MIT/LCS/TM-258

THE SEMANTICS OF LOCAL STORAGE,
OR WHAT MAKES THE FREE-LIST FREE?

J.Y. Halpern
A.R. Meyer
B.A. Trakhtenbrot

April 1984

The Semantics of Local Storage, or What Makes the Free-List Free?
(Preliminary Report)*t

Joseph Y. llalpern, IBM Research, San Jose
Albert R. Meyer, Laboratory for Computer Science, MIT
B. A. Trakhtenbrot, Dept. of Computer Science, Tel Aviv Univ.

Abstract. Denolational semantics for an ALGOL-like language with finite-mode procedures,
blocks with local storage, and sharing (aliasing) is given by translating programs into an ap-
propriately typed A-calculus. Procedures are entirely explained at a purely functional level -
independent of the interpretation of program constructs — by continuous models for A-calculus.
However, the usual (cpo) models are not adequate to model local storage allocation for blocks
because storage overflow presents an apparent discontinuity. New domains of store models are

offered to solve this problem.

CR Categories and Subject Descriptors: D.3.1 [Programming Languages|: Formal Definitions
and Theory-syntaz, semantics;F.3.2 [Logics and Meanings of Programs|: Semantics of Pro-
gramming Languages-operational semantics, denotational semantics; F.3.3 [Logics and Mean-

ings of Programs]: Studies of Program Constructs.
General Terms: Languages, Semantics, Theory.

Additional Key Words and Phrases: lambda-calculus, copy-rule, stack discipline, block structure.

* This rescarch was supported in part by NSF Grants MCS80-10707, MCS-8304498, and a grant to the MIT
Laboratory for Computer Science from the IBM Corporation.

$This report is a slightly revised draft of a paper in the Conference Record of the 11t* ACM Symposium on Principles
of Programming Languages, January, 1984, 245-257.

1. The Problem of Free Locations.

ALGOL-like languages obey a “stack diseipline” in which loeal storage for blocks is allocated
from the top of a memory stack at block entry time. For object-oriented languages like LISP
or CLU requiring heap storage, new mermory locations (also known as local variables) arc usually
alloeated from a “heap™ or linked list of free locations.

In both eases, there is a simple idea behind local variables in blocks: execution of a block
begin new : in Hody end causes allocation of a “new” storage location denoted by the identilier
= which is used in the body ol the block. In ALGOL-like languages obeying stack discipline, the
location is deallocated upon exit from the block. Understood in this way, stack discipline is a
language design principle - encouraging modularity in program construction - rather than an
implementation technique for efficient storage management. It is better called the local storage
discipline to avoid misunderstanding, and we do so henceforth.

The simple idea behind loeal storage raises a theoretical puzzle: what is a “new” location? We
were disappointed to discover that the mathematical models of storage allocation which appear
in the denotational semanties literature [M'ﬂne and Strachey 76; Stoy 77; Gordon .79] do not
adequalely address this problem. Insteaa, these models merely reflect the bookkeeping mechanisms
used in implementations. Specifically, new storage allocation is modeled by enriching the notion of
stores to include with each location an indication of whether the location is “active”. Execution,
slarting on some store, of a block with local storage involves selecting the first “[ree” (i.é., not
marked “active”) location of the store as the one to be allocated.

The problem with this approach is that the locations designated by the store as free may already
be aceessible from the body of the block, and so may not in fact be free. For example, let z be
an identificr of location (in this context, also called a reference) type, and let p be a parameterless

pure procedure identifier. Then, the block

begin new z in
r ;= 1; p; if cont(z) = (then skip else diverge fi

end

ought Lo diverge since the “new” location allocated for z should nol be aflected by the call to
p. But if p happens to denote the program which assigns the value zero to some location [, and
this block is excculed on a store in which location [happens to be designated as the first frec
location, then the block will not diverge. Validily of the expected properties of blocks thus hinges
on hypotheses about how the locations designated as active by the store relate to the locations
which really are actlive, and we are in any case still left with the problem of explaining what a [ree
location “really” is.

The semanties using activity marks does behave properly on programs without ealls to global
(undeclared) procedure identifiers. For example, the block above will diverge in any program

context in which the global identifier p is declared (in a declaration which itsell does not contain

2

global procedures). In this case, exccution of the overall program will correetly update the free
list so that the locations affected by p will be marked as active by block execution time. This
can be proved by induction on the length of computation ol programs without procedure globals.

However, this observation leaves several matters unresolved:

(1) Suppose we add some new command to the language say one which initializes some spe-
cial portion of the store? This enriches the possible ways p might be declared, requiring
reverification ol the allocation mechanism for the richer class of p’s. (In lact, this enrich-
ment invalidates the mechanisin unless all locations in the special portion of the store are

permanently marked active).

(2) More generally, suppose p is a call to a program writien in another language - say a system

program in machine language? Allocation from the free list will not be safe.

(3) The simple reasoning that goes with the idea that “new™ storage is allocated at block entry
must be replaced by reasoning about the details of particular allocation mechanisms.

We address these problems by explaining semantically when a location is active or free with
respect to a procedure. In gencral, we define how a set of locations covers a procedure of finite
type, by induction on types. The support of a procedure is its minimal cover. The locations in the
support are “active” with respect to a procedure, and the locations outside the support are “free”.
The desired semantical explanation of new storage allocation is then simply that any location
free for the block body is to be allocated - no other details of the allocation mechanism need be
considered.

An amusing technical problem must be faced with this approach. Some kind of continuity
condition is normally required of the functions defining the semantics of procedures in order to
ensure that the fixed-points necessary to explain recursive definitions exist. Unfortunately, in the
usual formulations the operation of allocatling and later de-allocating “new” storage turns out not
to be continuous, essentially because of the theoretical possibility of running out of storage — even
il we assume there are an infinite number of locations in memory! For example, suppose 7 is a
store to store mapping whose only cover is the sct of @il locations - # might be the denotation of
a procedure which “sweeps” memory scarching for an untagged location. Now 7= can be expressed
as the limit of a sequence of approximating mappings n; which only sweep the first 1 locations.
Since storage is infinite but a finite number of locations cover 7y, there is always a location free
to allocate for a block whose body behaves like m;. On the other hand, allocating new storage for
7 yiclds an overflowed error, viz., allocating local storage and taking limits do not commute as
required by the definition of céntinuil.y. (The discontinuity of new storage allocation was noted in
[Milne and Strachey, 76], with a reference to further discussion in Milne’s thesis.)

In gencral, objects with “large” support force us to face the discontinuity of storage overflow.
We would like to rule out such objecls, especially in view of the fact that definable objects, viz.,
objects which are the denotations of phrases in ALGOL-like languages, can be proved to depend

3

on only finitely many locations. Ilowever, once we have mappings (like ;) which depend on only
finitely many locations, the usual requirement that semantical domains be complete partial orders
(cpo’s) which arc closed under taking least upper bounds of all increasing chains forces us to
admit programs (like 7) with infinite support [Stoy 77; Scott 81, 82]. Dificulties of this sort have
led [!ieynolds, 81] and [Oles, 83] to consider more sophisticated functor catcgori'cs as domains of
interpretation. For further discussion sce [Meyer, 83; Trakhtenbrot, Halpern and Meyer, 83).

Our solution is to relax the requirement that domains be closed under all (increasing) limits.
We require closure only under certain “algebraic” limits suflicient to ensure that domains will obey
the fixed-point and other properties required for program semantics. This theory of algebraically
closed partial orders is less well known than the cpo theory, but has been developed extensively
[Nivat, 75; Guessarian 81; Guessarian 82; Gallier, 1983; Courcelle, 1983]. In this framework, we
give a general definition of the notion of covering, and define store models: systems of algebraically
closed partial orders containing only elements with finite support but including enough elements
to interpret all the programming constructs of ALGOL-like languages.

Store models justify all the intended propertics of new-declarations. For example, in store
models the block mentioned above with global call to pindeed diverges in allenvironments. Another

illustrative equivalence is:
begin newzin ifz = ythen Cmd; else Cmd;fiend = (y:= cont(y);Cmd;).

(The “useless” assignment to y appears in case y denotes the divergent (L) location.)

2. ALGOL-like Languages.

The focus of our proof-theoretic studies has been on the family of idealized ALGOL-like lan-
guages. We review several of the principles which characterize this class of languages [cf. Reynolds,
81; Meyer, 83; Trakhtenbrot, ITalpern, and Meyer, 83; Halpern, 84]:

(1) Commands, which alter the store but do not return values, are distinguished from ezpres-

atons, which return valucs but have no side-effects.
(2) Calling is by-name. (Calls by-value, etc., are treated as syntactic sugar.)
(3) Higher-order procedures of all finite types (in ALCOL 68 jargon, modes) are allowed.
(4) The local storage discipline is an explicit aspect of the semantics.

In this section we sketch a fow of the features of an illustrative ALGOL-like language we call
PROG.

Types in PROG. The distinction between localions and storable values - in our semantics
* they behave as disjoint domains - is one of several structural restrictions on ALGOL-like languages
implied by local storage discipline. For example, it is well-known that locations (and likewise
procedures) cannot be storable without restriction, since otherwise locations allocated inside a

block might be accessible after exit from the block via the stored objects.

4

For simplicity, we consider storable values of only one type. The two basic types storable
values and loeations are abbreviated int and loe, respectively. 'ROG syntax mandates an explieit
type distinction between locations and storable values (also called “left” and ““right” values of

1o¢) denotes the element.

expressions), using the token eont lor explicit dereferencing. Thus, cont(r
of type int which is the contents of x, and assignment commands take the form Loels := Intls
where Locl? is a location-valued expression and [ut/ is an int-valued expression.

Equality tests in PROG can only be between elements of basie type. We do allow explicit
equality testing between locations, “z'°® = 19" in addition to the usual test of equality between
storable values, “a = f(cont(y'°¢))". LExpressions which cvaluate to locations are allowed, as in

the “conditional variable” expression on the lefthand side of the assignment ecommand
ifa = f{cont(y))thenyelsezfi := a.

The other primitive types are prog, intexp, and locexp. The domain prog is the domain of
program meanings, namely, mappings from stores to sets of stores. (’ROG has a nondeterministic
choice construet. Since we do not attempt to distinguish “failing” from diverging, nondeterminisimn
is adequately modeled with mappings to sets as opposed to the more complex power-domains of
[Plotkin, 76,82; Smyth, 78].) The other two “expression” types are the denotations of expressions
whose evaluation yiclds basic values, viz., the clements of intexp (locexp) are functions from
stores to int (loc), i.e., “thunks” in ALGOL jargon.

Blocks and Binding in PROG. Procedures of all higher finite types formed from the five
primitive types may be declared, passed as parameters, and returned as values.

Procedure identifiers are bound in I’'ROG via procedure declarations occurring at the head of

a procedure block, e.g.,
proc p(z) & DeclBody do BlockBody end .

Identifiers of basic type are bound by cither let-declarations or new-declarations at the head of

bastc blocks of the forms i
let z'™* be IntE in Cmd tel,

let 4'°¢ be LocE in Cmd tel,

begin new '°¢ in Cmd end.
The let-declaration causes the evaluation of the expression IntE in the declaration-time store and
causes identilier x to denote the result of the evaluation. (A call-by-value of the form p(I3asE) can
be simulated by the basic block let nbe 3askin p(n)tel.) Basic and procedure declarations have

quite different scopes and meaning, as will be revealed below.

3. Syntax-Preserving Translation to A-Calculus.

We formalize the assignment of semantics Lo programs in two steps:

(1) a purely syntactic translation from PROG to a fully-typed A-caleulus enriched with a letrec-

construct as in [Danmum and Fehr, 1980; Damm, 1982; f. Landin, 65], and

5

(2) assignment of scmantics Lo the M-cilculus in a standard referentially transparent way
[Barendregt, 81; Meyer, 82].

Our X-calculus is chosen so thal its constants correspond to program construglors, its binding

operations, letreec and A, correspond Lo program declarations and procedure abstraction, and its
types arc the same as those of the programming language. In fact, the abstract syntax, viz., parse
tree, of the translation of a program is actually identical Lo that of the program; the translation
serves mainly to make the variable binding conventions of PROG explicit.

Procedure blocks are translated using letree, so for example,
Tr(proc p(z) & DcelBody do BlockBody end) =45 letrec p = Az.T'r(DeclBody)in Tr(Block Body) .

This recursive declaration of p binds occurrences of p in both the declaration and the block bodies.
Procedure declarations in this way inheril the stafic scoping rules of A-calculus.
Basic blocks are handled with constants and \’s, e.g.,

Tr(let z'"*be IntE in Cmd tel) =4 ; Dint (A\z.Tr(Cmd)) (Tr(IntE))

where Dint is a constant of type (int — prog) — intexp — prog. Note that the binding cfect
of the block on z™* is reflected in the binding cffect of Az on Tr(Cmd), namely, the declaration _
binds z in Cmd, but does not bind z in IntE, in contrast to the case for procedure declarations.
Basic blocks with declarations of location type are translated using a corresponding combinator

Dloc. Similarly,
Tr(begin new z in Cmd end) =4 ; New (Az.T'7(Cmd))

where New is a special constant of type (loc — prog) — prog. The semanties of New will be
defined so that Cmd runs in an environment in which z is bound to some location outside a cover
of Cmd. The contents of this new location are initialized to some standard value denoted by the
constant ag at the.beginning of the computation of Cmd and restored to their original value at
the end.

Other commands and expressions are translated directly by introducing suitable constants (but

no binding operators), e. g.,

Tr(cont(LocE)) =4.5(Cont(Tr(LocE))),
Tr(LocE := IntE) =4 s(Update (Tr(LocE)) (Tr(IntE))),
Tr(Crmdy; Crds) = ooy (Sea(Tr(Cmds)) (Tr(Crmda)),

etc.
The principal conscquence of this syntax-preserving translation is that all the propertics of

procedure declarations in ALGOL-like languages such as renaming rules associated with static scope,
declaration denesting rules, and expansions of recursive declarations, can be recognized as direct
consequences of the corresponding purely functional properties of the letree-A-calculus - which
have nothing at all to do with side-effects. Before claborating this point, we review the properties

of the letrec-calculus.

4. Typed Lambda Calculus.

Let T be a set of primitive type symbols, C be a set of typed constants, and X be a set of
typed variables. ’

Type ezpressions are defined inductively: the primitive tyﬁn symbols are type expressions, and
if e, B are type expressions, then so arc @ — 8 and a X 8. With cach type expression a we associate
a (possibly empty) set of constants Cq, disjoint from Cg for a % 8. With each a we also associate
an infinite set of variables X, disjoint from Xg for a £ B. We use the notation z® when we wish
lo emphasize z € X,. By definition, C = UaCq and X = Uy X,.

We define L=, the terms of letrec-A-calculus of type a, by induction.
(1} Gl X € L7,

(2) Application: If w € L*~F, v € L®, then (uv) € LA.

(3) Abstraction: If z € X,,u € LP, then Az.u € L*—P,

(4) Block with mutual procedure declarations: If z; € X%/, u; € L%, j = 1,...,k, z; all
distinct, and v € L then (letrecz; = u; and---and z; = uiinv) € LP. We say z; is
declared in this block with declaration body 4, and v is the block body.

Free and bound occurrences of variables are defined as usual [Hindley, Lercher and Seldin, 1972;
Stoy, 1977; Barendregt, 1981]. Note we are allowing recursion here: the variables z; may occur in
u; as well as v. In particular, “letrec z;” binds all frce occurrences of Z; 0 Upyeeey Uk, Vs

As usual, we omit parentheses in compound applications with association to the lefi being
understood. In contrast, the operations — and X associate to the rigHt in compound fype
expressions. Thus uvw abbreviates ((u v) w) while @ — § — 7 abbreviates (@ — (8 — 7)). We let
[v/z]u denote the result of substituting the term.v for free occurrences of z in u subject to the
usual provisos about renaming bound variables in u to avoid capture of free variables in v [Stoy,
1977, Def. 5.7; Barendregt, 1981, Appendix CJ.

5. Cartesian Closed Models.
For any sets Dy,...,D,, let Dy X -+ X D, be the sct of all ordered n-tuples (dj,...,ds) of
elements d; € D;. Let tuplep, . p,:Dy —---— Dy — (D; X -+ X D,) be defined by:

tupledl---dn = (dl,...,d,,),

and let projh, p (D1 X -++ X D,) — D; be projection on the 5*# coordinate.
A Cartesian Closed type-frame consists of a family of sets { D, } called domains or types, one

for each type cxpression a, such that

(1) Do p consists of some nonempty family of functions from D, 1o Dg and Do x g = Do X Dg,

and

(2) there are clements Sa 3,4 € Dig-f-sq)-o(a—B)—a-—rq and KNag € Daowposa lor every o, 1,

v such that ,
“'!‘(‘\’5'..{(1'[](1,’1(1"3 i ((f()(fg){-d; (l-_g),

[\,o,ﬁd:idd == (i;;.

(3) t“!“l‘D.., oD & Bl oo, sstiny s s and similarly pm“,ﬁb“1 D, € By e v, ey

An environment Tor a type-frame {Dg } is a mapping ¢ : X — [), where D = U, Pa, which
respeets types, Lo, ¢(x®) € Dg. Given an environment ¢, let eld/z] denote the enviconment
which differs from e only at z, and (¢|d/z])(x) = d. Let cldi/pi, .- dis1/pes+1] abbreviate
cldy[p1y-ee s dic)/pilldisr [Piesr]. (We define the “pateh”, flb/a), of any Tunction f: A — B, at a €
A, by b€ I similarly.) Let Envp be the set of all environments for D.

A Cartesian closed model consists of a Cartesian closed type frame together with an interpreta-
tion of the constants, i.e., a mapping [Jo: € — D which respeets types. The model is standard iff
the constant symbols 84 8,4 € Clamg—r)—(a—pf)—a—y and K, g € Capa are interpreted as the
corresponding § and K functions, and similarly for the constants tuple and proj*. Let Ly C L
be the usual typed X-calculus (without letrec). The justification for this peculiar definition is that
for any Cartesian closed model D, there exists a unique mapping [[]]D : Ly = Envp — D which

respects types such that

(a) [el pe = [eJo,
(b) [z] ye = e(=),
(©) T pe = ([u] pe)([+] 0) |
(d) for all d € Da, ([Mz®u] ,ec)d = Hu]]D{c[d/:cI)
A fized-point frame is a Cartesian closed frame such that there is an element Yy € Dia—a)—ea
such that ‘
Y= f(Y{)

for all f € Da_.q and all type expressions a. A fized-point modelis 2 model whose type [rame is a
fixed-point frame; it is standard ifl the constants above have the standard interpretation and the
constant symbols Yo € Clg—a)—a are interpreted as fixed point operators Y.

Let Mz1,..., 7,).u abbreviatle
Az ([(pros’ 2)/zi).. [(proi” =)/zalu)

for z not free in u.

Terms u and v are equivalent for some model D, written u =p o, ill [{uED = [o],- If Mis a
class of models, u and v are M-equivalent ill v =p v for all models D € M.
IFor any Cartesian closed fixed-point model D, there exists a unique mapping ﬁED t Lo—

Envp — I which respeets types, satislies (a - d) above, and such that
(c) letree p; = u; and...and p, = un inv =p (Mp1,- - Pa)0)(Y (Mprs- - , Pn).tuple wi-+-u,)).

8

We abbreviate a mutual procedure declaration of the form (letree p; = »; and --- and p, =
u, in v) by (letrec Dcc in v), where Dee = {p1 = u1,...,pn = i Ji

The lollowing fundamental inference rule verifies the referential t’ransparc‘.ncy. of . It is sound
in any Cartesian closed model when we merely regard letrec Dee in v as an abbreviation for
(X{p1, .- Pa)-v)(c (MP1, ... Pn) tuplew; - u,)) withoul assuming any facts (suc'h as [lixed-point

‘properties) about the constant e.
Replacement Rule. Il u = v and w; is the result of literally replacing (without renaming bound
variables) an occurrence of u by v in wy, then w; = wo.
The following equiv.alcnces hold in any Cartesian closed model as well.
Variable renaming, viz., a-conversion:

Myly/zlu,
(letrec {p=body}UDecinu) = (letrec {q= [g/plbody} U [g/p|Dec in [g/p]u),

I

Ar.u

where y is not free in u, and g is not free in u, body, or Dec, and is not declared in Dee.

Evaluation by substitution, viz., f-conversion:
(Az.u)v = [v/z]u.
Declaration distributivity:
(letrec Dec in uv) = (letrec Dec in u)(letrec Dec in v).

Declaration elimination:
(letrec Dec in u) = u
providing no variable declared by Dec is {ree in u.

Variable binding commutativity:
\z.(letrec Dec in u) = (letrec Dec in Az.u),

providing z is neither free nor declared in Dec.
Extensionality, viz., n-conversion:

Az.(uz)=u
providing u € L=—* for some types a, S.

A term u is in normal form iff for every application (23 ug) which is a subterm of u, the operator
u; is neither an abstraction nor a block. The following result is well-known for typed A-calculus
(cI.[Barendregt, 1981, Appendix C}]), and extends directly to include letree.

9

Normal Form Theorem: Every term u is effectively transformable using «, S-conversion,

declaration distributivity and the replacement rule to a normal form N /() which is unique up to
a-conversion.

As an immediate consequence, we have in any Carlesian closed model that:

Normal Form: v = NF(u).
The preceding equivalences did nol even require assumptions about fixed points. The fixed-point

properly first comes into play in justilying declaration-expanding transformations.

Declaration expansion: In any fixed point model,

(letrec {p = body} U Dec in [p/q]v) = (letrec {p = body} U Dec in [body/q]v).

6. Algebraically Closed Models.

Cartesian closed fixed-point models are still too general to justify even routine transformations
of declarations. To establish soundness of such transformations, it is necessary that the fixed point
operators be chosen consistently with the structure of the type frame; for example, designated
fixed-points should be preserved under isomorphisms induced by reassociating Cartesian products.
Frames whose types have some order structure which ensures the existence of least fixed-points can
provide a harmonious system of fixed-point operators. One well-known least fixed-point frame is
the frame of complete partial orders (cpo’s) with continuous functions. However, we need more
general classes of least fixed-point frames we call algebraically closed frames.

If D and E are partially ordered, then a function f : D — E is monotone iff d; C ds implies
f(d1) T f(d2). If a subset Z C D has a least upper bound, | | Z, then f : D — E is continuous
along Z iff it is monotone and f(| Z) = { f(z) |z € Z }.

An algebraically closed (acl) type frame is a Cartesian closed type frame { D, } such that

(1) each primitive domain D is partially ordered with least element Lp,
(2) function and product domains of higher type are partially ordered by the inherited pointwise
and coordinatewise partial orders,

(3) for all types a and functions f € Da—a, the least upper bound |], f*¥(L) exists, where
f%z) = z and f*¥*(z) = f(f*(z)) (sequences of this form L, f(.L), f(f(L)),... are called
algebraic),

(4) for all types e, every function in D, g is monotone, and is continuous along every algebraic
sequence of elements in Dy, .

(5) for all types a, the least fized point operators Y, defined by Ya(f) = LI, /*(_Lp.) are in
D(a-—va)—'&'

An acl model is a fixed point model with an acl type frame; it is standard ifT the constants

S, K, tuple, proj* have the standard interpretation, the constants Y, are interpreted as the

10

corresponding least fixed-point operators Yy, and for all primitive a, the constants diverge® € C,
arc-interpreted as Lp . We let diverge? ™ abbreviate Az?.diverge® and handle 3 X a similarly
so that in standard acl models, [diverge®] = Lp_ for all a.

The following equivalences connect fixed-points between distinet domains and hence depend on
choosing lixed-points harmoniously, viz., choosing least fixed-points. We refer to properlies like

these which are valid lor all acl models as acl properties.

Declaration collection:
(letrec Dcc in (letrec Dec’ in u)) = (letrec Dec U Dec’ in u)

providing none of the variables declared in Dec’ occurs free or has a distinet declaration in Dec.

Explicit parameterization:
(letrec { p = body} U Dec in u) = (letrec { g = M\z.[qz/p]body } U [gz/p]Dec in [gz/p]u)

providing q does not appear in u, Dec, or body, and p is nol declared in Dec.

Declaration denesting:
(letrec {p = letrec Dec in body} U Dec’ in u) = (letrec {p = body } U Dec U Dec’ in u)

providing none of the variables declared in Dec is free in u or Dec’ or declared in Dec’, and p is
not declared in Dec or Dec'.

A term u € L is denested ill neither the body of any variable declaration nor the body of any
block in u contains a declaration. Every term can be effectively transformed into an equivalent
denested term using the equivalences above.

The following general induction principle is a basis for induction rules about programs. A
predicate P on a domain D, in an acl frame is acl-inclusive iff (Vi > 0. P(f(")(_l_))) = P(Y(f)) for
o T € DPuss:

Fixed-point Induction: Let D, be a domain in an acl frame, P be an inclusive predicate on D,
and f € Da—a. If P(Lp_) AVd € D.(P(d) = P(f(d))), then P(Y(f)) holds.

The equivalences and rules for A-terms immediately yicld rules for PROG phrases; we indicate
a few. Let E represent a finite system of mutual PROG procedure declarations; procedure blocks
of the form proec E do ProcT end will be abbreviated as E | ProcT where ProcT is a procedure
term.

Declaration distributivity in PROG:
(E | (ProcT; ProcTz)) = (E | ProcTy)(E | ProcTs),
(E | ProcT}™%;ProcTE °8) = ((E | ProcTY™°8);(E | ProcT3"™°%)),
etc.

11

‘Note that declaration distributivity depends erucially on the fact that 2 denotes a set of proce-
dure declarations, whose meaning is necessarily store-independent. So the declaration distributivity
rule is valid despite the possible side-cffects on the store between evaluations of different copies of
E. In contrast, distributivity fails for basic (viz, let-) declarations because the value bound lo
an identifier by a basic declaration depends on the store “at declaration time”. This contrast was
reflected in the use of constan(s in translating basic blocks, compared to the letrec construct used

to translate procedure blocks.

Variable binding commutativity in ’ROG:

(E | let zbe Bask in ProcTP 8 tel) = let zbe BasE in (L | ProcT?™°8) tel,

(E | begin new y in ProcTP™°% end) = begin new y in (E | ProcT?"°%) end

providing z,y do not occur free in E.

Fixed-Point Induction for Approximation in PROG: Let p be an identifier and ProcT a
PROG term, both of the same type, such that p is not free in ProcT;. Then

[diverge/p]ProcT; E ProcTy,
(ProcTy C ProcT;) = ([ProcT/p]ProcT; C ProcTy)
proc p < ProcT do ProcT; end T ProcTy

7. The Equivalence of Fixed-Point and Computational Semantics.

The most fundamenl,al-acl property is that every term in L can be understood as a limit of
finite letree-free terms (in normal form if desired) which approximate the given term. These
finite approximations are obtained by repeatedly “unwinding” the letrec declarations using the
declaration expanéion rule. This provides an eflcclive computational rule for simulating the
effects of letrec’s and the corresponding procedure declarations in PROG. It also shows that two
procedures which expand to the same infinite declaration-free procedure are equivalent in all acl
models for PROG, independent of the meaning of any PROG constructs.

The original ALGOL 60 report [Naur, ct.al., 1963] gave a “copy-rule” semantics for the language.
The copy-rule can be understood as a particular computational strategy for gencrating the infinite
expansion of a command. It foHows that another acl property is that fixed-point and copy-rule
semantics (appropriately extended to letrec-terms and PROG commands with free variables) assign
the same meanings to terms [cf., Damm 82]. This confirms that our choice of denotational “fixed-
point” semantics is consistent with the usual operational understanding based on the copy- rule. For
the development here, however, we have no neced of these facts, and so we omit further explanation.

Thus procedure declarations of ALGOL-like languages are entircly explained by acl semantics
for L. On this basis we assert that the typed A-calculus is the true mathematical syntaz for these
languages. For example, several of the language design principles of [Tennent, 81] can be recognized

as proposing that syntactic restrictions of programs to subsets of L be removed.

12

8. Store Semantics of PROG. _
Particular instances of ALGOL-like languages are determined by their types and the interpreta-
tions of their constants. Propertics related to stores and side-effects appear only. at this level. We

now specily the domains and constants which determine PROG.

Store Frames: Given an infinite set Loc (ol locations) and a set Int (of storable values) we define

the domains
Dine =asy Loe U { i}y Dine =iey IntU {Liss }

{o be the flat cpo’s.

For sets A, B, let AB =,,; the set of all total functions from B to A. For the other primitive
domains, we selcct some subset, Store C Intl°c. Siore must be closed under finite patching.
(Note that no store maps a location to Ljne. There is no need to introduce such “partial” stores

in modeling the behavior of sequential languages like PROG.) Then

Dintexp G (Dint)***"%, Diccexp C (Dioe)***"*, Dprog C {P(Store))™ "™,

Here P(Store).denotes the power-set of stores (ordered by containment), so elements of Dprog
correspond to nondeterministic mappings between stores.

A Store modelis any standard acl model with the above five primitive types such that there are
elements in the domains of the frame which interpret the constants required in the translation of
PROG to L as specified below. These constants are: If, Mkexp, Cont, Update, diverge, Ifprog,
Seq, Choice, Dint, Dloc, and New. |

The constant If, g for basic types @, hastypea - a— 3 — 8 — ﬁ A store model interprets

If so that
._Lp ifdl =_Laord2=J_¢,,

[1fa s]dsdgdidf = {ds " ifdy=dy # 1,
dyg otherwise.

Any first order function f of type 6§ = int* — int can be coerced into a mapping Mkezps(f)

taking as arguments functions from stores to int. Namely,
Mkezps & di"**P... di"***Ps — {(d,(s), ..., dk(s))

for any store s. The constant Mkexp; of type § — (intexp — ... — intexp) is interpreted as the
coercer Mkezp;.
The constant Cont of type locexp — intexp is defined in store models so that

HCont]] dlocexps s {S(d(s)) if d(s) ?é J—loc.p
Line otherwise.
For assignments, the constant Update of type locexp — intexp — prog:

. locexp intexps - {5[d2(8)/d!(8)] } if dy (8)1 d2(s) ?é 4,
[Update]d; 4 . {0 otherwise.

13

For condilional commands, Ifprog, of type a-exp — «a-exp — prog — prog — prog:

0 il di(s) = Lo or d3{s) = L,
[Ifprog, Jdi “*Pdy “*Pdy ™ °8d} °%s = { dy(s) if dy(8) = da(s) 3£ L,
d4(s) otherwise.

Command constructors Choice, Seq of {ypc prog — prog — prog:

[Seqld?™*®d}™%s = U{da(s') | s € di(5) },
[Choice]dT™8d5™Bs = d;(s) U dz(s).

For let blocks, Dint of type (int — prog) — intexp — prog:

[Dint]di"~Prosgintexpy — {(d: (da())(s) if da(s) # Line,
0 otherwise.

The constant Dloc is defined similarly.
The semantics of the constant New of type (loc — prog) — prog is handled in the next

section.

9. Domains for the Local Storage Discipline.

To explain the semantics of New, we must define the notion of covering. For primitive types
this is fairly straightforward. ‘

Let L be a subset of Loc. Two stores s, agree on L, written 8 =g ¢, iff VI € L. s(l) = t(l).
- Similarly, two sets S, C P(Stores) agree on L if there is a bijection f : S — T such that
Vs € S.8 =L f(s).

Define the unary predicate Access on D, by induction on a according to the rules below. If

Access™(d) holds, we say that d accesses only the locations in L.
(1) Access, (1) if 1 € LU { Lioc },
(2) Accesst (d) = true,
(3) Access), (x) iff Vs,t € Store.(s =1 t = n(s) =L #(t)) A (t € 7(8) = 8 =Loe—1 1),
(4) Accessfyyyerp(7) iff Vs,t € Store.s = t = 7(s) = 1(t),
(5) Accessicrp(c) il V3,1 € Store.s =1 t = ofs) = o(t) € LU { Lioe },

(6) Access{,f_,.r(f) iff vd € Dg, L' C Loc.Accessg(d) =5 Access#ul"(f(d)),

(7) Accessgy (dy,d2) il (Accessk(d1) A Accessk(dy)).

For higher-type objects, we also need a notion of uniformity with respect to “new” locations.

14

Definition. Lel g : Loc — Loc be a bijection; extend p to Djge so that p(Ll) = L. Let
UStore : Store — Store be the bijection defined by the rule

ﬂS:ore(‘q) == F-l

where o denotes functional composition, and let pp(seore) @ P(Store) = P(Store) be the bijection
delined by applying psiore clementwise. Define a bijection pg : Dg — Do by the rules:

(1) tioe = 1,

(2) Fint(dint) =d,

(3) 1prog(™) = 1p(Store) © T © BSiore:

(5) Miocexp(0) = Hioe © 0 © B5lore s
(6) mp—ry(f) = pyo fouz?,

(7) Bex~{d1,d2) = (mp(d1), 4(d2)).
Note that (z7!)a = (a)™?, so the notation uZ! is unambiguous. A bijection u: Loc — Loc fizes

L iff u(l) = I for all | € L. Define the unary predicate Unif% on D, by the rule:

)

(4) Himsexp(r) = ine 070 Pglore =ToB5hces
)
)

Unifi(d) iff Vp fixing L. po(d) =d.

If UnifL(d) holds, we say that d is uniform off L.
We _henceforth omit subscripts a@ when they are clear from context.

Definition. A set L C Loc covers an element d iffl Access’(d) A UnifX(d).

Note that for primitive types, Access*(d) iff L covers d. (We remark that covering is a logical
relation in the sense of [Plotkin, 80; Statman, 82].)

Some key properties of covering are:

(1) if L covers d, then LU L' covers d,

(2) if L covers f*—#,d®, then L covers (f d),

(3)if L covers all d € Z C D, and | | Z exists, then L covers | | Z,

(4) The functions K, S,Y, tuple, proj* have empty covers.

These facts immediately irhply that for any environment e and term u € L, the element ﬁu]]e
is covered by a union of covers for [c] and e(z) for all the constants ¢ and free variables z in u.
It not hard to show that all the constants other than New are continuous and have empty

covers. To ensure that New is interpretable, we impose a further condition on store models:

Covering Restriction: Every element has a finite cover.

15

Under the covering restriction it follows that covers are closed under (infinite) intersection, so

that every element has a minimum cover which is called its support.

Definition. A function Select : P(Loc) — Loc will be called a selection function iff Select(L) ¢
L Tor all finite sets L C Loc. (Sclection Tunctions exist because Loc is infinite.) For each selection

lunction Seleet, let Newgeiecs : Dioc—prog = Pprog be defined by
Newseieer p =dey [Tr(let i be cont(y)iny := ag; p(y); ¥ := z tel)]e,

where e(y) = Select(Support(p)), e(p) = p.

Lemma. Let Select;, Selecty be sclection functions. Then
(8) Newsetect, = Newseteet,)
(b) News,iecr, is continuous along algebraic sequences and has empty support.

It follows that if we take any selection function Select, then Newg,j..: unambiguously deter-
mines a meaning for New in store models, and we require this meaning to be in D(joc . prog)—pros-

To demonstrate rigorously that the theory of PROG is consistent, it is sufficient to show that
store models exist. We now indicate how to construct one.

For primitive types a, define partially ordered sets D,, E, as follows:
(1) Bioe = Dios,

(2) Eint = Dine,

(3) Eprog = (P(S t"fe))s”",

(4) Brocexp = (D1oc)*",

(5) Eintexp = (Dine)¥*",

(6) Do = {d € E, | d has a finite cover }.

For partially ordered sets D, E, let D — E be the set of functions from D to E which are
continuous, i.e., preserve all least upper bounds whick ezist in D. For higher types,

(7) Eg—y = D = Dy,
(8) EBX'; == DB X D'w
(9) Do = {d € E, | d has a finite cover }, (i.e., same as (6) with & any higher type).

It is not hard to verily that { D, } is an acl {frame which provides a store model.

We can further justify our store model semantics by demonstrating that it coincides with
familiar operational semantics based either on stack implementations or on copy-rule semantics in
which new declarations are explained through renaming of local identifiers (cf. [Langmaack and

Olderog, 80; Oldcrog, 82]). These results will be developed in our full paper.
16

10. Reasoning about Support.

Because all the PROG constants have empty support, a cover for (the meaning of) any PROG
phrase is easily characterized: take the union of covers for the free procedure and location
identifiers. In particular, if the phrase has no global calls — so the only free identifiers are of
lecation type - then a cover is available by inspection: the union of the (dcnotétions of) the free
location variables in the phrase. This follows because the support of any location [€ Loc is the
singleton {/}. (In general, the support of a command may be strictly smaller than the supports
of its free identifiers, e.g., z := cont(z) has empty support.)

These observations are the basis for a variety of axioms for program correctness suggested in
[Meyer, 83; Trakhtenbrot, Halpern, and Meyer, 83; Halpern, 84).

11. Critique of PROG.
PROG fails as an example of satisfactory language design in many ways, even with respect to
the limited set of features it is intended to model. For example,

1) there are no Boolean types,

2) there is no while command or other structured control statement,

(
(
(3) only one identifier at a time can be declared in a basic declaration,
(4) there are no let blocks of basic expression type.

(

5) Conditionals are not uniformly available at all types [cf. Reynolds, 1981a].

However, these pragmatic features are all inessential for our purposes since they can be simu-
lated at the level of uninterpreted program schemes by commands already in PROG, i.e., each of
the constants corresponding to these constructs is directly A-definable in terms of the constants
already introduced. Therefore they raise no semantical or proof-theoretical issues beyond those
already treated.

An important feature in actual ALGOL-like languages but missing from PROG is that locations
can be storable subject to restrictions (as in ALGOL 68) to ensure local storage discipline is
preserved. Another extension improving uniformity involves introducing a-exp types for a other
than int and loc (with a corresponding block let z® be ProcT® **P in ProcT# =*P tel). Other
significant language features compatible with ALGOL-like principles but omitted from PROG include
exit control, arrays and user-defined data-types, own-variables, polymorphism, implicit coercion

(overloading) and concurrency. These will have to be the subject of future studies.

References.

H. P. Barendregt, The Lambda Calculus: Its Syntaz and Semantics, Studies in Logic 108, North
Holland, 1981.

B. Courcelle, Fundamental properties of infinite trees, Theoretical Computer Science 25, 1983,
95-170.

17

W. Damm, The 10- and Ol-hierarchies, Theoretical Computer Science 20, 1982, 95-207.

W. Damm and E. Fehr, A schematological approach to the procedure concept of ALGOL-like
languages, Proc. 5ieme colloque sur les arbres en algebre et en programmation, Lille, 1980, 130-134.

J. De Bakker, Mathematical Theory of Program Correctness, Prentice-Hall Iniernational, 1980,
505pp.

-J. H. Gallier, n-Rational algebras, Parts I and II, Technical Report, Dept. of Computer and
Information Sciences, Univ. of Pennsylvania, Philadelphia, 1983, 55pp. and 65pp.

M. J. C. Gordon, The Denotational Description of Programming Languages, Springer, 1979.

I. Guessarian, Algebraic Semantics, Lecture Notes in Computer Science 99, Springer, 1981, 158pp.

I. Guessarian, Survey on some classes of interpretations and some their applications, SIGACT
News, 15, No. 3, 45-71, 1983.

~J. Y. Halpern, A good Hoare axiom system for an ALGOL-like language, 11*» ACM Symp. on
Principles of Programming Languages, 1984, 262-271.

R. Hindley, B. Lercher, and J. Seldin, Introduction to Combinatory Logic, London Math. Soc.
Lecture Note Series 7, Cambridge University Press, 1972.

J. Lambek, From X-calculus to Cartesian closed categories, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, J. P. Seldin and J. R. Hindley, eds., Academic Press, 1980,
375-402.

P. J. Landin, A correspondence between ALGOL 60 and Church’s lambda notation, Comm. ACM
8, 1965, 89-101 and 158-165.

H. Langmaack and E. R. Olde}og, Present-day Hoare-like systems, 7t*Int’. Coll. Automata,
Languages, and Programming, Lecture Notes in Computer Science 85, Springer, 1980, 363-373.

A. R. Meyer, What is a model of the A-calculus? Information and Control 52, 1982, 87-122.

A. R. Meyer, Understanding ALGOL: the view of a recent convert to denotational semantics, in
INFORMATION PROCESSING 883, R. E. A. Mason, ed., Elsevier Science Publishers B.V. (North
Holland), 1983, 951-961.

R. E. Milne and C. Strachey, A Theory of Programming Language Semantics, 2 Vols., Chapman
and Hall, 1976.

P. Naur et al.,, Revised report on the algorithmic language ALGOL 60, Computer J. 5, 1963,
349-367.

M. Nivat, On the interpretation of recursive polyadic program schemes, Symposia Mathematica,
15, Academic Press, 1975, 255-281.

E. R. Olderog, Sound and complete Hoare-like calculi based on copy rules, Acta Informatica 186,
1981, 161-197.

18

I. J. Oles, Type algebras, functor categories, and block structure, Computer Science Dept., Aarhus
Univ. DAIMI PB-156, Denmark, Jan. 1983.

G. D. Plotkin, A powerdomain construction, SIAM J. Comp. 5, 1976, 452- 487, 1976.

G. D. Plotkin, Lambda-definability in the full type hierarchy, in To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, J. P. Scldin and J. R. Hlindley, eds., Academic
Press, 1980, 363-373.

J. C. Reynolds, The essence of ALGOL, International Symposium on Algorithmic Languages, de
Bakker and van Vliet, eds., North Holland, 1981a, 345-372.

J. C. Reynolds, The Craft of Programming, Prentice Hall International Series in Computer Science,
1981b, 434pp.

J. C. Reynolds, Idcalized ALGOL and its specification logie, Syracuse University, Technical Report
1-81, 1981e.

D. 5. Scott, Lectures on a Mathematical Theory of Computation, Technical Monograph PRG-19,
Oxford Univ. Computing Lab., 1981.

D. S. Scott, Demains for denotational semantics, 9t* Int’l. Conf. Automata, Languages, and
Programming, Lecture Notes in Computer Science 140, Springer, 1982, 577-613; to appear,
Information and Control.

M. B. Smyth, Powerdomains, J. -Computer and System Sciences 16, 1978, 23-36.

R. Statman, Logical relations and the typed lambda-calculus, to appear, Information and Conirol,
1984. |

J. E. Stoy, Denotational Semantics: The Scoti-Strachey Approach to Programming Language
Theory, MIT Press, Cambridge, Massachusetts, 1977. '

R. D. Tennent, Principles of Programming Languages, Prentice-Hall International Series, 1981,
271pp.

B. A. Trakhtenbrot, J. Y. Halpern, and A. R. Meyer, From denotational to operational and
axiomatic semantics: an overview, Proc. Logics of Programs, Carnegic-Mellon Univ., Pittsburgh,

1983, {o appear, Lecture Notes in Computer Science, D. Kozen and E. Clarke, cds., Springer, 1984.

Cambridge, Massachusetts
February 12, 1984

19

