of texture, as well as gradients in strain rate and pressure at different
points along the die. Below, we will discuss the response of the material to the pro-
cessing as it moves through the cone and barrel portions of the die as well as the final
state reached after exiting the die.

Three nominal extrusion ratios were analyzed: Ry = 2.5, 1.85, and 1.30. The billet
of ratio 2.5 was most extensively analyzed. For this case, both sliding and friction
interface boundary conditions between the billet and die were considered, as well as
unloading at the constant extrusion temperature, 90°C, and unloadiag as the extrudate
exits the die into a room temperature environment, thereby cooling down to 25°C. Both
the friction and cool-down effects were found to be important. Therefore, the billets
of extrusion ratios 1.85 and 1.30 were analyzed considering a frictivn interface with
the die and unloading into a room temperature envircnment. The billet of nominal
ratio 2.5 was also analyzed at two different levels of applied pressure to verify that an

appropriate increase in velocity is obtained with an increase in pressure.
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2.3.1 Die Swell

The results for the analysis of the billet of nominal extrusion ratio 2.5 with an applied
pressure of 65MPa are shown in Figures 2.4 - 2.6. The plots of the deformed biliet
at various points during the processing (Figure 2.4) illustrate the material moving
through the die with ¢he transitional or “plug” section undergoirg a lesser deformation
than the main cylindrical section of the billet. The cylindrical section is shown as it
begins deforming in the conical region of the die, and, then, as it reaches a relatively
uniform state of deformation in the barrel region where it experiences shearing along the
interface with the die. The material then exits the barrel and the processed deformation
partially unloads. This unloading is commonly referred to as die swell which is defined
as the fractional increase in the extrudate radius upon exiting the die.

The importance of the temperature boundary condition upon exiting is evident in
these plots of the deforming billet as shown by comparing the different increases in
radius upon exiting when cool down is, and is not, taken into account (Figures 2.4a
and 2.4b). When the extrudate is allowed to exit into an environment of constant
temperature, 8 = 90°C, a die swell of 30% is obtained. Whereas, when the extrudate
is permitted to cool down to room temperature upon exiting via the temperature profile
shown in Figure 2.3, a die swell of 9.5% is obtained. The higher deformation resistance
associated with the lower near exit temperatures resulted in the smaller computed die
swell. A die swell of ~10% was obtained experimentally [12], indicating the necessity of
inciuding the appropriate temperature boundary condition. Our numerically computed
die swell of 9.5% for the cool-down temperature distribution assumed is in very good
agreement with the experimental result.

One of the reasons for this effect of temperature on die swell is illusirated in the
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contour plots of plastic strain rate (Figures 2.5b and 2.6b). Comparing the rate contours
in the exit region of the extrudate kept at 30°C with that cooled to 25°C, we note that
the plastic strain rate for the 90°C case is four times higher than for the cool-down case.
This is due to the strong Bauschinger effect of the material. Figure 2.7 depicts the true
stress-strain curve for PMMA as it is homogeneously extended in simple tension at a
constant strain rate of 3(107%)sec™! to a stretch of 2.5 and then unloaded at this same
rate and at a constant temperature of 90°C, or with simultaneous cooling from 90°C to
25°C ata 6 = 1K /8ec upon unloading reaching 40°C at zero stress, the:. experiencing
a small contraction due to the additional 15°C temperature decrease. Reverse yielding
is shown to occur much earlier at the higher temperature leading to the higher plastic
strain rates at the die exit and subsequently a less oriented and, thus, softer material.
This leads to the larger degree of unloading in the 90°C case as compared to the cooled
down case.

The second reason for this effect of temperature on die swell is due to the elastic
thermal expansion/contraction of the material caused by a temperature change. Since
we have a decrease in temperature upon exiting the die, the material experiences a con-
traction of ag AG, where ag is the linear coefficient of thermal expansion which is equal
to 2.6(10"*)K~! at 8 < 6, for PMMA [21]. The overall temperature change of 65°C
gives a diametral contraction of 1.69%. The response occurs simultaneously with the
reverse yielding phenomenon described in the previous paragraph. This contribution to
the temperature effect on die swell is small compared to that of the reverse yielding as
it accounts for only 1.69% of the 20% difference in die swell. The stress-strain curve of

Figure 2.7 implicitly includes this thermal responze of the materiai as do our analyses.
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2.3.2 Strain Rate

The plastic strain rate contours also indicate where the active plastic deformation is
occurring. This is shown to be in the conical region of the die, with the strongest
concentration at the section where the cone meets the barrel. The intense deformation
occurring in this section is indicated by the strong concentration of rate contour lines.
As mentioned in the preceding paragraph, there is also reverse yielding occurring in
the exit region. These plastic strain rates are of an overall lower magnitude than those
in the conical region as shown in Figure 2.6b.

The plastic shear strain rate contours shown in Figures 2.5b and 2.6b are of an
order of magnitude cf 10~3sec™!. These results were obtained using 2 Coulomb friction
interface boundary condition between the billet and the die. A cocfficient of friction,
ay, of 0.20 was used in this analysis. This value is less than the value of 0.40 obtained
from experiments of PMMA against steel [22]. The lovrer value was used to account
for the lubrication due to the hydrostatic pressure inducing fluid. The lower value
was suggested [12] as being a more realistic value for the conditions of hydrostatic
extrusion. When friction effects are neglected and a free sliding interface betweer.
the billet and the die is assumed, the plastic strain rates are more than an order of
magnitude higher. For an applied pressure of 65MPa and extrusion ratio of 2.5, strain
rates of order 10~3sec™! are achieved in the experiments as inferred by the die geometry
and resulting exit velocity. This indicates the importance of including the friction
boundary condition in order to obtain the appropriate rate effect in the analysis. This
effect can also be observed by comparing the extrudate velocity obtainad for different
applied pressures. For the applied pressure of 65MPa, the exit velocity calculated

considering a freely sliding interface was ~60mm/min while for a frictional interface
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(ay = 0.20), it was ~3mm/min. The corresponding experimentally recorded value was
between 1mm/min and 2mm/min. For an applied pressure of 75MPa, the calculated
exit velocity considering an identical frictional interface was ~15mm/min, while the
experimentally recorded value for this pressure level was approximately 6mm/min.
Both the a'.alysis and the experiments show the velocity at 75MPa to be approximaiely
five times greater than that at 65MPa. The discrepancy between the absolute values
of the numerically obtained pressure-velocity pairs and those obtained experimentally
is primarily due to the low value of the coefficient of friction used in the analysis. The
use of a slightly higher value for ay may bring the calculated velocities closer to the

experimentally observed values.
2.3.3 Texture

In their experiments, Kahar, et al. [15] made several measurements to quantify the
resulting texture in the material: the actual draw ratio, the shrinkage stress, and the
birefringence. The actual draw ratio, which differs from the nominal ratio due to
die swell, can be predicted from the axial (2,2) component of the plastic deformation
gradient, F},, of our model. Figure 2.6c shows a contour of F}, at one point during
the processing. In the barrel seciion, the draw ratio of 2.5 is correctly predicted.
Upon exiting, F], begins to decrease, reaching a value of 2.05 which corresponds to
a die swell of 9.5%. This value, which was discussed earlier, was found to agree well
with the experimentally observed die swell of ~10% which corresponds to an actual
extrusion ratio of ~2.025. Kahar, et al. found their other two texture measurements,
the shrinkage stress and the birefringence, to be directly proportional to one another.
The shrinkage stress measurement and its relationship to the back stress tensor of our

constitutive model are discussed below.
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Amorphous polymers, after large deformations at temperatures below their glass
transition temperature, are known to recover their initial undeformed shape when un-
constrained and heated to © > 8,. A set of forces would be required to retain this
deformed shape if heated to © > O, (see Figure 1.6). These forces correspond to the
back stresses of our model. Kahar, et al. measured the axial component of this force on
their extruded samples. This “shrinkage stress” was measured by taking a thin slice of
the extruded material, attaching it to an Instron load cell, immersing it in an oil bath
at a temperature ® = 116.5°C, where ©, = 110°C, and recording the resulting force
vs. time. The (2,2) component of the back stress of our model is directly comparable
to this shrinkage stress measurement.

Before making the comparison between our back stress and Kahar’s shrinkage stress,
we note that such an experimental measurement is fraught with problems. The first
problem is to separate out that part of the measured stress due to the thermal expansion
of the material which occurs while in the test machine grips and heated to & = 116.5°C.
Kahar, et al. claim to have accounted for this effect in their experiments. However,
if we consider the thermal expansion, the “locked-in” stretch of the material, which
is held constant during the test, becomes partly due to expansion and partly due to
molecular alignment. Therefore, the stretch due to alignment is less than the observed
stretch by an amount equal to [ aed® = 2.6% where ag = 2.6(107¢) for © < @,
and ae = 5.8(107*) for 8 > 8,. This would have the net effect of lowering the back
stress for that total amount of stretch. A second problem with this measurement
is encountered by making the measurement on a thin slice of the extruded sample.
Cutting a thin slice of the material would possibly relieve the residual stresses existing

in the extrudate. The residual stress state is commented on latc: and is shown to be



axial. In the extrudate, these stresses satisfy equilibrium and, also, act to balance the
existing back stresses to give a zero net plastic strain rate after steady state is reached.
If these stresses are relieved, the existing back stresses would then be free to further
relax. This again would lead to a lower measure of the back stress. Due to these
difficulties, the shrinkage stress is not an accurate measure of the internal resistance
of the material. However, it does provide an estimate of the resistance that is worth
comparing with our back stress calculation.

Our numerical results of the back stress component and Kahar’s experimental re-
suits of the shrinkage stress measurement are listed in Table 2.1 for the three extrusion
ratios of 1.3, 1.85, and 2.5. Our bark stress tensor ig a deviatoric measure only. Since
the experiments measure both the deviatoric and dilatioral components, i.e., uniaxial
tensile stress, we must first multiply the shrinkage stress by § in order to make the
comparison with our numerically computed back stress. For the low extrusion ratio
of 1.3, good agreement is attained between our calculations and experiment: 3.2MPa
vs 1.8MPa. At the higher extrusion ratio of 1.85, the back stress component was pre-
dicted to be somewhat higher than that actually observed: 7MPa vs 3.0MPa. These
discrepancies are due, in part, to the measurement difficulties discussed above as well
as to the fact that these particular extrusions were conducted at low strain rates of
order 1073sec™!. Our constitutive model currently neglects a certain low strain rate
phenomenon which affect the back stress. This phenomenon is discussed in Chapter
One and will be briefly elaborated on here. At lower strain rates, there is enough time
for a noticable amount of entanglement drift to occur which acts to increase the effec-
tive locking stretch of the material. A larger locking stretch will result in a lower back

stress at any fixed imposed level of stretch. Therefore, due to this low strain rate
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TABLE 2.1
Back Stress Results

Nominal Bz;  Shrinkage Stress [15]
Extrusion Ratio MPa Measurement, MPa

1.30 3.2 2.7
1.85 7.0 45
2.50 16.0 N/A
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phenomenon, the network locking stretch becomes effectively larger as plastic strain
accumulates with time, making the actual back stress (the measured shrinkage stress)
at any fixed level of total deformation lower than that which would be predicted had
the process been conducted at a higher rate with a “fixed” locking stretch. Therefore,
our computed back stress will be somewhat higher than the actual back stress for
these low strain rate extrusions. This is also apparent in Figure 1.7 where the model
over-predicts the experimentally obtained stress as larger strains are approached for
the low strain rate curves. Also, the measured shrinkage stress is somewhat lower
than actual due to the thermal expansion and residual stress relief effects discussec
above. All of these effects are enhanced with increasing stretch which explains why
we oL tain somewhat better agreement at the lower extrusion ratio of 1.3. A shrinkage
stress measurement was not available for the ratio of 2.5. However, from the above
trend, we can deduce that the numerically computed back stress of 16MPa probably
overestimates what would be experimentally measured. Shrinkage stress measurements
from extrusions conducted at higher strain rates were not available. For the reasons
discussed, our model should give a better assessment for the back stress tensor in a
material processed at the higher strain rates.

The evolution of the back stress as the material moves through the die is also
interesting to observe. As shown in Figures 2.5d and 2.6d, the back stress begins to
develop in the conical region of the die when the material begins deforming. As the
material moves through the barrel, a larger back stress develops in the material nearest
the die. This is due to the additionai surface deformation imposed by the frictional
interface with the die. However, we see that as the extrudate exits the die, the material

recovers from this effect, and a uniform state of texture is reached demonstrating the
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viscoplastic response of the material.

2.3.4 Residual Stresses

A residual stress state is often found to exist in a processed material. This is the
case for the PMMA extrudate. There are only negligibly small residual radial, hoop,
or shear stresses in the extrudate. However, there does exist a large residual axial
stress distribution. Figure 2.8 depicts the axial stress along the center of the specimen,
the mid-radial section, and the specimer. surface during active processing and after
unloading. Peaks in the axial stress occur at the die angle/barrel intersection and the
die exit due to the changing geometry. We observe compressive axial stresses along
the centerline while the billet is in the die. Upon exiting the die, the centerline axial
stress becornes tensile. The reverse is true for the surface where a tensile axial stress
occurs in the die and a ccmpressive axial stress after exiting the die. We also note that
the modelling of the unloading of the specimen is critical in determining the correct
residual stress state. Therefore, the exit temperature conditions are important in this

step of the analysis as well as in determining the correct die swell.

2.4 Conclusion

In this chapter, we have analyzed the hydrostatic extrusion of PMMA using the consti-
tutive model of Chapter One which describes the large inelastic defermation of glassy
polymers. This particular warm deformation process contains many of the conditions
which exist in polymer processing in general and which have a strong impact on the
material behavior: time, temperature, pressure, and large imposed deformations. How-

ever, this process was still simple enough to be able to perform suitable quantitative
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measurements of these effects. Our numerical results for the quantities of die swel!
strain rate, pressure vs. velocity, and shrinkage stress were found to satisfactorily pre-
dict those same quantities measured in the experiments of the Leeds University group.
It was argued that even better agreement with such a low strain rate experiment could
be obtained had the additivnal relaxation phenomenon of entanglement drift been in-
corporated into the model. This could be done at a future date. We can concluc tlat
our constitutive model can be used with confidence as a predictive tool in the znalysis
of warm deformation-processing of glassy polymers. In a complicated process, it is
often not possible to monitor such items as effects of rate, temperature, pressure and
developing texture on the material response, yet knowledge of these quantities may aid
in determining the service life of the resulting product. Analyses using our constitutive
model would prove very valuable in such a case. Alorg this line of discussion, it would
also be of interest to analyze a pre-textured product’s response to loading, i.e. the dis-
tribution of texture in the product is known a priori via an experimental measurement

such as birefringence. This effect is discussed in the next chapter.
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Chapter 3
PREORIENTATION

A product often possesses residual texture which was either incidentally or deliberately
acquired during its processing history. This was illustrated in the preceding chapter in
the example of the PMMA material sample which was purposely oriented via hydro-
static extrusion. A polymer is frequently preferéntia.lly oriented in order to increase its
yield strength in specific directions. Examples include the production of high strength
fibers in the textile industry and biaxially oriented films in the packaging industry.
The response of the textured solid to normal service life loading conditions will differ
considerably from that of a product composed of isotropic material. In order to ac-
curately predict the behavior of a textured polymer, a physically sound constitutive
model is need=d. Here, the model of Chapter One is modified to include the effect of
preorientation on subsequent material response. The modified model is then utilized
in an analysis of the effect of texture ou voth homogeneous and localized flow in glassy
polymers. These results are compared with trends found by experiments as reported

in the literature.
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3.1 Moeodelling Texture

Texture affects both the elastic and the inelastic response of a polymer. However, at
large deformations, the effect of texture on the inelastic response far outweighs that on
the elastic response especially for amorphous polymers. Hadley [24] has summariz.d
the effect of orientation on the small strain elastic properties of polymers. He reports
that, whereas the compoient of the elastic modulus tensor which relates the applied
stress to strain in a simple tensile test, i.e. the Young’s modulus for the isotropic case,
of some semi-crystalline polymers may increase by as much as an order of magnitude at
large draw ratios, the largest increase in the modulus of amorphous polymers was found
in PMMA and was only 30% [25]. This increase in elastic modulus with orientation is
very small compared to the effect of hardening at large strains and will be neglected in
this model for large inelastic deformations. Therefore, for the purposes of this work,
only the effect of texture on the inelastic response of the material will be incorporated
into the constitutive model.

The effect of texture, i.e., preorientation, on the inelastic response of the material is
examined by first considering the effect it has on the two dcformation resistances of our
model: the intermolecular resistance and the entropic resistance. The intermolecular
resistance is intimately related to the elastic moduli. Since we are neglecting the effect
of pre-orientation on the elastic properties of the material, we can agssume the effect of
texture on this first resistance is minimum, and, therefore, negligible. However, we will
want to implicitly include effects on this resistance of any aging that occurs subsequent
to texture-producing processing. This will be discussed later. The effect of texiure on
the directional entropic resistance is considerable. It is this resistance that is directly

correspondent to the permanent shape change of the material.
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Texture may be thought of as an initial permanent shape change which has assc-
ciated with it an initial entropic resistance. Therefore, before plastic flow comr aces
in a textured polymer, in addition to the intermolecular resistance, an initial entropic
resistance must also be overcome. This is why we see elevated levels of tensile “peak
yield” stresses in the direction of principal orientation of polymers. The effect of texture
on the polymer’s inelastic behavior through its impact on the deformation resistances
should now be conceptually clear and will now be incorporated into the constitutive
model.

The incorporation of preorientation into the model described in Chapter Gne may
be accomplished by first considering the deformation of an initially isotropic body and
then considering the similar deformation of an initially oriented body. These deforming
bodies are schematically illustrated in Figures 3.1 (a) and (b). The various deformed
configurations are described by their appropriate deformation gradients. For the case of
the initially isotropic body (Chapter One), the configuration « . the undeformed body,
By, may e described by the idenity tensor, I, indicating no texture in the body. This
body is then loaded to a new state, By, and its deformed configuration may be described
by the deformation gradient at this time, F;. If the body is now unloaded to a stress
free state without rotation as described in Chapter One, the unloaded configuration
may be described by the plastic defornation gradient, Ff. The velocity terms, i.e. the
rate of deformation and the spin, from these various configurations are also depicted
in the figure. Considering the same loading steps in an initially oriented material, we
see the initial configuration of the body, By, may now be represented by the tensor
V¥ which describes the initial texture of the body. This body is now deformed via F,,

where Fy describes the applied deformation and can be thought of as a deformation
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Figure 3.1. éag Deformation of an initially isotropic body.

b) Deformation of a pre—oriented body, where the

initial texture is described by V.
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relative to the preoriented state, and its new configuration may be described by I, V.
When the body is unloaded, the resulting configuration is F{V*. Therefore, the initial
texture V' may be interpretted as an initial plastic stretch tensor. The initial condition
of texture is incorporated into the model as an initial plastic deformation gradient.
The numerical integration of the original model is described in Appendir A. The
effect of the initial condition on this integration is briefly detailed below. The variables
are updated by converging on F}, .,. The essential equations for the initially isotropic

body are summarized below:

Fliae = F} + DI, o FFy 0O (a)
F} = QuwF%; (5)
Qaw = [I- JWAL I+ 1WAt (c)
Diiac =1 +AlT:+At/ V2riia (d) (3.1)
Tiiae = Terar = §o 0 FiraBrraFing ()
Biar=f (F f+A¢) . (f)

When the initial condition of texture is included, these equations become:

Fi aV'i= F Vit Df AP A VAL (a)

Df+At = 7’+AtTt+At/ \/_7¢+Ah (b) (3 2)
Tt+m = T¢+At J, AgFH-AlBH'A‘Fl+AH (c) '
Bitat=f (F ¢+Acv' ) (d)

It ir noted that, for this case, Df+ ot is the rate of change of shape of the configuration
described by the kinematics F§, ., and is in the direction prescribed by T* = T’ —
(3F*BF*)' where B is a function of the tensor F%, ,,V*. It ig also worth pointing out
that V¥ is invertible and, therefore, both sides of equation (22) may be post-multiplied

by [V¥]™! to give:
[Ff+m] = [QHWF { +Df A Fh, A,At] . (3.3)

This shows that the purely kinematic decomposition ¥y ¢ = F§, 5,F5, 5, is updated

just as in the case with an initial isotropic state except that the tensor D}, As» although
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the rate of shape change of the configuration F}, a0 accounts for the resistance due
to the initial texture, V¥, as well as subsequent texturing from F}, ,,. The numerical

integration procedure is not encumbered by the incorporation of an initial texture.

3.2 Effect of Preorientation on Material Behavior

A polymer’s homogeneous and localized flow behavior are both altered by the existence
of any initial texture/pre-orientation in the material. During homogeneous deforma-
tion, the stress at which active pla:ic Aow begins iz affected by both the degree and
the orientation of the initial texture. This behavior is examined below with simulated
tensile tests. Polymers are also known to exhibit “shear banding”, highly localized
regions of straining, during plastic flow. Experiments (26, 27, 28] have shown that
the direction of shear banding in polymers is affected by the degree and orientation of
texture in the material. This behavior is also examined with our model and simulated
tensile t2sts. The numerical results are compared with behavior trends reported in the

literatu re.

3.2.1 Homogeneous Behavior

The effect of orientation on the flow behavior of a homogeneous polymer is now exam-
ined. Figure 3.2 depicts the true stress-stretch curve of an initiaily isotropic amornhous
polymer which is loaded, unloaded, and then reloaded without allowing for aging in s

simulated plane strain tensile test!. The effect of the initial loading, which orients

!For illustrative purposes, the material constants obtained for the isotropic PMMA material of Chapter
One are used in the numerical analyses of this chapter.
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the material, upon the stress ievel at which subsequent plastic flow commences is ap-
parent upon reloading. It is an oriented, unloaded s?~te such as this that is now our
starting point. We first take a brief look at some experimental results from tensile
tests on oriented polymers. Secondly, we discuss an anisotropic yield criterion which
has been applied to these polymers in the past. Finally, using the constitutive model
described earlier, we analyze plastic flow in an oriented glassy polymer under both uni-

and biaxial loading conditions.

Previous Work

Tensile tests on thin “plane stress” type specimens of oriented polymers have been
conducted by Rider and Hargreaves on amorphous polyviny! chloride (PVC) [27, 35],
by Brown, et al. on semi-crystalline (nearly amorphous) polyethylene terephthalate
(PET) (28, 37], and by Duckett, et al. on semi-crystalline polypropylene (PP) [29].
The initial texture of these test specimens may be described by the principal stretches:
A1 = A, A3 = Ag = 1/V/X, where A is often called the initial draw ratio (IDR). The
orientation of the texture of a specimen when tested in simple tension is given by its
‘nitial draw direction (IDD) which is the angle, 0, that the first principal stretch makes
with the teusile axis (Figure 3.3). Results of the yield stress ? of the above materials
with given IDRs as a function of IDD when tested in tension at a fixed displacement rate
are shown in Figure 3.4. These materials exhibit a significant drop in the peak stress
as the principal stretch ratios leave the tensile axis followed by a gradual levelling off of
this stress after an IDD of approximately 60°. Brown, et al. and Rider and Hargreaves

then used their data to determine the coefficients for Hill’s yield criterion for anigotropic

3Here, we use the term yield stress to describe either i) the peak stress before softening, if softening
occurs; or, ii) the stress at the point where the tangents to the elastic and hardening portions of
stress-strain curve intersect.

80



TENSILE

AXIs
A SBD
ol
’_\ 100
) /

Figure 3.3. Schematic of a pre—textured tensile specimen. The angle
between the tensile axis and the initial draw direction IDD)

is given by ©. The angle between the tensile axis and the
shear band (SBD) is given by a.
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materials [38] which is discussed next.

A criterion for yield for materials which have been preferentially oriented, e.g. by
strain hardening, such that they retain three mutually orthogonal planes of symmetry
has been proposed by Hill [38]. The yield surface, which reduces to the Mises yield

surface when anisotropy vanishes, is given by:
F(oyy - a;.)’ + G(05s — i) + H(022 — o-w)z + 2Laz, + 2Mo-§g + 2Ng§u = 1,(3.4)

where o;; represent the stress components, the directions x, y, and z represent the three
mutually - sthogonal planes of symmetry, and the constants F, G, H, L, M, and N rep-
resent the square of the inverse of the yield strength under the appropriate normal and
shear loading conditions. Hill’s criterion requires identical yield points in tension and
comp;'ession. This criterion was applied to the PET and PVC experiments discussed
above. The symmetry of the pre-orienting process where the resulting principal stretch
ratios were as given earlier: A, = A, A, = A, =1/ v/, implies that the Hill coefficients
G and H are equivalent. Due to the loading in these experiments, values for I and
M are not required. Constants for the three remaining Hill coefficients F, G, and N
were obiained with the data from the 0°, 45°, and 90° IDD tests. The resulting curves
were found to predict the yield at all IDDs very well. These investigators noted that
oriented PET and PVC behave differently in tension and compression, exhibiting &
Bauschinger effect as well as pressure dependent yield. These effects are not accounted
for in the Hill Criterion. Therefore, both Rider and Hargreaves and Brown, et al. mod-
ified the criterion to include a scalar internal stress, or back stress, b, which lumps the

Bauschinger and pressure effects together. The modified criterion reads as follows:

H(U“—b—dyyr+F(0'w—‘0")’-’{-(;(0’"—'Uu+b)2+3N0:,+2L03,+2M025 = 1.(3.5)

z
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Brown, et al. also conducted tests in simple shear on their material. The modified
criterion was found to give good agreement with the shear data as well as the tensile
data. We note that the material constants F, G, N and b are for a given initial draw
ratio, as welil as at a given strain rate and temperature. Once these material constants
have been evaluated for the desired IDR, yield can be predicted for 2 multiaxial state
of stress for a material with that initial texture. As an example, we obtain the biaxial
yield loci at various IDDs for PVC at an IDR of 3.7, a temperature of 25°C, and a

displacement rate of 1 cm/min where the gauge length was 8 mm. The constants are

given as F = 2.4(107?) 5%, H = 0.41(107%) 21", N = 4.8(107%) %%, and b = 4.0.11;
[27]. The calculated yield loci are shov/n in Figure 3.5. If one is relying on this yield
criterion to predict the yield bzhavior as a function of the initial texture in the material,
a matrix of the material parameters F, G, H, L, M, N, and b must be assembled by
conducting numerous experiments at every IDR. Furthermore, these coefficients are
valid o.ly for cases of stretches in ratio A:VIS:Z}K‘ Below, we Jdiscuss the prediction
of uni- and multi-axial yield of oriented glassy polymers with the constitutive model

of this thesis which is based on :naterial properties from a set of experiments on the

material in the isotropic state alone.

Constitutive Model Results

Here, we simulate plane strain tensile tests on oriented PMMA where the initial
texture was obtained, for exanple, via a plane strain extrusion process, such that the
texture may be described by the priucipal etretch ratios: Ay = A, Ay - 1/A, and Ag =
1.0, where A is the IDR. We measure the effect the amount of texture and the orientation
of the texture have on the flow behavior of the material by “testing” samples of various

initial principa! stretch ratios in uniaxial tension and biaxial tension/compression at
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Figure 3.5. Biaxial yield locus for PVC in the isotropic
state and a. an IDR of 3.7 and 1DDs of = 0° and 90°
as computed with the Mises criterion (isotropic state) and
Hill criterien with Rider and Hargreaves experimental data.
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8 nui...2r of different IDDs. The samples of material are assumed to have been given
enough time to have aged after their initial processing and prior to their tensile testing.
This means that any softening that cccurred during the processing which produced the
textured material has been negnted (see section 1.2.4). This is reflectcd in the model by
using an appropriate initial condition on the intrinsic yield strength. Here, we sssume
the materiai to be fully aged, so the value for sy of the initially isotropic material is
used. Therefore, the material again softens. The orientation and texture effects are
examined by comparing the stress state at which the material begins to flow at a fixed
temperature and strain rate.

For the case of plane strain tension, we corapare the peak flow stress prior to
softening of the IDRs of A = 1.0, 1.5, 2.0, 2.25, and 2.5, where the locking stretch of
the material is A\ = 3.0, over an orientation range of § = 0° to 4 = 90° and at a constant
normalized displacement rate of 0.91 sec™! and 2 constant temperature of 25°C. A one
8-node plane strain reduced integration element (ABAQUS type CPE8R) model was
used in the simulation. The boundary conditions (see Figure 3.6) consisted of fixing
the nodes along the bottom of the mesh in the y-direction, the center node of both
the top and bottom surface was fixed in the x-direction, and the nodes along the top
surface were displaced in the y-directior. as the loading condition. Before continuing,
we note here that such homogeneous deformation does aot actually occur in these
materialg after yielding because of the large tendency for deformation to localize. This
is discussed in the next section. We aduct these tests to obtain the values at which
plastic flow tegins at a given strain rate as a function of IDR. and IDD. ‘The computed
peak stresses as a function of IDR and JDD are plotted in Figure 3.7. The impact of

orientation i3 found to increase greatly as we approach initial textures near the locking
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Figure 3.6. Finite elemeat mesh with boundary conditons for
plane strain tensile test simulation.
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regime, i.e. at stretch ratios greater than 2.0. This, of course, is due to the dramatic
increase in the back stress as the locking stretch is approached. We also note that
these curves pass through the isotropic “yield” point prior to an orientation of 45°.
By examining the :low condition for plane strain tension at a fixed strain rate and
temperature and neglecting pressure effects, we see the back stress acts to decrease the
flow stress for the case of plane strain prior to an IDD of 45°. We approximate 7 to be

(3(T* - B)?)%, where:

00O
T =000 (3.6)
00 -%
and
cosf stn@ 0 —-b 0 0 cosf -—sinf O
B = —stnf cos§ C 0 b 0 sitnf cosé O | (3.7)
0 0 10 00O 0 1
The flow condition is:
_ €, Yo,
r—s[l—-z—;ln$] , (3.8)

which is constant for a ziven strain rate and temperature. The athermal shear strength,

8, is taken to be s5. Incorporating equations (3.6) and (3.7) into (3.8) gives:
1 . . . .
Zaz + b*(cos?8 — 5in?0)? — bo(cos* — sin’8) + 4b%sin’dcos*d = 1. (3.9)

For the case of © = 45°, the tensile flow stress is ¢ = 24/72 — b%. Therefore, at an IDD
of 45°, the flow stress will be less than the isotropic stress. This decrease in flow stress
increa~es with IDR as shown in Figure 3.7. These ziodel results for the larger stretch
ratios compare well with the trends found in tlie experiments discussed earlier.

As an exercise, we found it interesting to take the set of the above simulations for

the IDR of 2.5 past yield tc a nominal strain of 30%. The engineering stress-strain curve

89



for the IDD range of 3° < © < 90° are shown in Figure 3.8. These curves illustrate the
strong dependence of material response on orientation for not only the initial flow stiess
but, also, all subsequent behavior. We compared the engineering stress-nominal strain
curves rather than the true stress-strain curves because, even with this supposedly
“homogeneously” app!ied deformation the material is unable to respond as such when
aligned off-axis because of its asymmetry. This response is clearly seen in plots of the
deformed one-element mesh over the tested IDD range (Figure 3.9). Those cases with a
principal stretch parallel with the tensile axis, i.e., the material is symmetrically aligned
with respect to the tensile axis, deform in homogeneous tension. When the material is
initially aligned off-axis, the solid shears as well as deforms in tension. In other words,
with this one element model, we are picking up the inherent tendency of the material to
localize into shear bands without any effort to initiate localization. This phenomenon
is discussed in greater detail in section 3.2.2.

This same “material” is examined under biaxial loading conditions for various IDRs

1 and

and IDDs. Biaxial yield loci are computed for a fixed shear strain rate of 0.01 sec™
temperature of 25°C with and without pressure dependence of flow in order to better
illustrate the prcorientation dependence alone. The biaxial yicld lecus {or isotropic
PMMA with and without pressure effects (Figure 3.10) is used as a base for comparison
of crientation effects on the yield loci. This diagram shows the effect of pressure on
the yield surface where the solid withstands larger stresses under compressive loading
than under tensile loading before yielding. PMMA is particularly pressure sensitive
with o, = 0.2 as reported earlier in section 1.4.2. The effect of material preorientation

on the yi=ld locus is illustrated in Figures 3.11 - 3.14 for th IDR of 2.0, 2.25, 2.5, and

2.60, respectively. We observe a small effect at the low IDR of A = 2.0 and a noticably
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larger effect at the higher draw ratios. Aligning the IDR with the ‘t'11 or T22 axis causes
the yield locus to move along the corresponding axis of alignment without changing
size. This demonstrates the kinematic hardening response of the model. Orienting the
IDR at an off-axis angle, i.e. 0° < § < 90° shifts the yield locus along both stress
axes a3 well as shrinking the locus in size. The shifting and shrinking of the locus is, of
course, eymmetric about the § = 45° orientation which has the smallest locus. Pressure
affects the yield loci of the oriented material just as it did the isotropic material, slightly
elongating each locus and shifting it towards the bottom left quadrant of the plot where
the compressive stresses are highest. The orientation effect on the peak yield stress of
uniaxial tests may be extracted from these plots by identifying the value along the T22
axis of the pressure dependent loci for each IDR and IDD. These values correspond to
those reported in Figure 3.5. The biaxial loci illustrate the dramatic effect of both the
initial texture and orientation of texture on the flow behavior of amorphous polymers
under a multiaxial stress state. Qur model! also applies to any triaxial loading condition.
However, the effect is easier to demonstrate as well as visualize in two dimensions as
done here. Recall that the biaxial yield loci were a a fixed strain rate and temperature.
The material model includes these effects and, therefore, can handle more general and
inhomogeneous loading conditions. This is done below by investigating the effect of

orientation on shear banding in glassy polymers.

3.2.2 Localized Flow

Many different types of materials are known to experience shear localization during
plastic flow. The occurrence of this phenomenon in ductile metals, single crystals, and

geological materials has been reviewed by Rice [30]. Shear localization is a phenomenon
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Figure 3.11. Biaxial yield locus for oriented PMMA, R=2.0, at

fixed strain rate = 0.01 and for various orientations with
the 2 axis, with (b) and without (a) pressure dependence.
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Figure 3.12. Biaxial yield locus for oriented PMMA, R=2.25 at
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which is of great interest to study because it affects such a broad spectrum of materials
and can have a marked impact on all subsequent deformation in the material, often
leading to fracture. An analytical solution for the conditions necessary for localization
to occur and the directions along which the resulting bands will propagate has been
obtained via a bifurcation analysis for various isotropic material models for the rate-
independent case [30, 31| and a linear perturbation stability analysis for the rate-
dependent case [32]. Finite element analysis may also be used to predict the direction of
shear banding after artif'cially initiating localization with either a material or geometric

imperfection [33].

Localization in Pre-Oriented Polymers

Experiments on pre-oriented polymers have shown that shear localization is affected
by both the degree and orientation of the material’s initial texture. This effect has
been examined experimentally by Duckett [26] and Brown and Ward [28] in the fully
oriented semi-crystalline polymer PET below its ©,, by Duckett, et al. [29] in the highly
oriented semi-crystalline polymer PP above its 6,, and by Rider and Hargreaves [27]
in the amorphous polymer PVC. In these experiments, textured polymers were tested
at various IDDs (and various IDRs for the PVC case) in simple tension. The resulting
shear band direction (SBD) was recorded. This direction is given by the angle a shown
in Figure 3.3. The experiments on the semi-crystalline polymer sheets showed the SBD
to be closer to the tensile axis than the IDD except for IDDs of # < 16° in which cases
shear banding wae difficult to observe, i.e. homogeneous deformation was cbtained.
These results are shown in Figures 3.15 and 3.16. Rider and Hargreaves’ piots of the

SBD as a function of IDD of PVC at various draw ratios are shown in Figure 3.17.
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The data is from tensile tests on thin sheets which have been oriented such that the
principal stretch ratios are given by: A} = X, A3 = Ay = 1/‘/5 This experimental
data indicate that the SBD depends on the specific material, the initial draw ratio, and
the orientation. As the IDR increases, its impact on the direction of shear localization
with orientation becomes stronger, especially as the locking stretch ratio is neared.
This shows that the SBD is dependent on both material and IDR, i.e. the effect of
IDR on the material response is relative to the locking stretch of the specific material.
We can see these effects in the amorphous PVC data where the IDR has a very large
impact on the SBD as a function of orientation. Figure 3.17 shows that at a low IDR,
the SBD is not significantly impacted by the IDD, and the SBD becomes a strong
function of thg IDD as the IDR increases and approaches the effective locking stretch
of the material.

These investigators [26, 28, 29] have been able to analytically predict the direction
of shear banding in these polymers with reasonable accuracy by using Hill’s anisotropic
theory of yield and the Levy-Mises equations for plastic straining modified for an

anisotropic material with orthorhombic symmetry. These equations are given by:

det, = [H(0we — 0yy) + Gl0ne — ou)JdA,
dej, = [F(0yy ~ 04s) + H(oyy — 0::)]dA,
de?, = [G(Oss — Ore + F (0,5 — 0yy)]dA,
dvi, = Noy,dA,

(3.10)

where dcf,. is the plastic strain increment, o;; is the stress, and dA is a constant, and
x is the direction parallel to the IDD. For the experimental tensile tests, we had G=H

and o,, = 0. Thus, these equations reduce to:

dé?, = [2Go,, — Goy,|dA,

deéb, = [(F + G)o,y — Go.,]dA,
de, = —[Go,, + Fo,,|dA,
dvey = No,,dA.

(3.11)
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To determine the SBD from these equations we assume that all active plastic deforma-
tion is concentrated within the shear band. Therefore, the shear band direction must
be common to both the plastically deforming material within the band and the less

intensely deforming bulk of the specimen. This requires a zero value for the normal
component of plastic straining in the direction of the band. Equations (3.11) written

in a frame rotated an angle 8 from the IDD become:

dé?, = deb cos’f + deb sinB + 2d~E sinfcosp,
des, = deb sin’p + deb cos®p — 2d~E, sinfcosf,
dggl = de:"

d¥?, = —(def, — deb,)sinfcosf + drE, (cos® B — sin®p).

If we say ( defines the angle of the shear band, then dé?, must equal zero. This gives

(3.12)

the following quadratic equation for the tang:
def tan?B + 2d~? tanf + deb, = 0.0. (3.13)

Therefore, we obtain two directions for the formation of a shear band. These predicted
directions agreed well with the experimental data and were further improved upon
by using the Hill criterion as modified with a scalar back stress which was described
earlier. We emphasize that using this method requires experimentally obtaining the
Hill coefficients and the scalar back stress at each draw ratio. In the analysis below,
we compute the effect of texture and orientation on the direction of subsequent shear
localization in an oriented glassy polymer with a model based on its isotropic behavior
and given its initial draw ratio and direction. The model does not require any further
property measurements on the orienied polymer itself.

Once the material has localized and a prominent shear band forms, the material
within the band reorients toward the tensile axis. This ;- henomenon has been observed
in PET [28], PP [29], and PVC [36] by examining the deformed material with a polariz-

ing microscope. The extinction direction corresponds to the max refractive index which
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is parallel to the principal draw direction. The extinction direction in the band was
found to be different from that of the bulk material. The extinction direction within
the band rotated from the IDD towards the tensile axis by an angle (6 — 8), where 8
is the angle the principal draw ratio within the band now makes with the tensile axis.
The experimental results for the semi-crystalline polymers PET and PP are listed in
Table 3.1. This data shows that the material within the band reorients towards the
axis. Brown and Ward also had additional results showing that the greater the e mount
of applied tensile deformation, the greater the amount of reorientation. This was more
clearly demonstrated by Rider and Hargreaves in their results on PVC shown in the"
plots of Figure 3.18. These plots show the orientation of the material within the band
with respect to the tensile axis, 8, as a function of the applied nominal stretch ra-
tio. We note that the local stretch in the shear band would be much greater due to
the localization of the deformation in the region. The orientation at A = 1.0 is the
IDD. These results indicate the material within the band continues to reorient as it
is stretched until the orientation direction is parallel with the tensile axis. Rider and
Hargreaves results also demonstrate that the reorientation occurs faster, i.e. at lower
stretch ratios, when the IDR is smaller. This, of course, is due to the fact that there
is less re-orienting to accomplish. Our analysis below will examine the phenomenon of

reorientation with the shear band.

Numerical Simulation of Localization

The case of a plane strain tensile test of oriented PMMA at room temperature is
analyzed here using the constitutive model of Chapter One as modified in section 3.1.

We are interested in obtaining the effect of material orientation on the direction of
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Figure 3.18. Rider/Hargreaves experimental results for
material orientation within shear band as a function of

stretch for (a) IDRs of 5.0 and 1.5 given an

IDD of 45°,

and (b) IDRs of 7.5 and 2.9 given an IDD of 64°
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shear banding in amerphous polymers. A relatively coarse mesh of 4-node plane strain
eiements (ABAQUS type CPE4) is used in the finite element analysis. This element
is the Nagtegaal, et al constant dilation 4 nnde element where the shear and pressure
terms are integrated separately to prevent “locking” of the mesh. We note that a
sharper shear band would be picked up with a finer mesh and/or a mesh of quadrilateral
elements composed of constant strain triangle (CST) elements. The element size defines
the minimum possible thickness of the band. Therefore, an analysis with a finer mesh
of 4-node elements could result in a narrower shear band. The shear band will form
along element boundaries. The CST mesh formation provides a greater freedom for
the deformation to localize because of the larger number and direction of element
boundaries. If one is interested in obtaining a narrow band, and the direction of
the band is known a priors, then one could tailor a CST mesh to accurately pick up
the localized straining. For the purposes of this analysis, the coarse unbiased mesh of
quadrilateral elements shown in Figure 3.19 will suffice in the prediction of the direction
of shear banding. However, it may result in an artificially broad shear band.

For the case of plane strain tensile testing of a preoriented polymer, the problem
becomes asymmetric with respect to the tensile axis when the principal direction of
orientation is aligned at some angle with respect to the tensile axis. This was shown in
the discussion on the simulation of “homogeneous” deformation of oriented polymers.
The asymmetry of the problem permits a model of one-half of the test specimen to
be used with appropriate boundary conditions. The asymmetry is due to the material
orientation. This condition is enforced by constraining the nodes on the bottom of the
mesh on either side of the specimen center to displace in equal and opposite x and y

directions. Due to the material orientation, shear band formation in the central portion
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Figure 3.19. Finite element model of one-half of a plane strain

tensile test specimen. Boundary conditions consist of constraining

nodes on either side of the specimen center along the bottom surface

of the mesh to displace in equal and opposite x— and y-directions. The
nodes along the top surface are constrained to remain on a straight line.
The top center node is constrained in the x—direction.
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of the specimen may result in rotation of the specimen. We permit this to occur by
constraining the nodes along the top of the mesh to remain on a straight line but give
them the freedom to contract as well as pivot about the center node of this surface.
This would be equivalent to loading the specimen in a pinned grip. The center node of
the bottom surface of the mesh is constrained in the x- and y-directions. The center
node of the top surface of the mesh is constrained in the x-direction and displaced in
the y-direction for our loading condition. The half-length of the specimen was chosen
to be four times the width in order to allow the shear band to grow along a straight
path until reaching a free surface.

The shear band is initiated in the center of the specimen by making the two bottom
center elements of the mesh softer than the remainder of the mesh. This is done by
assigning these elements a lower value for the material property of the athermal shear
resistance, 8)=105MPa, than the rest of the elements of the mesh which are assigned
80=112MPa. This causes a shear band to emanate from this point once the material
begins to flow. Different values of s, were tried on these two elements in a test case
to ascertain its effect on the resulting shear band direction. It was found to have no
effect.

The analysis is conducted on a mathematical model with the same material con-
stants as determined in Chapter One for PMMA which has been oriented to varying
leveis of texture such that the principal values of the initial textures are given by:
A1 = A, A3 = 1/A,; Ay = 1.0, where X is the initial draw ratio and )\ coincides with
the plane strain direction of the “test”. The material is then “tested” in plane strain
tension at the initial draw ratios of A = 2.0, 2.25, and 2.50, and the initial draw direc-

tions of = 0°, 30°, 45°, 60°, and 90°. The direction of shear banding is obtained by
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examining contours of the plastic strain rate where regions of intense plastic straining
indicate the development of a shear band. The angle that these regions make with the
tensile axis gives the direction of banding.

The contour plots of plastic strain rate for the above tensile tests are shown in
Figures 3.20 - 3.22. Two bands of concentrated straining initially form in each sample.
These bands are at approximately 90° to one another with possibly a few degrees
difference [34] due to the pressure dependent yield of the polymer which is included
in the constitutive model. One can see how the angle at wkich the shear band forms
with respect to the tensile axis, a, changes with both initial draw ratio and direction.
These results are more concisely summarized in Figure 3.23. These numerical results
demonstrate that as the IDR approaches the locking regime, where the locking stretch
of PMMA is 3.0, the dependence of the shear band direction on orientation becomes
more acute. This follows the irends found in experiments discussed earlier which showed
that the more highly textured the polymer, the greater is the dependence of shear band
formation on orientation.

Another interesting result of the numerical analysis is illustrated in Figure 3.24.
This figure shows the contours of plastic strain rate as deformation progresses for the
cases where the IDR is initially oriented with the tensile axis. For the high draw ratio
of 2.5, we see the material at first begins to localize into symmetric 45° shear bands;
however, the straining soon becomes uniform throughout the test specimen. This was
also observed in the experiments on highly oriented semi-crystalline PET where clearly
defined shear bands were not observed at orientations of § < 15°. Duckett, et al. did
not comment on any test they may have conducted at 0° orientation on polypropylene.

Rider and Hargreaves did not obtain distinct banding for A = 2.0 and
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6 =0°or A =33and § = 0°15° in their PVC samples. It appears that they did
not test the highest draw ratio at these orientations for this reason. The absence of
shear banding in these experimental cases as well as the numerical simulations at 0°
orientation can be explained in terms of a Considere stability analysis. In the isotropic

material, necking occurs in the Considere construction at the point when the slope

do . o
a = X

of the stress-strain curve equals the stress, o, divided by the stretch, A, or
Stability is regained and cold-drawing begins at a second Considere point. The highly
preoriented material which is aligned with the tensile axis is essentially at a state
past the second Considere point and in the middle of a stable cold-drawing mode
which even the artificial initiation of localization cannot supersede. Referring to the
stress-stretch curve for isotropic PMMA, our material of IDR=2.5 is past this second
Considere point whereas the lower IDR of 2.25 is before but near this point. Therefore,
we can expect the material with IDR=2.5 to continue in the stable drawing mode
and the material with IDR=2.25 to require a greater amount of applied strain before
localization disappears and stable cold-drawing takes over. This is exactly what was
predicted with the model as illustrated in Figure 3.24 which demonstrates that a larger
applied stretch was needed before homogeneous drawing occurred in the material with
an IDR of 2.25 than in the material with an IDR of 2.5. Our model correctly predicts
this continued drawing.

It is also of interest to observe the development of a shear band in those cases where
the IDR is aligned asymmetrically about the tensile axis. The case of an IDR of A\=2.5
and and IDD of §= 30° was chosen to examine this development. Figures 3.25 and 3.26

depict the contour plots of plastic shear strain rate and plots of the deformed mesh as

~eformation progresses for this case. The plots of the deforming mesh show the
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Figure 3.24. Contours of plastic shear strain rate for an
IDD of 0° and IDRs of 2.25 and 2.5 for PMMA at different
applied stretches. Note that homogeneous deformation (cold
drawing of sample) is obtained at a lower stretch ratio
for the higher IDR. A, is the stretch at which flow begins.
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deformation to be concentrated in a shear band. The material asymmetry also causes
a slight shearing of the bulk of the specimen. A similar response was obtained earlier
in our one-element tensile test simulation of section 3.2.1. The plastic shear strain
rate contours illustrate the increase in intensity of straining within the band with
deformation where the plastic shear strain rate is as much as five times greater than
the applied nominal tensile strain rate of 0.01sec™!. The rate contours for the case of
0 = 30° also show the broadening of the band where the region of highest shear strain
rate moves away from the center of the specimen. This indicates that the material
near the specimen center, where the shear band initially formed, is now essentially
“locked”. Therefore, active plastic deformation spreads up (and down) the specimen,
thus, broadening the band. We also observe two concentrated bands of intense straining
in the initial stages of deformation. However, as deformation progresses, one band
disappears, and we eventually form a single distinct shear band through the first and
third quadrants of the specimen, where the IDD is also through these quadrants. This is
what is generally observed in the “plane stress” experiments also. However, the second
band which appeared in the initial stages of our numerical analysis is, on occassion, the
shear band which forms in the experiments. We note that direct comparisons between
our plane strain numerical results and the “plane stress” experimental results cannot
be made due to the different nature of the tests.

We were also able to predict the reorientation of the material within the band. The
amount of recrientation was found to depend on the applied deformation. Figure 3.27
depicts the reorientation of the material within ihe band for the cases of and IDR of
2.5 and IDDs of 30° and 45° as a function of the applied stretch. We note here that

the applied stretch (nominal) is relative to the total specimen length of 8.0 units,
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Figure 3.27. Numerical results for material orientation
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whereas the active plastic deformation occurs over a gauge length of approximately 2.6
units. We see the material reorients toward the tensile axis by a greater amount as the
applied tensile stretch increases. These results are in accord with those found in the

experiments discussed earlier.

3.3 Conclusion

In this chapter, the effect of preorientation on the inelastic deformation behavior of
glassy polymers was examined. This effect was incorporated into the constitutive
model of Chapter One. This model was subsequently used in conjunction with the
finite element method to analyze the homogeneous and localized flow of oriented glassy
polymers. Comparing the results of our numerical simulations to trends found in simi-
lar experiments, we found that our model correctly predicts the flow behavior in simple
homogeneous tension and biaxial tension/compression, as well as the direction of shear
banding during localized flow and associated material reorientation within the band.
The numerical analyses did not require any further experimental material property

identification beyond the isotropic material properties and the initial texture.
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Chapter 4

Discussion

A physically-based constitutive model describing the large inelastic deformation of
glassy polymers at finite strains was developed in this thesis. The model was then
numerically integrated and incorporated into an existing non-linear finite element code,
ABAQiJS. This enabled the numericai simulation of the hydrostatic extrusion of PMMA.
The model was then further refined to include the effect of an existing initial orien-
tation in the material. The effect of preorientation on the subsequent inhomogeneous
inelastic response of this material was then examined.

The development of the constitutive model was based on the macromolecular struc-
ture of a glassy polymer and the primary micromechanism responsible for plastic flow
associated with this structure. These materials are seen as overcoming two physi-
cally distinct sources of resistance before large strain inelastic flow may occur. Prior
to initial yield, the material must exceed an isotropic resistance to deformation due
to intermolecular interaction. Once inelastic flow has commenced, molecular align-
ment occurs, altering the configurational entropy of the material. This is the second
source of deformation resistance. Documented experiments indicate that strain rate,
temperature, pressure and softening affect the intermolecular resistance. These effects

were incorporated into a micromechanical model of the intermolecular resistance. The
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modelling of true strain softening lead to a scalar state variable representation of the
athermal yield strength of the material. The entropic hardening of the material is due
to the developing molecular orientation in the material. This resistance takes the form
of a back stress tensor and is a state function of the plastic shape change of the material.
The resulting material law was incorporated into a continuum model encompassing fi-
nite strain and rotation effects. The material properties needed in this model were then
systematically obtained for the glassy polymer PMMA from experimental data found
in the polymer literature. Tensile tests were then performed with the model over a
range of strain rates. The model results were found to be in very good agreement with
experiments.

After the numerical implementation of the constitutive model into a finite element
code, the simulation of the hydrostatic extrusion of PMMA was performed. The nu-
merical results for the quantities of die swell, strain rate, pressure vs velocity, and
shrinkage stress were found to satisfactorily predict those same quantities measured
in tne corresponding experiments conducted at Leeds University. The simulation was
also able to monitor the development of texture, identify regions of high strain rate
during processing, and determine residual stresses which set iz after processing. We
can conclude that our constitutive model may be used with confidence as a predictive
tool in the analysis of more complicated manufacturing processes where it may not be
possible to experimentally measure or monitor the above effects. This could be a pow-
erful tool in the design of warm mechanical processes because it would eliminate much
of the costly trial and error procedure of process design which would be replaced by the
numerical simulation of possible designs. The simulations would be able to monitor the

state of the material during processing, identify trouble points in the process design,
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as well as predict the state of the end product.

The resulting product of the extrusion discussed above contained a state of residual
texture. Such is the case for most manufactured polymeric products, where texture is
acquired either incidently or deliberately during processing. The effect of texture, i.e.
preferred directions of orientation, on subsequent inelastic flow of the solid was incor-
porated into the constitutive model. Preoriented polymers are known to exhibit highly
localized flow in the form of very distinct shear bands. This behavior was successfully
simulated with the modified constitutive model. Previous models of yield (strictly rate-
independent) in oriented polymers used a modified Hill yield criterion, requiring the
experimental determination of several additional properties for every state of preorien-
tation. The model proposed in this thesis does not require any further experimental
material property identification beyond the isotropic material properties and the ini-
tial texture. This model would be a powerful tool in the analysis of preoriented glassy
polymeric products.

Future work along this line of research of glassy polymers would focus on furiher
refinements to the constitutive model and more experimental testing. A model for
the rate and temperature effects on the back stress was proposed in this thesis in the
form of an evolution equation for the number of rigid links between entanglements.
Before implementation of this model refinement, a systematic set of experiments needs
to be identified and conducted in order to properly define the properties needed in the
evolution equation. Experimental data is also required to determine an appropriate
function for aging to complete the evolution equation for the athermali shear resistance.
We recognize that good experimental data is essential for the development of any

constitutive model. Data was available in the literature to identify trends in the inelastic
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behavior of glassy polymers in general. Specific data was found on PMMA for all of
the effects currently included in the model. This is not the case for all glassy polymers.
Therefore, the experimental generation of a data base of material properties is needed.
It would also be of interest to experimentally examine shear localization in oriented
polymers and then simulate the identical experiments with the model to further verify

its validity.
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Appendix A

Numerical Implementation of
Constitutive Model

The constitutive model detailed in this thesis has been incorporated into the general-
purpose non-linear finite element code ABAQUS [16]. This code permits the user the
flexibility of specifying his own constitutive law through a “user material” subroutine
option. The user is provided with the deformation gradient, F,, the Kirchhoff stress
tensor, S;, and any user-defined state variables; in our case, the intrinsic yield strength,
8¢, and the back stress tensor, B,, at the beginning of an increment. An estimate for
the kinematic solution for the increment is provided with the deformation gradient at
t + At, Fgya¢. In his user material subroutine, UMAT, the user must update the stress
tensor and any other state variables. For this particular material model, we begin
with the state of the material at time t: (S¢, s;, B;). We note that, numerically, due
to our unique F = F*F? decomposition where F*T = F¢, F{ can be found from S,
and, therefore, FY is also known. Since the back stress is uniquely related to the plastic
deformation gradient, B, is also known. Therefore, we can find the complete state of the
material (S, s, B) simply by knowing (F, S, s) and it is not necessary to store B;. With

this knowledge and the kinematics Fy.A¢, we can integrate our constitutive equations
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to obtain the state of the maierial at time t + At: (S¢tat, 8t+a¢, Besat). After the
integration of the material state is successfully completed, the Jacobian, or the change
in the increment in Kirchhoff stress with respect to a virtual change in the increment in
strain, must be computed. This quantity is needed in ABAQUS in its overall Newton
scheme to achieve a more accurate assessment of the kinematics. In order to obtain
optimum convergence, the Jacobian should be 100% consistent with the integration
operator. However, in our case the : -ess and back stress are computed from the total
quantities of the elastic and plastic deformation gradients, respectively. The Jacobian
is computed from incremental quantities which are needed in the integration of state.
Thus, it was found to be easier to obtain a Jacobian derived from the rate quantities
associated with the increment rather than an increment in the total quantities which
must be converged upon in the actual integration scheme. This appendix will discuss
the numerical integration of the material state and the computation of the Jacobian. A
listing of the resulting FORTRAN program UMAT written to be used in conjunction
with ABAQUS is also included at the end of this appendix.

A.1 Numerical Integration of State

In our integration of state, we first note that this is a large deformation analysis, and,
therefore, we must account for any effects finite rotations may have on the integration.
This is done by using an algorithm developed by Hughes and Winget [49] which is, in
a certain sense, objective with respect to large rotations. In this algorithm, the state
at time ¢ is rotated to an intermediate configuration from which the material response

of the stress increment is computed:
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Tiae = T+ AT, (a)

T = QuwTQhw; (0) (A.1)
Quw =[I- WAL I+ JWAL; ()
AT = £¢[(D - DP)At]; (d)

where WAL is, in fact, a function of F¢, s, and Fy:

Ferat — Fe Foae + Fy

W = skew| AL Il 3 7L

(A.2)

The stress tensor passed into the UMAT subroutine through the ABAQUS interface
is the rotated stress tensor, S = J T. The tilde is used to signify a quantity at time
t rotated to this intermediate state. The orthogonal transformation of the tensors
T,F,F* F? are taken as :

T — QTQ", (a

F — QF, b
F - QF’QT, %c; (A‘3)
FF — QF*. (d)

The stress tensor has been transformed to the intermediate configuration before enter-
ing UMAT; however, the deformation gradient, F,, has not been rotated. Therefore,
the first step in the integraiion is to rotate F, F¢, F? to the intermediate configuration
via the transformation rule of (A.3). With all of the tensor quantities appropriately
transformed, we now compute the material response portion of the stress increment.
An implicit integration scheme is used to obtain the new state and converge on

F%, 5;- Therefore, we begin by iterating on F}, ,, to achieve the final state:
Fiia =F + a8, (A-4)

where f‘f is the plastic deformation gradient at time ¢ rotated by the Hughes-Winget(HW)

rotation matrix, Qgw, to the intermediate configuration:

F? = QuwF?. (A.5)
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The superscripts ¢ and 1+1 denote the iteration number for this variable. The values for
all variables at the first iteration are taken to be their values at time ¢. An expression
for the change in piastic deformation gradient, ?f +aeDt, is found by beginning with

the definition of the plastic velocity gradient:

L? = FPFP~' = DP + WP, (A.6)
or,

F* = (Df + WP) FP, (A7)

We note here that WP = W — W (D + DP) and the rotation resulting from the spin
W has been accounted for in the HW intermediate rotation on F§. Therefore, for our
integr» on purposes WP = —W (D + D?). We make a further observation by noting
that W is of order ¢, and, therefore, W? is of order ¢¢(D + D?). For problems of
interest, terms of order ¢° are negligible compared to terms of order unity and will,
in general, be neglected in both the numerical updating of variables as well as the
calculation of the Jacobian which is discussed later in this appendix. Therefore, we
may neglect the term W? with respect to the D? term in equation (A.7) remembering
that the “W-portion” of W? is already accounted for in the f",’ term. The equation to

update F}, 5, is now given by:
FrOt) = F7 4 DPOFri) A, (A.8)

where, for convenience, the subscripts ¢t + At have been dropped and will be used only
if needed for clarity.
The rate of plastic deformation at time ¢t + At must now be found and is calculated

by:
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D’ = 4N,

where the tensor direction N is given by:

N = T*//2r,

T = (T - 1F*BF*)

[}
]

and the plastic shear strain rate is given by:

5 = Soezp [_.g (s + ap) (1 - (a +Tap) %)] '

The intrinsic shear strength, s, must simultaneously be updated as follows:

sl = 8 + 8300,
where,

()
. (s 8 . p(i
851323 =h (1 - _f:A"") t-(n)st-

The pressure is obtained from the stress tensor:

p= -—%tr(T).

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

The above equations are all needed to calculate DP at each iteration. After the

new guess for the plastic deformation gradient, FP(‘+‘), is computed, the corresponding

elastic deformation gradient is found from:

Fe(t"l-l) = F[Fp(l'-i-l)]—l
The Cauchy stress tensor is then computed:
) 1 )
(i+1) _ = e(i+1)
T = JB‘ [lnF ]
Then the back stress tensor:
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BU+Y) = f(vp(o'ﬂ))’ (A.17)
and, from the above, the driving stress tensor is found:
peri+1) _ [T(H-l) _ % Fo(-‘+1)B(-'+l)Fc("+l)]', (A.18)

and the effective equivalent shear stress:

) _ ‘/_;_T.,(en).r.,(eﬂ)_ (A.19)

The plastic shear strain rate, 47, and the intrinsic shear strength, s, are now computed
from equations (A.11-A.13). The new rate of plastic deformation is now found and used
in equation (A.8) and the procedure repeats itself. At the beginning of each iteration,
the new tensor FPU+1) jg compared with the “old” or previous tensor, F*¢), When all
components are within a tolerance of 0.0001 of their previous values, we have converged
on the new state of the material. This generally takes less than 6 iterations. If more
iterations are required for convergence, the increment is started over with a smaller
time step.

After the new state of the material is successfully computed, the Jacobian must
be calculated and passed back to ABAQUS. This tensor is used in the main program
to determine the kinematical correction to the virtual work equilibrium for the next
iteration and is, therefore, an important factor in increasing the rate of convergence of
the problem.

In the computation of the Jacobian for this constitutive model, liberal use is made
of the assumption that the elastic strains are small in order to simplify the format of

th e Jacobian.
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A.2 Computation of the Jacobian

The Jacobian, J, is the fourth order tensor obtained by finding the change in the
increment in Kirchhoff stress, S = JT, with respect to a virtual change in the increment

in strain:

N
T AA€’

J (A.20)

We note that the increment in strain over a step in time, At, is essentially equal to the
rate of deformation multiplied by the length of the time increment, DAt. Therefore,

the Jacobian can be found by computing:

oAS

)= DAt

(A.21)

We begin the calculation of this quar.tity by recognizing that the increment in Kirchhoff

stress can be broken down into its deviatoric and dilatational components:
AS = 2u [DAt — DPAL] + [Ktr(DAt) — 3Kas AB)1, (A.22)

where, p is the shear modulus; K is the bulk modulus; ay is the linear coefficient
of thermal expansion; DAt is the increment in strain; and DPAt is the increment in
plastic strain. We will derive the Jacobian in a manner similar to the forward gradient
scheme of reference [53].

Working on the deviatoric portion, we can write:
(DAY = iAS’ +DPAL. (A.23)
The amount of plastic strain over the increment, D? At, may be approximated as:
D*At = [D} + dD?] At, (A.24)
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where Df is the rate of plastic deformation at time ¢, and dD? is the change in this

rate over the increment. The quantity dD? may be found by invoking the chain rule of

differentiation on the expression for DP. We first recall this expression for D? to be:

D? = 4°N,

which, in expanded form, is:

DP = Agez -——(8+'!) l— r)\f]] 2
Yoezp P s+ap V2T

The change in this rate is then found to be:
dD? = d4*N + 47dN,
where the change in the directior, dN, is given by:

=U-N®MV?MW

and the change in the plastic shear strain rate, d4?, is found by:

~P P
OF o+ 945+ OF

dp ds 70 de.

dy’ = dr+

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

Equation (A.29) is now examined term by term. The first term, %i}dr, is given by:

ar 60 \s+ap
1 o ot

dr = —T".dT
27

The second term, %’gdp, is given by:

8
a4y 1 T ‘
C——u‘— -

dp = —Ktr(dDAt) + 3K ayd\O.
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(A.33)



The third term, %’Fds, is given by:

-3
4P pA 1 T ¢
=9 el 42 : A.34
G ds e 1+6(s+ap)] (A.34)
where ds is found from equation (A.13) giving:
o Agl-1
ds = [1 + "'1 A‘] h 1- 8—) d»,mt] . (A.35)

The fourth term, %’gde, is given by:

_ _ : 1 T ds
T} ’7’[ (s+ap)[1— s+ap) 1—6(3+ap)]86

where d© is a load increment. An increment in temperature due to adiabatic heating at

A

e

(A.36)

large strain ratee is incorporated in a separate version of the UMAT. After incorporating

equations (A.31-A.38) into equation (A.30), we obtain:

&4 = Cs [CI%T“ .dT" — C,K1-DAt + c,de] , (A.37)
where,
rAPOL\ ! -
05=[1-c',(1— 1 ) h(l—e—)At] : (A.38)
28 8

Substituting equations (A.28) and (A.37) into equation (A.27), an expression for dD?

is now obtained:
1 [# A "
dD? = —V/—-.z. —;_-I + {CsC, — v N ® N|dT* + [C5C3dp + C5CdO|N. (A.39)

We calculate the change in the driving stress state, dT*, from equation (A.10c) which

gives:
AT = %[ds’ — F*dBF* + O(de)] — %y DALT. (A.40)

An expression for dB is now needed and may be approximated as BAt, where B is

given by:
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B=B"- W’B +BW?, (A.41)
and BV is given by:
V=" D, (A.42)

where LB is the fourth order hardening modulus tensor derived from our back stress
definition and defined in reference [3]. It is now noted that we are incrementing from
the the FW intermediate state and, therefore, have already accounted for the rotational
portion of dB due to the spin W. We also neglect terms of order €°, thus finding the
portion W (D + DP?) of the rotation to make a negligible contribution te the integration

as discussed earlier. Therefore, dB may be approximated by:
dB ~ BYAt ~ LR [DPAt] ~ L7 [D? + dD?] At. (A.43)

Incorporating these equations for dT* and dB into the expression for dD? and

neglecting terms of order € compared to unity, we obtain:

P —
?flids' ~ L®[Df + dD?] At — 1- DAT"] (A.44)
+(CsCadp + C5sCdO) N;
where,
AP
7o L1+ (a0 %) nen], e
or,
dD? =
K17 [dS' - LR [DIAt] - 1-DALT| (A.46)
+K~1(CsCadp + C5C(dO) N;
where,
K=[1+7c"n]. (A47)
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This expression for dD? is now substituted into equation (A.23) for (DAt)":

(DAt) =

3 AS' + DiAt

+K1 s [EALT + (CsCrAt — £ N @ N| [AS' — LR [DPAt] -1 DALT
+K =1 (CsCartdp + CsC AtAB) N.

] (A.48)

Premultiplying both sides of the preceding equaticn and rearranging terms as well as
dropping higher terms, such as terms of srder (Ae?)?, an expression for T - AS' is

obtained:

T . AS' =
mT* - (DAt)' - mD{At

— A7mCCIALTY - [- LR DAL - T ® IDAY (A-49)
—m (C5C3Atdp + CsCAtdB) T*' - N,
v;nere,
. -1
1 1 2Ju
m= |— + —CsCi| At = . A.50
[2# vas ] J + V2uCsC1At (4.50)

These equations are now used to obtain an expression for the increment in the deviatoric
portion of the Kirchoff stress, AS', with respect to the deviatoric portion of the strain

increment, (DAt)":

AS' =
22 |1 - v2ugN @ N| (DAY)’
+28[1 - (-+-) LF] DAt (A.51)

+20 841 + 1gN ® N| N ® IDAt
2 (CsCaAtdp + CCuAdO) [I - \/ZugN ® N| N,

where,

CsC At — T4t

= A.52
9= T V2uCiCi0t (4.52)
and,
2Jtu
28 = . A.53
A= T + V2uAqP At (A.53)
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Now adding the dilatational portion of the stress increment by referring to equation

(A.22) , we obtain:

AS =
26DAt + (K — 15) 18 IDAt — 3K 0sd©1
+[I - (--)LR] DAt

—2v2pugN ® NDAt

+20 AT + 79N @ N| N @ IDA

2 (—CsC2AtKL - DAt + C5C3Atd6) [ — v2ugN @ N| N.

Finally, for the Jacobian, we obtain:

_ 8AS
J= aDAt

=25l + (K- 5)I®@1- AN®@N + BN 31,

where,
A= 2\/2-pl‘ga
420t
B =25 (-5 +CsCaAtK +g (r - \/iyc,c,AtK) )

A.3 Listing of UMAT Subroutine

(A.54)

(A.55)

(A.56)

(A.57)

The above integration scheme and Jacobian for the constitutive model describing the

large inelastic deformation of amorphous polymers has been coded into a FORTRAN

program to be used in conjunction with the finite element code ABAQUS [16]. The

following pages contain a listing of that program. Those subroutines of ABAQUS

which were modified in order to obtain the Hughes-Winget rotation matrix and the

deformation gradient at the beginning and end of the increment for each material

point are also listed. These were from ABAQUS version 4.5-159.
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SUBROUTINE WMAT(STRESS, STATEV,DDSDDE, SSE, SPD, SCD, STRAN,
1 DSTRAN, TIME,DTIME, TEMP,DTEMP , PREDEF, DPRED,MATERL ,NDI ,NSHR,,
2 NTENS,NSTATV, PROPS,NPROPS , COORDS )
IMPLICIT REAL®*8(A-H,0-2)
DIMENSION STRESS(NTENS), STATEV(NSTATV) ,DDSDDE(NTENS ,NTENS),
1 STRAN(NTENS) ,DSTRAN(NTENS), PREDEF(1),DPRED(1),PROPS(NPROPS)
2 , COORDS(3)
DIMENSION RSTR(3,3),SIGB(3,3),TF(3,3),TSIG(3,3),TFE(3,3),
1 TFP(3,3),TSIGB(3,3),TSGSTP(3,3),TDP(3,3),TDTSTP(3,3),
2 TDTF(3,3),TDTFE(3, 3), TDTEP(3.3) .TDTSIG(3.3), TDTSGB(3. 3)
OOMVON/CERROR/RESMAX(30) , JNREMX( 30 ) , FERRMAX(2 ) , CETOL, CSLIM,
CBMAX, PCTOL, TLIMIT, PSUBIN,RESMIN, DUMAX(30) , INDUMX{30) , ERRPRE,
UDELSS , PTOL , AMTOL , DMKET , IMRETL , SIGTOL , DS IGMX , UTOL , UMAX , U@AX ,
VWAX , VAMAX , AMAX , AQVAX , TMAX , EPPMAX , RMAX , RMAX , NGOPEN , NGCLOS ,
ROTTOL ,ROTFAC, JRIKND,NINCCS , RIKUB, RIKUMX , RIKMU, RIKLAM, RIKDI A,
RIKRO,RIKOLD,RIKIMX ,QMAX , XMAXP , STRRAT, POUT , RIKDLO
OOMVON/ROTSTR/RSTR
QOOVMON/DEFGRAD/TDTF, TR
QOMVMON/MECHPROP/EYONG ,GNU, N, CR ,ALF
OOMVON/RATE/A1 ,GAMDOTO
COOMMON/RATEPROP/RATEC1 , RATEC2 , PATEC3
QOMMON/ SOFT/S0,SSS ,H, ST
COMVDN/TOL /EMAX , ETOL
COOMVON/TEMPER/TEMPG, XM1 , XM2 , XX1 ,XX2 ,XY1,XV2,XX3,RSG
M/mllmm,mm.mmkmo,mw
DATA RSTR/1.D0,0.D0,0.D0,0.D0,1.D0,0.D0,0.D0,0.D0,1.D0/

Cs8833233828583505388058388858358385052ERS36583583L388888888888233

AW

THIS UMAT IS FOR THE LARGE INELASTIC DERORMATION OF GLASSY POLYMERS
AND ACOOUNTS FOR RATE, TEMPERATURE, PRESSURE, TRUE STRAIN-SOFTENING
AND STRAIN HARDENING EFFECTS.

ALL SUBROUTINES WERE WRITTEN BY MARY BOYCE UNLESS OTHERWISE
DESIGNATED TO BE WRITTEN BY BHARAT BAGEPALLI

eleleieieielele]

C.“““‘..l.“..““‘."l“t‘Oltt‘l‘tl““.‘(lt‘l‘lt.l“.l‘l.l'tl

C MATERIAL PROPERTIES

Ct'lt.tltt“t.tt“t.ttttll

C PROPS(1)=~COEFFICIENT OF THERMAL EXPANSION=TALF

C PROPS(2)=POISSON’S RATIO

C PROPS(3)=~(R=nKT

C PROPS(4)=N

C PROPS( )=GAMDOTO

C PROPS(6)=A OF GAMDOTP=GAMDOTO*EXP( (A/TEMP)*S(1-(TAU/S)**(5/6)))
C PRops('l)-pERmvrTngERm IN INTRINSIC YIELD STRENGTH = RATIO OF
C SSS ]

C PROPS(8)=H OOEFFICIENT OF EVOLUTION EQUATION FOR S;

C SDOT=H*(1-S/SSS) *GAMDOTP

C PROPS(9)=PRESSURE COEFFICIENT OF PRESSURE DEPENDENT YIELD = ALF
C SIGVAY~S IGMAYO+ALF* PRESSURE

g PROPS(10)=TEMPO=ORIGINAL TEMP

C“‘&.lltt‘.““‘ll‘lt'l.tl‘tllltltll.ll““ttltt‘.lttltlll‘t‘ltlllt
XTEMP=TEMP
XDTEMP=DTEMP
TALF=PROPS(1)
RMTEMP=298 .DO
TEMPO=PROPS (10)
TEMPTDT=TEMP+DTEMP
EMAX=0 .D0
ETOL=2 .DO*CETOL
N=IDNINT(PROPS(4))
CR=PROPS (3) *TEMPTDT/TEMPO
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GNU=PROPS(2)
EN=PROPS(4)
ctﬂ‘t‘.tt‘llll‘lltcll‘l.“‘.tt.t.ll..‘t..‘
C TEMPERATURE DEPENDENCE OF SHEAR MDDULUS AND INTRINSIC YIELD
C STRENGTH: PROPERTIES AND LINE EQUATION ROR POLYCARBONATE
IF ABSOLUTE TEMPIDT LT XX2 THEN
LOG(SHEAR MODULUS )= XM1 * (TEMPTDT-XX1)+XY1
IF ABSOLUTE TEMPTDT GT XX1 BUT LT XX3
LOG(SHEAR MODULUS )= XM2* (TEMPTDT-XX2 )+XY2

XX2-TEMP IMMEDIATELY(~15DBGREES) BEFORE TG
XX3=TEMP IMMEDIATELY(~15SDEGREES) AFTER TG

RSG=RATIO OF ORIGINAL ROOM TEMP INTRINSIC YIELD STRENGTH TO
ROOM TEMP SHEAR MODULUS
CH92835883800050088¢8L 88888800888 8800838888
((:: PC TEMPERATURE PROPERTIES
CTEMPG=423D0
CM1=-7.4835E-04
CXX1=158D0
XY1=3.D0
CXM2=-.0938D0
CXX2=408D0
CXY2=2.813D0
XY3=-0D0
(XX3=438.D0
gzsc-o.uno
C END OF PC PROPERTIES
C

C PMWA TEMPERATURE PROPERTIES

C
TEMPG=383 .DO0
XMl=-1.7974D-03
XX1=363.D0
XY1=2.89D0
XM2=-5.69D-02
XX2=373.D0
XY2=2.845D0
XX3=-423.DO0
XY3=0.DO
RSG=0.113D0

IF(TEMPTDT.LT.XX2) SHR = 10°**
1 (Mi * (TEMPTDT-XX1 ) +XY1)
IF(TEMPIDT.GE.XX2 .AND.TEMPTDT. LT.XX3) SHR =
1 10** (XM2* (TEMPTDT-XX2)+XY2)
IF(TEMPTDT.GE.XX3) SHR = 10**XY3
EYONG=2 .D0*(1.D0+GNU) * SHR

C.“.lﬁ‘.“l.....‘.3.““‘..'.3"l..““.lt“l‘lt‘.“.l!‘l."tt.l‘tt‘

C RATE PROPERTIES
Ct‘t‘l.'tlltllllltltllt

C PROPS(5)=GAMDOTO

C PROPS(6)=A

C PROPS(7)=S0

C where,

C  DP=GAMDOTO*EXP(-A1*S(1-((TAU/S)**(5/6)))*TSGSTP/(SQRT(2)*TAU)
C RATEC1=GAMDOTO*EXP(-A1*S)/SQRT(2)

C RATEC2=EXP(A1%S)

C RATEC3=5/6

C SO... DP=RATEC1*RATEC2**((TAU/S)**C3)*TSGSTP/TAU

aQaaaaaaaan
%
g
N’
')
<
w
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C““l..ﬁ..‘l‘l‘...‘...‘.Oll&‘.l‘..“‘.t‘.0.lO.‘O‘l.l‘.ﬁ'.l‘.!ﬂ“ﬂ‘eo‘e

GAMDOTO=PROPS(5)
A1=PROPS(6)/TEMPTDT

ct‘.“l‘.."‘...‘l.“'.l.“.ll....“‘l'!.l‘..ll“t'ﬂ““.“illltaca

C SOFTENING PROPERTIES
c.ll‘ttl‘l.‘.o.l'.llt..ll.l.
C S0=PROPS(7)=INITIAL INTRINSIC YIELD
C SSS=PROPS(8)=INTRINSIC YIELD AT STEADY STATE
C H~COEFFICIENT OF SOFTENING EVOLUTION LAW, WHERE DS/DT=H(1=S/SSS)GAMDOT
C ALF=COEFFICIENT POR PRESSURE EFFECT ON INTRINSIC YIELD
C.‘ll.l.Oll.‘l‘ll‘.llt‘.t.tl!‘.“l‘ttlltl.l‘tl.l..‘l.ll“ettttasteﬂaa
S0=RSG*SHR
S$SS=PROPS(7)*S0
H= PROPS(8)
ALP=-PROPS(9)

C‘“l‘.‘."l..‘l“.“..‘ll‘.‘..‘.ll.lt‘.‘l‘ﬁl.‘.

C ST = INTRINSIC YIELD AT TIME T
Cr88888888088888088838238828888883888080088808s8
ST=STATEV(1)
IF(TIME.BQ.0.D0) ST=-SO

Ce888838300888588288880588838838888838508888888838

C PO = PRESSURE AT TIME T
Cll.tttlt.ll“lltltlll.!lt‘tl‘t‘tttlttlltllltttt
PO= - ( STRESS(1)+STRESS(2)+STRESS(3) )/3.DO
RATEC1~GAMDOTO *DEXP( -A1* (ST+ALF*P0) ) /DSQRT(2.D0)
RATEC2=DEXP(A1*(ST+ALF*P0))
RATEC3=5.D0/6 .D0
c SRT3=2.D0 / DSQRT(3.DO)

C CONVERT STRESS VECTOR TO MATRIX FORM

C
TSIG(1,1)=STRESS(1)
TSIG(2,2)=STRESS(2)
TSIG(3,3)=STRESS(3)
TSIG(1,2)=-STRESS(4)
TS1G(2,1)=STRESS(4)
DO 2 1=1,2
TSIG(I,3}=0.D0
TSIG(3,1)=0.D0
2  OONTINUE
Cllttlcll.‘..l.tlllltl“‘.“‘.t‘.tttttll.".tttl.“ttt.ltttit‘tltt.ttt
C (HBEKX TO SEE THAT INTERMEDIATE ROTATION VAS OOMPUTED IN MAIN PART
C OF ABAQUS ( IN CURRENT VERSION, THIS IS NOT AIWAYS DONE ON FIRST
C INCREMENT ). IF IT WAS NOT, THEN QOMPUTE IT.
C.‘lll.l“..‘..t.tt'l.‘.t‘tlt..t“.tt‘t.“lt...tt“.“lltt.lll“‘taetl
DO 3 I=1,3
3  IF(RSTR(I,I).NE.1.D0) GO TO 6
CALL ROTATE(RSTR,TSIG,TDTF,TF,DTIME)
6 OONTINUE

C‘ll..“.‘.“‘.....ll‘l.“."‘!lll“l““.‘llB.lO.t“l.‘tttttll‘l‘.l.l‘

C GIVEN TF, TSIG AND RSTR OOMPUTE INTERMEDIATE VALUES OF TFP AND TDP

Clt..““.l.“.‘.‘l.l““‘...“““.l“"0“0...‘““.“l“lt.l.!tt‘l

CALL INITFP(RSTR,TF,TSIG,TFP,TDP,TAUO,PO)

c‘.ll‘..‘.“‘..l..‘.l“‘l.l.“l.“‘l‘l.’tt.“...“‘t.."lt“‘l"““.l

C RESET INCREMENTAL ROTATION MATRIX TO IDENTITY
Ctlll‘ttlt."‘lt0tattl“‘.Blttt“ttt‘t"t‘O..‘t3‘..‘.3.‘3'0“'.‘!"!3‘
DO 8 I=1,3
DO 8 J=1,3
RSTR(I,J)=0.DO

IF(1.BQ.J)RSTR(I,J)=1.D0
8 CONTINUE

C.‘l‘.t‘t.llt“.““‘“““lll.l“l““tl“‘..tl‘tl‘tt‘ltlllttt‘ﬂ‘ﬂtlt

C COMPUTE THE NEW STATE OF MATERIAL AT T+DTIME GIVEN THE TIME INCREMENT,
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C TDP,TFP, AND TDTF
C..l..“‘..““....l..."..‘.".‘.““"'..““.3"'03‘“‘3330356038033
CALL NEWSTATE(DTIME,TDP,TFP,TDTF,TDTFE, TDTFP, TDTSIG,
1 TDTSGB, TDTSTP,TAU,TDTS, PRES)
IF(EMAX.GE.ETOL) THEN
CEMAX=EMAX
GO TO 207
END IR
C."‘...".‘......O.‘.‘.“‘l““.."3“““.““‘0‘“"..G‘.l“c
¢
C GIVEN THE NEW STATE, OOMPUTE THE JACOBIAN (DDSDDE) NEEDED TO
g RETURN TO ABAQUS

c.l“.....‘.“..i..““‘t.l‘l‘t‘l...‘l"l‘.0‘.‘!.‘...0.0‘3"‘!“‘

JACOB(TDTF, TDTS1G, TDTSTP, TAU, DT IME , DDSDDE, TDTS )

Cte08308280088800088888 0008008008088 30888R880888888028088858888888
C
g SET THE UPDATED STRESS TO VECTOR FORM TO RETURN TO ABAQUS

C"‘l‘l.‘.l‘l..“.‘t‘ll.t.“““..‘l“““lll?‘tl“““‘ﬂ“l"‘l‘ll

STRESS(1)=-TDTSIG(1,1)

STRESS(2)=TDTSIG(2,2)

STRESS(3)=TDTSIG(3,3)

STRESS(4)=TDTS1G(1,2)
Cttl“t‘t.‘ltl.la0t‘tlll“.t"t‘lt.“l“tt?ttlttttltlttt.ltltt‘tlattltt
C

C DEFINE STATE VARIABLES TO BE PRINTED OUT. IN THIS CASE, THE PLASTIC
C DEFORMATION GRADIENT

C..‘"‘““‘.“.“.l"3‘l‘l‘tlt‘.““3““.‘.“““"‘“..lll‘tslttt.‘.

STATEV(1)=TDTS

STATEV(2)=TDTFP(1,1)

STATEV(3)=TDTFP(2,2)

STATEV(4)=TDTFP(1,2)

STATEV(5)=TDTSGB(2,2)
Ctt."lltt'.‘.ll.‘t.tttl‘...ttll..lllt.lll.t‘tt‘l“ltttttl“‘tﬁtltltllt
C
C CALCULATE ERROR PARAMETER FOR VISOD OPTION
C

C..‘.l.l.““‘..‘...“.‘l‘l.l"...l..“..l‘.O“‘tl“‘l..'0‘...'0'.0“‘

GG1= STATEV(6)

GG2 = RATEC1 * RATEC2** ( (TAU/(TDTS+ALF*PRES))**RATEC3 )

STATEV( 6 )=GG2

CBMAX~ DTIME * DABS{(GG1-GG2)) / SRT3

DEPM=0 . 005D0

DEP=DSQRT(2 .D0) *GG2 *DTIME

RDEP=DEP /DEPM

RCE-CEMAX/CETOL

IF(RDEP.GT.RCE) CEMAX=RDEP*CETOL
Cl‘.ll‘l.“tt'lttl‘llt‘l.‘.‘l‘t...ltt!ll.lllltl“t‘t'.t..tltttttllttle

207 RETURN

END
C

SUBROUTINE ROTATE(RSTR,TSIG,TDTF,TF,DTIME)
Ct..t‘t‘lt..“.l“‘t.‘lt‘t‘ltlt‘t.tl.‘tt‘llt.ltttlt.t.l.ttllltltttlcctlt
C THIS SUBROUTINE OOMPUTES THE INTERMEDIATE ROTATION MATRIX AND ROTATES
C THE STRESS TENSOR TO THIS INTERMEDIATE STATE
Ctll‘l.tt‘tt.“..‘.“t..‘OOO.“‘l‘.ll.llttt‘ltl‘lt‘tltlltl.t.‘taltl.tlt‘

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION RSTR(3,3),TSIG(3,3),TF(3,3),TDTF(3,3),FDOT(3,3),

1 EL(3,3),X(3,3) .W(3,3)

Ctesss088888853868588838388

C OOMPUTE TDTF INVERSE
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Cosssssssssssssssessossssss

CALL INVRS(TDTF,X)

Ct88888308800888808880¢888

C OOMPUTE FDOT
C..llt“...“t““t‘ttt.“
DO 10 1=1,3
DO 10 !=1,3
10 FDOT(1,J) = (TDI'F(I J)-TR(1,1))

C‘..l"3“8“'..“.“.‘0“‘....““"‘t..‘.o...

C OOMPUTE THE VELOCITY GRAD = FDOT * F INVERSE
c"l..'ﬁ““““.‘.“a!N‘.“lll‘.“.‘..l.“““
CALL MATMUL(FDOT,X,EL,3,3,3)
c“l‘""‘.‘.‘.."‘..“‘““‘.““.‘..llﬁﬁ‘.“ll“““.““
C COMPUTE THE HUGHES-WINGET INTERMEDIATE ROTATION MATRIX ©
C RSTR = (I-WSDTIME/2)INVERSE * (I + WPDTIME/2) .
Cl“ll“.‘.O“‘...‘...0.0l..O““‘.....‘.......‘...t.“l“.
DO 20 I=1,3
DO 20 J-1,3
WwI,)) = (EL(I J)-EL(J,1))/4.D0
X(1.1)= (1,1}
1F(i.BQ.J) xfl J) = 1.D0 +X(1,J)
20 IF(1.BQ.J) W(I,J) = 1.D0 +W(1,J)
CALL INVRS(X,EL)
CALL mm(m.wnsm,s,a.s)
DO 30 I-1,3
DO 30 J-1.3
30 EL(I,J])=RSTR(J,I)
C.‘...""..““.‘..““.‘.'.“.“‘.lt‘.‘l‘.‘.“..
C ROTATE THE STRESS TENSOR TO INTERMEDIATE STATE *
C TSIG = (RSTR TRANSPOSE) * TSIG * RSTR
C..‘.ll‘“"l.....O..“.'.‘O.Ll..““““‘t“.....
CALL MATMUL(EL,TSIG,X, 3,3,3)
CALL MATMUL(X,RSTR,TSIG.3.3,3)
RETURN
END
SUBROUTINE INITFP(RSTR,TF,TSIG,TFP,TDP,TAU, PRES)
C'....l‘l‘....‘....““..‘..l..'..l.‘l‘l“.‘..““‘l‘l‘.t.l“.“
C THIS SUBROUTINE OBTAINS THE INITIAL CONDITIONS NEEDED TO .
C UPDATE ALL THE VARIABLES. THE VARIABLES NEEDED FOR THE .
C ITERATION SCHEME ARE TFP AND TDP .
c"...3.’.“"..".""...‘.“."l...“‘l..“.“...ll.t‘.ll“‘ll
IMPLICIT REAL*S (A-H,0-Z)
DIMENSION RSTR(3,3),TF(3,3),TSIG(3,3),TFP(3,3),TOP(3,3)
1 ,XTF(3,3),TFE(3,3) ,TSIGB(3,3),TSGSTP(3.3)
COMMON/ SOFT/S0 . SSS ,H, ST
COMVON/TEMP11/TEMP . DTEMP , TEMPTDT, TEMPO , TALF

Cs888383353558388308083888882888808883883ss

C OBTAIN THE DETERMINANT OF TF ¢

Co888858380888088080858308808888888883s¢8

DT=TF(3,3)*(TP(1,1)*TP(2,2)-TP(1,2)*TF(2,1))

Ct888803588880888880888888088383838888888

C ROTATE TF TO THE INTERMEDIATE STATE *
C..‘tcttttlll‘ll.lt.l..‘.tt‘l‘tlt‘t'tttt
CALL MATMJL(RSTR,TR,XTF, 3,3,3)
DO 10 1-1,3
DO 10 J=1,3
10 TR(1,J)=XTF(1,])

c.“““..".“..“.“.‘..“‘l"“tt“‘.lt‘..ltl‘..‘

C OBTAIN TFE FROM TSIG (THE INTERMEDIATE STRESS) ¢

C..“lﬁt‘..l‘."..!ll““‘.“...l.l.lt“ﬂ’..t.‘...“

CALL FESIG(TSIG,TFE,DT)

C“‘“.".“.‘.....‘.‘“‘3““..‘lltl“.‘l.‘t.'.‘l‘.‘l“t‘..l‘t‘tttl‘ll‘

C COMPUTE THE REMAINING VARIABLES s
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C SUB UPDATE CALCULATES ALL REMAINING VARIABLES iF GIVEN TF,TFE, °©
AND TSIG ¢

C.l..l.l.ﬂ.‘0......““‘...03...0“.“l.““".lt“"..ﬂ“‘e800083903039

CALL UPDATE(TF,TFE,TFP,TD?,TSIG,TSIGB,TSGSTP,TAU, ST, PRES)

(oot 00008888800003830000080008808888830008880808800008830000080003000000
RETURN
END

SUBRQ)JI'INB UPDATE(UF, UFE, UFP,UDP,US1G,USIGB,USGSTP , UTAU, S IM1
1 ,PRES

Cl‘G.l.....l.‘......‘.“..‘.l..l‘..““‘"O‘.e..“‘a..“'&ﬁﬂﬁ88308389333

C THIS SUBROUTINE CALOULATES UFP,UDP,USIGB,USGSTP,UTAU GIVEN UFE,UF,USIG
Ct.lll:‘l.‘.‘l‘altt‘.tll‘tttttaato‘OOtttltt‘lt.tt‘..at.lllett‘taeeaseoea
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION UF(3,3),UFE(3,3),UFP(3,3),UDP(3,3),USIG(3,3)
1 ,USIGB(3,3),USGSTP(3,3),X(3,3)

C

CQOMVON/RATEPROP/C1,C2,C3
COMMON/RATE/A1 , GAMDOTO
QOMMON/MECHPROP/EYONG ,GNU, N, CR ,ALF
CQOMMON/TOL/BMAX , ETOL
COt.t!t‘l“tlcl.lttt..‘ttt‘ttt..t‘l
C QMPUTE UFP FROM UFE,UF *
Ctll.lt‘llttll"“‘..t“‘l.t!.‘ttt‘
RT2=DSQRT(2.D0)

CALL INVRS(UFE,X)

CALL MATMUL(X,UF,UFP, 3,3,3)
CALL NORMFP(UFP)
IF(EMAX.GE.ETOL) GO TO 25

c.t."0‘0.‘.“‘.‘.O“.““O.‘O.‘t.‘..‘

C COOMPUTE THE BACKSTRESS FROM UFP *

C3888333833383338882888888888888888888

CALL SIGMAB(UFP,USIGB)

C338832808382353888L388883888838088888888888828

C OOMPUTE SIGSTRPRIME FROM USIG AND USIGB *

C“tﬂ3‘.‘..."..ll‘l..“l.'.‘l..l‘l‘.‘..l‘t.l

CALL SIGSTR(USIU,USIGB,UFE,USGSTP)

Ctssssssssssssssse

C COMPUTE TAU *
C.l“.‘.".“...‘
CALL MATMUL(USGSTP,USGSTP,X,3,3,3)
UTAU-DSQRT((X(1,1)+X(2,2)+X{3.35)72.0D0)
C.“...‘.."“‘3.....““‘..““.‘."“..‘.‘l.‘.l‘.l.“l““..“l“l..
C CGHECK THAT TAU IS NOT Z€RO, IN OTHER WORDS, CHECX THAT THE
C PLASTIC RATE OF DEFORMATION IS NOT ZERO AND NEEDS TO BE CALOULATED.

C
IF(UTAU.LT.S.D-03)THEN
UTAU=0.D0
DO 11 I=1,3
DO 11 J=1,3
11 WP(I1,J)=0.D0
GO TO 25
ENDIF
12 QOONTINUE
C END OF (HECXX

C“““.0.0..“‘.‘.‘l‘.'l....‘."‘0“.“‘.'.“'.‘...“‘l.“‘.l‘

C

CHe88882235838888888885353888888888833883828

C OOMPUTE PLASTIC RATE OF DEFORMATION s

C‘Utlt“ll‘t.tt.“ltl‘.“t‘l..‘ttt‘t‘ll“‘

C
C1=GAMDOTO*DEXP( -A1* (S IM1+ALF*PRES) ) /RT2
C2=DEXP(A1*(SIM1+ALF*PRES))
GAMP=(C1*C2** ((UTAU/ (SIM1+ALF*PRES) ) **C3) ) /UTAU
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DO 20 J=1,3
20 UDP(I,J)=GAMP*USGSTP(1,])
Clt.‘l‘t‘.‘l..l.ltt‘ls“&““‘l‘llO‘lt.0..0..“‘l'lttlﬂoall!!suesee
25 COONTINUE
RETURN
END
C
SUBRCUTINE NEWSTATE(DTIME,TDP,TFP,TDTF, TDTFE, TDTFP,

1 TDTSIG,TDTSGB,TDTSTP,TAU, S, PRES)
Cllll.lltl‘.“t...‘..Q.at‘l‘t‘llll.ttl‘.ttt‘!.'t.‘.tcaalaaesesaaes
C THIS ROUTINE OOMPUTES THE STATE OF THE BODY AT TIME T+DTIME o
CWITH A IMPLICIT SCHEME WHICH CONVERGES ON FP

8

C.l‘!‘.““l.“.t“‘l‘t‘.llllt..“.t‘l‘ttlttt..ll.“tltezltsttttt‘
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION TDP(3,3),TFP(3,3),TDTF(3,3),TDTFE(3,3),TDTFP(3,3),

2 mrsxo(s.s).msca(s.s).mrm(s.si.x(s.s).xm(s.s).'lmnp(s.a)

OOMMON/ SOFT/S0,S8SS ,H, ST
OOMMON/TOL/BEMAX , ETOL
OOMVON/TEMPER / TEMPG , XM1 , XM2 , XX1,XX2 , XY1,XY2 ,XX3,RSG
mmg/gmapu/m.m,mm.monm

C3883383880830388833888083%3838333838038888388888838

C TOLE IS THE TOLERANCE FOR TDTFP TO CONVERGE ON

C38835533558838850325L888238803588888838388883838383

TOLE=0.00010D0

Csssss228858888888588888s88

C INITIAL CONDITIONS s

CltttlllO‘i‘ltl‘t“llﬂlt.t
DO 10 I=1,3
DO 10 J=-1,3
TDTDP( 1, J }=TDP(1, )

10 gm;r(l.:)-m(l.:)

IF(TEMPTDT.LT.XX2) S=ST*10**(XMi*DTEMP)
r1‘1;('1'1-).11"1171'0 .GE.XX2 .AND.TEMPTDT.LT.XX3) S=ST*10%%(XM2*DTEMP)
DET=TDTF(3,3)*(TDTF(1,1)*TDTF(2,2) -TDTF(1,2)*TDTR(2,1))

Cl.l‘.‘..‘....“.‘..‘

C START ITERATIONS ¢

Cssesssssssssssssssss

1000 CONTINUE

NI=NI+1
IF(NI.GT.6) THEN
EMAX=ETOL
GG TO 2000
END IR
C
C OOMPUTE TDTFP FROM TFP AND TDTDP
C
S STORE TDTFP FROM PREVIOUS ITERATION IN X FOR OOMPARISON
DO 40 I=-1,3

DO 40 J=1,3
40 Xx(1,))=TDTFP(1,3)
c‘l.‘l.‘l"““‘tt‘t“‘.Ottt.tttttlt‘tllttttll‘ttt‘.tlt'a‘.lltt.att
C UPDATE FP :
TDTFP(i) = TFP + DTIME * TDTDP(i-1) *TDTFP(i-1)
C.t“tt‘lttat‘.‘..t‘l“‘..ltl“.tt‘lt.t‘tlC‘ll‘tlllttttlt!tttl!!ltat
CALL MATMUL (TDTDP, TDTFP,XIN, 3,3,3)
DO 20 i=1,3
DO 20 J=1,3
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20 TDTFP(1,J) = TFP(I,J) + DTIME * XIN(1,J)
CALL NORMFP(TDTFP)
IF(EMAX.GE.ETOL) GO TO 2000

Ctssesssssssssssss

C OOMPUTE TDTFE ¢
Ctllltt‘l‘l.t.‘...
CALL INVRS(TDTFP,XIN)
CALL MATMUL(TDTF,XIN,TDTFE, 3, 3,3)

Cssssssssssssssssen

C SYMMETRIZE TFE *
Cl'lt‘l.tll.ﬂ“l‘t.
DO 60 1=1,3
DO 60 J=1,3
60 XIN(I,))=(TDTFE(1,J)+TDTFE(J,1))/2.D0
DO 70 I=1,3
DO 70 J=1,3
70 TDTFE(I,J)=XIN(I,J)

Csssss2858338382888588838888

C GIMPUTE STRESS FROM TFE *
C‘tltt‘lllll“ttltﬁtttlt.t‘.

CALL SIGQMA(TDTFE,TDTSIG)

PRES= - ( TDTSIG(1,1)+TDTSIG(2,2)+TDTSIG(3,3))/3.D0

C383383855885853888388283338838888882388383838888838

C GOMPUTE REMAINING TERMS WITH SUB UPDATE s
C3sssosssasnsessassassssssssssssssssasssansess
CALL Ul)’Dﬂ'E('IDTP.'IﬂTFB.'Im‘FP.TDIDP.TDI‘SIG,'I‘DTSGB.'IUI‘STP,TAU.S
1 ,PRES

C"l‘.‘l.at‘lﬁl.‘...‘.l“ll“.l‘.“‘.ltl‘l‘l“.l“lll'.l‘.l.'

C UPDATE THE INTRINSIC YIELD WHICH MAY BE MODIFIED DUE TO *

C STRAIN SOFTENING s
Ctl‘ltlttc.tt“.t.lt.tlttt.l...“tttttt.ttt‘ttttl‘llll.t.‘l.l
ERR=DABS((S-SSS)/SSS)

IF(ERR.LT.0.001D0) GO TO 49
CALL SOFTEN(S,TAU,TDTSTP,TDTDP,DTIME, PRES)
IF(EVAX.GE.ETOL) GO TO 2000
COO.ll.l.l‘t“ll..‘tl‘t"ll.‘.ltt.lt‘tttc.ltl.tttttttttllle
C (GHECX POR OONVERGENCE ON TDTFP .
C (THIS CHEKX IS ON INDIVIDUAL OOMPONENTS OF TDTFP) .
Clltt.lctl‘.....ll....‘.li“‘t.t.l‘ll‘lttt.llttttlttttl‘ttt
49 DO 50 I=1,3
DO 50 J=1,3
Xx(1,3)=x(1,J)-TDTFP(1,]J)
IR(DABS(X(1,J)).GT.TOLE) GO TO 51
50 COONTINUE
GO TO 2000
s1 GO TO 1000
2000 RETURN

c END
INE SOFTEN(S,TAU,TDTSTP, TDTDP,DTIME, PRES )
Cl.‘."‘..‘..‘.‘.“‘O‘l‘...‘..““..‘.‘l.“‘.."l‘.l!l‘i.tlll‘.ll“l..t
C THIS ROUTINE CALOULATES THE MODIFIED INTRINSIC YIELD STRENGTH OF THE

C MATERIAL DUE TO STRAIN SOFTENING OF THE MATERIAL
Cll‘l‘.llll"l..“‘.l‘."l‘l“‘....‘.l....l‘.l‘.“t.“ltt.“..B‘l...ltl
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION TDTSTP(3,3),TDTDP(3,3)
OOMMON/RATE/A1 , GAMDOTO
COMVDN/RATEPROP/C1,C2,C3
COMMDN/ SOFT/S0,SSS ,H, ST
GOMVON/MECHPROP/EYONG ,GNU, N, CR , ALF
COMMON/TOL/BMAX , ETOL
QOMMON/TEMP11/TEMP , DTEMP , TEMPTDT , TRMPO , TALR
COMVON/TEMPER/TEMPG , XM1 , XM2 , XX1,XX2 , XY1,XY2,XX3,RSG
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RT2=DSQRT(2.D0)
NT=0

STT=ST
IF(TEMPTDT.LT.XX2) STT=ST*10**(XM1*DIBMP)
IF(TEMPTDT .GE . XX2 .AND. TEMPTDT . LT .XX3) STT=ST*10**(XM2*DTEMP)
GP=C1%*C2**( (TAU/(S+ALF*PRES))*sC3 )
GG=GP*RT2
NT=NT+1
IF(NT.GT.7) THEN
EMAX=FTOL
GO TO 2§
ENDIF
SN<$
HH=H*GG*DTIMB
S=8SS*(STT+HH)/(SSS+HH)
ERR=DABS ( (S-SN)/SN)
IF(ERR.LT.0.001D0) GO TO 2§
C1=GAMDOTO*DEXP( -A1*(S+ALF*PRES) ) /RT2
C2=DEXP(A1*(S+ALF*PRES))
GP=C1%C2**( (TAU/ (S+ALF*PRES))**C3)
GG=GP*RT2
GP=GP/TAU
DO 10 1=1,3
DO 10 J=1,3
10  TDTDP(1,])~GP*TDTSTP(1,J)
GO TO §
25 RETURN
END
C
SUBROUTINE JACOB(TR,TSIG,TSGSTP,TAU,DTIME,DDSDDE, TDTS)

c‘l“ﬁ?al.“‘l"...lllll.l‘......‘l‘l...l.."...'l“."‘tl."‘lt.l

C THiS ROUTINE CALCULATES THE JACOBIAN NEEDED TO RETURN TO ABAQUS
CB..‘l..ﬂ"““"3.‘.ll'i‘..‘ll"‘l‘.‘.“‘..‘."ll.‘..“‘.‘.l.‘.‘l
IMPLICIT REAL*8 (A-H,O0-Z)
D}r‘n(agnggm TF(3,3),TSIG(3,3),TSGSTP(3,3) ,LDSIDE( 4, 4) . TERM1 (4)
1 X3,
COOMVON/RATE/RA1 , GAMDOTO
CQOMVON/SOFT/S0, SSS ,H, ST
COMMON/RATEPROP/RC1 ,RC2 ,RC3
COMVON/MECHPROP/EYONG ,GNU, N, CR , ALF

G=EYONG/(2.D0*(1.D0+GNU))

BULK=EYONG/(3.D0*(1.D0-2.DO*GNU))

RT2-DSQRT(2.D0)

%‘rsgﬁ.1)+'rsm(2.2)+'rsm(3.3))/3.1)0

DEP=DTIME*RT2*RC1*RC2** ((TAU/ (TDTS+ALF*PRES) ) **RC3)
C.llllt‘.tl.l..‘.‘.t‘lt“l

FOR ELASTICITY *
ct“tl....l“....‘..l.““
IF(DEP.GT.1.D-0S) GO TO 3
GO TO 100
C END OF OHRX
3 DET=TF(3,3)*(TF(1,1)*TF(2,2)-TF(1,2)*TF(2,1))

Cs888388035888838888388888888888883830808

C PARAMETERS TO BE USED FRBQUENTLY *
Cl“‘tl‘.tt‘ll‘.t.“‘t.lt‘tttatlt.l‘l‘
HHi-H*DEP
TT1=TAU/ (TDTS+ALF*PRES)
T1=TT1¢*RC3
T2=-TT1*%*(1.D0/6.D0)
T2=1.D0/T2
TM1=RA1°(1.D0-T1/6.D0)

15,3
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T™2=SSS+HH

C OOMPUTE BETA
BETA=1.D0+SSS*HH*TM1*(1.D0- (ST+HH) /T™M2 ) /TVM2
BETA=1.DO/BETA

C GOMPUTE THE PARTIAL OF GAMPSDT WRT TAU
DGPDTA=DEP*RA1°T2

C OOMPUTE THE PARTIAL OF GAMP*DT WRT PRES
DGPDP=-DEP*TM1 *ALF

C OOMPUTE THE OFTEN USED ZETA
ZETA=(BETA*DGPDTA - DEP/TAU)/RT2

C COMPUTE THE OFTEN USED ETA
ETA= 1.D0 + RT2*G*BETA*DGPDTA
ETA=1.D0/ETA

C OOMPUTE ZETA*ETA
ZN=ZETA*ETA

C QOMPUTE THE "MODIFIED” SHEAR MODULUS
JT=DET*TAU
GBAR=G* JT/(JT+RT2*G*DEP)

C OOMPUTE GBAR*ZETA®ETA
GBZN=GBAR*ZN
T3=RT2*TAU

Cll‘“8““.“‘O‘..‘.‘Q‘.l..“‘.l“““'.tl‘tt‘t“‘l'.‘tlll.t!lltlttt‘l

C WITH ABOVE VALUES, OOMPUTE THE VARIOUS COEFFICIENTS FOR THE JACOBIAN

C...“O‘.‘..‘ﬂ““““..l.....‘l“.‘ll““l‘t‘.l‘t““‘.!.ll‘l‘tllllt‘i

C
A=2 .DO*GBAR

B=BULK-A/3.DO
C=4 .DO*GBZN*G
EE=2 .DO*GBZN*T3
P=A*BETA*DGPDP *BULK
Q=F*ZN*2.D0*G/DET
P=A*DEP/T3

EE + F -

a o o o a aa

Cc

C.o‘.‘.‘..ll‘l“‘l..l“l.“‘ll..“‘..‘ll“l‘.lllt.lll‘l‘.‘...'.lll.!l‘

C PUT IT ALL TOGETHER INTO THE JACOBIAN

C‘l..“l‘.‘.‘.l..“..l.‘...“l“'...l““'l“‘lll‘l!l“t“.“.l.tt“l.

DO 15 1=1,3
DO 15 J=1,3
15  X(I1,))=TSGSTP(1,J))/T3
DO 20 I=1,3
20 TERM1(1)=ERQ*X(1,I1)+P*TSGSTP(I,1)+B
TERM1(4)= EPQ*X(1,2) + P*TSGSTP(1,2)
C DIAGONAL TERMS
DO 30 I=-1,3
30 DDSDDE(I,I)= A + TERM1(I) - C*X(I,I)**2
C OFF-DIAGONAL TERMS
DO 40 1=2,3
DDSDDE(1,1)= - C*X(I,1)*X(1,1)
40 DDSDDE(I,1)=DDSDDE(1,1)
DDSDDE(2,3)= - C*X(2,2)°*X(3,3)
DDSDDE( 3, 2)=-DDSCDE(2, 3)
DO 50 I=1,3
DO 50 J=1,3
IF(1.NE.J) DDSDDE(I,J)=LDSDDE(I, ¥)+TERM1(1)
50 CONTINUE
C ROW AND COLUMN 4 TERMS
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DO 60 1=1,3
DDSDDE(I ,4)= - C*x(1,1)*x(1,2)
60 DDSDDE(4, l)-msme(l 4) + TERM1(4)
msmeu 4)= - C*X(1,2)%%2 + A/2.D0
GO TO 500

Cssssssssssssssssss

C IP ELASTIC s
cstll.‘l.“..l“..t
100 OONTINUE
AA=BULK+4.D0*G/3.D0
BB=BULK-2.DC*G/3.D0
DO 110 l=1,2
DO 110 J=1,53
IF(1.BQ.J) DDSDDE(1,J)=AA
110 IF(I.NE.J) DDSDDE(1,J)=BB
DDSDDE(4,4)=G
500 RETURN

END
TO GET EL(1,1), EL(2,2)

SUBROUTINE EL11(S1,S3,BITA1,BITA3,A)
$1,5S3 FROM SUBROUTINE PLSTR
BITA1,BITA3 FROM SUBRCUTINE LINV
IMPLICIT REAL*8(A-H,0-Z) .
/MECHPROP/EYONG,GNU,N, (R ,ALF

Cs83883388838388808833888888C888888¢8

C THIS ROUTINE WRITTEN BY BAGEPMALLI]
Ctlt“l'ltt.'ll“l"tl“l‘t‘.lttttl‘
EN=N
D=DSQRT(EN)
AA1=S1/D
AA3=S3/D
A=S1*BITA1+S3*BITA3
IF(AA1.LT..95D0) A1=D*(1.DO/BITA1%%2-1.D0/(DSINH(BITA1))**2)
IF(AA1.GE..95D0) A1=D*(1.D0/BITA1°*2)
IF(AA3.LT..95D0) A2=(S3%%2)/(D*(1/BITA3%%2-
+1/(DSINH(BITA3))**2))
IF(AA3.GE. .95D0) A2=(S3**2)*D/BITA3*%2
A=(A+(S1**2)/A1 +A2)*QR
C A «EL(1,1) WITH S1,83; A=FL(2,2) WITH $2,S3
RETURN

c END
(C: TO GET TFE IN TERMS OF TSIG

SUBROUTINE FESIG(TS1G,TFE,DT)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION TFE(3,3) TSIG(3 3),R1(3,3),R2(3,3),R3(3,3)
COMMON /MEQHPROP/ EYONG, Gl‘ll N R, ALF
OOMMON/TEMP11/TEMP, DI'BP TM’IUI‘ TEMPO, TALF

Co869988880088888808008888088808880880

C THIS ROUTINE WRITTEN BY BAGEPALLI!
CH88885238888088838000880882888388888380
C

gGlVEN TS1G, OBTAIN TFE

A1=(1.D0+GNU) /EYONG
A2=GNU/EYONG
DO 10 I=1,3
DO 10 J=1,3
R1(1,J)=0.D0
10 IF(1.BQ.J) Ri(I,J)=1.DO

C
C
C
C
C
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A3=TS1G(1,1)+TS1G(2,2)+TSIG(3,3)
DO 20 1=1,3
DO 20 J=1,3

20 TFE(1,J)=(TSIG(1,J)*A1-A2*R1(1,J)*A3)*DT
B1=.5D0*{TSIG(1,1)+TSIG(2,2))
B2-.5D0*(T51G(1,1)-TS1G(2,2))
B3=TS1G(1,2)
S1=B1+DSQRT(B2%*2+B3**2)
S2=B1-DSQRT(B2%%2+B3%*2)
$3=-TSIG(3,3)
B2=B2%2.D0
B3=2.D0*B3
IF(B3.BQ.0.0.AND.B2.EQ.0.0) THEN
THETA=0.0
GO TO 9990
ENDIF
THETA=-DATAN2(B3,B2)
THETA= . SDO*THETA

9990 (OC1-DOOS(THETA)
$S1=DSIN(THETA)
DO 30 1-1,3
DO 30 J=1,3

30 R2(1,3)=0.D0
R2(1,1)=CC1
R2(2,2)~CC1
R2(1,2)=-SS1
R2(2,1)=SS1
R2(3,3)=1.D0
CALL MATMUL(TFE,R2,R3,3,3,3)
R2(2,1)=-SSt1
R2(1,2)=SS1
CALL MATMUL(R2,R3,TFE, 3,3,3)

DO 11 I=1,3
DO 11 J=1,3
11 R1(1,J5=0.D0

R1(1,1)=DEXP{TFE(1,1))

R1(2,2)=-DEXP(TFE(2,2))

R1(3, 3)=DEXP(TFE(3,3))

DO 31 I=1,3

DO 31 J=1,3

31 R2(1,35=0.D0

R2(1,1)=0C1

R2(2,2)=CC1

R2(1,2)=SS1

R2(2,1)=-8S1

R2(3,3)=1.D0

CALL MATMUL(R1,F2,R3,3,3,3)

R2(2,1)=58S1

R2(1,2)=-$S81

CALL YATMUL(R2,R3,R1,3,3,3)
TT~TALF? (TBMP -TEMPO)

DO 41 I=1,3

TFE(I,3)=.5D0*(R1(1,J)+R1(J,1))
41 IF(1.BQ.J) TFE(I,J))=TFE(I,J])+TT

RETURN
END
g TO OBTAIN BITA=L-INVERSE(S/SQRT(N)),WITH COSH(BITA)-1/BITA=S/SQRT(N)~L(B1TA)

SUBROUTINE LINV(S,N,BITA)
IMPLICIT REAL*8(A-H,0-Z)
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c.‘..“l...“.OO...!“.‘.“‘....‘..‘0‘...‘

C THIS ROUTINE WRITTEN BY BAGEPALLI

C‘.'.“...O.“‘O..“."“.."‘.‘O'....'..‘

TOLHI=.001
TOLLO=.001
o (EN)

DEN=DSQRT(EN
AA=S/DEN
AAl=1.DO/DEN
B=1.D0
IF(AA.LE. .4D0.AND.AA.GT.AA1) B=1.DO
IF(AA.LE. .6DC.AND.AA.GT. .4D0) B=2.D0
IF(AA.LE. .8D0.AND.AA.GT. .5D0) B=3.D0
IF(AA.LE. .9D0.AND.AA.GT. .8D0) B=4.DO
IF(AA.LE. .92D0.AND.AA.CT. .9D0) B=5.DO
IF(AA.LE. .95D0.AND.AA.QT. .9200) B=8.DO
IF(AA.LE..97D0.AND.AA.QT. .95D0) B=12.T0
IF(AA.LE..975D0.AND.AA.GT. .97D0) B=25.D0
IF(AA.LE. .98D0.AND.AA.GT. .975D0) B=44.D0
IF(AA.LE..99D0.AND.AA.GT. .98D0) B=60.DO
IF(AA.LE.1.D0.AND.AA.GT. .99D0) B=90.DO0
IF(AA.GT.1.D0.AND.AA.LT.1.2D0) THEN
B=100.D9
$=.999999*DEN
ENDIF

IF(AA.GT.1.2D0) THEN
WRITE(6,9999) AA

9999 FORMAT(® SUBROUTINE LINV, STRETCH EXEEDS SQRT(N) ’,F10.5)
CALL XIT
ENDIF

10 P=(1.D0/DTANH(B)-1.D0/B)-S/DEN
IF(AA.LT..945D0) FP=(1.D0/(B*B)-1.D0/(DSINH(B))*%2)
IF(AA.GE. .945D0) FP=1.D0/(B*B)
BP=B-F/FP
E0=-DABS(BP-B)
E1=-DABS(B)
E2=-E0/E1
B=BP
IF(AA.GE. .95) THEN
IF(E2.GT.TOLHI) GO TO 10
GO TO 40
ENDIF
IF(E2.GT.TOLLO) GO TO 10

40 RITA-B

C WRITE(6,*) S,BITA

RETURN

END
C
g SUBROUTINE TO MULTIPLY MATRICES A(I,K)*B(K,J)=C(1,J)

SUBROUTINE MATMUL(A,B,C,NRA,NCA,NCB)
C NRA,NCA~¢ROWS , s§COLUMNS IN A;NCB-¢COLIMNS IN B

C
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(NRA,NCA),B(NCA,NCB),C(NRA,NCB)
DO 10 1=1,NRA
DO 10 J=1,NCB
C(1,J)=0.D0
DO 10 K=1,NCA

10 C(1,33-AC1,K)*B(K,1) + C(1,1)

RETURN

END
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C TO NORMALIZE TFP=-1/CUBRT(DET(TFP))*TFP

C
SUBROUTINE NORMFP(TFP)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION TFP(3,3)

QOMMON/TOL/EMAX , ETOL
Dl-(’I’FP(l,l)"I'FP(2.2)-TFP(1.2)‘TFP(2,1))‘TFP(3.3)
IF(D1.LE.0.D0) THEN
VWRITE(6,9989)

9989 FORMAT(® SUBROUTINE NORMFP ; VALUES OF DET(FP) AND FP ARE’,
! 2E13.6, ' THE TIME STEP WILL BE REDUCED ')
WRITE(6,*) D1, TFP
EMAX=2 .DO*ETOL
GO TO 11
ENDIF
D3=1.D0/3.D0
D3=D1%*D3
DO 10 I~1,3
DO 10 J=1,3
RETURN

11
END
TO OBTAIN PLASTIC STRETCHES AND ROTATION VECTORS : LAMBDAP(I,J);R(I,J)

SUBROUTINE PLSTR(F,S1,S82,83,C,S)
S(1)=PRINCIPAL STRETCHES;C, S= COS(THETA), SIN(THETA)

IMPLICIT REAL®*8(A-H,0-Z)
DIMENSION F(3.3).A(3.3).‘(3.3).m(3,3).V(3.3).R(3.3)

Ct““‘....“Ot..‘.lﬂ.t“‘..l. ss

-C THIS ROUTINE WRITTEN BY BAGEPAILI
Cllltt‘tt..‘l!e“‘t..‘s.t‘t‘.tl“.t

DO 11 [=1,3
DO 11 J=1,3

11 AU, 15=r(3,1)
CALL MATMUL(F,A,B, 3,3,3)
$3=(B(1,1)+B(2,2)}%0.5
Sg-((B(lz1)58(2.2))‘0.5)"2+B(1,2)"2
S2=DSQRT(S2
S1=83+S2
S DSORE(B(3.3))
D 3- 3.
S1=DSQRT(S1)
$2=DSQRT(S2)
S4=2°*B(1,2)
$5-B(1,1-B(2,2)
IF(S4.BQ.0.D0.AND.SS.BQ.0.D0) .
IF(S4.BQ.0.D0.AND.SS.BQ.0.D0) GO TO 25
THETA~DATAN2(S4,S5)
THETA=THETA*0 . SDO

25 C=DO0S (THETA)
S=DS IN(THETA)
[0 10 l=1,3
DO 10 J=1,3
V(1,J)=0.D0
R(1,))=0.D0
A(1,J)=0.D0

10 B(1,3)=0.DO0
A(1,1)=1.D0/S1
A(2,2)=1.D0/S2
A(3,3)=1.D0/S3
v(1,1)=S1

aa aaa
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C TO GET SIQMA(I1,J) IN TERMS OF TFE(I,J)

C
C

SUBROUTINE SIGMA(TFE,TSIG)

C DT 1S DETERMINANT OF F

C

10

20

IMPLICIT REAL®*8(A-H,0-2)

DIMENSION TFE(3,3),TS1G(3,3),A(3,3),B(3,3)
CQOMMON /MECHPROP/EYONG ,GNU, N, CR , ALF
COMVON/TEMP11/TEMP ,DTEMP , TEMPTDT , TEMPO , TALF

CALL PLSTR(TFE,S1,52,583,C,S)

DO 10 I=1,3

DO 10 J=1,3

A(1,1)=0.0

B(I.J)-0.0

A(1,1)=DL0OG(S1)

A(2,2)=DLOG(S2)

A(3,3)=DLOG(S3)

S4=A(1,1)+A(2,2)+A(3,3)

S5=EYONG/ (1 .D0+GNU)

S6=S5*GNU/(1.D0-2.DO*GNU)

S6=S6*S4

A(1,1)=A(1,1)*S5+S6

A(2,2)=A(2,2)%55+S6

A(3,3)=A(3,3)*55456

B(1,1)=C

B(2,2)=C

B(3,3)=1.D0

B(1,2)=S

B(2,1)=-§

CALL MATMUL(A,B,TSIG,3,3,3)

B(1,2)=-§

B(2,1)=$

CALL MATMUL(B,TSIG,A,3,3,3)

DT-(TFE(1,1)*TFE(2,2)-TFE(1,2)**2)*TFE(3, 3)

TT=EYONG*TALF* (TEMPTDT-TEMP0 ) /(1 .D0-2 .DO*GNU)

DO 20 I-1,3

DO 20 J=1,3
IF(1.BQ.J) A(I,J))=A(I,])-TT

TSIG(I,J)=A(1,))/DT

END
g TO GET TSIGB(I,J) IN TERMS OF TFP(1,J)

SUBROUTINE SIGMAB(TFP,TSIGB)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION TFP(3,3),TSIGB(3,3),A(3,3),B(3,3),

+0C(3,3),00(3,3)
OOMvON

/MECHPROP/EYONG ,GNU,N,CR ,ALF

C8688883080808088888838888888888838

C THIS ROUTINE WRITTEN BY BAGEPALLI

Ceet888885858800880088388888838888888

10

CALL PLSTR(TFP,S1,S82,83,C,S)

DO 10 I=1,3

DO 10 J=1,3

A(1,J)=0.0
B(1,J)=0.C

CALL LINV(S1,N,BITA1)

CALL LINV(S2,N,BITA2)

CALL LINV(S3,N,BITA3)
EN=N

D1=1/1.5D0

D2=1/3.D0
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Qo aaa

OR=CR*DSQRT(EN)/3.D0

A(1,1)=0CR*(S1°BITA1*D1-(S2°*BITA2+S3*BITA3)*D2)
A(2,2)=0R*(S2*BITA2*D1-(S3*BITA3+S1°*BITA1)*D2)
A(3,3)=0CR*(S3*BITA3*D1-(S1*BITA1+S2*BITA2)*D2)

B(1,1)=C

B(2,2)=C

B(1,2)=8

B(2,1)=-$

B(sps)-‘ .0

CaLL MATMUL(A,B,ID, 3,3,3)
B(1,2)=-8

B(2,1)~S

CALL MATMUL(B,DD,TSIGB, 3,3,3)
RETURN

END
TO OBTAIN SIGMA-STAR(I,J)PRIME

SUBROUTINE SIGSTR(TSIG,TSIGB,TFE,TSGSTP)
TSGSTP(I.J) IS THE OQUTPUT=SIGMA-STAR(I,J)PRIME

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION TSIG(3,3),TSIGB(3,3),TF “3,3),TSGSTP(3,3)
+B(3,3),C(3,3)
CALL MATMUL(TSIGB,TFE,C,3,3,3)
CALL MATMUL(TFE,C.B,3.3.3)
11 FORMAT(3X, 3F10. 4)
DETFE=( (TFE(1,1)*TFE(2,2)-TFE(1,2)**2)*TFE(3,3))
DO 10 I=1,3
DO 10 J=1,3
10 C(1,J)=TS1G{1,J1)-B(1,J)/DETFR
M=(C(1,1)+C(2,2)+C(3,3))/3.D0
DO 20 I=1,3
DO 20 J=1,3
TSGSTP(1,J)=C(1,])
20 IF(1.BQ.J) TSGSTP(1,J)=TSGSTP(I,J)-OM
RETURN

END
SUBROUTINE INVRS(A,B)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(3,3),B(3,3)
DO 10 I-1,3
DO 10 J=1,3

10 B(1,J)=0.D0
BB=-A(1,1)°A(2,2)-A(1,2)*A(2,1)
B(1,1)=A(2,2)/BB
B(2,2)=-A(1,1)/BB
B(2,1)=-A(2,1)/BB
B(1,2)~-A(1,2)/BB
B(3,3)=1.D0/A(3,3)
RETURN

END

SUBROUTINE ROTSIG(S,A,SPRIME,LSIG)
IMPLICIT REAL*8(A-H,G-Z)
DI/ENSION S(1),A(3,3),SPRIME(1)

OCMMON/CEL/LELOP , JETP, JETP1 ,KEL ,KINTK ,KINTL ,KINTSL ,KSPT ,NEMCRD,
1 JINTYP, JEXTYP, JEXTY2, JLIB,NAN24 ,MDOF ,MCRD,

1 NNODE ,NNODU , NTENS ,NDI ,NSHR ,NPR,NINTK , NINTM, NINTSL ,NINTLL ,NVP,
4 NPARS,NSHL ,NBM,NELZM,NINTTS ,NEINT ,NDOFEL , JUNSYM, NEGECM,
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S LNODEK ,NNODEP,LBAS1S , NNODET ,NTENST , NTDOFN , LLUMPM, NOFFT , NNCOI ,
lNSPTWNPﬂMWNHX)FBKSP’ITN[NRNM
QOVMON/CONSTS /P1 , SIN60,00S60 K(ROSZ(.‘!) K(ROS3(3) ZERO,LZERO,LONE,
1 ONE,TWO,HALF ABIG AMU B&IG L(XZSHR(Z 3), THIRD PRECIS
2, BLANK

C

Cltlll.““..‘.ll.ll“.“"ll"“lllll.ll‘ll.l...“tl“‘.““B.B

C
C THIS IS AN ABAQUS SUBROUTINE MODIFIED BY BOYCE TO OBTAIN ADDITICNAL
C INFORMATION NEEDED IN UMAT. MODIFICATIGNS ARE SURROUNDED BY C*®98sLINES

Cl“ltl‘.“l.“‘...‘lll"l."l‘ﬂl‘.ll“‘.“l..‘l...‘lllcttﬁﬂalae

C
C LSIG=1 - STRESS
C LSIG=2 - ENG. STRAIN
C LSIG=1 OR 2 PLUS 10 INDICATES REPLACE S WI'IH SPRIME
C"lt‘tt“tt‘.t‘..ttt‘tlctl.“‘llle
C RSTR IS THE INTERMEDIATE ROTATION FROM T TO T+DT
DIMENS ION RSTR(3,3)
OOMMON/ROTSTR/RSTR
Ct‘t.tt““lﬁ“t‘.‘.‘tl“‘.lt‘tttl‘
LSIG1=LSIG-(LSIG/10)*10
IF (NDI.EQ.0) GO TO 50
DO 20 K1=1,NDI
TERM=ZERO
DO 5 K2=1,NDI
TERM=~TERM+A (K1 ,K2) *A(K1 ,K2)*S(K2)
5 CONTINUE
IF(NSHR.BQ.0) GO TO 1§
K3=NDI
TERM1=ZERO
DO 10 K2=1,NSHR
K3=K3+1
K4=LOCSHR(1,K2)
K5=LOCSHR{2,K2)
TERM1=TERM1 +A (K1 ,K4) *A(K1,K5)*S(K3)
10 CONTINUE
IF(LSIG1.BQ. 1) TE'M1=TWO*TERM1
TERM=TERM+ TERM1
15 CUONTINUE
SPRIME(K1 )=TERM
20 CONTINUE
50 CONTINUE
IF(NSHR.BQ.0) GO TO 100
K1=NDI
DO 70 K11=1,NSHR
Ki1=K1+1
K2=LOCSHR(1,K11)
K3=LOCSHR(2 ,K11)
TERM=ZERO
IF(NDI1 .BQ.0) GO TO 60
DO 55 K4=1,ND!
TERM-TERM+A (K2 K4)‘A(K3 K4)*S{K4)
$5 CONTINUEB
IF(LSIG1.BQ. 2 ) TERM=-TWO* TERM
60 CONTINUE
TERM1=ZFRO
K4=NDI
DO 65 K41=1,NSHR
K4=K4+1
K5=LOCSHR{1,K41)
K6=LOCSHR(2,K41)
TERM1=-TERM1 + (A(K2 ,K5) *A(K3 ,K6)+A(K2 ,K6)*A(K3,K5) ) *S(K4)
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65 CONTINUE
TERM=TERM+ TERM1
SPRIME(K1 )=TERM
70 CONTINUE
100 CONTINUE
IF(LSIG1.BQ.LSIG)GO TO 200
DO 110 K1=1,NTENS
S(K1)=SPRIME(K1)
110 CONTINUE
200 CONTINUE
Ct.tt.tt“l.t‘l.l.tllt“tl“.‘tt“.t.
IF(LSIG.NE.11) GO TO 300
DO 270 11=1,3
DO 270 JJ=1,3
RSTR(II,JJ)=A(I1,3))
270 COONTINUE
Ct.ttl‘lt..tt!‘.O.‘l.l.tl‘ttt‘..ttl.ll
300 CONTINUE
B
SUBROUTINE LSOL8V(XX1,GX1,ANORMI , EXPU,MNCRDX , ANDR ,MNRLX , EMCRD,
1EMCDO, DVRED, GEQM, EU, EPAR , EJAC, EDU)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION XX1(3,3),GX1(2,2),ANORMI (1), EXPU(MNCRIX, 1) , ANDR (MNRLX , 1)
1,BMCRD(2) , BMCDO(1) ,DVRED(8) ,GEOM(1) ,EJAC(3,3) ,EDU(1) ,EU(1) ,EPAR(2)

COMVON/CIDV/DV , DVIVO
CCGMMON/CEL/LELOP, JETP, JETP1 ,KEL ,KINTK ,KINTL ,KINTSL ,KSPT, NEACRD,
1 JINTYP, JEXTYP, JEXTY2, JLIB,NAN24 ,MCOF ,MRD,
1 NNODE, NNODU , NTENS ,NDI ,NSHR ,NPR, NINTK,,NIN™M, NINTSL ,NINTLL ,NVP,
4 NPARS ,NSHL ,NBM,NELZM,NINTTS ,NEINT , NDOFEL , JUNSYM, NEGECM,
S LNGDEK , NNODEP,LBASS ,NNODET , NTENST , NTDOFN , LLUMPM, NOFFT , NNODI ,
1 NSPT,NNOD2,NNOD3 ,NNOD4 , NTDOFE, X.SPTT,NINR , NBMB
COMMON/CGAUSS /GAUSP2(2) ,GAUSW2( 2 ) ,GAUSP3( 3) ,GAUSW3(3),
1 GAUSP4(4) ,GAUSW4(4),GAUSPS(5) ,GAUSWS(S),GAUSP6(6) ,GAUSWS(6),
g %Avgg;(ﬂ.GAUMU).GAUSPS(S).GAUSWB(S).GAUSP9(9).GAUSM9(9)
COMMON/CNS/ INCRD, INU, INDU, INC, ENRRES, INV, INA, INT,
1 _INDI, INDI1, IHAF, INSRES, IPORES , INFREF, INSREF, INEIG, INOC
CQOMMON/CONSTS/PI1, SIN60,00S60 ,KCROS2(3) KCROS3(3),ZERO, LZERO, LONE,
; grm.m.mw.mm.mu.nmm.mmfzs).mlm).muacls
COMMON/CONTRO/LINITL , LARGE, LINEAR , LCRELP , LDYN, LHEAT,, LSTAT,
LOK , LEFOND, LMOLOD, IMASS , LREST , LFILE, LUNSYM, LPPOPN, IMODST,
LELMOD, LOORT, LTRAMA,, LEIGEN ,NRHSV , IMESSG, LLHS , LLHSK , LLHSM,
LRHS , LSTRN, LINVAT , LGAPF(, , IMDBW, LSUPGN, LGAPS , LGAPEL , LSHELL ,
LSUPEL , LGB0, LOONS ,LSSS ,LSS1,LEXTRP, LDYNC, LEI PRE, LCTU, LPROC,
LADIM, LDAA, LSOLID, LRIKS , LREBAR , LSUBMX , LREBAS , LRHSI , LHYBEM,
LBQUIL , LSTEND, IWPEN, LPORPS , LWPENE , LNOSTP, LSEQU, LAUTO, LITFRE,
LITFRP,LGAPPR, LHYBCOK , IMODYN,NRHS I , NRHSP , LOOMPD, LPOUT , LSTRNE
,LREBA1
COMMON/QOUNT /K INC , MINC  KITER ,MITER , FATIME ,ATIME,, DATIME,
1 CTIME,DCTIME,DTIME,LDTIME ,HT IME ,THT IME , DDTPRE ,DATPRE ,HT IM1 ,
2 THTIM2 , EXFAC,KSTEP ,KOUTS ,MCUTS , NUMBER , LSHAF1 , LOUTBK , DTNEWS ,
3 KITGEN,KMDINC, TTIME ,DIMIN, DIMAX ,MITEIG ,MITXXX , STIME , DSTIME
4, TPREY, TNEW, TOLD, TEND
Ct.‘O‘t‘tl.“l..ll.l.‘t...l‘l.tt“ttlt.lltt.tttt“ttt.lt
DIMENSION TDTF(3,3),TF(3,3),GXHAT(3,3),EMCRDT(3)
OOMVON/DEFGRAD/TDTF, TR
COMMON/V! /BMCRDT

C.l.“l‘l‘l‘.‘....l‘l."‘..“l.“l“l..‘l.‘.“..l‘.“‘.

GO JRNWNEWN -

CH833888535525S888800088088S0CELES888388583888588888888288
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THIS IS AN ABAQUS SUBROUTINE MODIFIED BY BOYCE TO OBTAIN
ADDITIONAL INFORMATION NEEDED IN UMAT

$8838885858380008888C8UCESESSENSIPSRS08P8R888088880888388

NGEQM=$

1SPACE=0

IF(NINTK.NE.NINTM) GO TO 150
CHECXED FOR 1ST ORDER ELBVENTS

IF(NNOD!I .GT.4) GO TO 100

IP(KINTK.NE.1) GO TO 100

DO 50 KINR=1,NINR

111=(KINR-1)*NNOD3

DO 10 Kil=1,2

DO 8 K2=1,2

Cssscsssssssssssssssssessossssss

GXHAT(K1,K2)=ZFRO
cutttttttltt‘tOtllttttlllt‘tt‘ltlttlt
I11=1114K2*NNODI
DO 5 KNODE=1,NNODI
I1=I1+1
Ctl.t.'tl.ttt“‘ltttt.l“O‘tl“‘tt“t
KEDU=2* (KNODE-1)+K1
GXHAT(K1 ,K2)=GXHAT(K1,K2 )+ANORMI (11 )* (EXPU(K1 ,KNODE) - EDU(KEDU) )
C.ttlt‘t‘.Ol‘..l‘.l‘tt‘l‘l‘ttttlt‘t‘ttt
TERM=TERM+ANORMI (11) *EXPU(K1 ,KNODE)
5 CONTINUE
GX1(K1,K2)~TERM
8 CONTINUE
10 CONTINUE
CALL ASET(XX1,ZERO,9)
I11=(KINR-1)*NGEOM
DO 20 K1=1,2
DO 18 K2-1,2
I1=11+1
DO 15 K3=1,2
XX1(K3,K1)=XX1(K3,K1)+GX1(K3,K2)*GBOM(11)

Cetstsss33088888808383383805828383838888888838388

TP(K3,K1)=TF(K3,K1)+GXHAT(K3 ,K2) *GEOM(11)
c.t“‘.ll.l..“l...cltt..ll.l.“tl‘t‘t““ll‘
15 CONTINUE
18 CONTINUE
20 CONTINUE
XX1(3,3)=ONE

(Csssssssssssssss

TF(3,3)~ONE
c.‘tl..‘tt‘tt‘l
IF(NPARS .NE.0) GC TO 40
R=ZFRO
BIGR=ZERO
IF(NNODI .NE.4) GO TO 30

Ctsssssssssss

KT=ZERO
Csssssssssssss
DO 25 KNODE=1,NNODI
R=R+EXPU(1 ,KNODE)

Cssssesssessssssse

RT~RT+EXPU(1,KNODE) - ELU( 2 *KNGDE-1)
Cltt“tll...‘t.t‘
BIGR=BIGR+ANDR ( INCRD,KNODE)
25 OONTINUE

Csssssssasassssns

aQaan
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TF(3, 3)=RT/BIGR

Ctssssssssssanss

30

35

GO TO 39

QONTINUE

11=(KINR-1)*NNOD3

DO 35 KNODE=1,NNODI

I1=I141

R=R+ANORMI (11 ) *EXPU( 1 ,KNODE)
BIGR=BIGR+ANORMI (I11) *ANDR ( INCRD, KNODE)
CONTINUE

Cssssossssssssssse

TF(3,3)=BMCRDT(1)/BIGR

Csssssscssssssssss

39

QONTINUE
XX1(3,3)=R/BIGR

40 OONTINUE

Cssssissss8s8s8ssss8s8s

CALL AQOPY(XX1,TDTF,9)

Csssssssscessssasssss

41
42
43

44
45
46

DET=-XX1(1,1)*XX1(2,2)-XX1(1,2)*xX1(2,1)
DVRED(KINR )=DET
DO 43 K1=1,2
DO 42 K2=1,2
EJAC(K1,K2)=ZERO
GX1(K1,K2)=ZERO
12=111+NNODI *K2
13-K1
DO :; KNODE=1 , NNODI
12=12+1
GX1(K1,K2)=GX1(X1,K2)+ANORMI { 12) * (EXPU(K1 KNODE) -HALF*EDU(13))
gul:gx; ,K2)=EJAC(K1,K2 ) +ANORMI ( 12) *EDU(13)
- + .
CONTINUE
CONTINUE
CONTINUE
DET=GX1(1,1)*GX1(2,2)-GX1(1,2)*GX1(2,1)
DET=ONE/DET
TEMP=GX1(1,1)
GX1(1,1)=GX1(2,2)*DET
GX1(1,2)=-GX1(1,2)*DET
GX1(2,1)=-GX1(2,1)*DET
GX1(2,2)=-TBMP*DET
DD 46 Ki=1,3
DO 45 K2~1,2
XX1(K1,K2)=ZERD
DO 44 K3=1,2
XX1(K1,K2)=XX1(K1,K2)+EJAC(K1,K3) *GX1(K3,K2)
QONTINUE
OONTINUE
CONTINUE
XX1(3,3)=ZERO
IF(NPARS.NE.0) GO TO 49
DR=ZFRO
R=ZERO
}p(mm.ma.o GO TO 48
1=l
DO 47 KNODE=1,NNODI _
R=R+EXPU(1,KNODE) -HALF*EDU(11)
DR=DR+EDU(11)
I1i=]142

47 CONTINUE

GO TO 480

48 CONTINUE
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470
480

49

485

489
490

495
50
100

I1=1
12=111

Dg 470 KNODE=1,NNODI

12=12+1

R=R+ANORMI (12 )* (EXPU(1,KNODE) -HALF*EDU(11))
DR=DR+ANORMI (12)*EDU(11)

I1=I1+2

COONTINUE

CONTINUE

XX1(3,3)=-DR/R

CONTINUE

K1=NINR+KINR
DVRED(K1)=XX1(1,1)+XX1(2,2)

DO 490 Ki=1,2

DO 489 K2=1,2

TERM=~ZERO

11=111+NNODI *K2

DO 455 KNODE=1,NNODI

Il=11+1

TERM=-TERM+ANORMI (11 ) *EXPU(K1 ,KNODE)
CONTINUE

GX1(K1,K2)=TERM

CONTINUE

CQONTINUE
DET-GX1(1,1)*GX1(2,2)-GX1(1,2)*GX1(2,1)
DET=ONE/DET

TEMP=GX1(1,1)

GX1(1,1)=GX1(2,2)*DET
GX1(1,2)=-GX1(1,2)*DET
GX1(2,1)=-GX1(2,1)*DET
GX1(2,2)=-TEMP*DET
11=2¢(NINR+(KINR-1)*NNODI )+1
J1=111+NNODI

DO 495 KNODE=1,NNODI

I1=l141

12=11+NNODI

JlaJ 141

J2=J1+NNODI .
DVRED(11)=ANORMI (J1)*GX1(1,1)+ANORMI (J2)*GX1(2,1)
DVRED( 12 )=ANORMI (J1)*GX1(1,2)+ANORMI (J2)7GX1(2.,2)
CQONTINUE

CONTINUE

CORTINUE

ISPACE=NINR

IF(NNODI .GT.4) GO TO 150

IF(MNODI .BQ.4) GO TO 120

KHe (KINTK-1)/3+1

KG=-KINTK- (KH-1)*3

G=GAUSP3(KG) *0GASP2

H-GAUSP3 (KH) *0GASP2

XM1=(ONE-G) ¢ (ONE-H)

XM2=(ONE+G)* (ONE-H)

XM3=(ONE-G) * (ONE+H)

XM4=(ONE+G) * (ONE+H)

XJO=XM1 *DVRED\ 1 )+XM2 *DVRED( 2 ) +XM3 *DVRED( 3 ) +XM4 *DVRED( 4 )
XJ0=XJO0®.25

TERM=XM1 *DVRED( § ) +XM2 *DVRED( 6 ) +XM3 *DVRED( 7 ) +XM4 *DVRED( 8 )
I1=142*NINR

DVRED(:1)=.25*TERM

I11=14+2* (NINR+NNODI )

1111=2*NNODI

DO 110 K1a1,2

11=14+22* (NINR+NNODI )+(K1-1) *NNODI
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12=1+2*NINR+(K1-1)*NNODI
DO 105 KNODE=1,NNODI
[lalt+l
12=12+1
TERM=XM1 *DVRED(12)+XM2*DVRED(12+1111)+XM3*DVRED(1242°%1111)+
1XM4*DVRED(1243%1111)
DVRED(11)=.25*TERM
105 OONTINUE
110 CONTINUE
GO TO 150

DO 124 K1=1,2
DO 122 KNODE=1,NNODI
I11=11+1
12=12+1
DVRED(12)=DVRED(11)
122 CONTINUE
124 CONTINUE
150 CONTINUE
111=(ISPACE+KINTK-1) *NNOD3
DO 170 K1=1,2
DO 160 K2=1,2
TERM=ZERO
Ctttt‘tttttttl.tt‘

GXHAT(K1,K2)=ZFRO
C‘a.lt!'ltttt...l.
I1=111+K2*NNODI
DO- 155 KNODE=1,NNODI
I1=11+1
Ctll‘.llt“t.ttttll
KEDU=2* (KNODE - 1) +K1
GXHAT (K1 ,K2 )=GXHAT (X1 ,K2 ) +ANORMI (1) * (EXPU(K1 ,KNODE) - EDU(KEDU) |
Ctttttlllttt.tttttl
TER. +=TERM+ANORMI (11) *EXPU(K1,KNODE)
155 CONTINUE
GX1(K1,K2)=-TERM
160 CONTINUE
170 OONTINUE

Csessssssssssssse

CALL ASET(TF,ZERO,9)
Cllt.lt..“ll“.
CALL ASET(XX:,ZERO,9)
11=(1SPACE+KINTK-1) *NGEOM
DO 190 K1=1,2
DO 180 K2=1,32
I1=I1+1
DO 175 K3=1,2
XX1(K3,K1)=XX1(K3,K1)+GX1(K3,K2)*GBOM(11)

Cssssssssssssnse

TP(K3,K1)=TP(K3,K1)+GXHAT(K3,K2 ) *GBIM(11)
Cttlltll..ltt't
175 CONTINUE
180 COONTINUE
190 CONTINUE
XX1(3, 3)-ONE

Cssssssssssss

TF(3, 3)=ONE

Ceesssssscassss
IF(NPARS.BQ.0) XX1(3,3)=EMCRD(1)/EMD0(1)
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Cl.“

Csess

63

Cesss

Cl“‘

r8sss0es

IP(NPARS .EQ.0) TF(3,3)=PMRDT(i)/BMD0O(1)
s9888588C00 8
IF(NNODU . BQ.NNODI ) GO TO 63
11=NNODI *2+1
XX1(3,3)=0NE+( - (EMCRD(1)-ANDR( INCRD,NNODI+1) ) *EU(11+42)+
1((INTMDN6§)-AMR(IN@D+1.Nlmm))'w(x1+1)+w(u))/EPAR(2)
|

sss88888888

CALL AODPY(XX1,TDTR,9)

VRATI0=ONE

C PLANE STRESS ASSUMED INCOMPRESSIBLE

200

210
220

230

TERM~ONE
IF(NDI .BQ.2) GO TO 200
TERM=(XX1(1,1)%XX1(2,2)-XX1(1,2)*XX1(2,1))*xx1(3,3)
VRATI10=TERM

VRATIO=-IMAX1(VRATIO, .1D0)

VRATIO=-IMIN1(VRATIO, 10.D0)

DVDVO=VRATIO

DV=DV*VRATIO

CONTINUE

IF(NINTK.NE.NINIM) GO TO 220

TERM=VRAT10/TERM

TERM=DS IGN(DABS (TERM) * *THIRD, TERM)

DO 210 K1=1,2

DO 210 K2=1,2

XX1(K1,K2)=XX1(K1,K2)*TFRM

COONTINUE

CONTINUE

TERM=GX1(1,1)*GX1(2,2)-GX1(1,2)°c%X1(2,1)

IF(TERM.GT .ZERO)GO TO 230

LOK=0

LOUTBK=1

CONTINUE

TERM=~ONE/ TERM

IF(NDI .BQ.2) XX1(3,3)=-TERM

T2MP=-GX1(1,1)

GX1(1,1)=GX1(2,2)*TERM

GX1(1,2)=-GX1(1,2)*TERM

GX1(2,1)=~-GX1(2,1)*TERM

GX1(2,2)-TEMP*TERM

END

SUBROUTINE LSOL8I(ANORMI ,EXPU,ANDR ,XX1, EJAC,MNCRDX ,MNRLX ,
1EINTS , EPAR , EMCRD, EN ,GBOM, GX1, EDU, EMCDC , EBAS I S , DUDX , DVRED, EU)
IMPLICIT REAL®*8(A-H,0-Z)

DIMENSION ANORMI (1), EXPU(MNCRIX, 8) ,ANDR (MNRLX , 8) ,XX1(3,3)
1BJAC(3 3).Blms(l).apm(z).mncsi.m(a).GB(M(lS.le(z,zi.Eu(l)
2,EDUC1 3, PMCDO(3) , EBASTS(9) .DUDX(3 , 3, DVRED(1)
DIMENS ION 4)

QOMMON/CDV/DV ,DVIVO
OOVMON/CEL/LELOP, JETP, JETP1 ,KEL ,KINTK ,KINTL ,KINTSL ,KSPT , NEMCRD,
1 JINTYP, JEXTYP, JEXTY2, JLIB,NAN24 ,MDOF ,M(RD,

1 NNODE ,NNODU , NTENS ,NDI ,NSHR ,NPR , NINTK, ,NINTM, NINTSL , NINTLL , N\P ,
4 NPARS,NSHL ,NBM,NELZM,NINTTS ,NEINT ,NDOFEL , JUNSYM, NEGE(M,

S LNODEK , NNCDEP,LBAS1S , NNODET , NTENST , NTDOFN, LLUMPM, NOFFT , NNODI ,
1 NSPT,NNGD2,NNOD3 ,NNOD4 , NTDOFE ,KSPTT ,NINR , NBMB

QOMMON/CNS/ INCRD, INU, INDU, INC, INRRES, INV, INA, INT,

1 INDI, INDI1, IHAF, INSRES, IPORES, INFREF, INSREF, INEIG, INOCC
MI(INSTS/PI.SlN60.(DS60.KQlOSZ(3S.K(ROS3(3).ZERO.LZERO,IDNE:
1 ONE,TWO,HALF,ABIG,ASMALL ,BCBIG,LOCSHR(2, 3) ,THIRD, PRECIS

166



2,BLANK
CQOMVON/CONTRO/LINITL , LARGE,, LINEAR , LCREEP , LDYN,, LHPAT, LSTAT,
LOK , LEROND, IMDLOD, IMASS , LREST, LFILE, LUNSYM, LPPOPN, LIMODST,
LEIMOD, LOORT ,LTRAMA , LEIGEN ,NRHSV, IMESSG,L1IHS , LLHSK , L1 HSM,
LRHS ,LSTRN, LINVAT , LGAPFL , LMDBW, LSUPGN , LGAPS , LGAPFL , LSHELL ,
LSUPEL,LGBO, LOONS ,LSSS,LSS1,LEXTRP, LDYNC,LE1PRE, LCTU, LPROC,
LAITM, LDAA,LSOLID,LRIKS ,LREBAR , LSUBMX , LREBAS , LRHS I , LHYBBM,
LEQUIL ,LSTEND, LWPEN, LPORPS , LWPENE , LNOSTP,LSBQU, LAUTO, LITFRE,
LITFRP,LGAPPR, LHYBCK , IMODYN,NRHS I , NRHSP , LCOMPD,, LPOUT , LSTRNE
OQOMMON/QOUNT /K INC ,MINC ,KITER ,MITER , FATIME ,ATIME ,DATIMZ,
1 CTIME,DCTIME,DTIME,DDT IME ,HT IME ,[HT IME ,DOTPRE , DATPRE ,HT IM1 ,
2 DHTIM2 , EXFAC ,KSTEP ,KCUTS ,MOUTS , NUMBER , LSHAF1 , LOUTBK , DTNEWS ,
3 KITGEN,KMDINC, TTIME,DIMIN,DIMAX ,MITEIG ,MITXXX, STIME ,DSTIME
4, TPREV, TNEW, TOLD, TEND
C‘.Gl.t““‘.‘l...cllttltl‘l
DIMENSION TDTF(3,3),TF(3,3),GXHAT(3,3),PMRDT(3)
COMMON/DEFGRAL/TDTF, TR
OaMON/V1/BARDT
Cl.tll‘l'll..'lt‘.ll.‘ltllllltt.t“.t.‘c“llttt“!.ttlltttt
C
C THIS IS AN ABAQUS SUBROWUTINE MODIFIED BY BOYCE TO OBTAIN
gAmeNAL INFORMATIC:« (EEDFD IN UMAT

Ct‘l.“"l.lﬂ““ll.““l““‘“tl.ltl‘llll“'ll..ltllt‘.ll

C
C

[

WNNNEWN

DATA LOCNOD/1,2,4,3/

1INT=NNJD3*® (KINTK-1)
NGE(M=$§
IGEO=(KINTK- 1) *NGBOM
IF(NINTK.NE.SINTM) GO TO §
I INT=I INT+NNOD3*NINR
IGBEO=IGEO :NINR * NGECM

5 CONTINUE
I1=1INT
DO 10 KNODE=1,NNODI
Il=l1+1
EINTS (KNODE )=ANGRMI (11)
EN(KNODE)=ANORMI (11)

10 CONTINUE

11=INCRD-14K1
DO 15 KNODE=1,NNODI
Cl.t“t‘(‘l.“llell'ltt.Otl.
BEMCRDT(K1)=BMCRDT(K 1 ) +EN(KNODE ) * (EXPU(K1 ,KNODE) -
1  EDU(2*KNODE+K1-2))
Ctttu.‘lttt‘..u......t.“c.t
BEMCRD(K1)=EMCRD(K1 )+EN(KNODE ) * EXPU(K 1 , KNODE)
EMODO (K1 )=-EMCDO (K1 )+EN(KNODE) *ANDR ( 11, KNODE)
15 CONTINUE
20 CONTINUR
EMCRD 3)=ZERO
EMCDO( 3)=ZERO
DO 22 K1=1,9
EBASIS(K1)=ZFRO
22 CONTINUE
EBASIS(1)=ONE
EBAS1S(5)=-ONE
EBASIS(9)=ONE
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11=1GEO0+NGBOM
DV-GEOM(11)
IF(LARGE.NE.0) GO TO 4C
11=IGRO
DO 25 Ki=1,4
I1=11+1
GX1{K1,1)=GEOM(11)
25 CONTIMUR
GO TO 100
40 CONTINUE
CALL LSOL8V(XX1,GX1,ANORMI , EXPU,MNCRIX , ANDR ,MNRLX , IMCRD,
1EMD0 , DVRED,GEQM, BU, EPAR, EJAC, EDU)
100 CONTiNUR
11=NNODI
J 1«1 INT+NIRODI
DO 120 KNODE=1,NNODI
I1=I1+1
12=11+NNOD!
J1=J141
J2=J 1+NNODI
EINTS(11)=ANORMI (J1)*GX1(1,1)+ANORMI (J2)*GX1(2,1)
EINTS(12)=ANORMI (21)*GX1(1,2)+ANORMI (J2)*GX1(2,2)
120 CONTINUE
IF(LARGE.BEQ.0) 0O TO 301
DO 210 K1=1,2
[0 205 K2=1,2
EJAC(K? ,K2)=7ERO
GX1{K1,K2)-ZERO
12=1 INT+NNOD! *K2
. 13<K1
DO 202 KNODE=1,NNODI
12=12+1
GX1(K1,K2)=3X1(K1,K2)+ANORMI ( 12) ¢ (EXPU(K1,KNDE) -HALF*EDU(13))
ngfgx; ,K2)=EJAC(K1 K2 )+ANORMI (12) *EDU(13)
-i3+
202 CONTINUE
205 OONTINUE
210 CONTINUE
DET=GX1(1,1)*GX1(2,2)-0X1(1,2)*GX1(2,1)
DET=ONE/DET
TEMP=GX1{1,1)
GX1(1,1)=GX1(2,2)*DET
GX1(1,2)=-GX1(1,2)*DET
GX1(2,1)=-GX1(2,1)*DET
GX1(2,2)=TBVP*DET
DO 240 K1=1,2
L0 235 X2=?,2
DUk (K1 ,K2 )=ZERO
DO 232 K3=1,2
DUDX (K1 ,K2 )=-DUDX (K1 ,K2)+EJAC(K1,K3) *GX1(X3,K2)
232 CONTINUE
235 CONTINUE
240 CONTINUE
DUIX(3, 3)=ZFRO
IF(NNODU. BQ.NNUDI ) GO TO 255
X=-ANDR( INCRD, NNODI +1)
Y=-ANDR ( INCRD+1 ,NNODI +1)
DO 253 KNODE=1,NNODI
¥=X+EN(KNODE ) * { EXPU( 1, KNODE ) - EDU( 2 *KNODE-1) )
Y=Y~+EN(KNODE) * (EXPU( 2 ,KNODE) - EDU( 2 *KNODE) )
253 CONTINUR
11=2*NNODI +1
TMOT=ONE+( -X* (BU(I11+2)-EDU(1142) )+
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1Y*(BU(I1+41)-EDU(I141))+BU(11)-FDUCI1))/EPAR(2)
TMDT=XX1(3,3)/T™MDT
IF(TMUT.CGT.ASMALL) GO TO 254
DUDX( 3, 3)=ZERO
LOK=0
LOUTEK =1
GO TO 255

254 CONTINUE
DUDX( 3, 3)=DLOG(TMDT)

255 CONTINUE
IF(NPARS.NE.0) GO TO 300
IF(NNODI .NE.4)G0 TO 260
DR=ZEPO
R=ZER()
I1=1
DO 250 KNODE=1,NNODI
R=R+EXPU(1,KNODE) -HALP*EDU(11)
DR=DR+EDU(11)
I11=1142

250 CONTINUE
GO TO 280

260 CONTINUE
DR=ZERO
R=ZERO
I1=1
DO 270 KNODE=1,NNODI
R-R+EN(KNODE ) * (EXPU( 1 , KNODE) HALF'HIJ(II))
DR=-DR+EN(KNODE) *EDUC11)
I11=11+2

270 CONTINUE

280 CONTINUE
DUX( 3, 3)=DR/R

300 CONTINUE

301 CONTINUE
IF(JINTYP.NE.4002) GO TO 990
DO 310 K1=1,NNODI
EINTS(K1)=ZERO

310 CONTINUE
EINTS (LOONOD(KINTK) ) =ONE

990 QOONTINUR
RETURN
END
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Appendix B

Kinematics of Finite Strain

In the incorporation of the proposed material law for amorphous polymers into a 3-D
continuum model encompassing finite strain .eﬂ'ects, the multiplicative decompositition
of the deformation gradient into elastic and plastic components as originally proposed
by Fardshisheh and Onat [4] and Lee [39] was used. This decomposition obtains the
plastic deformation gradient, F?, by elastically unloading without rotation to a stress
free state. This operation lumps all of the material rotation into the plastic deforma-
tion gradient and enforces symmetry upon the elastic deformation gradient, ¥*. This
decomposition has the advantage of being unique. In the case of amorphous polymers,
this also has the advantage of providing a physically understandable interpretation of
the material behavicr under imposed deformations. This is due to the assumption that
the basic molecular structure of the polymer plastically deforms affinely. However,
in the more widely researched aree ° metallic materials, and, in particular, of single
crystals, this decomposition does not provide as convenient a conceptual framework of
the deformation of crystalline materials as used by Asaro and others [41, 42, 46]. This
is because the basic crystal lattice structure does not deform affinely, and the roiation

of the lattice structure is perceived to be an elastic deformation as will be discussed
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later. Other decompositions, in particular, that used by Asaro [41], have been used
to describe the deformation of single crystals with success. For purposes of notational
distinction, the two representations discussed in this appendix will be referred to as the
“Asaro” and “Onat” representations. The basic framework of the Asaro representation
works well for single crystals and has also been extended to polycrystalline materials
(40, 44].

The topic of the representation of inelastic material behavior under finite strains
and rotations has been the subject of much debate in the recent plasticity literature [39,
40, 41, 44, 44, 45). It is not attempted to review this extensive topic here. However,
the representation applied to the constitutive model presented in this thesis, the Onat
representation, is also general enough to apply to other material models although it
has not been carried out to completion on a practical problem to the author’s present
knowledge. Here, it will be demonstrated that the elastic-plastic decomposition of the
deformation gradient and its associated rate kinematics proposed by Onat is indeed
general enough to apply to the deformation of single crystals. In this representation,
the orientation of the lattice is kept track of by updating corresponding tensor state
variables. The Onat representation is shown to be more cumbersome for the case of
single crystals than that used by Asaro. However,‘the point to be made is that the Onat
representation is general enough to encompass constitutive laws for materials other than
amorphous polymers and happens to be a relatively simple way of representing the large
inelastic deformation of amorphous polymers because of the nature of the structure of
these materials. The problem of the single crystal was chosen to demonstrate the
generality of the Onai representation because of the community “acceptance” of the

Asaro representation of this problem.

171



This appendix will first review the basic kinematics of the Onat representation
and the Asaro representation. Second, the problem of the deformation of a “planar”
single crystal containing a primary and a conjugate slip system will be examined. A
solution as published by Asaro [41] will be presented as will the corresponding solution
obtained using the Onat representation. The two solutions will be shown to yield

identical results.

B.1 Kinematics

The basic kinematics of the Onat and Asaro representations of inelastic behavior under
finite strains and rotations are presented. Terms which are speci!ically Onat terms will
be right-subscripted with an O; terms which are specifically Asaro terms will be right-
subscripted with an A. Terms which are common to both, such as the deformation
gradient, F, and the velocity gradient, L, will not be subscrip*-d.

Some basic kinematic defiritions and terminology are .ow given. In general, a
material point in its original undeformed configuration will be represented by X. The
same material point in the deformed configuration will be represented by x. The

deformation gradient, F,is given by:

F = yxx. (B.1)
The velocity gradient, L, is given by:

L=y,v=FF'=D+W,; (B.2)
where D, the rate of deformaticn, is the symmetric part of L, and W, the spin, is the

anti-symmetric part of L.
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B.1.1 Basic Kinematics of Onat Representation

Multiplicative Decomposition of the Deformation Gradient
F = F F§ (B.3)
FT =F, (B.4)

where F, is the symmetric elastic deformzation gradient, and Fj, is the plastic defor-

mation gradient obtained by elastic unloading without rotation to a stress free state.

Velocity Gradient

L=FF'=D+W;
L =FyF5' + FoFoFG 'Fo ‘ (B.5)
Ly = FoFG " =D + Wo;

where LY, is the Onat plastic velocity gradient which is in the unloaded configuration,
F?; D) is the rate of deformation of the unloaded configuration which must be con-
stitutively prescribed; and W¥ is the plastic spin which is algebraically prescribed due

to the symmetry restriction on F§,. This is shown immediately below:

Fg = (D + W)F5 — F5 (D) + W5),
and,
Y = (Fp)T = Fg(D — W) — (D} — WH)Fg; (B.6)
or,
(D + D5)F% — Fy(D + Dj) = Fy (W5 — W) — (W5, — W)F;

therefore, W%, falls out algebraically to be:
WhH =W — W [D + DjyJ; (B.7)

where Wy is a fourth order tensor which is a function of F§ and is of order elastic

strain. ‘Therefore, W%, must not be constitutively prescribed.

173



B.1.2 Basic Kinematics of Asaro Representation

Multiplicative Decomposition of the Deformation Gradient
F = F,F (B.8)
F, = F4F} (B.9)

where F¥, is the deformation gradient due to plastic slip; FE is the residual rotation
of the lattice; and F¢ is the elastic deformation gradient. In other terms, the gradient
F*, accounts for the stretching and rotation of the lattice and F¥ accounts for plastic

shearing on the crystal glip planes.

Velocity Gradient

L=FF'!'=D+W;
L = F\F O + FL R R R, (B.10)
Ly = FyFiF'F! = D + W

where L7, is the Asaro plastic velocity gradient which is in the deformed configuration,
F, (note that it is in a different configuration than the Onat plastic velocity gradient);
D?, and W, are the rate of plastic deformation and the plastic spin, respectively. These .
last two terms must both be constitutively prescribed in this formulation. This is done

immediately below.

Constitutive Law for D, and W%

A crystal slip system may be defined by the dyadic 3 ® m*, where the vector s*
lies along the a slip plane and the vector m® is perpendicular tc this slip plane. The
plastic velocity gradient in the Asaro unloaded configuration is given by L 0= I“",’,Fi'l.
This is constitutively obtained by the summation of the rate of plastic straining, 4%, of

each slip system (8® @ m®):
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L% =Y 4% @m°. (B.11)
a
The plastic velocity gradient in the loaded corfiguration is obtained by convecting the

slip system to this configuration:

8 @m** = F8* ® F,m°". (B.12)
This gives the following:

Ly =) 48" @m". (B.13)

The rate of plastic deformation and the plastic spin in the lcaded and unloaded configu-
rations may be obtained by first decomposing the plastic slip direction tensors 8* ® m®

and 8°* ® m*® into their symmetric and a.itisymmetric parts:
S* = 1(s* ® m* + m® ® 5%);
A% = l(sc @m® — m° ® sa);

S = L s e & . (B.14)
A% = ;(8'“ Am' —m**® soa:);
This gives: '
D} = X.9°8%;
W = 5, 17A% (B.15)

1Y) = Ta 48
WP, = T, 4°Ae
The rztes DY, and W’ have now been constitutively prescribed in terms of the p:a»tic
strain rates of the individual slip systems. Later in this appendix, the specific problem
considering a planar single crystal with two slip systems and a constitutive law for 4*
will be presented. For the present, we can see that Asaro’s representation can appro-
priately account for the material and lattice deformation of the crystal. The lattice
orientation is properly monitored because the plastic spin is constitutively cbtained.
In the current context of the Onat representation, there is no room for monitoring

the orientation of the crystal lattice. Thereiore, another item must be added to this ba-

sic frar s-work. Onat has shown theoretically that his representation can accommodate
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the internal state and orientation of a material element by the updating of appropriate
scalar and tensor state variables [43]. Here, we will carry out this theorem for the
practical problem of the planar single crystal. This will be done by first finding the
relationship between Onat’s and Asaro’s representations.

The relationship between Onat’s decomposition and Asaro’s decomposition is found
by first pictorially examining a body as it goes from its original undeformed configura-
tion to a deformed conﬁgﬁra.tion as shown in Figure B1. Here, the “unloaded” states
as defined by Onat’s F} and Asaro’s F¥ are also depicted. In order to account for
the lattice orientation in the Onat representation, an appropriate tensor state variable
must be constitutively updated. This can be done by finding the relationship between
Asaro_’s unloaded configuration, which is a stress free state containing no lattice defor-
mation or changes in orientation, and Onat’s unloaded configuration which is a stress
free state (no lattice deformation) that contains any changes in lattice orientation.

Once again, we examine Asaro’s elastic-plastic decomposition of the deformation
gradient, F = F4F’. The lattice deformation gradient, F, may be broken down into

its left stretch and rotation tensors via the polar decompos:tion theorem to give:

Fy,=V'R";
F = V'R'F;

(B.16)
where V*° is the symmetric tensor which describes the elastic stretch of the material.
Onat haes shown that the decomposition F = F§F5, where F§ is a symmetric stretch
tensor, yields a unique Fg. Therefore, since both V* and F§, describe the elastic stretch
incurred by the solid, we must conclude that:

V* =F%,. (B.17)

In other words, if we elastically unload to a stress-free configuration via 5!

F5 T then Fy is unique. Therefore, if we elastically unload to a stress-free state via
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V*~1, it must be the same stress-free state described by F?,. The rotation matrix R*T
keeps us in an unloaded stress-free configuration and simply rotates the lattice to its ap-
propriate stress-free configuration which would be its initial undeformed configuration.

Therefore, we obtai-:

Fp = R'F%;
or, alternatively, (B.18)
F, = RTF);

where R* is the rotation tensor which defines the lattice orientation. We may account
for the lattice orientation using the Onat representation by observing that the slip

system convects from the reference configuration to Onat’s unloaded configuration via

R":
85 ®mg = R's* ® R'm°. (B.19)

The tensor 83 ® m3 represents the slip system in Onat’s unloaded configuration and

may be decomposed into symmetric and antisymmetric parts:
1
S5 = 5[93 ® mg + mg @ 83}; (B.20)
1
A = 5[88 @m3 —mg @ 83}; (B.21)

The tensors S and A are the state variables needed in the Onat representation. The

rate of change of these state variables is found to be given by:
S3 = [R*R'T|SS + S5 [R'R*T|; (B.22)
A2 = [R'R'T]AS + ASR'R*T|T; (B.23)
where R*R"T is shown below to be the lattice spin.

We had previously obtained the velocity gradient in terms of Asaro’s decomposition

to be:
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L =F,F + P FOFIFL (B.24)
By substituting in F}, = V*R* and V* = F}, we obtain:

L=F F5! + FoR'RTFS! + FoR FLFL'RTFS . (B.25)
However, we also know that:

L =FF5 + FOFOFS'FS L, (B.26)
This leads to:

18 =FOF5 ! =R'R'T + R'I4R'T. (B.27)

A physical interpretation of this equation is that the R* f‘iR‘T term rotates the velocity
gradient of the Asaro unloaded configuration (see Figure B1) into Onat’s unloaded
configuration. The R*R*T term accounts for the rate of this rotation and is the spin of
the lattice. In other words, R* is effectively a time-dependent observer transformation
relating the two different elastically unloaded configurations, c.f. B.18. Since symmetric
and anti-symmetric tensors remain as such under an orthogonal transformation and

since R* is an orthogonal tensor, we can conclude that:

W5 = R'R'T + R*'W,R'T;
and, ) (B.28)
Dtb = R‘DiR.T.

These tensors may also be expressed in t.rms of the slip systems in Onat’s unloaded

state to be:
W’ =R'RT + ) 4°A%; (B.29)
a
and
D} = 3488 (B.30)
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Therefore, the lattice spin, R*R*T, is given by:
0, =R'R'T = WP — Y 4°A2. (B.31)

Equations (B22), (B23), and (B30) may then be used to update the state via, for

example, a simple forward Euler integration scheme:
(S8)e+ae = (S5): + (S5):0¢; {B.32)
(A3)irae = (A3): + (AB):AL. (B.33)

The state veriables S and A may also be updated via an incremental orthogonal

transformation corresponding to {3 At, where the corotational rates of S and A are

given by:
SY =§-0,8 + S0, =0, (B.34)
AP =A-Q.A+AQ, =0, (B.35)

and the “intermediate” rotation, Q, must therefore satisfy [54]:
Q=10.Q, (B.36)
Q(0) =1, i (B.37)
or Q = ezp(f1LAt). The state variables S and A are then updated via:
(S)t+A¢ = Q(S),QT, (B-38)
(A)erar = Q(A)QT. (B.39)

The preceding equations are easier to visualize if we simplify to the case of no elastic

stretching, i.e., F{ = V* = 1. In this case, Onat’s expressions become:
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F = Fo;

L = Lj;
D =D} =Y ,4°S; (B.40)
W = Wp;

0, =W -3,7"A%.
Asaro’s expressions become:

F = R°FY; .

L =RR'T + RF,F'R*T;

D = R°'D,R'T;

W=R'RT+R'WR'".

(B.41)

B.2 Fxample Problem: Planar Single Crystal

We now examine the problem of the planar single crystal with two shear slip systems
and no elastic stretching. This problem has been solved by Pierce, Asaro, and Needle-
man [46]. This solution will be repeated here. A solution for this samne problem using
Onat’s method will also be presented.

We begin with some definitions of basic parameters to be used in the problem as
illustrated in Figure B2. The primary and conjugate slip systems are defined by the
vector pairs (s”,m?) and (s°,m°¢), respectively. The position of the primary system is
given by the angle ¢ clockwise from the axis of imposed tensile deformation, e;. The
position of the conjugate system is given by the angle ¢ counterclockwise from the axis
of imposed tezsile deformation, e;. Initial conditions on these angles were taken to be:
#(0) = 40° and ¢(0) = 20°. The angle S in the figure describes the orientation of the
lattice with initial condition of 8(0) = 0. Therefore, the lattice orientation tensor R*

is found to be:

. cosf —sinf

sinfl cosf (B.42)
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The rate of plastic shear straining on the primary and conjugate slip systems is given
by 4F and 4¢, respectively. The visco-plsstic constitutive law for these 4* is given by

the power-law relation:

A = a (T,,).,.; (B.43)

]
where 4* is a parameter such that ¢* = 4* when 7 = ¢%; 7* is the resclved shear
stress on that slip system; g represents the internal structure of the material and may
evolve with strain hardening; and m indicates the rate sensitivity of the material. The

internal structure is taken to evolve according to:

ga = Z haﬁ;yp; (B.44)

where h,p is a hardness slope natrix and therefore accounts for latent as well as self

strain hardening. For this example, we take:

hpc = thp; hcp = ghec;

hep=h;  hee = h; (B.45)
where,
P ]
h = hosech? (E%%—)-) ; (B.46)

where hy = 8.979 and 1, = 1.87 for aluminum 2.8 wt.% copper alloys and 1.0 < ¢ < 1.4
(46].

B.2.1 Solution Using Asaro’s Representation

The relevant material law information has now been given and we now move onto the
solution of pulling this single crystal in tension along the z; axis. Since we are pulling

in simple tension, points which lie along the z; axis will remain aleng this axis giving:
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F-.e;=)e; (B.47)

where ) is the stretch in this direction. Using Asaro’s representation this results in:

tanf = Fj1a/Fha (B.48)
and
; P P
B = cos’B [Fén _ FAupfAzz] : (B.49)
Fa Faz
where F%, is obtained from:
F’ = 478" m® + 4°8°m°] FY,. (B.50)

These equaticns together with the resolved shear stresses:
g
2 - (B.51)
2

are used to update the state of the material. The orientation of the lattice, 3, as
. function of the amount of plastiz strain on the primary system was found for the
following three cases (all with @ = 107%): m = 50, ¢ = 1.4; m = 50, ¢ = 1.0; m = 10,
g = 1.0. The results are skhuwn ir Figure B3 and were originall; calculated by Pierce, et
al {46]. The short FORTRAN program written to do the above calculations is included

in section B3.1.
B.2.2 Solation Using Onat Repre¢s.entation

This : )roblem may als., be solved using Onat’s representation and including the lattice
orientatin as a state variable. This can be done by integrating equations (B22) and
(B23) as suggested in section B1.2.

Jince we are considering az elastically rigid single crystal, F3 = I, Onat’s plastic

deformation gradient is eg.al to the total deformation gradient:
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¥, =F. (B.52)
Similarly, Onat’s plastic spin is equal to the total spin:

W’ = W = skew[FF™!| = skewF5F5]. (B.53)
This spin does not account for the lattice orientation. The lattice spin is given by:

0, =R'R'T = (W5 —4PAD — 4°A¢)]. (R.54)

The lattice orientation may then be updated with equations (B.32) and (B.33) or (B.34

- B.38). with the initial conditions:
i
(S3)i=0 = 2—[3" 9 m* +m° @ 8%, (B.55)
1 .
(AS)‘:O = E[Ba ® m* — m* ® BG], (B.56)

Since this is a 2-D problem, the lattice orientation may be given by the angle 3:

p= tan"%.

These equations together with the constitutive laws (B.43 - B.46) stated earlier are

(B.57)

used to update the .tate of the material. The FORTRAN program written to do the
above calculations is included in section B3.2. The solation for the lattice orientation,
B, as a function of the plastic strain on the primary slip system, 47, was found fcr
the same three cases as the Asarc solution. The results are plotted against the Asaro
results in Figure B3 and cre noted to be identical.

It is important to ncte that thes tior processes using the two different representa-
tions are very similar. However, they are operationally different in the manner in which
the lattice orientation is taken into account. The kinematics of the Asaro elastic-plastic

decomposition of the deformation gradient specifically includes the lattice orientation.

183



The Onat kinematical decomposition is more general and does not explicitly contain
the lattice orientation which must be implicitly retained and “constitutively” updated
as a tensor state variable. Therefore, this representation requires an additional tensor
to properly describe the material behavior of a single crystal. However, in this case, the
Onat represerntation only had one tensor in the decomposition F = F},. Therefore, both

representations would require the same storage space during numerical integration.
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Figure B2. Schematic of the plauar single crystal containing two slip

systems. The primary and conjugate systems are depicted with respect

‘to the tensile load axis.
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Figure B3. Lattice orientaticn, £, as a function of the
amount of plastic strain on the primary slip system for the
three cases of: m=50, q=1.4; m=50, q=1.0; and m=10, q=1.0
as computed using the Asaro and Onat representations.
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Appendix C

Extrusion Exit Temperature Profile

In the hydrostatic extrusion process of this paper, the extrudate exits the die, where all
processing was conducted isothermally at 90°C, into a room temperature environment.
The cooling of the exirudate from the 90°C processing temperature to the 25°C room
temperature depends on the thermal properties of the material, the dimensions of the
extrudate, and the velocity at which it enters the room. We first note that the radius of
the extrudate is only 0.0035m, i.e. it is a very slender cylinder. Therefore, a very good
estimate of the exit temperature profile can be found from a 1-D heat transfer analysis.
We also note that the exit velocity is very small, ~1mm/min, for the extrusion analyzed
in this paper. Therefore, we may neglect any effects of forced convection. We see that
we are now left with the standard fin problem of steady state heat conduction [47].
We will interpret the steady state temperature at a distance, z, along the fir to be the
temperature of the extrudate after exiting that distance from the die. Our governing
equations begin with the consarvation of energy which requires the heat entering a

differentia! element of the fin to be equal to the heat leaving that element:

Geond;, = Geondows t+ Qeonv+ (Cl)
This resultz in the following differential equation for the temperature, ©:

188



d*e 2h

where, k is the thermal conductivity of the material, k is the heat transfer or film coef-
ficient, R is the extrudate radius, and 8, is the ambient temperature. The boundary

~onditions require:
8 (z =0) =8, =90°C; (C.3)
6 (z = o0) = 6, = 25°C. (C.4)

These conditions give the following temperature distribution:

6 =6, + (89 — 6,) ezp [—-\/%%

If we include effects of axial convection, we must include an additional heat flux

(C.5)

due te the rate of change of internal energy of a volume element, ¢.,:

doe

g, = er’dn:c,,-d—t—;

(C.6)

where. p is the material density, c, is the specific heat per unit mass of the material,

and t is time. Invoking the chain rule, we may write:

de de
—_— =

dt E; (c.n)

where, v is the velocity of the extrudate. This modifies the governing equation to read:

*E9 2o _0,) = pei,

— (C.8)

which gives a temperature distribution of:

0 =0,+(6;—0,) czp[ [\/ pvc,, z pvc,,] ] (C.9)
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The exit temperature profile was also approximated with a finite element heat
transrer analysis considering a long slender rod of length L at an initial temperature
of 90°C. The temperature at one end was held constant at 90°C, and the rod was
pe:mitted to cool through natural convecticn for a time period equal to t = L/v.

The exit temperature profiles obtained from equations (C.5), (C.9), and the finite

element analysis are shown in Figure C1. Values for the thermal properties used were

as follows:
k =0.193W/m - K; (C.10)
p = 1.2(10%)kg/m?; (C.11)
¢, = 1300J /kg — K; : (C.12)
h=10W/K — m’. (C.13)

The values for the thermai conductivity and the density were for PMMA [21] A value
for the specific heat ¢f PMMA was not available. Therefore, this was approximated by
using the value for polycarbonate [48]. The heat transfer coefficient is for a medium
in air {47). The distribution from the finite element analysis was used as the exit
temperature profiic in the extrusion analysis. The distribution which includes axial
convection was computed after the extrusion analyses were completed. Therefore, even

though this distribution is likely the most accurate of the three, it was 1.0t used.
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