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1. The Problem of Frt~e Locations. 

ALCOL-lik1· h11guag1•s olll'y a "sl.al'k disl'iplinl'" 111 whid1 loral :,;l.orap;c for blol'ks is allocat.e<l 

from l.lw _fop ol' a 1111•11111ry st.ark at. hlork 1'111.ry time. For ol>j1!1·l.-oric11l.l'd la11g11agPs lik<\ L1SP 

or CLl l n•q11iri11g heap st.orap;c\ 111•w JIH'IIH>ry locations (also k11ow11 as !oral vdriable.i) arc us~mlly 

allol':d.l'd f'ro111 a "lll'ap" or li11kl'cl list. of l'rec~ lol'al.io11s. 

In holh ca:,;cs, t.h1•rc is a simple idl'a bl'hind local variabh•s in blo1·ks: cxc1·11t.io11 of a block 

begin new ;; in /Jody end 1·aus1·s allocatio11 ol' a "111•w" slorar.;1· local.io 11 d1·11ol.ccl by I.he id1•nl.ilier 

;; which is used in the body ol' the block. In ALGOL-like languages obeying st.ack dis<'iplinc, the 

local.ion is deall<)('al.<'d upon exit. from the block. Undcrsl.oocl in this way, st.ark discipline is a 

language design principle encouraging modularity in program construction - rather Lhan an 

implementation technique for dlicicnt storage rn:rnagcrnenL. It, is better called Lhe local storage 

discipline to avoid misundersl.anding, and we do so henceforth. 

The simple idea behind local storage raises a theoretical puzzle: what is a "new" locn.Lion? We 

were disappointed to discover Lhat the malhcrnalica~ models of storage allocation which appear 

in Lhc denolalional semantics literature [Milne and Strad1ey 7G; St.oy 77; Gordon -79]" do not 

adequately address this problem. Instead, these models merely refle~:t I.he bookkeeping mechanisms 

used in implementations. Specifically, new storage allocalion is modeled by enriching Lhe notion of 

slores to include with each location an indication of whether the location is "active". Execution, 

starting on some store, of a block with local storage involves selecLing the first "free" (i.e., not 

marked "active") location of the store as Lhe one Lo be allocated. 

The problem with this approach is that the locations designated by the store as free may already 

be accessible from the body of the block, and so may not in fact be free. For example, let x be 

an identifier of location (in this context, also called a reference) type, and let p be a parameterless 

pure procedure identifier. Then, the block 

begin new x in 

x := 1; p; if cont( x) = 0 then skip else diverge fi 

end 

ought Lo diverge sincl' the "new" location allocated for x should not be aITecLed hy the call to 

p. Dut if p happens lo denote the program which assigns the value zero Lo some location l, and 

this block is executed on a st.ore in which location l happens lo be designated as the first free 

locat.ion, then the blo<'k will not diverge. Validity of the expected propcrti1•s of' blocks thus hinges 

on hypotheses about how the local.ions designated as active by the st.ort' relate to I.he locations 

which really are active, and we arc in any case slill left wi th the problem of explaining what a free 

location "really" is. 

The semantics using activity marks docs behave properly on programs without calls Lo global 

(undeclared) procedure identifiers. For example, the block above will diverge in any program 

context in which the global identifier p is declared (in a declaration which it.self docs not contain 
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glohal procedures). l11 this cas1\ <'X<icut.io11 cif' I.he ov<irall program will <·orr<•r.tly upclat.c the fr<'e 

list so I.hat the locations affcc·t<•d by p will he markc·d as :l<'tivc hy block cx<'culion t.irnc. This 

can be proved by ·i 11d 11dio11 on the lc11gt.h of c·o111p11t.at.io11 of programs wilhou t t>roced II re globals. 

llowevcr, this observat.ion leaves several matt.ers urir<'solvcd: 

(t) Suppose we add some new co111111a11d to I.he language say one whic·h initializes som<' spe­

cial portion of' lh<' stor<'? This c11richcs t.he possibl<' ways p might he declared, requiring 

reverification ol' I.he allocation merhanism for the richer class of p's. (In fact, this enrich­

ment invalidates the mechanism unless all lorntions in the s1.wcial portion of the store are 

permanently marked active). 

(2) More generally, suppose pis a call lo a program written in another language - say a system 

program in machine language? Allocation from the free list will not be safe. 

(3) The simple reasoning that goes with the idea that "new" storage is allocated at block entry 

must be replaced by reasoning about the details of particular allocation mechanisms. 

We. address these problems by explaining semantically when a location is active or free with 

respect to a procedure. In general, we define how a set of locations covers a procedure of finite 

type, by induction on types. The support of a procedure is its minimal cover. The locations in the 

support are "active" with respect to a procedure, and the locations outside the support are "free". 

The ~esi~ed semantical explanation of new storage allocation is then simply that any location 

free for the block body is to be allocated - no other details of the allocation mechanism need be 

considered. 

An amusing technical problem must be faced with this approach. Some kind of continuity 

condition is normally required of the functions defining the semantics of procedures in order to 

ensure that the fixed-points necessary to explain recursive definitions exist. Unfortunately, in the 

usual formulations the operation of allocating and later de-allocating "new" storage turns out not 

lo be continuous, essentially because of the theoretical possibility of running out of storage - even 

if we assume there arc an infinite number of locations in memory! For example, suppose 1T is a 

store to store mapping whose only cover is the set of all locations - 1r might be the denotation of 

a procedure which "sweeps" memory searching for an untagged location. Now 1r can be expressed 

as the limit of a sequence of approximating mappings 1r, which only sweep the first i locations. 

Since storage is infinite but a finite number of locations cover 7Ti, there is always a location free 

to allocate for a block whose body behaves like 1r,. On the other hand, allocating new storage for 

,r yields an overflowed error, viz., allocatinp; local storage and taking limits do not commute as 

required by the definition of continuity. (The discontinuity of new storage allocation was noted in 

[Milne and Strachey, 76], with a reference to further discussion in Milne's thesis.) 

In general, objects with "large" support force us to face the discontinuity of storage overflow. 

We would like to rule out such objects, especially in view of the fact that definable objects, viz., 

objects which arc the denotations of phrases in ALGOL-like languages, can be proved to depend 
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on only finitely many locations. Ilow<'vcr, 011cc we have mappings (like 7ri) which depend on only 

finit<'ly many locations, thr usual rcquircm<'lll that s<'mantical domains be complete partial orders 

(cpo's) which arc closed ·under taking least upper bounds of all increasing chains forces us to 

admit programs (like 7r) with infinite support [Stoy 77; Srott ·s1, 82]. Difnculties of thii; sort have 

led [Reynolds, 81] and [Oles, 8:J] to consider more i;ophisticatC'd functor categories as domains of 

interpretation. For further discussion sec [Meyer, 83; TrnkhtC'11brot, Halpern and Meyer, 83]. 

Our solulion is to relax the requirement. that domains be closed under all (increasing) limits. 

We require closure only under certain "algebraic" limits sufficient to ensure that domains will obey 

the fixed -point and other properties required for program semantics. This theory of algebraically 

closed partial orders is less well known than the cpo theory, but has been developed extensively 

[Ni vat, 75; Guessarian 81; Guessarian 82; Gallier, 1983; Courcelle, 1983]. In this framework, we 

give a general definition of the notion of covering, and define store models: systems of algebraically 

closed partial orders containing only clements with finite support but including enough elements 

to intNpret all the programming coni;tructs of ALGOL-like languages. 

Store models justify all the intended properties of new-declarations. For example, in store 

models the block mentioned above with glob;il call top indeed diverges in all environments. Another 

illustrative equivalence is: 

begin new x in if x = y then Cmd1 else Cmd2 fiend (y := cont(y); Cmd2 ). 

(The "useless" assignment to y appears in case y denotes the divergent (..l) location.) 

2. ALGOL-like Languages. 

The focus of our proof-theoretic studies has been on the family of idealized ALGOL-like lan­

guages. We review several of the principles which characterize this class of languages [cf. Reynolds, 

81; Meyer, 83; Trakhtenbrot, Halpern, and Meyer, 83; Halpern, 84]: 

{l) Commands, which alter the store but do not return values, are distinguished from, ezpru-

aion.s, which return values but have no side-effects. 

(2) Calling is by-name. (Calls by-value, etc., are treated as syntactic sugar.) 

(3) Higher-order procedures or all finite types (in ALGOL 68 jargon, modes) are allowed. 

(4) The local storage discipline is an explicit aspect of the semantics. 

In this section we sketch a few of the features of an illustrative ALGOL-like language we call 

PROG. 

Types in PROG. The distinction between locations and storable values - in our semantics 

they behave as disjoint domains - is one of several structural restrictions on ALGOL-like languages 

implied by local storage discipline. For example, it is well-known that locations (and likewise 

procedures) cannot be storable without restriction, since otherwise locations allocated inside a 

block might be accessible after exit from the block via the stored objects. 
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For si111pliri(y 1 w<· ro11sidn sl.oraul<' val11<'s of' only 0111· t.yp<'. Th<' t.wo ba.~ic typ<·s storable 

valiH'S and lorn I.ions ar<' a bb r<'V iat.1•d int a 11d loc, r<'SJH•rt.i V<'ly. t>n.oc sy ll ( ax 111a11da1.1·s :111 explicit 

typ<' distinrtion hdw<:<' n lora1.io11·s and st.orabk v:il tH'S (also rallc·d "ldt." and· "right" valll<'S of 

e•xpn•ssio11s), 11si11µ; 1.h<' t.okc•n cont l'or cxplirit. ekrd
0

<' r<'nrin g. Th11s, cont(J10c) d!'pot.cs Lhr clement. 

oT 1.yp<' int whirh is t.hc• eo11t.1•11t.s of' :r., and assig111111·11t. t·o111111:rnds t.ak<' t.hP for111 /.,or/~' := Inf,~• 

wh<'r<' /,oc/~ is a lora 1 io11-va l1H•d e·x pr<'ssion and '1i If:' is a II int-val uC'<l e•x pr<'ssion. 

Eq11alit.y I.C'st.s in PROG c·a11 only he· IH•twc•1•11 1•lc•11u~11ts of' ba:-ir t.ypr. We do allow explicit. 

<•quality l.est.i11p; bC'LWe'C'll loraLio11s, "x10
c = y10<"•", i11 addition t.o l.tt<' usual t.1·sL of' cqu:1lily b<'LWC'Cll 

storable val11cs, '·a= f(cont(y10c))". Expre•ssions whirh cvaluaLc to location!-- arc allowed, as in 

Lhc> "conditional v:niaulc" cxprPssion on the ldthand side of t.h<' assignment. command 

if a= f ( cont(y )) then y else x fi := a. 

The other primitive types arc prog, intexp , and locexp. The dornairt prog is the domain of 

program meanings, namely, mappings from stores to sels of stores. (J>ROG has a nondeterministic 

choice <'Onst.ruct. Sin<'e we do not. attempt. to distinguish "failing" from diverging, nondeterminism 

is adt>quatdy modeled with mappings to SC'ts as oppospJ to the more complex power-domains of 

[Plotkin, 76,82; Smyth, 78].) The otlic-r two "exprpssion" types arc the denotations of expressions 

whose evaluation yields basic values, viz., the clements of intexp (locexp) arc functions from 

stores to int (loc), i.e., "thunks" in ALGOL jargon. 

Blocks and Binding in PROC. Procedures of all higher finite types formed from the five 

primitive t.ypcs may be dec:larcd, passed as parameters, and returned as values. 

Procedure identifiers arc bound in J>noc via proced ure declarations occurring at the head of 

a procedure block, e.g., 

proc p( x) ~ DccWody do HlockRody end. 

Identifiers of basic type arc bound by Pithcr let-declarations or new-declarations at the head of 

basic blocks of the forms 
let xint be IntE in Cm.d tel, 

let y10
c be focE in Cmd tel , 

begin new y10
c in Cmd end. 

Th<' let-declaration causes thC' evaluation of' thC' expression lntE i11 the· declaratio11-t.irne store and 

C:lllSC'S identifier X to dC'11ote) the result of the evaluation. (A call-by-value• of Lhc form p(!Jasln Call 

be simulated by the basic block letnbe/JasHin p(n)tel.) I3asic and procedure dPdarat.ions have 

quite different scopes and meaning, as will be revealed bC'low. 

3. Syntax-Preserving Translation to >--Calculus. 

We formalize the assig11mP11t of SC'mantics to programs in two st.cps: 

(l ) a purely syntactic translation from PROG to a fully-1.yped A-ralc:ulus enriched wit.Ii a letrec­

construd as in [Darnm and Fehr, I !l80; Damm, J 982; cf. Landin, 65], ·and 
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(2) assig1111ient of semantics to I.he· >..-r;ilculus in a standard rcfcrc11t.ially transparent. way 

[Bamidregt., 81; Meyer, 82]. 

Our >..-calculus is chosen so that. it.s const.ant.s correspond to program construrtors, il~ binding 

operations, letrec and >.., correspond to program d1\claratio11s and procedure abstrndio11, and its 

ty.pcs arc the same as those of 1.h<' programming lang11;1ge. In fact, t.h<' abstract syntax, viz., parse 

tree, of the translation ol' a program is art.11ally ident£cal t.o I.hat of the program; th<' translation 

scrV<'$ mainly t.o mak<' 1.h<' variable bindin(!; conventions of PROG explicit. 

Procc•durc blocks arc translated using letrec, so for example, 

Tr(proc p( x) ¢= Deel/Jody do JJloc:k/Jody end) =def letrec p = >..x.Tr( D,:cl/Jody) in Tr(/Jlock /Jody). 

This recursive declaration of p binds occurrences of pin both ihe declaration and the block bodies. 

Procedure declarations in this way inherit the 3tatic 3coping rule., of >..-calculus. 

Dasie blocks are'! handled with constants and >.. 's, e.g., 

Tr(let xint be IntE in Cmd tel) =def Dint (>..x. Tr( Cmd)) (Tr(JntE)) 

where Dint is a constant of type (int - prog) - intexp - prog. Note that the binding effect 

of the block on :r.int is reficctcd in the binding effect of >..x on Tr(Cmd), namely, the declaration 

binds x in Cmd, but does not bind x in JntE, in contrast to the case for procedure declarations. 

ilasic blocks with declarations of location type are translated using a corresponding combinator 

Dloc .. Similarly, 

Tr(begin new x in Cmd end) =t1ef New (>..x.Tr(Cmd)) 

where New is a special constant of type (loc - prog) - prog. The semantics of New will be 

defined so that Cmd runs in an environment in which x is bound to some location outside a cover 

of Cmd. The contents of thi"s new location arc initialized to some standard value denoted by the 

constant ao at the beginning of the computation of Cmd and restored to their original value at 

the end. 

Other commands and expressions arc translated directly by introducing suitable constants (but 

no binding operators), e. g., 

Tr( cont( l..ocE)) =t1eJ( Cont(Tr(LocE))), 

Tr(J,ocE := JntE) =t1c1(Update (Tr(LocE)) (Tr(IntE))), 

Tr(Cmd1; Cmdz) =t1c1(Seq(Tr(Cmd1)) (Tr(Cmd2))) , 

etc. 
The principal consequence of this syntax-preserving translation is that all the properties of 

procedure declarations in ALGOL-like languages such as renaming rules associated with static scope, 

declaration dcnesting rules, and expansions of recursive declarations, can be recognized as direct 

consequences of the corresponding purely functional properties of the letrec->.-calculus - which 

have nothing at all to do with side-effects. Before elaborating this point, we review the properties 

of the letrec-calculus. 
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4. Typed Lambda Calculus. 

Let T be a set of primitive type symbols, C b<i a set of typed constants, and X be a set of 

typed variables. 

Type expressions arc defined indurLively: the primitive type symbols arc type expressions, and 

if· a, /3 arc type expressions, th<•n so arc o- -+ /3 and <t X ,B. With each type expression o: we assor.iat.c 

a (possibly empty) set of constants C0 , disjoint from Cp for o =/ /3. With car.Ii owe also asso<·iate 

an infinite set of variables X 0 , disjoint from Xp for <.I' =//3. We use t.hc notation x 0 when we wish 

to emphasize x E X 0 • By definition, C = U 0 C0 and X = U 0 X 0 • 

We define L0
, Lhe terms of letrec->-.-calculus of t.ypc n, by induction. 

(2) Application; If u E L 0 --P, v E L0
, then (uv) E IJJ. 

(3) Abstraction: If x E X 0 ,u E L13, then >-.x.u E L 0 --f3. 

(4) Block with mutual procedure declarations: If x,- E X 0
;, u,- E L0

;, j = 1, ... , k, x,- all 

distinct, and v E Lf3 then (letrec X1 = u1 and··· and Xk = Uk in v) E Lf3. We say x,- is 

declared in this block with declaration body u,-, and v is the block body. 

Free and bound occurrences of variables arc defined as usual [Hindley, Lercher and Seldin, 1972; 

Stoy, 1977; Ilarendregt, 1981]. Note we arc allowing recursion here: the variables x,- may occur in 

ui as well as v. In particular, "letrec x/' binds all free occurrences of x,- in u 1 , .• • , u1c, v. 

As usual, we orriit parentheses in compound applications with association to the left being 

understood. In contrast, the operations -+ and X associate to the right in compound type 

expressions. Thus uvw abbreviates ((uv)w) while a-+ /3-+ 1 abbreviates (a -+ (/3-+ 1)). We let 

[v/x]u denote the result of substituting the term .v for free occurrences of x in u subject to the 

usual provisos about renaming bound variables in u to avoid capture of free variables in v [Stoy, 

1977, Def. 5.7; Barendregt, 1981, Appendix CJ. 

5. Cartesian Closed Models. 

For any sets D1, ... , Dn, let D1 X · · · X Dn be the set of all ordered n-tuples (d1, ••• , dn) of 

clements di E Di· Let tupleD1 , ... ,Dn : D1 -+ · · ·-+ Dn-+ (D1 X · · · X Dn) be defined by: 

and let proib, , ... ,D,. : (D1 X · · · X Dn) -+ Di be projection on the i-th coordinate. 

A Cartesian Closed type-frame consists of a fami ly of sets { D0 } called domaina or typea, one 

for ·each type expression o, such that 

(1) D0 -.13 consists of some nonempty family of functions from D0 to D13 and D0 x13 = Da XDp, 

and 

7 



(:!) t.lH·rl' ;1r,· <·l <·I1l(' IILS so ,{3,") E /) (o - •/3-,l · ·•(u -·•i' )-+ <> ···,· ;111d h'c,,{; E /)0 · ·•/3--u l'or ('V('f_i' II', f-J, 

1 suc:h Lhat 
Su,/3,-·i<f<ld t d°" = (dod'2 )(-,l1 d2), 

/{ 0 ,13d:id1 = d3. 

(:l) fu71l< D .. , , ... ,D .. ,. E !)0 , ~·· •-+o,. - •(o , x ... xo ,. ), ;111d ,.;illlihrly proJb .. , ... D .. ,. E /) (o I X ··· Xo,.) -+ o, · 

/\11 environment l'or a typl'-l'r:unr { /) 0 } is a 111apping <: : .\" -+ /), whc•rl' I) = U0 /)a, v,:hirh 

· re:--pcds types, i.<' ., c(T0
) E /J0 • Civ<'ll :111 c11viro1111H'11 t. r·, kt c[ri/ ;:] d<' tlll L<• tiH' environ111e11t 

which dilfrrs from e only at x, and (c [d/:r.])(x) = d. Let. c[d 1/p,, ... ,rh+ 1/ Jlk + il ;1hlm·viaLc 

c[d1 /p 1, • • • , ch/11kl[dk+ 1 f Pk+I ] . (We ddinc t.hc "patch", J [/J/ a.], of' any l'u11c:Lion J: A--+ IJ, at. a E 

A, by b EH similarly.) Let Envv be the sci, ol' :ill c11vironrncnLs for D. 

A Cartesian closed model consists of a Car tcsi:lll closed t.ypc frame together with an interpreta­

tion of' the rnnsLants, i.e., a mapping [Ilu: C -• 1) which respects types. The model is .standard iff 

the co11sta11L symbols S0 ,13,, E C (o-+{3-+,)-+(o-•{3)-+o-+, and K 0 ,,e E Co-+/3-+<> arc inlcrprcLcd as the 

corresponding S and K functions, an<l similarly for the constants tuple and prof . Lei L1 ~ L 

be the usual typed A-cakulus (withou t letrec). The justifkaLicrn for this peculiar dcfiniLion is that 

for any CarLcsian closed model D, there exists a unique mapping [Il v: D1 -+ Envv--+ D which 

respects types such t hat 

(a) [cilve = [cflo, 
(b) [xilve = e(x) , 

(c) [(uv)flve = ([uflve)([vflve). 
(d) for all d E D 0 , ([\x0 .1iDvc)d = [uDD(e[d/x]). 

A fixed-point frame is a Cartesian closed frame such that there is an element Y0 E D(cr--+o)--+o 

such that 

Y f = J(Yf) 

for all J E Dcr-•o and all type expressions a . A fixed-point model is a model whose type frame is a 

fixed-point frame; it is standard iIT the constants above have the standard interpretation and the 

constant symbols Y 0 E C(o-+o)-+o arc interpreted as fixed point operators Y0 • 

Let >-(x 1 , .• . , Xn}.1t abbreviate 

for z not free in u . 

T<' rms u ancl v arc equivalent for some model D, written 11. =D 11 , iff ['llilv = [vilv· 1f .M is a 

cbss of models, u and v are N -equivalcnl iff n =v 11 for al l models /) E .M . 

For any Ca rtesian closed fixed-poi II L rnodd f), there• ex ist.s a u 11iqt1<' mapping IT Il D : L --+ 

Envv-➔ I) which respects types, ,::al isfics (a d} above, :rnd such that 

( c) letrec ]11 = 11.1 and ... and Pn = Un in v = D (>- (pi, ... , p,,).v)(Y (>-(p,, ... , JJn } . tuple 1t1 ··· 'Un) ) . 
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We abbreviate a mutual procedu re~ clcclar:°Ltion of I.he form (letrec P1 = u1 and · · · and p.,. = 

u.,. in v) by (letrec De<: in v), whcre Der = { p, = u1, ... , p.,. = u.,.) . 
The following fundamental inference rule verifies thc rcfer<'ntial transparency. of L. It is sound 

in any Cartesian closed model whc11 wc mc-rcly regard letrec /Jc<: in v a.s an abbreviation for 

(~(p1, . .. ,p,:.).v)(c(>.(7>1,-• • Pn).tupleu 1 .. ·un)) without assu1r1ing any facts (suc·h as fixed-point 

. propcrties) about the constant c. 

Replacement Rule. If u = v a11d w 2 is the result of literally replacing (without renaming bound 

variables) an occurrence of u by v in w 1, then w 1 = w 2 • 

The following equivalences hold in any Cartesian closed model as well. 

Variable renaming, viz., o -conversion: 

AX.U 

(letrec { p = body} U Dec in u) 

Ay.[y/ x]u, 
(letrec { q = lq/p]body} U lq/ p]Dec in [q/p]u), 

where y is not free in u, and q is not free in u, body, or Dec, and is not declared in Dec. 

Evaluation by substitution, viz., /3-conversion: 

(>.x.u)v = lv/x]u. 

Declaration distributivity: 

( letrec Dec in uv) = ( letrec Dec in u)( letrec Dec in v). 

Declaration elimination: 

(le tree Dec in u) = u 

providing no variable declared by Dec is free in u. 

Variable binding commutativity: 

Ax.(letrec Dec in u) = (letrec Dec in Ax.u ), 

providing x is neither free nor declared in Dec. 

Extensionality, viz., 77-conversion: 

Ax.(ux) = u 

providing u E L 0 -/J for some types a, {3, 

A term u is in normal form iii for every application ( u 1 u2 ) which is a su bterm of u, the operator 

u1 is neither an abstraction nor a block. The following result is well-known for typed A- calculus 

(cf.[Barendregt, 1981, Appendix Cl), and extends directly to include letree. 
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Normal Form Theorem: Every term u is elfodivcly transformable using <.t, fi-conversion, 

declaration distributivity and the replacement rule to a normal form N F(u) _ -which is 11niq11e up to 

a-conversion. 

As an immediate consequence, we have in any Cartesian closed model that: 

Normal Form: u = NF(u). 

The preceding equivalences did not even require assumptions abo11t fixed points. The fixed-point 

property first comes into play in justifying declaration-expanding transformations. 

Declaration expansion: In any fixed point model, 

(letrec { p = body} U Dec in IP/ q]v) = (letrec { p = body} U Dec in !body/ q]v). 

6. Algebraically Closed Models. 

Cartesian closed fixed-point models are still too general to justify even routine transformations 

of declarations. To establish soundness of such transformations, it is necessary that the fixed point 

operators be chosen consistently with the _structure of the type frame; for example, designated 

fixed-points should be preserved under isomorphisms induced by reassociating Cartesian products. 

Frames whose types have some order structure which ensures the existence of least fixed-points can 

provide a harmonious system of fixed-point operators. One well-known least fixed-point frame is 

the frame of complete partial orders (cpo's) with continuous functions. However, we need more 

general classes of least fixed-point frames we call algebraically cloud frames. 

If D and E are partially ordered, then a function f : D -+ E is monotone iff d1 k d2 implies 

J(di) k f(d2). If a subset Z ~ D has a least upper bound, LJ Z, then f : ·D -+ E is continuous 

along Z iff it is monotone and f(LJ Z) = LJ{ f(x) I· x E Z } . 

An algebraically closed (acl} type frame is a Cartesian closed type frame { D0 } such that 

(1) each primitive domain D is partially ordered with least element -1.D, 

(2) function and product domains of higher type are partially ordered by the inherited pointwise 

and coordinatewise partial orders, 

(3) for all types o and functions f E D0 -.0 , the least upper bound LJ,. J"(-1.) exists, where 

J0 (x) = x and J"+ 1(x) = J(f"(x)) (sequences of this form -1.,f(-1.),J(f(-1.)), ... are called 

algebraic), 

(4) for all types o, every function in D 0 _..13 is monotone, and is continuous along every algebraic 

sequence of elements in D0 , 

_(5) for all types o, the least fixed point operators Y0 defined by Y0 (f) = LJk J"(-1.D.J are in 

D(o-+a)-+o • 

An acl model is a fixed point model with an acl type frame; it is standard ifT the constants 

S, K, tuple, pro/ have the standard interpretation, the constants Y0 are interpreted as the 



c-orr1•spo11di11g least fix<'d-point operators Y0 , and for all primitive ll', the constants diverge0 E C0 

arc -int.crprr.t.cd as J_D ... W1• Id diverge,8-+o abbreviate >.xP .diverge0 and handle fi 0 n similarly 

so t.hat in standard acl models, fidiverge0 Il = J_D
0 

for all a. 

Th<' l'ollowi ng cquivalcrH'<\S co1111crt lixcd-poin 1..., hl'LW<'l'll dist.i net. dolllai ns and. hence d<)pcnd on 

choosing fixed-points harmoniously, vii., choosing least fixed-points. We refer t.o properties like 

these whirh ar<' valid l'or all ad 111odcls as acl properties. 

Declaration collection: 

(letrec Dec in (letrec Dec' in u)) = {letrec Dec U Dec' in u) 

providing none of the variables declared in Dec' occurs free or has a distinct declaration in Dec. 

Explicit parameterization: 

(letrec { p = body} U Dec in u) = (letrec { q = >.x.[qx/p]body} U [qx/p]Dec in [qx/p]u) 

providing q does not appear in u, Dec, or body, and p is not declared in Dec. 

Declaration denesting: 

(letrec { p = letrec Dec in body} U Dec' in u) = (letrec { p = body} U Dec U Dec' in u) 

providing none of the variables declared in Dec is free in u or Dec' or declared in Dec', and p is 

not declared in Dec or Dec'. 

A term u E L is denested iIT neither the body of any variable declaration nor the body of any 

block in u contains a declaration . Every term can be effectively transformed into ·an equivalent 

denested term using the equivalences above. 

The following general induction principle is a basis for induction rules about programs. A 

predicate P on a domain D0 in an acl frame is acl-inclusive iff (\fi ~ O. P(J(•)(..l)}) ::::} P(Y(f)) for 

all f E Da-+o• 

Fixed-point Induction: Let D 0 be a domain in an acl frame, P be an inclusive predicate on D 0 

and f E D0 _ 0 • If P(..lDJ A \fd ED. (P(d) ⇒ P(f(d))), then P(Y(f)) holds. 

The equivalences and rules for >.-terms immediately yield rules for PROG phrases; we indicate 

a few. Let E represent. a finite system of mutual PROG procedure declarations; procedure blocks 

of the form proc E do ProcT end will be abbreviated as EI ProcT where ProcT is a procedure 

term. 

Declaration distributivity in PROG: 

(EI (ProcT1 ProcT2)) =(EI ProcTi)(E I ProcT2), 

(E I Procrr0 g;Procrr0 g) = ((E I ProcTirog);(E I ProcTfr0
•))' 

etc. 
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Note Lhat dcc:laraLio11 distribu tivity ckpcnds crucially on lhc fact that./; 1k110Lc>R a set of proce­

dure dedarations, whose meaning; is necessarily st.orc-indqiendcnl. So the declaration dii:;tribuLi~ity 

rule is valid despite the possible sidc-c!Tecls on the st.ore between evaluations of different copies of 

E. )11 contrast. dist.ribut.ivit.y fails f'or basic (viz , let-) declarations because the value bound to 

an identifier by a basic dcclarat.ion dr pends on the st.ore "at declaration time" . This cont.rust was 

renecLcd in the use of const.an(s in translating; basic blocks, compared to the letrec construct used 

to translate procedure blocks. 

Variable binding commutativity in PR0G: 

(E I let x be Bas TE in l'rocTProg tel ) = let x be lJasE in (E I ProcTprog) tel, 

(EI begin new y in Proc'fprog end)= begin new yin (EI ProcTprog) end 

providing x, y do not occur free in E. 

Fixed-Point Induction for Approximation m PR0G: Let p be an identifier and ProcT a 

PR0G term, both of the same type, such that pis not free in ProcT2. Then 

ldiverge/p]ProcT1 G ProcT2, 

(ProcT1 G; ProcT2) ~ (IProcT /p]ProcT1 G ProcT2) 

proc p ~ ProcT do ProcT1 end k ProcT2 

7. The Equivalence of Fixed-Point and Computational Semantics. 

The most fundamental acl property is that every term in L can be understood as a limit of 

finite letrec-free terms (in normal form if desired) which approximate the given term. These 

finite approximations are obtained by repeatedly "unwinding" the letrec declarations using the 

declaration expansion rule. This provides an effective computational rule for simulating the 

effects of letrec's and the corresponding procedure declarations in PR0G. It also shows that two 

procedures which expand to the same infinite declaration-free procedure are equivalent in aU acl 

models for PR0G, independent of the meaning of any PR0G constructs. 

The original ALGOL 60 report !Naur, ct.al., 1963] gave a "copy-rule" semantics for the language. 

The copy-rule can be understood as a particular computational strategy for generating the infinite 

expansion of a command. It fol-lows that another acl property is that fixed-point and copy-rule 

semantics (appropriately extended to letrec-terms and PR0G commands with free variables) assign 

the same meanings to t erms !cf., Damm 82]. This confirms that our choice of denotational "fixed­

point" semantics is consistent with the usual operational understanding based on the copy-rule. _For 

the development here, however, we have no need of these facts, and so we omit further explanation. 

Thus procedure declarations of ALGOL-like languages are entirely explained by acl semantics 

for L. On this basis we assert that the typed >.-calculus is the true mathematical ~yntax for these 

languages. For example, several of the language design principles of [Tennent, 81] can be recognized 

as proposing that syntactic restrictions of programs to subsets of L be removed. 
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8. Store Semantics of PROG. 

Particular instances or ALGOL-like languages arc determined by their types and t he interpreta­

tions of their constants. Properties related to stores and side-effects appear only. at this level. We 

now specify the domains and co11stan ts whir.h determine PRa°G. 

Store Frames: Gi ven an infinite set Loe (of locations) and a set Int (of storable values) we define 

the domains 

to be the flat cpo's. 

For sets A, B, let AB =def the set of all total functions from D to A . For the other primitive 

domains, we select some subset, Store ~ IntL0 c. Store must be closed under fini te patching. 

(Note that no store maps a location to ..l..int• There is no need to introduce such "partial" stores 

in modeling the behavior of sequential languages like PROG.) Then 

Here P(Store) .denotes the power-set or stores (ordered by containment), so elements of Dprog 

correspond to nondeterministic mappings between stores. 

A Store model is any standard acl model with the above five primitive types such that there are 

elements in the domains of the frame which interpret the constants required in the translation of 

PROG to Las specified below. These constants arc: If, Mkexp, Cont, Update, diverge , Ifprog, 

· Seq, Choice, Dint, Dloc, and New. 

The constant If0 ,p for baaic types a, /3 has type a -+ a-+ /3 -+ /3 -+ /3. A store model interprets 

If so that 
if d1 = ..l-o or d2 = .la, 

. if d1 = d2 ~ J.., 
otherwise. 

Any first order function f of type 8 = int" -+ int can be coerced into a mapping Mkexp6(f) 

taking as arguments functions from stores to int. Namely, 

for any stores. The constant Mkexp6 of type 6-+ (intexp-+ . . . -+ intexp) is interpreted as the 

coercer M kexp6. 

The constant Cont of type locexp -+ intexp is defined in store models so that 

[Contil iocexps = {s{d{s)) 
..l..int 

if d(s) ":/: ..L1oc1 

otherwise. 

For assignments, the constant Update of type locexp -+ intexp -+ prog: 

ffUpdateild~ocup d;ntcxp 8 = {! s[d2{s)/ di(s)]} 
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For c-onditional c·omniands, lfprog
0 

of type <t-exp - o--exp - prog - prog - prog: 

ITJf fldo-expdo-expdprogdprog , -{d
0 

( ) u progo 1 2 3 4 s - :i 8 

d~(s) 

if d1(s) = J..... or d2(~) = -lo, 
if d1(ll) = d2(s) =/= _l_, 

otherwise. 

Command construct.ors Choice, Seq of type prog - prog - prog: 

llSeqfldr0 sd~rogs = U{ d2(1l') Is' E d1(11)}, 
llChoicefldfrogd~rogs = d1(,~) U d2(s). 

For let blocks, Dint of type (int - prog) - intexp - prog: 

The constant Dloc is defined similarly. 

if d2( s) =/= J_int, 

otherwise. 

The semantics of the constant New of type (loc - prog) - prog is handled in the next 

section. 

9. Domains for the iocal Storage Discipline . 

To explain the semantics of New, we must define the notion of covering. For primitive types 

this is fairly straightforward. 

Let L be a subset of Loe. Two stores s, t agree on L, written s = L t, iff VI E L. s(l) = t(l). 

Similarly, two sets S, T ~ ?(Stores) agree on L if there is a bijection f : S - T such that 

Vs ES. s = L J(s). 
Define the unary predicate Aeeesst on D0 by induction on er according to the rules below. If 

AccessL(d) holds, we say that d acce33e3 only the location., in L. 

(1) Aeeessf0 c(l) ifT l E LU { J_loc}, 

(2) Aecessfnt(d) = true, 

(3) Access~rog(,r) iff Vs, t E Store. (s = Lt =} 1r(s) = L 1r(t)) I\ (t E 1r(s) =} s = Lo,- L t), 

(4) Accessfntexp('T) iff 'vs, t E Store. s = Lt=} T(s) = T(t), 

(5) Aecessfocexp(u) ifT 'vs, t E Store. s = Lt =} u(s) = u(t) EL U { J_loc}, 

(6) Aecessj_.,(J) iff 'vd ED~, L' ~ Loe. Accessf (d) =} Aceess~UL' (f(d)), 

(7) Aecessj x-,{d1, d2) iff (Aeccssj(di) I\ Aeeess¾(d2)). 

For higher-type objects, we also need a notion of uniformity with respect to "new" locations. 
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Definition. Lei µ : Loe -+ Lor. Ii<' a b1jcction; extend JL io D10 c so that Jt(.L) - .L. Lei 

µstore : Store -+ Store be ihc bijection dcfirl<'d by ihe rule 

whcr<\ o denotes functional composition, and lei, µP (Store) : P(Storc) -+ P(8torc) be the bijection 

ddin1\d by applying µstore clement.wise. Define a bijection µ 0 : V 0 -+ V0 by the rules: 

(1) µloc = µ , 

(2) µint(Jnt) = d, 

(3) µprog(n) = µP(Store) O 11" 0 µsf ore, 

(4) µintcxp(r) =µinto To µsf ore= To JLs1ore, 

(5) µlocexp(o-) = µ1oc o <1 ° µsfore, 

(6) µp--,(f) = µ.., 0 f O µp1 ' 
(7) µpx-,(d1, d2} = (µp(di), µ-,(d2)}. 

Note that (µ- 1 )0 = (µ 0 )-
1 , so the notation µ-;; 1 is unambiguous. A bijection µ : l.,oc -+ Loe fixe! 

Liff µ(l) = l for all l EL. Define the unary predicate Unif~ on D0 by the rule: 

Unif~(d) iff Vµ fixing L. µ0 (d) = d. 

If Unif~(d) holds, we say that d ia uniform off L. 

We henceforth omii subscripts o when ihey are clear from context. 

Definition. A set L ~ Loe cover! an element d iff AccessL(d) A UnifL(d). 

Note that for primitive types, AccessL(d) iff L covers d. (We remark that covering is a logical 

relation in the sense of [Plotkin, 80; Statman, 82].) 

Some key properties of covering are: 

(1) if L covers d, then LU L' covers d, 

{2) if L covers r-fJ, dfJ, then L covers (! d), 

(3) if L covers all d E Z ~ D0 and LJ Z exists, then L covers LJ Z, 

(4) The functions K, S, Y, tuple,proji have empty covers. 

These facts immediately imply that for any environment e and term u E L, the element ffu,De 
is covered by a union of covers for ITcD and e(x) for all the constants c and free variables z in u. 

It noi hard to show that all the constants other than New are continuous and have empt11 

covers. To ensure that New is interpretable, we impose a further condition on store models: 

Covering Restriction: Every element has a finite cover. 
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Under the covering resiriciion it follows that covers arc closed under (infinite) intersection, so 

that every clement has a minimum cover which is called its support. 

Definition: A function Select: .P(I,oe)--+ Loe will be called a ulectionfunction iff Select(L) It 
L ror all finite sets L ~ Loe. (Selection functions exist because Loe is infinite.) For each selection 

function Select, let Newseiect : D1oc-+pros --+ Dpros be defined by 

New select p =def llTr(let xint be cont(y) in y := ao; p(y); y := xtel)Ile, 

where e{y) = Selcct(Support(p)), e(p) = p. 

Lemma. Let Select1 , Select2 be selection functions. Then 

(a) N ewse1.ct 1 .= N ewseLcct2 , 

{b) N ewsc1ccti is continuous along algebraic sequences and has empty support. 

It follows that if we take any selection function Select, then NewseLect unambiguously deter­

mines a meaning for New in store models, and we require this meaning to be in D(loc--+prog)--+prog• 

To demonstrate rigorously that the theory of PROG is consistent, it is sufficient to show that 

store models exist. We now indicate how to construct one. 

For primitive types a, define partially ordered sets D0 , E0 as follows: 

(i) ·Eroc = D1oc, 

(2) Eint =Dint, 

(3) Eprog = (.P(Store))Sto,.c' 

(4) E1ocexp = (Dloc)5t0
"•, 

(5) Einteltp = (D1nt)5t0
"• 1 

(6) Do = { d E E 0 I d has a finite cover}. 

For partially ordered sets D, E, let D --+ E be the set of functions from D to E which are 

continuous, i.e., preserve all least upper bounds which exist in D. For higher types, 

(7) E/J---, = D/J --+ D-,, 

{8) E/Jx-, = D/J X D-,, 

{9) D 0 = { d E E 0 I d has a finite cover}, (i.e., same as (6) with o any higher type). 

It is not hard to verify that { D0 } is an acl frame which provides a store model. 

We can further justify our store model semantics by demonstrating that it coincides with 

familiar operational semantics based either on stack implementations or on copy-rule semantics in 

which new declarations arc explained through renaming of local identifiers (cf. [Langmaack and 

Oldcrog, 80; Olderog, 82]). These results will be developed in our full paper. 
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10. Reasoning about Support. 

-Because all the PRO(} constants have empty support, a cover for (the meaning of) any PROG 

phrase is easily characterized: take the union of covers for the free procedure and location 

identifiers. In particular, if the phrase has no global calls - so the only free identifiers are of 

location type - then a cover is available by inspection: the union of the (denot~tions of) the free 

location variables in the phrase. This follows because the support of any location l E Loe is the 

singleton { l }. (In general, the support of a command may be strictly smaller than the supports 

of its free identifiers, e.g., x := cont(x) has empty support.) 

These observations are the basis for a variety of axioms for program correctness suggested in 

[Meyer, 83; Trakhtenbrot, Halpern, and Meyer, 83; Halpern, 84]. 

11. Critique of PROG. 

PROG fails as an example of satisfactory language design in many ways, even with respect to 

the limited set of features it is intended to model. For example, 

(1) there are no Boolean types, 

(2) there is no while command or other structured control statement, 

(3) only one identifier at a time can be declared in a basic declaration, 

(4) there are no let blocks of basic expression type. 

(5) Conditio.nals are not uniformly available at all types [cf. Reynolds, 1981a]. 

However, these pragmatic features are all inessential for our purposes since they can be simu­

lated at the level of uninterpreted program schemes by commands already in PROG, i.e., each of 

the constants corresponding to these constructs is directly >.-definable in terms of the constants 

already introduced. Therefore they raise no semantical or proof-theoretical issues beyond those 

already treated. 

An important feature in actual ALGOL-like languages but missing from PROG is that locations 

can be storable subject to restrictions (as in ALGOL 68) to ensure local storage discipline is 

preserved. Another extension improving uniformity involves introducing a-exp types for o other 

than int and loc (with a corresponding block let x0 be Procr0 ·exp in ProcT/J· exp tel). Other 

significant language features compatible with ALGOL-like principles but omitted from PROG include 

exit control, arrays and user-defined data-types, own-variables, polymorphism, implicit coercion 

(overloading) and concurrency. These will have to be the subject of future studies. 
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