MIT/LCS/TM-273

GENERALIZED PLANAR MATCHING

Fran Berman
Tom Leighton
Peter Shor
Larry Snyder

April 1985

-Generalized Planar Matching

Fran Berman!
Tom Leighton?
Peter W. Shor?
Larry Snyder?

! Computer Science Department
Purdue University
West Lafayette, Indiana 47907

2 Mathematies Department and
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

8 Computer Science Department
University of Washington
Seattle, Washington 98195

Abstract: In this paper, we prove that mazimum planar H-matching (the problem of determining
the maximum number of node-disjoint copies of the fixed graph H contained in a variable planar
graph G) is NP-complete for any connected planar graph H with three or more nodes. We also
show that perfect planar H-matching is NP-complete for any connected outerplanar graph H
with three or more nodes, and is, somewhat surprisingly, solvable in linear time for triangulated
H with four or more nodes. The results generalize and unify several special-case results proved
in the literature. The techniques can also be applied to solve a variety of problems, including the
optimal tile salvage problem from wafer-scale integration. Although we prove that the optimal tile
salvage problem and others like it are NP-complete, we also describe provably good approximation
algorithms that are suitable for practical a.pphcatlons

Key Words: Approximation Algorithm, Covering, Matching, NP- Complete, Optimal Tile Sal-
vage, Packing, Planar Graph, Wafer Scale Integration.

Fran Berman was supported by a Purdue Research Foundation Summer XL Grant and NSF Grant MCS-80-05387.
Larry Snyder was supported by ONR Contract N00014-8-K-0360. Tom Leighton and Peter Shor were supported
by Air Force contract OSR-82-0326, DARPA contract N00014-80-C-0622, and the Bantrell Foundation.

1. Introduction

Generalized matching problems have been studied in a wide variety of contexts. (See [6] and
[8] for a large collection of references.) One common form of generalized matching is to find the
maximum number of node-disjoint copies of some fixed graph / in a variable graph G. This
form of the problem is called mazimum H-maiching. When H is an edge, this is simply the
standard maximum matching problem. It is well-known that maximum matching can be solved
in polynomial time. In [8], however, Kirkpatrick and Hell show that any non-trivial generalization
of maximum matching is NP-complete. In fact, they show that perfect H-matching (the problem
of deciding whether or not the nodes of a variable graph G can be completely covered by node-
disjoint copies of a fixed graph H) is NP-complete for any connected H with three or more nodes.
As a consequence, the maximum H-matching problem is also shown to be NP-complete for any
connected graph H with three or more nodes.

In this paper we consider generalizations of the matching problem for planar graphs. In par-
ticular, we focus on the mazimum planar H-matching and perfect planar H-matching problems,
which are defined below. (Henceforth H and G are assumed to be connected planar graphs.)

Problem: Maximum Planar H-matching.
Instance: A planar graph G and an integer k.
Question: Does G contain & node-disjoint copies of H?

Problem: Perfect Planar H-matching.
Instance: A planar graph G.
Question: Can the nodes of G be completely covered with node-disjoint copies of H?

Although the Kirkpatrick-Hell result does not extend to planar graphs, a number of NP-
completeness results have been proved for particular values of H. For example, maximum planar
H-matching was recently shown to be NP-complete for H = K (a triangle) and H = K 3 (a
claw) [4].

No non-trivial graphs H were known for which either the maximum planar H-matching or
the perfect planar H-matching problems could be solved in polynomial time. This fact, combined
with the Kirkpatrick-Hell result (as well as other general NP-completeness results along these
lines) leads one to conjecture that both problems are NP-complete for any connected F that
contains three or more nodes. In Theorem 1 of Section 2, we prove that the conjecture is true for
mazimum planar H-matching. As we show in Section 3, however, the conjecture is false for perfect
planar H-matching. In particular, we show that perfect planar H-matching is NP-complete for
any connected outerplanar H with three or more nodes, but also that the problem is solvable in
linear time for any triangulated H with four or more nodes. The precise characterization of H
for which perfect planar H-matching is solvable remains a difficult and interesting open question.

In addition to proving NP-completeness results, we also consider approximation algorithms
for maximum planar H-matching. In particular, we give a simple argument to show that there
is a polynomial time algorithm which is guaranteed to find (1 — €)k node-disjoint copies of H
in any planar bounded-degree graph G where k is the mazimum number of node-disjoint copies
of H in G and ¢ = O(1/+y/logk). (In [1], Baker describes a more general and probably more
practical algorithm that works for all planar graphs. No such results are known for the non-
planar version of this problem.) Moreover, we show that it is unlikely that a substantially better
approximation algorithm exists. In fact, we show that if Ps£NP, then there is no polynomial-time
(1 — €)-approximation algorithm where ¢ = O(1/k*) for any a > 0.

1

The techniques developed in this paper can be applied to solve a variety of related matching
problems. For example, the problem which originally motivated us to study generalized planar
matching comes from wafer-scale integration. This problem is known as the optimal tile salvage
problem (2] and consists of finding the maximum number of non-overlapping 2 X 2 regions of
functioning cells in a VN X VN grid of cells, some of which are faulty. Although Fowler, Paterson
and Tanimoto [5] proved that finding the maximum number of 3 X 3 squares of functioning cells
is NP-complete, the complexity of the 2 X 2 problem remained unknown. In Section 4, we apply
the techniques developed in the paper to give a simple proof that the z X y optimal tile salvage
problem is NP-complete for all {z,y} except {1,1} and {1,2}. Fortunately, we are also able to
provide a simple, fast and efficient approximation algorithm for this problem.

The techniques developed in this paper can also be applied to problems for which the copies
of H in G must only be edge-disjoint or for which the copies of H must be induced in G, although
we have not worked out the details in this paper. They also appear to be useful for reductions
to minimum covering problems, planar packing problems, three-dimensional packing problems,
and certain planar games like “dots and boxes.” [2-8] .

The remainder of the paper is divided into five sections. Section 2 contains our results
on maximum planar H-matching. The perfect planar H-matching results are‘in Section 3.
Applications of our techniques are described in Section 4. We conclude with acknowledgements
and references in Sections 5 and 8.

2. Maximum Planar H-Matching

In this section, we determine the complexity of maximum planar H-matching for any H.
Without loss of generality, we assume that H and G are connected. (It is easy to extend the
results to H and G that are not connected.) If H has two or fewer nodes, then the problem is
easy. In Section 2.1, we show that maximum planar H-matching is NP-complete for any H with
three or more nodes. We describe approximation algorithms for this problem in Section 2.2.

2.1 NP-Completeness

Theorem 1: Mazimum Planar H-matching is NP-complete for any H with three or more
nodes.

Proof: The analysis is divided into two classes depending on whether or not the largest
2-connected component in H is unique. (Cut edges are considered to be degenerate examples of
2-connected components.) A special case is considered for each class before the result is proved.
For H that contain a unique maximum-size 2-connected component, the special case is a cycle
with 3 nodes. For H that contain two or more maximum-size 2-connected components, the special
case is a path with 3 nodes. In all cases, the reduction is from Planar 3-SAT [9].

Class 1: H contains 3 or more nodes and a unigue mazimum-3ize 2-connected component.
Proof for Special Case: H s a 3-cycle.

Given a planar 3-SAT problem P with variables zy,...,z, and clauses ey, ..., ¢s, let G(P) be
the associated planar graph with nodes zy,..., 2,, ¢y, ..., ¢, and edges representing an incidence of
a variable in a clause. In what follows, we will show how to transform G(P) into another planar

2

Given a planar 3-SAT problem P with variables zy,...,z, and clauses cy, ..., ¢y, let G(P) be
the associated planar graph with nodes zy, ..., z,,¢1, ..., ¢, and edges representing an incidence of
a variable in a clause. In what lollows, we will show how to transform G(P’) into another planar
graph G*(P) that has rs + s disjoint 3-cycles precisely when P is satisfiable. As a result, we will
have shown that maximum planar I{/-malching is N P-complete in the special case thal II is a
3-cycle.

To construct G*(P), we will replace every variable node of G(P) with a generator (see Figure
1) and cvery clause node with a receptor (see Figure 2). Each generator consists of 4s nodes,
23 of which are designated as connection nodes. Connection nodes appear as emply circles and
(in [igure 1) are divided into consecutive pairs. The first node in each pair is called a positive
connection node and the second node is called a negetive connection node. Each receptor has 5
or 7 nodes (2 or 3 of which are connection nodes) depending on whether the corresponding clause
conlains 2 or 3 variables. Without loss of generality, we assume that every variable appears in
each clause at most once.

A

I

+ .

] S pairs of
connection nodes

-

+

s

+

- 2

Figure 1: Generator for a 3-cycle.

LS

&

Figure 2: Receptors for a §-cycle.

The embedding of G(P) in the plane provides a cyclic ordering of the edges around cach
vertex. Pick a linear ordering of the edges around each vertex which is consistent with the cyclic
ordering. I variable z; appears uncomplemented in clause c;, and the edge from z; to g5 in
G(P) is in the pth position of the linear ordering at z; and in the qth position of the ordering at
¢;, then identify the pth pesitive connection node of the ¢th generator with the gth connection
node of the jth receptor. If variable z; appears complemented in clause ¢;, then identify the pth
negatie conncetion node of the ith generator with the gth connection node of the jth receptor.
Because G(P) is planar, G*(P) must also be planar. For example, we have constructed G(P) and
G*(P) for the function (zy + 22 + 3)(%1 + Z3 + 24)(Z2 + 23 + Z4) in Figures 3a and 3b.

(2 bt 4 Fz)(ve o bx o VE) (R 4 RE) = (] d0f (1),0) (Mo B b 2)(Ve o S T2)(Fa 4 B2 4 1) = 20f (J)D)

iqe aandi g g 2andiyf

It is casily seen that every 3-cycle contained in G*(P) is contained wholly within a generator
or a receptor. In addition, cach generator can contain at most s node-disjoint 3-cycles and each
receptor can contain at most one 3-cycle. ITence the number of disjoint 3-cycles in G*(P) is at
most 78 + 3. In fact, we will show that G*(P) contains 7s + s disjoint 3-cycles precisely when P
is satisfiable, thus concluding the reduction.

As is shown in Figure 4, there are preciscly two ways that a generator can contain s disjoint
3-cycles. One way (the true mode) requires the use of all the negative connection nodes but does
not use any of the positive connection nodes. The other way (the false mode) requires the use of
all the positive connection nodes but none of the negative connection nodes.

- ,__--_’
1 ‘\.. r’ //’
1 ~
] O+ | 7 +
b 1 1
l .
- 1 I I \\
i ! 25y =
| : o™
| -
1 I
[N
] \\ ! |
: =0 o+] I +
(s | |
i I
& 1 ! S
- I | I L
I ! /o -
i
[s
!]
| \-\\ ! I
i 1
: e < A | *
P 1 1
-
1 I
| 1 l\\\
® | ! I -
Y |]I ¢
o @
o | i .
| 1 I
I b il
¥ 1 I
I ™ 1
1 O+ : +
' ,/ 1 1
P4 \
1 j ZA—.
- : =
\ ~
- s T 0 -
True mode False mode

Figure 4: Generators in true and false modes. (Solid lines denote cdges used to form
8-cycles.)

A rteceptor can contain a 3-ceycle if and only if one of its connection nodes has been identified
with a positive connection node of a generator in true mode or with a negative connection node
. of a generator in false mode. Thus, P is satisfiable if and only if there is a matching in which
every receptor contains a 3-cycle. This concludes the proofl that G*(P) contains 7s + s disjoint
3-cycles if and only if P is satisfiable.

Proof for General H in Class 1

Let H be any connected planar graph with at least 3 nodes for which the maximum-size
2-connected component in H (denoted by f]) is unique. Embed H in the plane so that the outer
face is a cycle in H. Identify any three of the nodes in the cycle as a, b, and ¢. For example, see
Figure 5.

represenfation of
H as a +rfa.n5fe/

>

Figure 5: Representation of an arbitrary. class 1 graph as a §-cycle.

Notice that the embedding of H shown in Figure 5 looks very much like a 3-cycle with verlices
a, b and ¢. Using this similarity, generators and receptors can be constructed as shown in Figures
6 and 7. ‘

Figure 7: Receptors for class 1.

Figure 6: Generator for class 1.

Given a planar 3-SAT problem P, the construction of G*(P) is the same as before except that
the generators and receptors in Figures 6 and 7 are used in place of those in Figures | and 2.
As before, G*(P) is planar and contains rs + s disjoint copies of I il P is satisfiable. It remains
only to show that G*(P) contains less than rs 4 s disjoint copies of If il P is not satisfiable.

Since every copy of /I contains a copy of I, the number of disjoint copies of I/ in G*(P) is
an upper bound on the number of disjoint copies of H in G*(P). In what follows we will show
that G*(P) contains less than 7s+ s copies of I if P is not satisfiable, thus concluding the proof.

There are two ways that a copy of H can occur in G*(P): totally within a triangular copy
of H or across several triangular copies of H. Any copy of H which is contained within a
triangular copy of A must utilize the a, b and ¢ nodes in that copy of H since H contains only
- one maximum-size 2-connected component. Because [T is 2-connected, any copy of /T which spans
several triangular copies of H must contain a eycle that contains several of the nodes labeled a, b
or ¢ in the various copies. Such a cycle may be formed with or without the use of receptor nodes
but must always use two of the @, b and ¢ nodes of each triangular copy of H that is entered
by the cycle. Inspection of Figures 6 and 7 reveals that one of these copies of H has just two
connections to the rest of G*(P). (In proof, note that receptor H's only have two connections
to the rest of G*(P). Cycles not entering receptor triangles of H must enter every triangle of
H in some generator. In every generator, there aré always some triangular H not connected to
a receptor.) Since the remainder of the nodes in this copy of I cannot be used to form other
copics of 1 (they become disconnected from G*(P)), the number of copics of H is not decreased
by replacing the copy of IT spanning several triangular copies of /I with a copy of /T contained
centirely within the triangular copy of H having just two connections to the rest of G*(P). Hence
every copy of I can be assumed to use the a, b and ¢ nodes of some triangular copy of H. The
remainder of the analysis is then identical to that for the special case of 3-cycles.

Class 2: H contains two or more mazimum-size 2-connected components.
Proof for Special Case: H is a path with three nodes.

The proof is very similar to that for 3-cycles except that different gencrators and receptors
are used. The new generators and receptors are displayed in Figures 8 and 9. As beflore, cach
generator has 2s connection nodes (recall that s is the number of clauses in the problem P) and
each receptor has 2 or 3 conncction nodes. The 2s connection nodes are divided into consecutive
pairs of positive and negative nodes and the identification of nodes to form G*(P) is identical to
that done for 3-cycles.

0l

Figure 8: Generator for §-node path.

Figure 9: Receptors for 3-node path.

Each generator is formed by caseading 2s copies of the 9-node gadget shown in igure 10,
Without loss of generality, we can assume that all disjoint 3-node paths are contained totally
within a receptor or a gadget like that shown in Figure 10. This is due to the fact that any
3-node path between 2 gadgets (or a gadget and a reeeptor) isolates a leal in the neighboring
gadget (or receptor). Since the leal cannot be used by any other 3-node path, it might as well
be used by the offending 3-node path in a way which places the 3-node path totally within the
gadgel or receptor. For example, sce Figure 11.

4

Figure 10: Gadget used to build generators.

o--9--9 o--0-9
‘\ l, \\ - 7 N ,.
~ -~ S -
F)
\ \
A
o—é--q = o--¢--0 ®
e, . .@ —_ @ / -
~ - ™ -
o « o ®
/ \ / \
& @ - @ ®
3 node path between Remedy
2 gadgets

Figure 11: Without loss of generality, every S-node paih is entirely contatned within a
gadget of a generator or within a receptor. '

It is easily seen that a gadget contains three disjoint 3-node paths. If one gadget is used to
produce three disjoint 3-node paths in G*(P), however, its neighboring gadgets can only be used
to produce two disjoint 3-node paths. (The neighboring gadgets would then have less than 9
nodes available.) Hence each generator contains at most 5s disjoint 3-node paths. There are only
two ways to fit 5s disjoint paths in a generator. One way (the true mode) requires the use of all
the negative connection nodes but does not use any of the positive connection nodes. The other
way (false mode) requires the use of all of the positive connection nodes but none of the negative
connection nodes. These two modes are illustrated in Figure 12.

s

’o—-o'—c\f ‘b+
,’/’ ‘.—6’—.\ ‘b ‘\/0-‘2

A Vi T N { +

o :)

/
”
. /

,’. ’ ; y False Mode
: 4

1

1 -~

% .\/'- -\/. o
~ Ay

®
L]
\/’ True mode
%
o]
-+ .

Figure 12: True and false modes for generators. (Solid lines denote edges used to form
3-node paths.)

A receptor can contain a 3-node path if and only if one of its connection nodes has been
identified with a posilive conncction node of a generator which is in true mode or il one of its
conneclion nodes has been identified with a negative connection node of a generator in lalse
mode. Hence every receptor can contain a 3-node path if and only il P is satisfiable. Thus G*(P)
contains 578 + s disjoint 3-node paths if and only if P is satisfiable.

Proof for General I in Class 2

Let H be any connected planar graph containing two or more maximum-size 2-connected
components. Find a cutpoint v of J/ which is contained in one of the maximum-size 2-connected
components H, and which separates it from the rest of the maximum-size 2-connected components
in H. Let B denote the union of {v} and the connected component of H —{v} containing H —{v},
and let A denote the union of {v} and the rest of H. Further, let b be a node on the same face
as v in H, and let a be a node which is on the same face as v in A and which is in a 2-connected

I1Z

component containing v that separates H from another maximum-size 2-connected component.
If a maximum-size component in A contains v then choose a to be a node on the same face as v
in that maximum-size component. For example, see Figure 13.

Representation for H

Figure 13: Representation of an arbitrary class 2 graph as a $-node path.

As is shown in Figure 13, H has a planar embedding that resembles a path with 3 nodes (a,
v, and b) and 2 edges (A and B). Using this analogy, it is possible to generalize the generators
and receptors of [igures 8 and 9 as shown in Figures 14 and 15. Using the generalized generators
and receptors, G*(P) is then constructed as before.

13

Figure 14: Part of a generator for Class 2.

Figure 15: One kind of receptor for Class 2.

14

By previous arguments, it is clear that G*(F?) contains 5rs + s disjoinl copies of [f if P is
salisfiable. It remains to show that G*(P) cannot contain 5rs + s disjoint copies of [{ if £ is not
satisfiable. To prove this, we will show that (without loss of generality) every copy of /I uses 3 of
the a, b or v nodes in G*(£). By the arguments used for the 3-node path case, less than 5rs + s
such objects can be contained in G*(P) if P is not satisfiable, thus concluding the proof.

Any copy of I which utlilizes two or fewer of the a, b or v nodes must, without loss of
generalily, occur in one of the three ways shown in Figure 16. (Recall that il a copy of H 'utilizes
a v node which corresponds to a “leal™ copy of A, then it might as well use the corresponding a
node since that a node cannot be used by any other copy of .)

(a) (b) (e}

Figure 16: Possible cases for occurrences of H in G*(P).

In the first two cases (Figures 16a and 16b), there is one less copy of H available than is
needed to make a copy of H. Hence a copy of H cannot occur in this fashion. In the last case
(Figure 16¢) there are just enough maximum-size 2-connected components available (provided
that a is not in a maximum-size 2-connected component of H; otherwise we are done) but there
are not enough nodes available which are in 2-connected components separating maximum-size
2-connected components. This is because all such nodes in H are contained in A and cannot be
replaced by nodes in B. Since a is such a node, it must be used in order to complete a copy of

H. Hence H cannot be contained in any of the structures shown in Figure 16 and the proof is
complete. J

2.2 Approximation Algorithms

In (1], Baker describes a provably good approximation algorithm for a variety of problems
including maximum planar H-matching. In what follows, we describe a simpler, but possibly less
practical, approximation algorithm that works for planar graphs with bounded node degree. The
algorithm is based on the Lipton-Tarjan planar separator theorem [10], runs in O(N1+#) steps for
any 6 > 0 and any N-node graph G, and is guaranteed to find at least (1—¢)k node-disjoint copies
of H where k is the maxiraum number of node-disjoint copies of 1 in G and ¢ = O(1/y/log k).
Afterward, we show that any substantial improvement of this algorithm is unlikely. In fact,
we prove in Theorem 3 that if Ps£NP, then there is no polynomial-time (1 — ¢)-approximation
algorithm for maximum planar H-matching where € = O(1/k%) for any a > 0.

15

The approximation algorithm consists of four steps, as follows.

Step 1: Remove nodes of G thal are not contained in any copy of I{. Call the resulling graph
G’ and let N’ denote the number of nodes in G'.

Siep 2: Repeatedly use the Lipton-Tarjan planar separator algorithm to partition G’ into
disconnected blocks, cach with at most & log N’ nodes where § > 0. At most O(N'/+/6log N7)
cdges are removed from G’ in this process.

Step 8: By exhaustive search, find the maximum number of node-disjoint copics of /{ in each
block of the partition.
Step 4: Output the union of the node-disjoint copies of H found in Step 3.

Theorem 2: The preceding algorithm runs in O(ﬁ%) steps and finds (1 —e€)k node-disjoint
coptes of H in G, where k i3 the mazimum number of node-disjoint copies of H in G and € =

O(1//&Togk).

Proof: Step | takes O(N) steps since for each node there are at most a constant number
of configurations of its neighbors that could form a copy of H. (Recall that G is assumed to
have bounded node degree,.and that /{ is fixed.) Step 2 takes O(N'log N') = O(N log N) steps
since we are applying the linear-time Lipton-Tarjan algorithm once for an N’-r}odc graph, t’wice
for —A—gﬁ-node graphs; and so forth for O(log N') iterations. Step 3 takes 3%0(251"3”) =t
O(%) steps. Hence the running time is O{Z‘T—;% + Nlog N). For constant § > 0, this is

N.|.+5
O(3 log)

Let k denote the maximum number of node-disjoint copies of I7 in G. At most O(N' [/ log N')
copies of H contain an edge removed in Step 2. Hence at least k — O(N'//d log N7) copies of H
are output in Step 4. Since every node of G’ is contained in some copy of [1 and since every copy
of H can overlap at most a constant number of other copies of H, we know that k = Q).
Hence k — O(N'//éTog N} > k — O(k/+/6logk) and the algorithm outputs at least (1 — ¢)k
node-disjoint copies of A where e = O(1//6logk). 1

Theorem 3: If P52 NP, then there is no polynomial-time (1 — €)-approzimation algorithm for
mazimum planar H-matching when € = 1/k® for any a > 0, where k i3 the mazimum number
of node-disjoint copies of H in the input graph G, and H is any connected graph with three or
more nodes.

Proof: Fix a > 0. We show that if a polynomial-time (1 — 1/k®)-approximation algorithm
existed, then it would be possible to construct an exact algorithm for maximum planar H-
matching, which we showed was NP-complete in Theorem 1. Consider an N-node graph G and
the question of whether or not G contains k node-disjoint copies of I. Construct a graph G’

that consists of T > leTa disconnected copies of (. If G contains at least & node-disjoint copies
of I1, then G’ contains at least Tk node-disjoint copies of If. Otherwise, G’ contains at most
T(k — 1) = Tk — T node-disjoint copies of H. In the former case, a (1 — 1/k*)-approximation
algorithm finds (1 — 1/(Tk)*)Tk = Tk — (Tk)!~* > Tk — T node-disjoint copies of I{. This

cannot happen in the latter case. Hence, ine~approximation algorithm can be transformed into
an exact algorithm. g

3. Perfect Planar //-Matching

In this scction, we determine the complexity of perfect planar H-matching for large classes of
H. In Section 3.1, we show the problem is NP-complete for connected outerplanar #/ with three
or more nodes. In Section 3.2, we describe a linear time algorithm for perfect planar 7I-matching
for triangulated H with four or more nodes. The precise characterization of I for which the
problem is solvable in polynomial time remains an interesting open question.

3.1 NP-Completeness

Theorem 4: Perfect planar H-matching is NP-complete for all onterplanar graphs H with
at least § vertices.

Proof: We use a reduction from 1-in-3 SAT. The plan of attack is as follows: Given a 1-in-3
+ SAT problem P, we take the clauses and the variables to be points in the plane, and make a
graph G(P) by connecting each clause to the variables it contains (we allow edges to cross). Next,
we replace cach cdge by a transmission line, cach variable with a generator, each clause with
a receptor and each point where two cdges cross with a crossing mechanism. We also attach
transmission lines to unused connection nodes on gencrators. These “loose” transmission lines
will then be brought together in endings, so as to be able to use all vertices of G*(P) given
a satisfiable P. For example, Figure 17 shows a typical graph G(P) before the nodes, edges,
crossings and loose ends are replaced by the gadgets to form G*(P).

Ci

Clauses

Vi

Variables

Crossings

[.

Gy

Ends

Figure 17: A typical graph G(P).

For each gadget, there are two cases to comsider depending on the degree of the minimum
degree node v in H. Since H is outerplanar, it is easy to see that the degree of v is either 1 or
2. If the degree of v is 1, we say we are in case 1, and if it is 2, case 2. Let k be the number of
vertices in H. Then, deleting v, we have a subgraph H* with k— 1 vertices which is connected to
v by 1 or 2 edges (Figurc 18). In most of our constructions, case 1 and case 2 are similar enough
we need only illustrate one of them.

Case 2

Figure 18: The two cases for H.

Transmission lines (Figure 19)

A transmission line can either be in true mode or false mode. In a perfect planar matching,
since every vertex must be used, each vertex v must lie cither to the left of the FI* to which it
is attached (falsc) or to the right (true).

~ -~
- . ~ -
~ ~
-
" Frg i S
-~ e - ,'
~ ~ - -
=5 ~ - -
- -

True False
Case 2

Figure 19: Transmission lines.

19

Inverters (Figure 20)

‘To construct generators, we need inverters. An inverter is a copy of [T with transmission lines
connected to every point (this is where we need /1 outer-planar). It has one signal going in, and
k — 1 signals going out, each of which is inverted. If the copy of /1 in the center is present in the
matching, then the input is F and the outputs are T, and if it is absent, the input is T' and the
outputs F.

SN

Case 1 Z %

Case 2

Figure 20: Inverters

Generators ([Migure 21)

To make a generator, we first notice that a transmission line viewed backwards has the
opposite value, so to obtain one output z and one Z we need only take a transmission line and
bend it. By adding inverters we can generate as many extra transmission lines for z and Z as we
want (since an inverter also increases the number of signals) although we could have to generate
up to 2k more than we want. This is because each inverter gives us &k — 1 additional z's or Z's.

20

Figure 21: Generator for case 1.

Receptor (Figure 22)

A receptor is simply 3 transmission lines meeting at 2 point. In a perfect matching, one line

must be true and the olhers false, since the meeting point must be covered by exactly one copy
of I,

Zl

Figure 22: Receptor for case 2.

Branching (Figure 23)

To make crossing mechanisms and to tie up the loose transmission lines, we need a branching.
This is like a receptor, except it has one input and several outputs. If the input is true, all of the
oulputs must be true. If it is false, one of the outputs will be false and the rest true. I you run
a branching in reverse, with (wo inputs and one output, both inputs cannot be T in a perfect
I{-matching. If one input is T, and the other F, then the output is T'. If both are /7, the output
is I. Similarly, if an inverter is reversed, the condition is imposed that all inputs are equal, and
the output is inverted.

——

L 4 % L % Outputs
L g % ®

Figure 23: A branching for case 1.

22

Partial Crossing Mechanism (Figures 24 and 25)

We first devise a partial crossing mechanism so we can later build a crossing mechanism with
it. This gadget accepts input signals which are (T, 7T), (T, F) or (F,T), and makes them cross,
but makes it impossible to complete a (#, F) input to a perfect H-malching (Figure 26). By
reversing the inputs and outputs, we get a partial crossing mechanism that accepts everything
but (T, 7). We label the first one a true (7') partial crossing mechanism and the second a false
(#') partial crossing mechanism.

=

Outputs

e

Figure 24: A true (T) partial crossing mechanism for case 1.

o

i

Inputs

Outputs

Figure 25: A true (T) partial crossing mechanism for case 2.

%

Figure 26: Using the T partial crossing mechanism for case 2 to cross (T, T), (F,T) and
(T, F) signals.

L5

Crossing Mechanism (Figure 27)

By combining branchings, inverters, and partial crossing mechanisms, we can construct a
crossing mechanism as shown in Figure 27. If the lelt input is 7', both branches are T. After the
inverter, the lower horizontal lines are I, so all the partial crossing mechanisms on the vertical
transmission line have at least one input of the proper kind. Thus these signals will cross. After
the sccond inverter all horizontal signals are false, so the remaining partial crossing mechanisms
work. A reversed branching with two false inputs gives a false output, so all inputs into the
reversed inverter are I, giving an output of T'.

Il the left input is I7, things get trickier. The branching must have one F and one T output.
If the vertical input is false, then the top branch must be true. If the vertical input is true, the
top branch must be the false branch. Otherwise not all the partial crossing mechanisms on the
vertical line can be completed to a perfect matching. After the first two inverters, whichever
case holds, one set of horizontal lines is /' and the other is 7. This means all of the partial
crossing mechanisms on the right have onc F' and one T input, so they all work. Now, the
reverse branchings all have one false and one true input, so all their outpuls are T, and after the
reversed inverter, we get an F signal, as we want.

T partial]
crossing mechanism

transmission line

l
B¢
iy

/__!\

\\ reversed

branching

PP

Figure 27: A complete crossing mechanism,

26

Loose Transmission Lines (Figure 28)

To tic up the leftover transmission lines so that all vertices can be ‘used, [irst note that the
number of vertices covered must always be a multiple of k. Thus, when we bring the loose lines
together, the number of lines in false mode will always be the same, mod k. We add extra
transmission lines in false mode (not connccted to anything) to bring this to an exact multiple
of k. Now, we notice that if we use an inverter with all & lines as input (Figure 28), which we
will eall an ending, then all &£ inputs must be the same in a perfect ff-matching, but they can be
cither all true or all false. Thus, if we can bring the false lines together in £'s, we can tie them
off using this ending. Unfortunately, we don’t know which lines are going to be false. However,
we can still use this idea to end them.

To tie up the loose lines (assume there are exactly m of them), we put an (T__ll)-['old branching
on every line. We then construct (':) endings and label cach by a &-tuple of loose lines.
We then connccet to each ending one of the outputs from the branching coming off the loose

lines corresponding to the label given the ending. For example, see Figure 29. Note that we will
need crossing mechanisms to do this.

Now, since the number of false loose endings is a multiple of &, we can partition them into
disjoint k-tuples. By putting in false meode the transmission lines from the loose lines in a k-tuple
o the ending labeled with that &-tuple. the other endings will have only true transmission lines
leading into them. Thus, all the loose lines can be made part of a perfeet malching. We now
have a graph that has a perfect [/-matehing, if and only if the original l-in-3 SAT problem is
satisfiable.

Figure 28: An ending for case 2.

il

m) :

5 endings
(i_i)—way branchings (k

m loose lines

g \. / !
), *

4 X]
\(}r' -‘%&' q

Figure 29: Tying up the loose lines with endings.

There is still one thing we must show, namely that no spurious copies of Il can be put in
our graph. This is easy to do for transmission lines, branchings, and inverters: by connectivity
considerations, any other copy of I/ would disconnect the graph, leaving the wrong cardinality
of vertices (i.e., not divisible by k) in one part. The only remaining building block (since endings
arc inverters, etc.) is the partial crossing mechanism. This is fairly easy to check also, using
the fact that we picked a vertex of minimum degree in I7 when forming H*. Since the number
of vertices covered on the partial crossing mechanism must be a multiple of &, we can conclude
from the preceding that precisely two of the four vertices connected to transmission lines must
be covered by the copy of H on the partial crossing mechanism. By looking at the six possible
ways of choosing these two vertices, one can easily complete the proof. §

%

3.2 Linear Time Algorithms

Theorem 5: There 13 ¢ linear time algorithm for perfect planar H-matching whenever H i3
a triangulated graph with four or more nodes.

Proof: First we notice that any embedding of a triangulated planar graph is triangulated. If
(7 is composed of copies of H, then there will be a copy of I on the “inside” (i.e. none of the
interior faces of this /{ enclose nodes). Since H is triangulated, there is a triangle in G enclosing
|H| nodes, including the nodes on the triangle.

On the other hand, if any triangle encloses exactly |H| nodes, it must be a copy of f1. To
show this we use the facl that any completely triangulated graph with four or more nodes is 3-
connected. If any copy of [I contains a point inside and a point outside the triangle, this implies
that it must contain all three vertices of the triangle. This is a contradiction since removing this
copy of H leaves less than |H| nodes enclosed by the triangle disconnected [rom the rest of G.
Thus, if G can be decomposed into copies of 11, this triangle and the nodes enclosed by it must
form one such copy.

We now remove this copy of I1, and proceed recursively. Since we can check for isomorphism

with /] in constant time, this gives a polynomial algorithm. As a corollary, il such a decomposition
exisls, it is unique.

To make this algorithm run’in linear time, first identify all the triangles in the graph. This
can be done by repeatedly identifying all triangles containing a node of low degree, and then
deleting the nodes of low degree. Since a constant portion.of the nodes in any planar graph have
degree at most 6, this task can easily be accomplished in linear time.

Next, we store the triangles on a tree, where each triangle’s descendants are those triangles it
contains. By examining the triangles containing a given node, one can assign -a tree structure to
them in time proportional to the degree of the node. We can combine these local tree structures
to obtain the desired tree by using depth-first search.

Now (raverse the trce in post-order (leaves first), and at each node do the following: If the
triangle corresponding to the node contains less than |f1] vertices of G, remove the node from
the tree. If it contains exactly |H| vertices of G, check if it is a copy of /7. If not, return “no
decomposition.” If it is a copy of H, remove this leal from the tree and all the vertices in this copy
of Hl from G. If the triangle contains more than |[//| nodes, return “no decomposition.” Depth-
first search takes linear time. In the second part, we spend constant Lime on each triangle (unless
we find more than |H| nodes in it, in which case we stop immediately). Thus, the algorithm takes
linear time. §

4. Applications

The techniques described in this paper can be applied to solve a variety of celated problems.

The optimal tile salvage problem is one example. The problem can be described as follows:
Consider an VN X /N region of the plane tiled with uanit squares, some of which have been
removed. The tiles which remain represent functional chips and the tiles which have been removed
represent faulty chips on a wafer. The optimal z,y tile salvage problem is to find the maximum
number of functional, non-overlapping = X ¥ tiled rectangles. The orientation of the rectangles

~ does not matter and we assume without loss of generality that z =g Forg=] apd y = 1,

3

the problem is trivial. For z = 1 and y = 2, the problem can easily be solved as an instance of
the usual maximum matching problem. On the other hand, Fowler, Paterson and Tanimoto [5]
showed that the optimal tile salvage problem is NP-complete if z = 3 and y = 3. By applying
the techniques developed in this paper, all but the trivial cases (1 X 1) and (1 X 2) are easily
shown 1o be NP-complete. This is because the generator, receptor, and transmission line gadgets
of Section 2 can also be modified to work in a grid setting for any rectangle withz =1andy > 3
orz > 2 and y > 2. For example, a generator for the 2 X 2 tiling problem is shown in Figure
30. Notice the close relationship between the tiling generator and the graph generator in Figure
6. A complete set of gadgets (e.g., receptors, transmission lines and generators) is included in
Figures 31-33.

B |; |
O

= =

) I |) O I
1 O
Vo

1 .

| | |
il 1 e
i

_—_i_l o

. EEEENR
T 0l e A
|

$ i

] [| O) I
. i T
|

TELEL LT

-

Figure 30: A generator for the 2 X 2 optimal tile salvage problem. When in irue mode, the
leftmost and rightmost pairs of squares on the + lines can be used to form 2 X 2 reclangles,

but not the leftmost and rightmost pairs of squares on the — lines. The reverse is lrue when
the generator i3 in false mode.

The approximation algorithm described in Section 2.2 can be very easily applied to grid prob-
lems since for most practical problems the cut made by the Lipton-Tarjan separator algorithm is
likely to be a straight-line cut through the grid. The algorithm developed by Baker [1] also gives
a very nice approximation algorithm for this problem.

It is likely that there are further applications of these techniques. For example, the gadgets
seem to work for planar H-matching problems involving edge-disjoint graphs or induced graphs
for many graphs H. The reduction can also be easily extended to give an alternate proof of the
original Kirkpatrick-Hell [8] result for non-planar generalized matching, and for several other
covering, packing and matching results [3-6].

As a final example, we apply a result of Johnson [7] to show that the “dots and boxes” game
is NP-complete. In dots and bozes, two players take turns drawing unit length segments between

30

|
1x]
| =

x

}‘1'2 y- 1

155

(b)

Figure 31: Receptors for the = X y optimal tile salvage problem. The case when z = 1
and y 2> 3 is shown in (a), and the case when z > 2 and y > z is shown in (b). Asterisks

denote unit squares that serve as connection points to transmission lines. Arrows denote the
origination and outgoing direction of transmission lines.

*
-t
Ay
> }x
-1
*
y-1
/\.&.—-\ ¥
) % * * ¢
E— | % * X% H — &
¥* ¥ X ¥

N

Figure 32: Two types of transmission lines. Asterisks denote unit blocks connectingz X y
rectangles.

o |

; J
/
{
; *
x| — (+)
! %
-+ |
' |
| ;
[2 i
el _ (—) X
e]1-3 % X{* — (=)
e) . |) =
\\ T ‘ e
% X
~ [y-1
. (] —> (= |
N .]
o |
o \\\\ ‘l *
(a) it q %
\
\
\
\ 1
X i

Figure 33: Generators for the z X y optimal tile salvage problem. The case when z = 1
and y 2> 3 is shown in (a), and the case when z > 2 and y > z is shown in (b). Asterisks
denote unit squares that serve as connection points to transmission lines.

32

consecutive points on an N X N grid. Whenever one player completes the perimeter around a
unit square, he wins that square and draws another edge. The player winning the most squa-res
wins the game. The problem is to decide whether or not a player has a winning strategy stz.artmg
from a specified position (e.g., the input is a set of drawn segments and captured squares in the
grid). In [7], Johnson shows that this problem is NP-complete if maximum .Kg-r.natchmg is NP-
complete for planar graphs with maximum node degree four. This is almost implied by thf.i proof
(in Section 2.1) that maximum planar Kj-matching is NP-complete. The only problem is that
the receptor in Figure 2 could have degree six. In Figure 34, however, we illustrate an equ.lvalent
receptor with maximum degree four. Note that this receptor contains four node-disjoint tnangle.s
if and only if one of the connection nodes is not used by a generator triangle (e.g., if and only if
the receptor is “true”). Otherwise, the receptor contains only three node-disjoint triangles. The
remainder of the NP-completeness proof is identical to that in Section 2.1.

Figure 34: Receptor for a 9-cycle with mazimum node degree four. As in Figure 2,
connection nodes are drawn as empty circles.

5. Acknowledgements

We would like to thank Jon Buss, Dave Johnson, Ravi Kannan and Gary Miller for helpful
discussions and comments.

6. References
[1] B. S. Baker, “Approximation Algorithms for NP-Complete Problems on Planar Graphs,”
24th FOCS, 1983.

(2] F.Berman, T. Leighton and L. Snyder, “Optimal Tile Salvage,” Blue Chip Technical Report,
Purdue University, 1983.

[3] M. E. Dyer and A. M. Frieze, “On the Complexity of Partitioning Graphs into Connected
Subgraphs,” CMU Grgduate School of Industrial Administration Technical Report, 1983.

[4] M. E. Dyer and A. M. Frieze, “Planar 3DM is NP-Complete,” unpublished manuscript, 1983.

[5] R. J. Fowler, M. S. Paterson and S. L. Tanimoto, “Optimal Packing and Covering in the
Plane are NP-Complete,” Info. Proc. Let., 12(3), 1981, pp. 133-137.

X

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Company, San Francisco, 1979.

[7] D. S. Johnson, “The NP-Completeness Column: An Ongoing Guide,” J. of Algorithms, 4,
1983, pp. 397-411. :

[8] D. G. Kirkpatrick and P. Iell, “On the Completeness of a Generalized Matching Problem,”
10th STOC, 1978.

[9] D. Lichtenstein, “Planar Formulae and Their Uses,” SIAM J. of Comp., 11(2), 1982, pp.
329-343.

[10] R. Lipton and R. Tarjan, “A Separator Theorem for Planar Graphs,” A Conf. of Theor.
Comp. Sect., Univ. of Waterloo, 1977.

34

