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1. Introduction 

Generalized matching problems have been studied in a wide variety of contexts. (See [6] and 
[8] for a large collection of references.) One common form of generalized matching is to find the 
maximum number of node-disjoint copies of some fixed graph JI in a variable graph G. This 
form of the problem is called maximum fl -matching. When fl is an edge, this is simply the 
standard maximum matching problem. It is well-known that maximum matching can be solved 
in polynomial time. In [8], however, Kirkpatrick and Hell show that any non- t rivial generalization 
of maximum matching is NP-complete. In fact, they show that perfect H-matching (the problem 
of deciding whether or not the nodes of a variable graph G can be completely covered by node
disjoint copies of a fixed graph H) is NP-complete for any connected fl with three or more nodes. 
As a consequence, the maximum JI-matching problem is also shown to be NP-complete for any 
connected graph H with three or more nodes. 

In this paper we consider generalizations of the matching problem for planar graphs. In par
ticular, we focus on the maximum planar fl -matching and perfect planar H -matching problems, 
which are defined below. (Henceforth fl and Gare assumed to be connected planar graphs.) 

Problem: Maximum Planar fl-matching. 
Instance: A planar graph G and an integer k. 
Question: Does G contain k node-disjoint copies of H? 

Problem: Perfect Planar fl-matching. 
Instance: A planar graph G. 

. 

Question: Can the nodes of G be completely covered with node-disjoint copies of H? 

Although the Kirkpatrick-Hell result does not extend to planar graphs, a number of NP-
completeness results have been proved for particular values of H . For example, maximum planar 
fl-matching was recently shown to be NP-complete for fl = K 3 (a triangle) and fl = Ki,3 (a 
claw) [4]. . 

No non-trivial graphs if were known for which either the maximum planar fl-matching or 
the perfect planar fl-matching problems could be solved in polynomial time. T his fact, combined 
with the Kirkpatrick-Hell result (as well as other general NP-completeness results along these 
lines) leads one to conjecture that both problems are NP-complete for any connected JI that 
contains three or more nodes. In Theorem 1 of Sectio·n 2, we prove that the conjecture is true for 
maximum planar fl-matching. As we show in Section 3, however, the conjecture is false for perfect 
planar fl-matching. In particular, we show that perfect planar fl-matching is NP-complete for 
any connected outerplanar fl with three or more nodes, but also that the problem is solvable in 
linear time for any triangulated fl with four or more nodes. The precise characterization of JI 
for which perfect planar fl-matching is solvable remains a difficult and interesting open question. 

In addition to proving NP-completeness results, we also consider approximation algorithms 
for maximum planar fl-matching. In particular, we give a simple argument to show that there 
is a polynomial time algorithm which is guaranteed to find (1 - £)k node-disjoint copies of fl 
in any planar bounded-degree graph G where k is the maximum number of node-disjoint copies 
of fl in G and £ = 0(1/✓log k). (In [1], Baker describes a more general and probably more 
practical algorithm that works for all planar graphs. No such results are known for the non
planar version of this problem.) Moreover, we show that it is unlikely that a substantially better 
approximation algorithm exists. In fact, we show that if P~NP, then there is no polynomial- time 
(1 - £)-approximation algorithm where £ = 0(1/ kcc) for any a > 0. 
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The techniques developed_ in this paper can be applied to solve a variety of related matching 
problems. For example, the problem which originally mot ivated us to study generalized planar 
matching comes from wafer-scale integr.ation. This problem is known as the optimal tile .3a[vage 
problem [2] and consists of finding t he maximum number of non-overlapping 2 X 2 regions of 
functioning cells in a .JR X .JR grid of cells, some of which are faulty. Al though Fowler, Paterson 
and Tanimoto [5j proved that finding t he maximum number of 3 X 3 squares of functioning cells 
is NP-complete, the complexity of the 2 X 2 problem remained unknown. In Section 4, we apply · 
the techniques developed in the paper to give a simple proof that the x X y optimal tile salvage 
problem is NP-complete for all {x, y} except {1, 1} and {1, 2}. Fortunately, we are also able to 
provide a simple, fast and efficient approximation algorithm for this problem. 

The techniques developed in this paper can also be applied to problems for which the copies 
of H in G must only be edge-di.3joint or for which the copies of H must be induced in G, although 
we have not worked out the details in this paper. They also appear to be useful for reductions 
to minimum covering problems, planar packing problems, three-dimensional packing problems, 
and certain planar games like "dots and boxes." [2-8j · 

The remainder of the paper is divided into five sections. Section 2 contains onr results 
on maximum planar H -matching. The perfect planar H -matching results are · in Section 3. 
Applications of our techniques are described in Section 4. We conclude with acknowledgements 
and references in Sections 5 and 6. 

2. Maximum Planar JI-Matching 

In this section, we determine the complexity of maximum planar H -matching for any H. 
Without loss of generality, we assume that H and G are connected. (It is easy to extend the 
results to H and G that are not connected.) If H has two or fewer nodes, then the problem is 
easy. In Section 2.1, we show that maximum planar H-matching is NP-complete for any H with 
three or more nodes. We describe approximation algorithms for this problem in Section 2.2. 

2.1 NP-Completeness 

Theorem 1: Maximum Planar H-matching is NP-complete for any H with three or more 
nodes. 

Proof: The analysis is divided into two classes depending on whether or not the largest 
2-connected component in H is unique. (Cut edges are considered to be degenerate examples of 
2-connected components.) A special case is considered for each class before the result is proved. 
For H that contain a unique maximum-size 2-connected component, the special case is a cycle 
with 3 nodes. For JI that contain two or more maximum-size 2-connected components, the special 
case is a path with 3 nodes. In all cases, the reduction is from Planar 3-SAT [9j. 

Class 1: H contains 9 or more nodes and a unique maximum-size 2-connected component. 

Proof for Special Case: H is a 9-_cycle. 

Given a planar 3-SAT problem P with variables x1 , ••. , x,. and clauses c1 , ••• , c3 , let G(P) be 
t he associated planar graph with nodes x1, .•• , x,., c1 , ... , c3 and edges representing an incidence of 
a variable in a clause. In what follows, we will show how to transform G(P) into another planar 
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Given a planar 3-SAT problem P with variables x1, ... , Xr and clauses Ct, ... , c 3 , let C(/1
) be 

the associated planar graph with nodes x1 , ••• , Xr, c1, ••• , c3 and edges representing an incidence of 
a varinblc in a clause. In what follows, we will show how Lo transform C( f') into another planar 
graph G*(P) that has T.'J + s disjoint 3-cyclcs precisely when Pis satisfiable. As a result, we will 
have shown that maximum planar Il-matching is N P -complctc in the special case thal ll is a 
3-cycle. 

To construct G*(P), we will replace every variable node of C( P) with a generator (sec Figure 
I) and every clause node with a receptor (see Figure 2). Each generator consists of 1s nodcii, 
2s of which are designated as connection nodes. Connection nodes appear as empty cirr.lcs and 
(in Figure 1) arc divided into consecutive pairs. The firsl node in each pair is called a positive 
connection node and the second node is called a negative connection node. Each receptor has 5 
or 7 nodes (2 or 3 of which arc connection nodes) depending on whether the corresponding clause 
contains 2 or 3 variables. Without loss of generality, we assume that every variable appears in 
each clause at most once. 

+ 

+ 

Figure 1: Generator for a 9-cycle . 

.3 

s pairs of 

connec tion nodes 



Figure 2: Receptor3 for a S-cycle. 

The embedding of G(P) in the plane provides a cyclic ordering of the edges ,iround each 
vertex. Pick a linear ordering of the edges around each vertex which is consistent with the cyclic 
ordering. If variable Xi appears uncomplementcd in clause Cj, and the edge from Xi Lo Cj in 
G(P) is in the pth pm;ition of the linear ordering at Xi and in the qt lt position of the ordering at 
Cj, then identify the pLh positive connection node of th e ith generator wi t h Lhc qth connection 
node of the jth receptor. If variable Xi appears complemenLed in clause Cj, then ide nLify t.hc pLh 
negative r.onnection node of the ith generator with the qth connection node of' the j Lh receptor. 
Because C(P) is planar, C*(P) must also be planar. For example, we have constructed G(I') and 
G"'(P) for the function (x1 + x2 + x3 )(x1 + x3 + x1)(x2 + x3 + x,i) in Figures 3a and 3b. 

4 



"' <J 

x )( 

el 
~ 

<.> 
1-o 
:::, 
t.O 

~ 

5 

IH 

+ 

+ 

.,... 

.., -

---.. 
If, 

+ 
'"' !-, 

+ .. 
f½ ----
H 

+ 
"' IH 

.,... 
IH ----"' H 

+ 
"' H 

+ 
H -
ii 

" -.... 
~ 
,........_ 
" --,~ 
'--' 



It is easily seen that every :3-cycle contained in G*(P) is contained wholly within a generator 
or a receptor. In a<l<l ition, each generator can contain at most s node-disjoint 3-cyclcs an<l each 
receptor can contain at most one 3-cyclc. Hence the number of' disjoint 3-cyclcs in C*(P) is at 
most rs+ 13. In fact, we will show that G*(P) contains rs+ s disjoint :3-cycles precisely when P 
is satisfiable, thus concluding t he reduction. 

As is shown in I•'igure 1, there are precisely two ways that a generator can contain s disjoint 
3-cyclcs. One way (the true mode) requires the use of all the negative connection nodes but docs 
not use any of the positive connection nodes. The other way (the false mode) requires the use of 
all the positive connection nodes but none of the negative connection nodes. 

I ' .._ 

I ... '...O + 
I ,, 

t> , -.. 
I ', 
I ~ + 
I ,,, 

t> 
I ' ' 
I ',:Q + 

~ 
• • 

True mode 

+ 

I 

• 
0 • 

• 
I 

l, ___ {> . 
I .._ 
' .... 

.... - - - - - - -~ -
Fo.lse mode 

Figure 4: Generators in true and false modes. {Solid lines denote edges u.sed to form 

S-cycle.s.) 
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A receptor can contain a 3-cycle if and only ii' one of its connection no<lcs ha$ been identified 
with a positive r.onnection node of a generator in true mode or with a negative connection no<le 
of a generator in f'alse mode. Thus, P is satisfiable if and only ii' there is a matching in which 
every receptor contains a 3-cycle. This concludes the proof that C*(P) contains rs+ s disjoint 
3-cycles if and only if P is satisfiable. 

Proof for General H in Class 1 

Let H be any connected planar graph with at least 3 nodes for which the maximum-size 
2-connected component in JI (denoted by fl) is unique. Embed II in the plane so that the outer 
face is a cycle in fl . Identify any three of the nodes in the cycle as a, b, and c. For example, see 
Figure 5. 

H 
J 
repre.se.nia:hon of 
H as a. +ria.n3/e, 

Figure 5: Represrntation of an arbitrary, cla3$ 1 graph a3 a 9-cycle. 

Notice that the embedding of 11 shown in Figure 5 looks very much like a 3-cycle with vertices 
a, band c. Using this similarity, generators and receptors can be constructc<l as shown in Figures 
6 and 7. 
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Given a planar 3-SAT problem P, the construction of G*(P) is the same as before except that 
the generators and receptors in Figures 6 and 7 are used in place of those in Figures 1 and 2. 
As before, G*(P) is planar and contains rs+ s disjoint copies of JI if Pis satisfiable. It remains 
only to show that G*(P) contains less than r.~ + s disjoint copies of ll if Pis not satisfiable. 

Since· every copy of JI contains a copy of fl, the number of disjoint copies of [I in C*( P) is 
an upper bound on the number of disjoint copies of JI in G*(P). In what follows we will show 
that G*'( P) contains less than rs+ s copies of IT if Pis not satisfiable, thus concluding the proof. 

There arc two ways that a copy 0f [I can occur in G*(P): totally within a triangular copy 
of JI or across several triangular copies of JI. Any copy of LI which is contained within a 
triangular copy of H must utilize the a, b and c nodes in that copy of H since JI contains only 

· one maximum-size 2-connected component. Because TI is 2-connccte<l, any copy of JI which spans 
several triangular copies of II must contain a cycle that contains several of' the nodes labeled a, b 
or c in the various copies. Such a cycle may be formed with or without the use of receptor nodes 
but must always use two of the a, b and c nodes of each triangular copy of H that is entered 
by the cycle. Inspection of Figures 6 and 7 reveals that one of these copies of JI has just two 
connections to the rest of G*(P). (In proof, note that receptor H's only have two connections 
to the rest of C*(P). Cycles not entering receptor triangles of JI must enter every triangle of 
fl in some generator. In every generator, ther~ are always some triangular JI not connected to 
a receptor.) Since the remainder of the nodes in this copy of II cannot be used to form other 
copies of fl (they become disconnected from G*(P)), the number of copies of fl is not decreased 
by r~placing the copy of J1 spanning several triangular copies of lJ with a copy of fr contained 
entirely within the triangular copy of H having just two connections to the rest of C*(P). Hence 
every copy of fI can be assumed to use the a, b and c nodes of some triangular copy of H. The 
remainder of the analysis is then identical to that for the special case of 3-cycles. 

Class 2: H contains two or more maximum-size 2-connected component.!. 

Proof for Special Case: H is a path with three nodes. 

The proof is very similar to that for 3-cycles except that different genera.tors and receptors 
a.re used. The new generators and receptors are displayed in Figures 8 and 9. As before, each 
generator has 2s connection nodes (recall that s is the number of clauses in the problem P) and 
each receptor has 2 or 3 connection nodes. The 2s connccl,ion nodes arc divided into consecutive 
pairs of positive and negative nodes and the identification of nodes to form G*(P) is idenl,ical to 
that done for 3-cycles. 
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Figure 0: Receptorii for S-node path. 



Each generato r is formed by cascading 2s copies of' Lhe H-node gadget shown in Figur0, I 0. 
Without loss of generality, we c:.n assume that all disjoint 3-node paths arc contained total ly 
within a rccepLor or :. gadget like Lhat shown in Figure 10. This is due Lo Lh<! !'act tltaL ;i.ny 
3-nodc paLh between 2 gadgets (or a gadget and a receptor) isolal.es a leaf in the neighboring 
gadget (or receptor). Since I.he leaf cannot be used by any other 3-node path, it might as well 
be used by the oITcn<ling 3-node path in a way which µlaces the 3-node path tot,ally within the 
gadget or receptor. F'or example, see Figu re 11. 

Figure 10: Gadget used to build generaton 

3 node path between 
2 gadgets 

Remedy 

F igure 11: Without lo.s.s of generality, every 9-node path i, entirely contained within a 

gadget of a 9enerator or within a receptor. 



It is easily seen that a gadget contains three disjoint 3-node paths. If one gadget is used to 
produce three disjoint 3-nodc paths in G*(P), however, its neighboring gadgets can only be used 
to produce two disjoint 3-node paths. (The neighboring gadgets would then have less than 9 
nodes available.) Hence each generator contains at most 5s disjoint 3-node paths. There are only 
two ways to fit 5s disjoint paths in a generator. One way (the true mode) requires the use of all 
the negative connection nodes but does not use any of the positive connection nodes. The other 
way (false mode) requires the use of all of the positive connection nodes but none of the negative 
connection no<les. These two modes are illustrated in Figure 12. 

' I 
I 
I 

' \ 
', 

-- --- --- ... 

• 
False Mode 

True mode 

Figure 12: True and false modes for generators. (So!id lines denote edges used to form 

9-node paths.) 

A receptor can contain a 3-nodc paLh if and only if one of its connection no<lcs has been 
identified wiLh a positive connection node of a generator which is in Lrue mode or if one of its 
connedion nodes has becn identified wiLh a negative connection node of a generator in false 
mode. Hence every receptor can contain a 3-nodc path if' and only il' Pis satisfiable. Thus G*(P) 
rontains 5rs + s disjoint 3-node paths if and only if P is satisfiable. 

Proof for General H in Class 2 

Let H be any connected planar graph containing two or more maximum-size 2-connected 
components. Find a cutpoint v of Il which is contained in one of the maximum-size 2-connected 
components fl, and which separates it from the rest of the maximum-size 2-connected component-, 
in H. Let B denote the union of { v} and the connected component of H - { v} containing fl - { v }, 
and let A denote the union of { v} and the rest of H. Further, let b be a node on the same face 
as v in fl, and let a be a node which is on the same face as v in A and which is in a 2-connected 

I 2. 



component containing v that separates JI from another maximum-size 2-connected component. 
If a maximum-size component in A contains v then choose a to be a node on the same face as v 
in that maximum-size component. For example, see Figure 13. 

a 

B A 

Representation :ors 

Figure 13: Representation of an arbitrary clas$ 2 graph as a S-node path. 

As is shown in Figure 13, H has a planar embedding that resembles a path wit h 3 nodes (a, 
v, and b) and 2 edges (A and B). Using this analogy, it is possible to generalize the generators 
and receptors of Figures 8 and Oas shown in Figures l4 and 15. Using the generalized generators 
and receptors, G*(P) is then constructed as before. 
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A 

Figure 14: Part of a generator for Class 2. 

B 

8 A 

Figure 15: One kind of receptor for Cla33 2. 
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By previous arguments, it is clear that G*(P) contains 5rs + s <lisjoint copies of II if I' is 
satisfiable. It remains Lo show that C*(J>) cannot contain 5rs + s disjoint copies of/ I if/' is not 
satisfiable. To prove this, we will show that (without loss of' generality) every copy of fl uses 3 of 
the a, b or v no<les in G*(/'). By the arguments used for the :{-node path case, less than Grs + s 
such obj0cts can be contained in G*(P) if Pis not saLisfiable, thus concluding the proof. 

Any copy of 1/ which utilizes two or fewer of the a, b or v nodes must, without loss of 
generality, occur in one of the three ways shown in Figure 16. (Recall that if a copy of JI 'utilizes 
av node which corresponds to a "leaf" copy of' A, then it might as well use the corresponding a 
node since that a node cannot be used by any other copy of J/ .) 

A 

(al (bl (cl 

Figure 16: Possible case3 for occurrences of ll in G*(P). 

In the first two cases (Figures 16a and 166), there is one less copy of fI available than is 
needed to make a copy of H . Hence a copy of H cannot occur in this fashion. In the last case 
(Figure 16c) there are just enough maximum-size ?-connected components available (provided 
that~ is not in a maximum-size 2-connected component of H; otherwise we are done) but there 
are not enough nodes available which are in 2-connected components separating maximum-size 
2-connected components. This is because all such nodes in H are contained in A and cannot be 
replaced by nodes in B. Since a is such a node, it must be used in order to complete a copy of 
H. Hence H cannot be contained in any of the structures shown in Figure 16 and the proof is 
complete. I 

2.2 Approximation Algorithms 

In [1], Baker describes a. provably good approximation algorithm for a variety of problems 
including maximum planar JI-matching. In what follows, we describe a simpler, b11t possibly less 
practical, approximation algorithm that works for planar graphs with bounded node degree. The 
algorithm is based on the Lipton--Tarjan planar separalor theorem [10], runs in 0( N 1+6) steps for 
any 8 > O and ;:my N-nodc graph G, and is guaranteed to find at least (1-r-)k node-disjoint copies 
of H where k is the maximum number of node-disjoint copies of II in G and E = 0(1 / ,/fcigk). 
Afterward, we show that any substantial improvement of this algorithm is unlikely. In fact, 
we prove in Theorem 3 lhat if P~NP, then there is no polynomial-time (1 - E)-approximation
algorilhrn for maximum planar 11-matching where E = 0(1/ k0

) for any a > 0. 
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The approximation algorithm consists of four steps, as follows. 

Step 1: Remove nodes of' G that arc not contained in any copy of If. Call the resulting graph 
G' and let N' dc:notc t.hc number of nodes in G'. 

Siep 2: ltcpeatcdly use the Lipton--Tarjan plarrnr separator algorithm to partition G' into 
disconnected blocks, each with at most 8 log N' nodes where 8 > 0. At most 0( N'/Ji,' log fli) 
edges arc removed from G' in this process. 

Step 9: By exhaustive search, find the maximum number of noJe-<lisjoint copies of If in each 

block of the partition. 

Step 4: Output the union of the node-disjoint copies of JI found in Step 3. 

Theorem 2: The preceding algorithm runs in 0( lf :g+~) steps and finds ( l - l )k node-disjoint 
copies of JI in G, where k is the maximum number of node-disjoint copies of H in G and l = 
0(1/✓ologk) . 

Proof: Step l lakes 0(N) steps since for. each node there are at most a constant number 
of configurations of its neighbors that could form a copy of fl. (Recall that G is assumed to 
havc:bounded nod·e degree, .and that Il is fixed .) Step 2 takes 0(N' log N') = 0( N log N) steps 
since we arc applying the linear-time Lipton- Tarjan algorithm once for an N'-node graph, twice 
for 11' -node graphs; and so forth for O(log N') iterations. Step 3 takes 61~'N, 0(2" 1°g N') = 
0( /fo1g+~) steps. Hence the running time is 0( .,t-;;g+~ + N log N). For constant 8 > 0, this is 

0 ( N1+1 ) 
SlogN • 

Let k denote the maximum number of node-disjoint copies of l1 in G. At most 0( N' / ✓8 log N') 
copies of H contain an edge removed in S~ep 2. Hence at. least k - 0(N' /✓8 log N') copies of fl 
are output in Step 4. Since every node of G' is contained in some copy of El and since every copy 
of H can overlap at most a constant number of other copies of H, we know that k = n( N'). 
Hence k - 0(N' /✓8 log N') ~ k - 0(k/.,/ITogk) and the algorithm outputs at least (l - c)k 
node-disjoint copies of A where l = 0(1/ ✓8 log k). I 

Theorem 3: If P-:/NP, then there is no polynomial-time (t - €)-approximation algorithm for 
maximum planar H-matching when E :-- 1/ k 0 for any a > 0, where k is the maximum n&imber 
of node-disjoint cop{es of ll in the input graph G, and H is any connected graph with three or 
more nodes. 

Proof: Fix a > 0. We show that if a polynomial-time (1 - 1/ k0 )-approximation algorithm 
existed, then it would be possible to construct an exact algorithm for maximum planar H
matching, which we showed was NP-complete in Theorem l. Consider an N -node graph G and 
the question of whether or not G contains k node-disjoint copies of JI. Construct a graph C' 

1-a 

that consists of T > k- a- disconnected copies of G. If G contains at least k no<le-<lisjoint copies 
of II, then G' contains at least Tk node-disjoint copies of I{, Otherwise, G' contains at most 
T(k - 1) = Tk - T node-disjoint copies of H. In the former case, a (1 - 1/k 0 )-approximation 
algorithm finds (1 - 1/(Tlc)0 )Tk = Tk-: ('fk) 1-a > Tk - T node-disjoint copies of Il. This 
cannot happen in the latter case. Hence,· ~111:!~approximation algorithm can be transformed into 
an exact algorithm. I 
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3. Perfect Planar IT-Matching 

In this section, we determine the complexity of perfect planar JI-matching for large classes of 
1/. In Srction 3.1, we show the problem is NP-complete for connected outcrplanar II with three 
or more nodes. In Section 3.2, we describe a linear lime algorithm for perfect planar II-matching 
for triangulated H with four or more nodes. The precise c_haracterization of JJ for which the 
problem is solvable in polynomial time remains an interesting open question. 

3.1 NP-Completeness 

Theorem 4: Perfect planar lI -matching i3 NP- complete for all o-aterplanar graph3 H wi'th 
at lea3t 9 vertice3. 

Proof: We use a reduction from 1-in-3 SAT. The plan of attack is as follows: Given a 1-in-3 
SAT problem P, we take the clauses and the variables to be points in the plane, and make a 
graph G(P) by connecting each clause to the variables it contains (we allow edges to cross). Next, 
we replace cacb edge by a tran3mi33i.on line, each variable with a generator, each clause with 
a receptor and each point where two edges cross with a cro33ing mechani3m. We also attach 
transmission lines to unused connection nodes on generators. These "loose" t ransmission lines 
will then be brought together in ending3, so as to be able to use all vertices of G*(P) given 
a satisfiable P. For example, Figure 17 shows a typical graph G(P) before the nodes, edges, 
crossings and loose ends are replaced by the gadgets to form G*(P). 
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Figure 17: A typical graph G(P). 

For each gadget, there are two cases to consider depending on the degree of the minimum 
degree node v in H. Since H is outerplanar, it is easy to see that the degree of v is either 1 or 
2. If the degree of v is l, we say we arc ln case 1, and if it is 2, case 2. Let k be the number of 
vertices in JI. Then, deleting v, we have a subgraph H* with k - 1 ver tices which is connected to 
v by 1 or 2 edges (Figure 18). In most of our constructioqs, case 1 and case 2 are similar enough 
we need only illustrate one of them. 



V 

V 

or 

Case 1 Case 2 

Figure 18: The two cases for H . 

Transmission lines (Figure 19) 

A transmission line can either be in true mode or false mode. In a perfect planar matching, 
since every vertex must be used, each vertex v must lie either to the left of the JI* to which it 
is attached (false) or to the right (true). 

®"®"~"®" 
@-~-~ ~ --ijf~ 

Case 1 

True Fo.lse 
Case 2 

Figure 19: Tran.,mi.,sion lines. 
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Inverters (Figure 20) 

To consLruct generators, we need inverters. An invcrLer is a copy of fl wiLh Lransrnission lines 
connected to every poinL (Lhis is where we need ff outer-planar). It has one signal going in, and 
k - 1 signals going out, each of which is inverted. If the copy of fl in the center is present in Lhc 
maLching, then the input is F and the outputs are T, anJ if iL is absent, . the inpuL is T and Lhe 
outputs F. 

Case 1 

Figure 20: Inverter& 

Generators (Figure 21) 

To make a generator, we first notice that a transmission line viewed backwards has the 
opposite value, so to obtain one output x and one x we need only take a Lransmission line and 
bend it. By adding inverters we can generate as many extra t ransmission lines for x and x as we 
want (since an inverter also increases the number of signals) although we could have to generate 
up to 2k more than we want. This is because each inverter gives us k - l additional x's or x's. 

2.0 
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Figure 21: Generator for c:a.5e 1. 

Receptor (Figure 22) 

A receptor is simply 3 transmission lines meeting at a point. In a perfec t matching, one line 
must be true and the others false, since the meeting point must be covered by exactly one copy 
of JI. 
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Figure 22: Receptor for case 2. 

Branching (Figure 23) 

To make crossing mechanisms an<l Lo tic up the loose transmission lines, we ncc<l a branching. 
This is like a receptor, except it has one input and several outputs. If the input is true, all of the 
outputs must be true. If it is false, one of Lhe outputs will be false and the rest Lrue. ff you run 
a branching in reverse, with two inputs an<l one output, both inputs cannot be Tin a perfect 
II-matching. Ir one input is T, and the other Ji', then Lhe output is T. If both are F, the out.put 
is F. Similarly, if an inverter is reversed, the condition is imposed that all inputs arc equal, and 
the output is inverted. 

Input 

Outputs 

Figure 23: A branching for case 1. 
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Partial Crossing Mechanism (Figures 21 and 25) 

We first devise a parti:i.l crossing mechanism so we can later bnild a crossing mechanism with 
it. T!iis gadget accepts input signals which arc (7', T), (T, F) or (F, T), and makes them cross, 
but makes it impossible to complete a (P, F) input to a perfect fl-matching (Figure 26). By 
reversing the inputs and outputs, we get a partial crossing mechanism that accepts everything 
but (T, T) . We label the first one a true (T) partial crossing mechanism and the second a false 
(F) partial crossing mechanism. 

Inputs 

Outputs 

Figure 24: A true (T) partial cro1J1Jing mecha~i.,m for ca-,e 1. 
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Outputs 

Figure 25: A true {T} partial cro.s.sing mechani.sm for ca.se 2. 
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Figure 26: Using the T partial crossing mechani.sm for case 2 to cross (T, T), (F, T) and 

(T, F) .signals. 
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Crossing Mechanism (Figure 27) 

By combining branchings, invert ers, and partial crossing mechanisms, we can construct a 
crossing mechanism as shown in Figure 27. If' the left inpu t is T, both branches arc T. After the 
inverter, lhe lower horizontal lines are F, so all the par tial crossing mechanisms on the vertical 
transmission line have at least one input of the proper kind. Thus these signals will cross. After 
t he second invert er all horizontal signals are false, so the remaining partial crossing mechanisms 
work. A reversed branching with two false inputs gives a false output, so all inputs into the 
reversed inverter are F , giving an output of T . 

If the left input is F, things get trickier. The branching must have one F and one T output. 
If the vertical input is false, then the top branch must be true. If the vertical input is true, the 
top branch must be the false branch. Otherwise not all the partial crossing mechanisms on the 
vertical line can be completed to a perfect matching. After the first two inverters, whichever 
case holds, one set of' horizontal lines is F and the other is T . This means all of the partial 
crossing mechanisms on the right have one F and one T input, so they all work. Now, the 
reverse branchings all have one false and one true input, so all their outputs are T, and after the 
reversed inverter, we get an F signal, as we want. 

T partial 
cros sing mechanism 

transmission line 

J 

inve rter 
branching 

Figure 27: A complete crossing mechanism. . 
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Loose Transmission Lines (f<'igure 28) 

To tic up the leftover transmission lines so that all vertices can be ·used, Ii rst note that the 
number of vertices covered must always be a multiple of k. Thus, when we lJring; Lhc loose lines 
together, the numlJer of lines in false mode will always be the same, mod k. We add extra 
transmission lines in false mode (not connected to anything) to bring this to :rn exact tilulliplc 
of' k. Now, we notice that if we use an inverter with all k lines as input (Figure 28), which we 
will call an ending, then all k inputs must be the same in a perfect II-matching, but they can be 
either all true or all false. Thus, if we can bring the false lines togdher in k's, we can tie them 
off using this ending. Unfortunately, we don't know which lines are going to be false. However, 
we can still use this idea to cn<l them. 

To tic up the loose lines (assume there arc exactly m of them), we put an (';.=-{)-fold branching 

on every line. We then construct (';) enriings and label each by a -~- tuple of loose lines. 

We then connect to each ending one of the outputs from the branching coming off the loose 
lines corresponding to the label given the ending. For example, see Figure 29. Note that we will 
need crossing mechanisms to do this. 

Now, since the number of false loose endings is a multiple of k, we can partition them into 
disjoint k-tuplcs. Dy putting in false mode the transmission lines from the loose lines in a k-t11plc 
to the ending b.belc<l with that k-t:iple: the other endings will have only true tr:uismission lines 
leading into them. Thus, all the loose lines can be made µ·art of a perfect mulching. We now 

have a graph that has a perfect Il-maLd1in1;, if and only if Lhe original I-in-:~ SAT problem is 
satisfiable. 

Figure 28: A-n ending for case 2. 
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Figure 29: Tying up the loose lines with endings. 
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There is still one thing we must show, namely that no spurious copies of H can be put in 
our graph. This is easy to do for transmission lines, branchings, and inverters: by connectiviLy 
considerations, any other copy of II would discon11ect the graph, leaving the wrong cardinality 
of vertices (i.e., not divisible by k) in one part. The only remai:;ing building block (since endings 
arc inverters, etc.) is Lhe partial crossing mechanism. This is fairly easy to check also, using 
the fact that we picked a vertex Gf' minimum degree in II when fo rming H*. Since the number 
of vertices covered on the partial crossing mechanism must be a mu!Liplc of k, we can conclude 
from the preceding that precisely two of the four vertices conncctc<l to transmission lines must 
be covered by the copy of H on the partial crossing mechanism. By looking at the six possible 
ways of choosing these two vertices, one can easily compleLc the proof. I 



3.2 Linear Time Algorithms 

Theorem 5: There is a linear time algorithm for perfect planar H -matching whenever H is 
a triangulated graph with four or more nodes. 

Proof: First we notice that any embedding of a triangulated planar graph is triangulated. If 
C is composed of copies of fl, then there will be a copy of 11 on the "inside" (i.e. none of the 
interior faces or this H enclose nodes). Since JI is triangulated, there is a triangle in C enclosing 
IHI no<les, including the nodes on the triangle. 

On the other hand, if any triangle encloses exactly IHI nodes, it must be a copy of H. To 
show this we use the fact that any completely triangulated graph with four or more nodes is 3-
connected. If any copy of[] contains a point inside and a point outside the triangle, this implies 
that it must contain all three vertices of the triangle. This is a contradiction since removing thh:; 
copy of JI leaves less than IHI nodes enclosed by the triangle disconnected from the rest of C. 
Thus, if C can be decomposed into copies of 11, this triangle and the nodes enclosed by it must 
form one such copy. 

We now remove this copy of II , and proceed recursivelY: Since we can check for isomorphism 

with / l in consta~t ti me, this gives a polynomial a lgorithm. As a corollary, if such a decorn position 
exists, it is unique. 

To make this algoiithm run-in linear time, first identify all the t riangles in t he graph. This 
can be <lone by repeatedly identifying all triangles containing a node of low degree, and then 
deleting t he nodes of low degree. Since a const,:rnt portion.of ihc. nodes in a.ny planar graph have 
degree at most 6, this task can easily be accomplished in linear time. 

Next, we store the triangles on a tree, where each triangle's dcscend~nts are those triangles it 
contains. By examining the triangles containing a given node, one can assign -a t ree structure to 
them in time proportional to the degree of the node. We can combine these local tree structures 
to obtain Lhe desired tree by U3ing depth-first search. 

Now Lravcrse the tree in post-order (leaves first), and at each node do the following: [f the 
t riangle corresponding to the node contains less than IHI vertices of G, remove the node from 
the tree. If it contains exacUy IHI vertices of C, check if it is a copy of II . If not, return "no 
decomposition." If it is a copy of H, remove this leaf from the trqe and all the verLices in this copy 
of El from C. If the triangle contains more than jJI I nodes, return "no decomposition." Depth
first search takes linear time. In Lhe second part, we spend constant timP. on each t riangle (unless 
we find more than IHI nodes in it, in which case we stop immediately). Thus, the algorithm takes 
linear time. I 

4. Applications 

The techniques described in this paper can be applied to solve a variety of ,elated problems. 
The optimal tile salvage problem is one example. The problem can be described as follows: 
Consider an ../Fi X ../Fi region of the plane tiled wiLh unit squares, some of which have bcea 
removed. The t iles which remain represent functional chips and the tiles which have been removed 
represent faulty chips on a wafer. The optimal x , y tile salvage problem is to fine! t~e maximum 
number of functional, non-overlapping x X y tiled rectangles. The orientation of the rectangles 
does not matter and we assume without loss of geaerality that ~ ~ y. For x = 1 and y = l, 



the problem is trivial. For x = i and y = -2, the problem can easily be solved as an instance of 
the usual maximum matching problem. On the other hand, Fowler, Paterson and Tanimoto [5] 
showed that the optimal tile salvage problem is NP-complete if x = 3 and y = 3. By applying 
the techniques developed in this paper, all but the trivial cases (1 X 1) and (1 X 2) are easily 
shown to be NP-complete. This is because the generator, receptor, and transmission line gadgets 
of Section 2 can also be modified to work in a grid setting f'or any rectangle with x = 1 and Y > 3 
or x ~ 2 and y ~ 2. For example, a generator for the 2 X 2 tiling problem is shown in Figure 
30. Notice the close relationship between the tiling generator and the graph generator in Figure 
6. A complete set of gadgets (e.g., receptors, transmission lines and generators) is included in 
Figures 31-33. 

111 : 1 

+ 

+ 

Figure SO: A generator for the 2 X 2 optimal tile salvage problem. When in true mode, the 

leftmo:Jt and rightmost pairs of 3quares on the + lines can be u.,ed to form 2 X 2 rectangles, 

but not the leftmost and rightmost pairs of squares on the '- lines. The rt:vcrse is lruc when 
the generator is in false mode. 

The approximation algorithm des~ribed in Section 2.2 can be very easily applied to grid prob
lems since for most practical problems the cut made by the Lipton-Tarjan separator algorithm is 
likely to be a straight-line cut through the grid. The algorithm developed by Baker [1] also gives 
a very nice approximation algorithm for this problem. 

It is likely that there are further applications of these techniques. For example, the gadgets 
seem to work for planar H -matching problems involving edge-disjoint graphs or induced graphs 
for many graphs H. The reduction can also be easily extended to give an alternate proof of the 
original Kirkpatrick-Hell [8] result for non-planar generalized matching, and for several other 
covering, packing and matching results [3-6]. 

As a final example, we apply a result of Johnson [7] to show that the "dots and boxes" game 
is NP-complete. In dots and boxes, two players take turns drawing unit length segments between 
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Figure 31: Receptors f or the x X y optimal tile salvage problem. The case when x = 1 
and y ~ 3 is shown in {a}, and the case when x ~ 2 and y ~ x is shown in (b). Asteriska 
denote unit squares that serve as connection points to transmission lines. Arrows denote the 
origination and outgoing direction of transmis.sion line&. 
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Figure 32: Two types of transmission line.s. Asterisks denote unit blocks connecting x X y 
rectangles. 
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F igure 33: Generators for the z X y optimal tile salvage problem. The case when z = 1 
and y ~ 3 is shown in (a}, and the case when z ~ 2 and y ~ z is shown in (b). Asterisks 
den ote unit square& that serve a& connection points to tran.,mission line&. 
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consecutive points on an N X N grid. Whenever one player completes the perimeter around a 
unit square, he wins that square and draws another edge. The player winning the most squares 
wins the game. The problem is to decide whether or not a player has a winning strategy starting 
from a specified position ( e.g., the input is a set of drawn segments and captured squares in the 
grid). In [7], Johnson shows that this problem is NP-complete if maximum K3-matching is NP
complete for planar graphs with maximum node degree four. This is almost implied by the proof 
(in Section 2.1) that maximum planar K3-matching is NP-complete. The only problem is that 
the receptor in Figure 2 could have degree six. In Figure 34, however, we illustrate an equivalent 
receptor with maximum degree four. Note that this receptor contains four node-disjoint triangles 
if and only if one of the connection nodes is not used by a generator triangle ( e.g., if and only if 
the receptor is "true"). Otherwise, the receptor contains only three node-disjoint triangles. The 
remainder of the NP-completeness proof is identical to that in Section 2.1. 

Figure 34: Receptor for a 9-cycle with maximum node degree four. A.s in Figure 2, 
connection node.s are drawn a.s empty cirdea. 
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