
MIT /LCS/TM-243.

EFFICIENT DEMAND-DRIVEN
EVALUATIQ,N 01)

Keshav PingaH

Arvind

September 1983

Effi c1ent Den1.and·d.riven E-alua tion (11)

Ke ha PingaJi

Arvind

19 September 1983

Laboratory for Computer Science
Massachusetts In titute of Technolog

Cambridge
Mas achusetts 02139

Ab tract

In Part I of this paper we presented a scheme \ her by a compiler ,could propagate

demands through programs in a po erful stream language L data-dri · en evaluation of

the transformed program perfonned exoctl the sam compu ation as a demand-driven

evaluat"on of the original program. In mis paper. we exp ore a different tran formation

hich trades che comp! xit of demand propagation for a bounded amount of extra

con putation on some data lines.

Ke word .: Data-driven evaluation data.flow d mand-driv,en evaluation demand
pmpa~~uion, functiona languages lazy evaluation l ast fix-points. program
trans formation, tream .

This research was supported by me Defense Advanced Research Projects Agency of i:he Department of
Defense a:nd was monilored by the Offi e of a val Res~arch under Concract o. 00014-75-C 0661

l

Efficient Demand-driven Evaluation (II)

1 Introduction

In Part 1 of this, paper, we presen ed a simple but po, erful stream processing language

caUed L and described a scheme for transfonning L programs whereby a data-driven

e aiuarion of the transfonned program will perfonn pr _ cise]y e same. computation as a

demand-dri . en evaluation of the original program. The es"Sential idea beh"nd the scheme

was to model demands for elements of a stream by associating a d mand stream with that

stream and pennitting the compiler to introduce demand p~opagation operators into the

dataflo program. Th.e algorithm that th _ compiler used to p.ropagate demands was the

same as th one fo] owed b a d -mand-driven i.nterprete - at run-time - le. the comp,ikr

propagated demands through each operator in the datafi.o\ graph separnte!y, without

attemp fog optirnizat'o s of any kind. Let us call this the microscopic approach to demand

propagation. For bre ity, we wi [refer to _programs resu] ing rom such a transformation as

lazy programs.
Definition l: A lazy LD program (or simply a lazy program) ·s one that is

derived b;• mmsfonning an L program using the Mkroscopic Demand
Propagation lgorithm described in Pan I oftl1is paper.

Laz; programs ha e some very intuiri ely appealing properties (le.. propenies Pl to P4

given in 3]) which are in ariant und r composition of two lazy programs.. These

propenie fonnaUy charact rize that asp c of demand~driv n evaluatio□ of programs

hkh ,ays th.at such evalua ion schemes perform no useless computation., that is a.Ill

computation done b I a lazy program is need ,d to produce the output Th s a lazy program

computes minim m histories on an da a lines to produce the required histories on ou put

Jines. How ver, a p ac kal notion of minima] computation should also include the

overh ad of d m:md propagation .. rn lhi paper\ e present a ransform tion \ hie trades

complexity of dt.?mand propagation for a bounded amount of extra comp tt:nion on some

data lin. _ . Though no heoreci nl mea ur is oITi~r d to shm that the new· transfonnmion

presented in this paper docs rn: u~ lly impro\'c the er all ffici ncl of ransfom1ed

programs. i hould be clear thut the n w Lran fom,mions \Vill drastically reduce he

2

0\ erhead of d mand propagation. \ ithout more quantita·i e: mea :ures, tbe judgment

\ helh r our rechniqu can be charact rized as an oplimtzation for a class of machines

(parallel or seque tiaI) must await further theore ical anal 1sis and post implementation

evaluation ofthe technique.

The transformations described in this paper. like the Microscopic Demand Propagation

AJgorithm from Pan 1, are not source-to-source trans offila ions= rather the ¼ransfonn L

program in o programs in a language which is a super-set of L and , hich we can language

LO. This Ia.ngunge is defined in ection 2 and should be alread) familiar to the readers of

Part 1 of this pap r. The set of programs that can be expressed in LD inc udes not only L

programs and lazy programs but a1so programs that may be bes characterized as partiaH

demand-driven programs. ln panicular, the languag LO allows us to define programs

hich are input~output equivalent of laz)' programs but whkh do not nocessaril . compu e

minimum h'smries on in ernal lines. Sine · lazy programs perform the smal est amount of

compu ation r quired to produce the output of the program one way to fonnaHz the

notion of "extra compu atioa" performed b .LO programs tha are not lazy is to define a

lazy p ogram that "corresp,onds ' to an LO program and compare th compu ation

performed by each program. This ·· dea · explored jn detail in section 2.

The main moti ation for the work described in here arose from our resea.rch into efficient

implem ntation of datallow languages ,.; 1th streams [l]. S eam languages pennL

programming with infinit,e data obj cts. Ther-efore, a straight forward d ta-driven

imptementation of such langung _s wilJ produce only pa.nial resulrs. Even if one i not

·merested in demand~dri en valunt'on to minimize cornputation. we need to ens re thnt

outputs that can be computed. 'II ithom an infi h amoum of computation are produced by

the implemcmmion. 0th rwise, the impl men ation cannot be catlcd correct On way to

en ur that a~r outputs th L can be produced are produced is b. · introducing the otion of

fair scheduling of function applications (enabfedcom marional cthitics in dnw.flm jargon)

in he mac 1ine architecmr or the mterpr~t.cr. For v· rious nrchitcctura1 rea ons this turns

out to be unsatisfactory. Tht:r fore. data-dri.ven impl. m 01:nion of s r,e m languages can

3

be pem1itted to perform some additional computation o er ,vhat \-vould be performed by a

d mand-dri en interpreter, but they must avoid p rfonning an infinite amount of extra

computation.\ e define a class of LD programs called safe programs for which this is true

- Le. a data-dri en interpr,eT.er. when · cuting safe programs will perfrnm at most a

bounded amount of e tra cornputa ion over what a demand~driv,en interpreter would. It is

natural, th r fore, to wonder if an L program can be transformed into a safe LD program

that is more 1effiden than the lazy program that is generated from L Unfortunate y the

co cept of safet is of limited utiUt since safe programs. are no dosed under c-omposition

tha. is the composition of two safe programs does not nee ssanly produce a safe program.

Therefore, we will introduce the notion of strongly-safe programs which are that subse of

safi programs that are dosed under composition. h win be shm n that a dass of stronglr

safe programs are those afe program programs which are input-output equivalent of

corresponding lazy programs. Th s strongly· afe programs wm produce the rune f suits as

1az · programs ru1d perfonn. at most, a bound d amoun of extra computation on da:ta lfoes ..

Th conce t of strongl - afi- programs v,iU be used in th · foUowing way. [n section , we

\\ ·n first in roduce a ubset of L caUed Lo, and show hm L0 frngments of L programs may

be recognized by a compil r. We then presen a two ep transformation that takes an Lo
fragm -nt and pmduc s a stroog]rsafe LO program that has the same inpu -au put -

behavjor as the laz program corresponding to the L0 fragment ln sec ion 3 the first step

of th ransformatio , \ hkh is a. soufCe-to-source uansfonna ion of L0 (and consequen ly

of L) programs, is described. Then ·n se,ction 4 the second step of the transformation

\
1hich propagates d mands (globally as oppo· ed to micros_opica] y) through transfonned

L0 programs is gi en. The resulting program is shown to be rongly-safe and thus can be

substitut d unifonnly in plac of the lazy program that , •ould hav been g nera1ed from

lhe L0 fragm nt had the Microscopic]gorithm been us d. In the last section, w- ind:icate

wa}'S in ~ h ich the r suits of this pap "r con b ,xtend d.

4

2 Language LD and S, fe program

2.l Language LD

Language LD is a superset of Ia uage L which was described in detail in Pan 1 of this

paper. Language LO has four data t)rp s - /robs /rob-streams d and d-sueams.1 Frobs

encompass the usual data types lik,e integers. reals, bool anst character strings •etc .. Frob

streams are sequences of frobs and are constructed by using a non-strict data co structor

cons desc_ 'bed below. dis an sca1ar (Le .• non-stream) data pe that is distinguished from all

frobs. d streams are streams of d s. otice tha.t the elements. of a stream must be e.ither all

frobs or all d's. As in Part 1. we will represent streams as [a1 82·]' where a1 is the scaJar

alu _ that is the first element of the stream 32 is tlle scalar a]ue that is the second element

of the stream etc. The ,empty stream ,(te., the undefined s· earn) is represented by [J. As

men ion din Part 1 of iliis paper. it is possib e to introduc a special scalar va[ue esl (Le..

end-of-s rerun) and Je an empty stream be the stream containing ,exactly one scalar value

es!. There are no difficulties in extending LD to include such a feature, bu we win not do

so in this paper.

The functionality of the operators of language LD is summarized below -

~ jlrs1(i J) = s (h undefined scalar value)
firs1(fa 1 ¾ a3]) = a1

- resl([]) = []
res1([a1• ¾ a3, ... •)) ~ [a2, ay J

- com(_s [a • 112 ..••)) = []'
cons(b1• [a_. 32. a3]) == [b1, a1 82· a3;]

ote tha 'fthe first argum nt of cons is d the .- the second argument must be a d-strea.m

whil'e if the firs argument i1s n/rob. th n ih _ cond argument mus be a frob·stream.

- T(X. Y.) - T-bo es ar one~in-one·otH ream o erators like ' • • e c. i.hat
operate "point- ise" on h ir inpu . Inputs to a T-box can be a combination of

We have u cd lhc name fmb· trcam and d·strcam instead of da1a stream and demm1d stream ro a.void
rnn fli-it n bc:l ween the nam ~ of the data ypc and ocher connmacion of th words data and demand.

5

d-streams and frob~streams - of course. the output must b either a frob stream
or a d stream. LD also h s t-boxe which are Ii - T-bo s, ,except that they
operate on scalar values rather than sueatnS,, We wHJ reS-rict t-boxes to be to.ta.I
functions.

~ true-gate(B.) - B is a stream of booleans. · (i) is output if B{i) is true·
otherwise, i is absorbed. In Other words. the jlh ,elemen of th.e output str am is
X(i) if B(i) is true and the number of true alues betwe-en B(l) and B(i) isj.

- fals~gaze(B, X) - _ts beha ior is exactly like that of a true gale, ,except that
X(i) is output if B(i) is false.

~ merge(B.X Y) - B is a stream of bool -ans. The ith token on the: output rerun
i X(j) if B(i)1 i tnie and the number of nue tokens be een B(l) and B(i is j and
Y(k) if BC) is false and the number of false to ns be ween B(l) and B(i) is,
k. · ot _ that and Y must · ither both be d-streams or both be frob-stream .

- D-union(X Y)- X and Y mus bed-streams. The output of this operator is a
d-· tream , hose length is equa1 w the larger of the ?en.gth of and Y. The
operamr d-union is scalar versio ofD-union.

An LO program is a set of recursh•e definitions ,,here the Jeft hand side (LHS) of each.

d finition consists either of a frob variable, a frob- trearn variabk, a d variable or a d

s.tream va kl.bl . The rig.ht hand side (RHS) of a definition consists of a function application

where the function is one of the operators d scribed above and the arguments are ariables.

Definition mus he ype consist,en - for example. the d :mi fo of a frob stream variab]e

cannot b th ap Jication of a D-unio operator.

As b _ fore, we wiIJ find it convenien o consider an D program as a data ow graph. The

d taflow grn.ph oorrespond·ng 10 an LD program can be genera ed by drawing a bo fo.r

~ch equnti.on In the program, lab ling the box with the function on th RH of the

eq mnion. lob Ii ng the outpu of the bo b., the variable on r.he HS of the d fini ion and

connecting tfi,e ou put of th_ box to the approprint inpms of ail boxes where it is n eded.

Sine h outpm of a box may be conn Ct-'d o the inputs of veral boxe. th re is an

implici fork operator at the output of any box that is conn cted to sev ra[box . It i

6,

convenien to think of a scalar variable as a single token and a stream ariable as . s quence

of tok ns f1m ing do 1.1n 'the arc with th labe] of char variable2 .. Each out-going arc of a fork

recer es a copy of a token at the ·n-coming arc. Thus, there is a direct correspondence

bet, een the hiszor of a line in the dataflo\ graph and str,eam X in the LO program. In

the discussion befow, we wm drop the distinction between the LD program and i. s dataflow

graph as well as che distinction b t\veen stream · in the LD program and the history ofthe

]ine labeled in the dataflow graph and use these terms interchangeably.

Fonowing Kahn [2] the seman ics of LD programs can be gi en as follows. If D is. some

se Ie D<ail be the set of finite and denumerab] infinite sequenc of elem nts of D. In D"".

we include the empty sequenc,e. Let V be the set containing 1h denotations of aU frob ,

and kt D m be me s:et containing the denotation of d Consider the set . containing an
elements of •c.i and Demc.>. Elemems of thi se can be ordered by the prefix ordering on

sequences. I is easy to show that und r this ordering, a)] the· operators of D are

monotonic and con inuous fl nctions from sequences to sequences. For each equation of fill

LO program." e can~ rite down a semantic equation that describ s the relation be . een its

inputs and outputs. The m oning of the LD program is the Jeasl fix point of this se of

· emamic equations.

2.2 are LO Program

DC!liniUon 2: The L program corresponding IO an lD program is defined o be
the L program that is obtained b d le ·ng aU dema d lines and an operators
with demand inputs from th LD program.

Definition 3: The laz program co.rresponding to an LD p.r;ogram is defined to
be the LD rogram · at is obta'.ned by applying th Microscopic D mand
Propagation Atgorithm o lhe L program that corresponds to the LO program ..

'\ e now introd.uce some notation. If FD is an LO program we wm I t F be the l

program thnt correspond o D. and 1 t FL b the lazy progrnm that corresponds to FD. If

is som line in. FD, we will let 'J stand for the f'fim1l 0 history of lin in program FD

- (i.e., the his ory of]inc · hat is dctennined b the kci t fix-poin of the et of equations of

..,
-\\ e ·ts umc ll1tbound~d uffcrin along ea h arc.

program FD) •when that program is gjven some input. ote that if X is a data ine in FD.

then there m be a data line in both F and FL corresponding to it. tis con enient m !et X

denote these lines as, e1L We Jet lGX and l · denote the final history of Iine in programs

F and FL respectively.

In general. an LD program has both data lines and demand lines. In LD programs tha

are generated from L programs by the compiler ,ve may associa e a demand line , ith a

data line and assert that no token is ever produced on the data line unless there · a dtoken

for i on the demand line. lf :is such ,a data. line we ·ill le I? . denote the corr spending

demand line .. Let FX and FDX denote the h.istorie ofline and DX at any point [n the

computation. If His any history we let IHl denote lhe length of the history ..

Definition 4: A data 1ine X in an LD program is said. o be demand-dril•en by
line DX (or simpl demand-dri en) if and only if IF I is always less than or equal
wlFDXI.

\Ve now wanl co charact rize LD programs that may perform more compu tion than

their corresponding lazy programs b do not diverge "unnecessaril_ ,,. - l ,e., they do not

di\'erge ff the corresponding Iazy prognuns do not di erge. Since [azy programs do not

p rform any unnecessary computa: ion this .s' _ es s a way of haracterizing programs mat

perfonn a bounded amount of compu ation more than what is rictly required to produce

the ou put of the program. \ e wiIJ assume that ff an in u data line of an LD program is

demand~dri en, th n inpu on that line are fed on demand~ a concept which has been

explained in page 19 of PJ.rt 1 of the paper. Le FD be an LD program and le FL denote

the corresponding lazy program. Let . D-In re- r,esent that subset of input da a lines of FD

v hich ar not demand-driven.W, d fin a snfl program as fol]ow :

Definition 5: A safe LO program di erges 1f and only if ith r ther is infinite
·npur an an input line not driven b. demand-1.ine or the corresponding az .
program also di ·erges. Formally

"'1 € . rn-1 0:FTI;: co]=>
3 X[' E Lin s of FD A j:f I == co] =- 3 Y[E Un s of Fl A f L YI = oo]

Nore ch t if a users 1pplicd in ini(! input on some inpm [ine hat i. not d ~man -dri\'en.

8

then rm infin[t com u ation would result in a safi program. Hm e er. since inp ns o the·

corresponding lazy program are fed on demand it is possible that no infinite con putatfon

would result in th laz program. [f we did not ha e the finiteness constraint on inputs.

then a large clas of programs 1, ould be unsafe.

The read r can verify that any acyclic L program [s safe. Similarl • . any lazy program is

safe. An L program that is not safe is shown below in Figure l(i[)

{i)A Sa e Program (ii)An Unsafe Program

Figure· 1: A Problem with Safe Programs

Although the concept of safe programs i "interesting. the major problem with it is that

this property is not dosed under itemion. in other words a program th.a results from

iterating a safe program is not necessarily afe. or e ample consider the I D program

consisting of a sing) . cons operator shO\ n in Figure l(i). Since it is an acyclic LD program~

· is safe. However the prog run in Figure (ii) that results from iterating. the cons is not

Th refore, the cone p of safer is of limit d use if we ,i,,an to free! sub tinne safe

programs or use them in ,c:onstrucfng ot er !arg programs ..

2. - Input-output Equivalent Laz)I Programs

It is e..asy to se tha he main rea on \Vh_ safi programs ar not do ed under i era ·on is

that not all inpu and o 1tpu data lines may b demand-driven. ,ve now want to consider

thos LD program in h.ich aJJ input and output data Jines are demand-dri en.

Dcfini ion 6= n LD program FD is snid to be inp 1t-outpu equi\1al nt to its
lay program L if and on]y if-

1. there is a one-to~one comspond . nee b~tween

a. lh se of input da:tn line of • D ~Uid th_ set of input data tin "S of
FL,

9

b. the set of ou put data rnes of FD and these of output data lines of
FL.

c. the set of input demand lines of FD and the set of input demand
lines of FL,

d. the set of output demand lines of FD and the set of output demand
lines of FL,. and

2. the hiswries produced on output lines o:f FD are the same as the histories
produced on the output]ines of FL when both programs; are given the
rune inputs ..

~ e wou]d ike. to poin out that for a.general LD program it ma not be possibl · to

d tennine , hether i is input·output equivalen of its lazy program. The utiHty of this

definition arises from the fact tha LD programs are generated by the compiler from L

programs~ hence,. this definition can ac as a constraint for the compiler when i generates

LO programs. We ouid like w note in passing that program that ~e input-output

equi ale:nt to their .lazy programs satisfy four properties named Pl,. to P4°" which are ery

much like the propertie Pl to P4 given in Pan of the paper The difference between

these two s -ts of properties is that Pl.. a, P4"' dea] oniy with input and output lines of LO

programs.

Let 1 be the set of inpu data Unes and O be the se of output data lines of FD. Let 10 be

the union of the sets I and 0 .

. -

~l - /\[X E IO] [~ C :u;XJ
- !II

P2 - /\[X E 10] a,xJ ::; lc:FDXI]

•
PJ ~ "rx E 101 [l':f ,I< 1~0 I= r~x1 = f:x;XI]

o , thnt,unHk Pl to P4~ Pi'° to p4* do not guarantee so.fi ty. This is because an LD

program can be ·nput·oucpm equin1J nt to its lazy program but there may stm be an

unbounded amount of computation performed on intemnl line even if the corresponding

fon program perform a bounded amount of computation.

10

. .4 trongly-safe Programs.

Defini ion : The set of strongly-safe LD programs is that subset of safe LD
programs tha. i closed under composition.

Th reader may find the following " enn diagram" useful in understanding me
relationship b tween lazy, safe and strongly-safe programs.

LD Programs

LPrograms.

Figure 2: Lazy Safe and Strongly- afe Programs.

Theorem 8: Any safo LO pmgram that is input~output equivaJ,ent to its
corresponding lazy program is strong]y-safe.

Proof: We sho tha th _ set of safe LD programs mat are input~output
equivalen to their corresponding laz programs is closed under jux aposition
and item.ti.on.

H FD and GD are two safi LO programs that are 'nput-output equi a1ent to
th -i r corresponding Iaz programs, it is easy to e tha the juxtaposition of FD
and GD is a safi LD program that is also inpu -output equivalen o its
corresponding Jazy program.

We no'> ho that the set is closed under iteration. Let HD be th program
that result from me item ·on of som line. in program FD. as shown in Figure
3. let FL be the lazy program that corresponds o FD and 1 t HL be the fozy
program th:n corresponds to HD. Consid r progrm 1s HD and H wh n both are
given the same inputs. We first ho\ that the his.tori · of11n s X and D in both
progrnms HD ond HL must b the same. is easy m e that th histories of

01 02 Y DY

11

connect
Y toX

~ ·
DX to DY

Fjgure J: Iteration of a Safe Program

input. and output lines of HD a an fix -point of HD must b the histories ofthe
input and m tput lines of HL at a fix-point of HL and ice versa. Therefore it
follows that the hrstori s of lines · and D in both programs must be the same.
Since the fimctionalit_ of FD and FL are the same, it now foHow that HD is
input-output equi alent to HL. Th . afet of HD no11 follows from the the
indt1cti e assumption about the sa ty of FD and ch fac that the histories of X
and 0.- · are the same in HD and HL.

3 A ource·to .. Source Tran formation .of L 1nogrnms

□

[n this section e first defi.ne a subset of L caned L0 and show hm L0 fra,gm 0 nts of L

programs can be identified. We show that the compiler can mke an L0 fragmen and

transform it into a safe program that is input-output equi •aiem to its corresponding lazy

program. TI1is transfonnation is done in two steps - · e presen in this section the first step

which l a source·to· ource transformn ion that con erts an~ L0 fragment into a canonical

form which has a simple loop Cterat" e) structure.

3.1 Tl1e Langua0 e L0
An L0 program is ad ad!ock-free L pmgram ·n, hi. h no merge rrue-gme or false-gare

opera ors re pr ent. The deadloc·k-fr . e prop . ny (ofl en refi rr d to as live, ess in P tri ne

lit rature) can be i.ested by some kind o a cycle-sum te t uch as that of Wadge []. For

example, we .can assign a O o ever T-box, to ever com, and -1 to every jirsr and rest.

For an L0 program to be deadlock-free. th sum of die intt!gcrs in every eye.lie

in crconncction of op rator m 1st b 0 greater than zero.

12

We will also assume that L0 programs ha e been convert d into a canonical fonn in

hich

- there is no cons box. whose output i directly connec ed to a rest or a11rs1 bo
- , very circular interconnection of boxes has at]east one T-bbx in it.
- every outpu_ is the output of a T-box.

L0 progrmn:s that do not meet these criteria can be converted into the canonical form by

rep,eated use of the foUowing trallsformations ~

- any occurrence of first(cons(a B)) is replaced by a
- an occurrence of res1(co11s(a. BJ} is ,replaced by B3

~ one identit T-box i introduced into e ery cycle that does not have an T-box.
The scalar function associated v itb th identity T-box is the identity function
on atomic vruues

- introduc,e one identity T-bo at each output tha is no the outpu of a T-box.

Gi en an L program we can identif all L0 fragments in it by deleting all true-gales.

false-gares and merge operators · rom th program, Each connec ed program graph that

remains is an O fragment

.! Tran~ forminu L Programs in ,o Strongly· afe Program

Figure 4 is an example of an O program. Consider the elements of str,eam O in the

program of Figure 4 (This -xample program is con ·rived and fair]y comp Jex. However it is

usefu for illustrating 1any differe aspects of our echnique. and wiU be used throughout

this secrion),. The bask source of complexity (or lack of srrucrure) in an L0 program has to

do with the oompu ation of the firs few elem nts of the output stream. n the program of

Figure 4 the first Iemem depends upon (1) and al, while· th second elemen depends

upon C() and 0(3) (it is easier to make thes observations in the graph vers·on). Afi er the

second el me r the pattern is obvious· the km element of O will depend upon C(k 1) and

D(k + 1). Iruuitiv Is \ - can say that the program reaches a " ady-stat " after computing

the firs . few e1e 1en of the output str am. We \ ·in shO\ tha ev,ery L0 prognmt can be

·111i tran fonna ion i not ,..a]id ifrn re i .i po.'!.ibilit.Y th::it ama;• be und fined.

13

a6

T D

D

rest

I ,

o.:.

= TA (I rest(C));
B = T 1icon.s(a7 cam(a6, rest(D))) con5(a8 C)):
C = T c(cons(a2. B , cons(a3 res1(res1(D)))),:
D = T1/a4, con.5(a3 B))·
0 = O(cons(firsl A). C), con.s(al, rest(rest(D))))~

.Tc
_,_., c

T
0

Figure J: An L
0

Program

al

14

transfonned into an L0 program which consi ts of 1hr e acyclic graphs caUed adjusunents

prelude and stead;, stale connected according to the schema shO\vn in Figure 5. In the

prttlude, only those e] ments of tbe output s ream which do not conforra- to the general

computing pattern ar com put, d .. The adjusunents is an acyclic int_ rconnec ion of first and

resr operators, and ·is used to select those elements of input streams which are needed by

the prelude and the steady-state parts. Toe teady-state acycHc graph has the one-in-one·

out property - that is one set of input values will produce one ourput value on each. line

Afc_r giving a definition of sreadJ,·Slate we ~ iI pro e that every L0 program does reach a

s1ead state after computing a finite number of output elements and gi e an algorithm for

transforming any LO program into the schema of fjgure 5.

Once La programs have been transfonned into the schema of Figure 5, it is easy to

in roduce gates and demand propagation code into the program in order to make it

strongly-safe. By introducing gates into che steady-state graph as shown in Figure 6, we can

ensure that an iteration of the stead}1-srn.te graph will be executed onJ, \vhe11 there is a

demand for some outpu . [n th.is wa , the transformed program is made safe. ,e then

p opagar demands for the outputs to demands for the inputs, ther by ensuring that the

inpu -output behavior of the transfonn d program is the same as that of the corresponding

lazy program. This demand propagation is done by a global algorithm (as opposed to a

microscopic a.Igorithm like Algorithm-MDP of Part). B Theorem 8, the program that

r.- sul s from th ~e transfomiations is strongly-safe.

W,e 1.1 ill now describe how the transformation for L0 programs that , as outlined abov,e

can b used to make L programs strong]y-safe. The a1goritbm gi. en be]ow esse□ ially

idemH1es L0 fragments of L programs and transforms them in o programs that corr spond

to the strongly-safe schema. of Figure 6. Demand prop::iga ion through lrue-gmes.

false-gates a~d mer"es is done as s eci I d by Algorithm- DP. Since th composition of

strongly-safi programs is another strongly-safi program., the re-Su t. of th transfonn tion is

a strongly- afo LD program.

, , , •
Icons

MiOl: To ...

15

n lm
• • • • • • • . , • j •

I p

"Adjustments"
an acydi.c interconnection

of firsts and rests

-

, .
"Prelude"

an acyclic in erconnection
of -boxes

•

, p ; ' , " , ..
icons J cons J

,.
ii on

•
,., i :
I C011S

!on

•
• • ,. +. •r + •

cons ,I cons .. • ''Stead State"

an acyclic in erconnection

ofT-boxes

',

, .. +
jcons .,
•

rcv.i
,!.

ar

Figure· ·: Schema for Canonic I (simple roop) Programs in Lo

16

Il Im al ar
Iii I 111!1 II

•
'' A djusunents0

an acyclic interconnection . of firsts and r,ests

• II' •Ir 1 •
I, ___ _____ _ _ ___.i,_. __________,I

"Pre ude"
an acydic interconnection

oft-boxes

• • • • • • • •

F ,, I"

I cons I

•
, .. ,l .
cons

• •

'' ; p

Icon
•· •

re~
[) k}:;

' II'

"St_ ad_ Stateu

an acyclic interconnection
ofT-boxes

,, .
I Icons

•
•

, ~
I cons

-[) r(:J~
, .,.

.-- +-------· •· ..
,, ',
I ons

1r ·
[cons

Fi< ure 6: Schema for Stro 1gly-· fi Program in La

DH D1m da l dar

Demand

Propagation

Code

DO DOn

17

Afgorithm·TL S ! An nlQorithm for transform·ng L proqr-ams into tro:ng,l '· afe
LO programs .

. Delete all true~gates, false~gate and merges from the L program and 9-edare aJ]
inputs to these op rators as Oil pu of th remaining program. · ach c-0nnected
grn p h in the resu I ing graph is an L0 p rograrn.

2. Transform each L0 fragment into the schema of Figure 5 by u ing Algorithm
SST (see section).

3 .. Replace each Lo cnmponent in the original graph with th _ corresponding
tr:msfonned component. Since a transfonned componen has exactly the same
inputs and outputs as the untransformed component, this opera·ion is wen
defined.

4. Introduce demand propagatio - code and gates into each transformed L0
fragmen b) u in Algorithm-JOE and gorithm-GDP (see section) thereby
producing programs that correspond to Figure 6. lntrod ce demand
propaga ion code for true~ga es false-ga .es and merges using lgorithm-MDP.

Figur 7 illus rares this algorimm for the cas when the L program has a true-gate and a

merge operator and one La fragment.

-. - Depcndcnc Jatrkes and Predecessor Pa hs

Th algorithm for ransforming L0 programs into the schema of igure 5 examines the

data d pendenci s of elements of ou pu· tr ams. A convenient data struc ure to record the

data depend ncies of elements of strea s in a program is a data dependency matrix that has

a rm for e ery t-bo ' and T-box in the program.. If srrerrm is the au pu of a T-box Tx ,

w - wiJI record the data d pendencies of .r rn elem n _ (i) in the i.th cotumn of the row

for . A row for a t-bo l ill have emri s on 1y in its first column inc the output of a t-box

is an scalar value. Dep nding on he con e t. we HI u ;(n) to mean either the nth

el men of stream . (as v,,•as done abo) or the nm co]umn of the rm for tream, in the

de endcncy mmrix. rr an L0 program has only one output tr am. we ill nome that

str"am 0. If the program h~ mor than on . output strenm we will assume th t th treams;

:irl! named 01. 02, \ e will re~ r to the set of aJI ou puc rcnm a· {Oi}.

18

La
Fragment

of
Source Program

Transfonned

1)
Program

fioure · ·: Transformation of L Programs

\Ve no im educe the noti.on of a predecessor palh in order to make en ri s in the data

d pend ncy matrix.

Definition 9: predecessor pall i an L0 program is a path obtained b tracing
bac wards , i.e. in a direc ion opposic to the flow of data in the graph from the
input of a t-bo.- or a T~box , i.th th follo ing rules :

1. \Vhen the ou .put of a first or a rest is encountered. the tracing is resumed
from the · npu of th opera or. \\' . shaJ sa. that the firs/ or the rest Iies
on the pr deces or path.

2. \ hen rn output of a cans is en ount red. one of Lht! inputs to the cons, is
arbitr~irily chos::,n and the tr dng i n.:sum d. s before we haU say that
th cons U son the pre dee ssor path.

19

3. The rrace terminates \ h n the output of a -box or a T box,. a stream
input or a11 scalar inpu is encountered.

Lemma IO: For programs in L0• an traces terminate ..
Proof! S might-forward, from the fact that ,e ery cyd C bas a T-box in it.

□

oti.ce that a finite-ordered s-equem:e of ates is a predecessor path if and onl if the pa.th

connects the inpu of a t-bo nr the inpu _ of a T-box to eithe the ou pu' of a t-box, the

output of a T~box. or an scalar inp tor a stream input, and in.termediate operators in the

path are on) . con.s's.firsts and rest's.

Lemma U: Any predecessor path in a graph must be of one of the five t pes
shown in Figure 8.

Prnor: The proof is a straight-·fon ard ind ction on the length of a predecessor
path. A predec _ ssor path of 1engtll n has one more first rest or cons on it than a
predecessor path of length (n-1). Assume that all predecessor paths of length n-1
are of one of the five ·cypes shown in Figure 8. It is eas to shm mat insening
another first .rest or cons anywhere on a path of Jength n-1 ould :resul.t in either
an illegal interconn c ion or in a predecessor path of J,ength n that is of one of the
fi e types. shm n in Figure 8.

D

The d pend _ ncy matrix of a program contains an en ry for e ery predecessor path in the

program. The entri s are made according to the rules given in Figure 8. The dependency

matrix for the program in Figure 4 is hown in Figllre 9. · ote that the Starred entri are a

hon-hand to represent an infinit number of . ntries in a rO\ . For e: ample, if X(n)•

occurs in th Y(k) posi ion, i means that , k) depends on (n). Y(k+ 1) d p n.ds upon

(n + 1) cc. Furthermore. by replacing (n) in the Y(k) position w~th (n) and making

an additional ntry (n, } in the Y(k + l position. (an operation ~rhi.ch from now on will

be ref◄ rred as unrolling) we get the dependency matrix of an equi a lent Lo prog.r3.ffi.

Definition 12: [f OJ* occurs in the ith co.lumn of rO\ in the depend ... ncy
rnatri ·, then the d pendencies of ' (i) on YU)1 O +) on Y(j 1) .. ar said to
be s1arrcd dependencies.

For c ample. th d p1.:ndency of B -) 011 C(.) is a larr d dep ~ndcnc whil the

20

y y t

X(m+l) • (m 1), X(m 1)

m m m

Y(n+l) Y(n+l) Y(l)

Case 1 Case2 Case3

n 2. 0

is a stream input or me output of a T-box

Y is an input of a T-box

a i a scalar input or the output of at-box

m20

t is the scn.l.ar input of a cons or an input of a t-box

a

T, y t

a a

m in

(n 1} t(l)

Case4 Case5

Fjgure 8: Predecessor Paths and the Corresponding 1atrix Entries

d pend nq' of 0(1) on A(l) in not a starred depende cy. For the firs argument o T-box

T 0 , the stnrred d pend ncies are "0(2) on C(). 0(3) on C(2) The reader can tes .his

understandi.ng of the depend nq• matrix by checking tha 0(3) depends on { ¾ a3 a4. a5,

a6 a7• a8 B(l),, B(2), B(3), C(l), C(), D(l). D(2). 0(3) and 0(4)}.

Lemma 1 ·: For any stream in an L0 program and any i teger k,. the number
of elements in the transiti e closure of th data de endencies f (k) (\\1rit as
:r(X(k))) i finite .

Proor: Con uuct a tr e that corresponds m the transitive closur•e of the data

10lc tha (k) i · not a member of~. ())

21

l 2 3

A I(f C(2f

B a7.,a8 a6C(l)• D(2)*

C a2.a3 B{l)• D(J)'"

D a4a5 B(l)*, D(t
0 A(l),al C(l) • .D(3t

Figure 9: The Dependenc Matrix for the Program in Figure 4

dependendes of X(k . B. Konig·s lemma. the number of nodes in a tree mat has
finite out-degree at every node is infinit if and onl if there exists an infinite
branch in the tree. Consequentl), if the number of elem ems in ~X(k)) is
in mile there must be an infini e branch m the e,e. Each node in the tree is
labeled by a s rerun lemen_. Since the number of T-bo es in the program is
finite. there must be at kast one T box whose e ments occur infinitely often in
the infini e branch.. Let that T-bo be Y. It mus be me case then, that some
element _ U) must depend on at l ast one element of the fonn Y(n) where n 2:
j. This can happen only if there i some cycle in the program. that fails th cycJe
sum test. Sine such cydes are ruled out in L0 it follows that the number of
eiemen s in g((k)) for any (k) mus. be finite.

3.4 Steady- tate or L0 Programs

□

Consider an L0 program with one output stream O. ln order to compute O(k) (for any k

> 1), it is nee ssary to compute all th Iements in the transitive dosur · of the data

d p -ndencies of O(k) - i.e., all the e]eme · of ~O(k)). Howe er since our semantics for

streams dk · es that O(l)t ... O(k.-1) must have been computed before O(k) can be

oomput d lhe only "new" elements mat mu t be computed are those in i.J(O(k)) and ,vhicn

were not required for the compurntion of 0() 0(2) ... O(k-1). If a program fragment

corre. ponding o th. source program can b identmed whose repeat d e •alua ion wm
produc "ne~ elem ms" at k0 · l k0 2 ... for some int ger k0 ih. n the sourc program

can b ~ snid to b. in n ·• tcady- talc" aft_ r k0. \ e ror udi :i Lhi cone p of _ teady- ta e by

22

first defining the set nei elememi_O, ') as sho n belm . , n L0 programs with. mor,e than

one ou put ream e wil1 be interested in the set of "new .. elements r-quired to compute

an e]ements Ol(k) 02(k) assuming that O (1) ,, Ol(k~). 02(])1
, ••• 02(k--) •... have a1

been compu · ed.

For any output stream Oi, these ne~v,-etemen15(0i k) is defi ed as fol ows:

new-elements{Oi) = ~Oi(.)) U {Oi(l)}
ne, -e]ements(Oi.k) = 9"(Oi(k)) U {Oi(k)} -

{ne ·el rnents(Oi 1) U .. U ne~ ~elements(Oitk·l)}.

v here ' U" and ,. - "' represent the set union and differenc,e opera ions respecri e1y.

'Ne define the set neH elements<.k) as follows:
new-eiements(l) = ne, ,elernen (011) U new-elements(02 1) .. .
n w-elements{k) = new-elemen (01 k) U new-elements(O2,k) .. .

-{new-e ments{l) ... , new-e]ements{k-1)}

It hould be clear that for L0 programs with only one ou put the set new-elements(k) is

equaJ to the set new-e]ements(O,k).

The sets new-elements{l) ... new-el ments(5) for the program in Figure 4 are shown

below:

new-e1emems(l) = {a1.~.aya4,a5 a6 a .a8•
I(l) (1) B(l),B(2),C(l),C(2),D(l) D(2);0(),0(1)}

new~ 1ements(2) = {0(2)}
n w-elements(3) = {B(J) D(4),0(3)}
new-elements(4) = {B(4),C{J).D(5).O(4)}
new-el ments(5) ; {BC),C(4) 0(6) 0(5)}

The program for computing new-el ments(1) ... new·el,ernemsC) can be deri ed by

foHm ing dam de end nc·es ·n the dep nde 1cy ma rix,. and is shown belo -·

0(1) =- t0 (a4,a5)·
C(l) = tc a2.a3):
B(I) = t8(a 7 a8)·
D ,2) = trlBO),D(l))·
B(2) = t 13(a6 C());
D(3) - 0 (8(2).D{2))·
C(2) = cfB(l).0(3))·
A(l) = tAO(l) C(2))·

23

0(1) = t0 ((),al)· r end of program to oompme 0(1) !
0(2) = t0(C(l) D{3)); I end of program to oompme 0(2) !
B(3) = t8(D(2),C(2));
D(4) = t0 (B(3).D(3))·
0(3) .=.: t0 C(2) 0(4)): ! end of program o compute 0(3,) !

CO), ::::; · c(B(2),D(4))·
B(4) = t

8
(D(3) C(3));

D(S) - t0 (B(4).D(4))·
0(4) = ta(C(3),D(S)); ! end of program m compu e 0(4) I!

C 4) - lc(B(3),D(5))·
8(5) = ta(D(4 C(4))·
D(6) = t0 (B(5).D(5))· .
0(5) = 0 ,(C(4) 0(6)); :! end of program to compute 0(5) !

The pattern after k = 4 appears o be 1 ed, that is, to compme O(k) we need to compute

on]y B(k) C(k-1). and D(k+ 1). But inter sting)y enough if e are wirl"ng to compute a

few elements. more than once the compu tion of 0{2) and 0(3) can be fitted in the same

pa tern (0(3) rnq ires recomputation of 0(2) while 0(2) requir s recomputati.on of B(2).

C(l) and 0(3)). As e shall sho\v kiter recomputation of a fe elements ma: actually

reduce the size of the transformed program because there are fewer spedal cases o, be dealt

with in the prelude part

1/e now define s1eady-s1are ..

D linUfon 14: A program i id to have reached stead;~s1aJe at k0 1f

L no scalar input or mnpu of a -box is in n w-elemencs(k) fork > 0, and

2. for all i > 0 (,), belong to ne\ -elem nts k0) if and only if (kx+O
belongs m new-elem n (k0 +i).

24

D finition 1 is not an algori hmic d finition of eady-srnte since i involves the

c-omputati.on of ne\ -elements(j) for all j . We nm give an opera ionn.l d finitioo of tead ~

state which \. m enable us to compute the value of k at which an L0 program reaches

steady-state .. Our nev definition of steady-·state invol\'es checking that nev - lements(k)

sa i fies three conditions.
Condition 1: All dep ,ndencies b tween members of new-elements(k) are

starred dependencies.

Condition 2: If (' x> is a member of new-elements(k) then (kx+ 1),
X(kx 2 , ... do not belong one~ -elements{l) U ... _ new-e1ements(k).

Before presenting the third condition, \i hich is rather complex. we rnotiva e its need.

lemma 6 shm s v ·hat Conditions l and 2 guarantee. The proof of Lemma 16 requires e

following property of th set ne,; -el ments{).

Lemma 15: If X(k) is in new-elements(k), and is o of the form Oi(·)~ then
there must be some Oi(k) in new-ekments(k) such that in th dependenc graph
of Oi(k), there is a path from O'(k} to (kx) in which all intermedime nodes (if
any) are in 1 -eiements(k).

Pro or: From the definition of new-elements(k) (k) must be in at least one
s t new-elements(Oi. k), which impli that it is in ~Oi(k)). Since (k) is in
ne, -elem nts(k), Oi(k) and an intennediate nodes in th path from Oi(k) to
- (kx) in the dependence gr-aph of Oi(k) must b · in ne\ -e1erne ts(k) ~ otherwise,
some node Y(j) in this path. and au elem nts in 9(Y(j)) (\ hkh indud s X(kx))
wiU be in ew eJements{l) U ... U new~elements{ • l).. Th.is will contradict the
definition of new~etements(k).

□
• Lemma 16: If Conditions 1 and 2 are true at some k and X(k) belongs to
new-elem.en (k).th n . (kx 1) belon stone~ -eJem_nts(k 1).

Proo[: From Lemma 15. there mus be some 0() in new-etem nts(k) uch
that X(k) is in ~O(k)), and an 1nt m1edfa nodes (if an_r) on th path from O(k)
to X(k) in the dependence grnph of O(k) are in new-eJ ments(k). B Condition
l all dep ndenci between mem b rs of new-el men ts(·) are tarred - hence

(' - ,) is ·n 9(0 + 1)). Condi ion now guarante s tha (kx +I) is in ne~ -
element (k + 1).

D

Unfortunn ely Cm1ditions 1 and 2 are 1101 strong noug to guarantee that thesi;; will be

25

the onl elements in new-elements(k l). The point is best illustrated by means of the

following example:

0 = T0 (con.s(a cons(a con.s(b 1))). 0,

The reader can verify tha ne, e]ementS(2) = {0(2),[(2)} and tha Co dition 1 and

Condition 2 are satisfied at k = 2.. As expec ed 0(3) and 1(3) are members of new

elemems{3) ~ ho\ ever so is b. To rol ou such occurrences in the steady-state we need to

• ook for patterns in the inputs required to compute new-eiements(k). We , m use the

fol owing defini ·on -o define the required inpu elements for computing new-el ments(k).

Definition 1 :: The se minimal·inputs(1) is defined o be the empty set For
k > 1. mim"mal~inputi, ·) is defined to be the union ·or the subset of new
elemen (1 U U ne v-e]emems(k-1) whose members are in in the immediate
data dependenci s of ekmeats of n , -eJements(k). together with the se of all
elements Oi(k) th _ t are not in ne\ -elements(k).

This definition des:er es further explanation. For one output L0 programs. minimal

inputs(') is simpl the set of preyioust _ compu ed elemems which are in the unmediate

data d pendenci s of _ lements in new-elements(k). The s ls minimaHnputs(l) ... ,

minimal-inputs() for the program who_e dependenc ma-rix is sho n in Figure 9 are

iven below

minimaHnputs(l) = {}
minimal inputs(2) = {C(]), 0(3)}
minimal-input () = { C(2)1 D(2), 0(3)}
minimaHnp ts(4) = {B(2), 0 {3) 0(4}}
minimal-inputs(5) == {B(3) D() D(S)}

For multiple outpu L0 programs the situati.on is a lit le more complicated. As in the one

ou put cas _, minimaHnputs(k) contains an previously computed elem~nts which are ·n the

immediate data depend -ncies of 1 ments in new~elements(k). In addition it win contain

those el mems of {Oi()} that ar _ no ·n new-elements(k). Consider th d pendency

mmrix of Figur 9 .. Su -pos both O and D were output _ reams. Since D(2) has been

com uted b_. th first stage ·tis not in , -eLm nts(2). Our deTinition of minimal-inputs

requir s. Lh 'n. that D(- b· an e! men of minimnl-input (2). Thi distinction mny seem

v ry minm but its imponnnce win becom evict nt wh n \ e g _ nernt cod for the

1:rnnsformcd 1_0 program ..

26,

For th example we ha e been considering, the pattern of minimal inputs does not seem

m change afler k~4. We ask th .· reader m take it on faith tha the pattern of net el.ements

and minimal inputs needed to compu O(;) does not chang after k==4 in the example

und r consid ration. La er in this section, \Ve will pro e that r:his is indeed the case. The

reader is warn . d that in general. a program can r,each stead ➔s ace at som _ k0, even i the

pa tern of minimal-inputs is not fixed for k > kO'. In what follo s,, e · m acmaUy motivate

and defin a weaker but unfortunately. more complicated condition to detect tead~ -state.

Th.is wea ·er condition known as Condi ion 3, also yields = 4 as the value of k at which

the program reaches stead -state - this example was chos n so that we ,could make a point

about steady-state ithout giving th · comp]katied condition straight~away. Condition 3 can

be motivated b by considering the cod to be generated for the steady~state part.

If the pattern of inputs ··ndeed, does . ot change after k=4 then in order to compute O(k)

for > 4 w wi:lJ need m compu e B(·) C{ -1) and D(k+ 1), and get elements B(k~2).

D(k-1) and D(k) from pre iou sr.ages as shown below.

C(k-1) = tc(B(-2) D(k));
B(k) . 8(C(k-1),D(k-1))·.
D(k + 1) = t1/B(k)1 D(k))·
0(·) = ta(C(k-1) D(k + 1)):

An La program that computes 0 (4) is shown in Figure lO(i). An Lo program that computes

O(k) for k > 3 is shown in Figure lO(ii). The read r can veri(that if [B(2) B(3) ...].,

[0(4) 0(5), ...] and [D(J)1D(4), ...] are inpu to this graph it m produce [0(4) O(S)i ...],.

How should the ·nput streams for the program in Figure l0(ii) be generated? i otice

tho in Figure lO(ii) the outpu of th T n·box is [B(4).B(5)] \ bile the outp t of the.

TO -bo i _ 0(5) 0(6) .•.].. By providing "fe.ed-back" paths in the graph . we can take

J. mcnts of th B and D streams gen rated during the compu tion of O(k), and feed them

bac' into th~ inpurs to be used for com put tion of more elements of 0. program to

accom lish this is shm n in. Figure 11. Hence. given 8(2). BC) 0(3) and 0{4) the graph

of Figur 11 ,.vii I roduce ,[O(4) 0("'), ...]!. The n xt q u _ tion is. con the inpm elem ms for

the st ody- tace an: be identifi d asi]y. It is ·1sy to s tha minimaHnpu for th stage

27

R(2.) 0{3) D{4) [B(2).B(3) ...] [D).0(4) ...] [D(4) .. 0(5) ...)

*. , . + .-

t
C TC

VT , r +
'

t B 1T
8

I I

C(3) [C(3),C(4) .•.]
B(4) , . •

[13(4} B(S) ...] ,, .-
tD T

D 1
I I

,,. . D(S) ~'• .. [D(S) 0(6),.;J

to TO

0(4)
I 1 [0 (),0 (5) ...

'f , r

(i) Program for computing 0 (4) (ii) Pwgram for com. ming 0 (4), 0 (5) •...)

Figure IO;: The Acyclic Steady-S ate Graph for the Program of Figure 4

, h n the program enters steady-state (k = 4. for this example must be needed for the

steady-state pan of the graph. o understand why inputs other than the minimal-inputs

ar needed consider B(3) whid1 do snot belong to minimaHaputs(4). B(3} is nor required

for computing 0(4) bu · is needed to compu · e O 5)'! Its valu must be g nerated in the

prelude since th T 8-bo in the Figure 11 ge erntes only B(4) 13(5)

\ e require tha the· alue of 8(3) be a ailable even during th _ computation of 0 (4) for

the rea ons of simplifying code generation. If this requfr, m nt ,vas not mnde th n even

after the program r aches s c:ndy-sta • the compmation of elements of the output str am

win involve oompum ion in both th steod~ ·state and th prelude pnrts of th grnph -- not a

desirable ituation for cod gen ration. El n ~nts uch as B(J) as sho vn be]mv. are

precise1 ' th -- lcm nts of th form ' (rn) where X(i) betongs to minimaHnputs(k). · (n)

belongs, o nc~ ~1.:km m (') and i < m < n.

X

28

B(2) B(3) 0(3) D(4)

n • ·
, , , ,

cons cons I

I J..

~ ~.
Icons icons

,,, + ,I~ j k

TC

v+
TB

,. r
TD

,, .
TO

1'
I

Hgure 11: The Stead_ - tate pan of the Transformed Program of
Figur,e 4

II ■ It • •
.. ,b YU}... ...YI] 1), ..

k X s

flg,ure 12: . Portion of a Oep,endency · 1atrix

Th ponion of a d pcndency matri shown in Figur 12 can h lp furth r i.n motivating

Condition 3. Let ' nd Y be l\ o T-box s, and let YG) · be the arred entry i □ X(s). Thi ,

· ntr has bce·n unrotlcd in Figure '"'· let _.,.(·) and Y(ky) be in new-e? cm (k) nt som ·

29

· at which Conditions and 2 ar,e satisfi d. We v ould Iike ~o assert that if the program

r ach s steady-state at k. then ·· (kx), (k + l) ... wil be cornput d in the stead -state

program. From th d p ndency matrix of Figure ,2. this means tha[[a b ...• G). YO 1),

... , (ky) (k + 1)] must be inpm into T x· the T-bo · that computes r (k), J (kx+ 1)

... Jin the steady-state program. · ow\ the strewn [Y(ky), Y(k + 1)] is generated in the

steady-state code. Consequently th values of a, b ... ~ G). Y(j l) •...• Y(ky-1) must be

gen rated in the prelude. Once the program :reaches steady-state, we d,o not want

computatio to take p]ace in both the pr Jude and the steady-state program - h nee, we

require that a. · •...• Y(j), Y(j + 1) ... Y(k -1) must be computed before the pro,gram reaches

steady-state. A we hav,e seea ·n a mall examp e earlier Conditi.ons 1 and 2 are nor

adequa e to ensur,e chis. We therefore impose Condition 3, which ,,,e -v ill check onl if oew

elements(k) atisfies Conditions land 2.

Condition 3: For e-ach elemen a in minimaHnputs(k), perfonn the foHm ing
checks -

1. if a is an lement of the form Oi(k), ch ck tha some j > k element Oi0) i in
new-elem _nts(k) and that all eLm nis Oi(k+l},, Oi(k+2) ... , Oifr) are in
new-elemem:s{l) U ... U ne -elem ats(k-1).

2. for each e]ement (kx} in new-elem . nts(k) that depends directly oa a perform
the following check -

a jf this d pendency is starred then a js of the form Y(i) where Y is some
stream input or the output of a T-bo . Ch ck tha for some j > i, (j) is in
ne, -elements{k) and that '(i + 1) •...• Y(j-) ar,e in ne~ ~ekments(l) U ...
U new-elements(k-1).

b. Uthe dependency is not starred le ab . the pth argument to the function
tha comput (kx) and lets be th smalles integer> kx such that the
pm argu en of X() is starred and is,, y Y(j). Check tha for som · ky >
j, Y(ky) is. ·n new-eJ,ements k • and that the el m nts in the immediate
data dependencies of (kx + I) ... , (s-1),, as well as YU) G ' 1). . ..•
Y(ky~ } belong m new-e]ements(l) 1

. .. U ne, - l m nt (k-1).

Theorem 18: For an L0 program. if Conditions 1 to 3 are true at som : · then
th · pro~ram is in st ady-state at k.

Proof: (By induction on k). From Lmma 16. nll memb ~rs of new- -1ements()
iff,e of th form J (k .) nd. in addition. (· X 1) must be in nc~ -

30

el m ms(k 1). To prove. tha: the program reache · stead. - tace at k. \ ,e m st
sho\ that new-elements(k + 1) cannot ha ea sca[ar in.put or the output of a -box
or any . lem nt of the fonn Y(j + 1 (h,ere Y can be a str am input, or the ou put
of a T-box) if YU) is not in ne\: -elem ntsfk). L t us refer to such elem, nt in
ne\v-elements + 1) as an off bear lemen

Suppos . a is an off-bea element in new-elements(k ' 1).. From Propos]tion
15 th re must be some Om(k + 1) in ne,. ~,elements(k + 1) such tha aU
imermedia e nodes on the path rom Om{k + 1) co a in th dependence graph of
Om(· + l) are in ew-elemems(k + 1). Moreover Om(k +) cannot be an off
beat element ~ if Om(k) is in m· nimaHnputs(k) then Condi'ion 3 (1) ensures
that Om k 1) must be either in new-el mems(l) U ... LI new-elem nts(k-1) or in
ne ~·- I ments(·) - either way. if Oni(k) is in minimaHnputs(k), then Om(k+ 1)
cannot be in new-eJem nts(k , 1). Therefo e, on the path from Om(k+ 1) to a,
th r muse be some efement (ky+) (which can be Om(k+ 1} itself), hkh is
no an off·beat el ment and which depends direct! on an off-beat lemen /1
(which could be a its H). Condition 3 (2) now as.sur s us that f3 must ha e been
i new-elements(}) U ... U new-eiemenns(k), and hence,, 't cannot be ·n new
elemen s k + 1). Consequent] • no off-beat element can be a member of new-
Iements(k + 1).

To comp.lete th proof, we must . how that Condi ions - to 3 ho]d at (k + 1).
Gi en lh.e result tha no off~beat element can be a memb r of ne, •
elemems(k). he proof is tri inl and is left to the i terested reader.

□

~,/.e now describe an algorithm that will use Conditions 1 to 3 in order to compute the

value of k at which an L0 program reaches stead -state .. It also gen rates the transformed

program.

3 ... AJgorithm-SST
Algorithm- T : A.n algorithm to tnm form L0 Programs into l 1e Sch nia of

Figure

1. Set k to 0.

2. Se k m k and comput new-e] ments(k) and minirnaHnputs(k). G n rate
code for new~efements(k).

3. If Condition 1 holds for new-el ments(·) th n contin I el e, go to

31

4.]f Condition 2 holds for new-el men ts() then con inu else go to 2.

5. If Condition 3 holds for minimal-inputs(k) then continue lse go to 2..

6. Set k0 to k. The code generated for ne\ -elementsC) .. .• new-elements{' 0-1) and
generate cod for the steady-smte part i.n the foHov ing way. Rep ace each t~box
in the code for new-e ,ements(k0) with the ,correspond'ng T-box and label the
output stream of Tx-box as Xs. We wm refer to this code as the acyclic steady
star,e program.

7. For each element a in minimaHnputs(k0) which is of tbe form Oi(0) there
must be some, k0 i >. k0 such that Oi(kOi) is in_ new~elem~nts(k0). Connect
(k01 k0) cons boxes m a cascade and con nee 01(k0). 01(ko(1) from the
prelude as shown in Figure 13. ·

8. For each pair of elements (X(kx),a) such that X(kx) is in new-elements(ko). a in.
min:imaHnputs k0) and {kx) direct] depends on a. do the following:. ·

Let a be the pth argument of the function that compu es X(kx)· In th;.e
dependency marrix. let the starred emry for the pth argument of T x be Y(j) •
and le . 1t occur in X(s). Let Y(ky) be the element of in new-e1emenrs{k0).
There are 4 diffi r nt cases for code generation depending upon whether Y is an
input stream o not and whether s is larger or srnaJier than kx.

a Y is nn inpl.l stream and <k : Feed Y through kx-s+ j-1 rest bo ·es. and
connect the ou :put to T x-box as shown in Figure 140).

h. Y is not an input stream ands< kx: Connect s-kx - ky-j cons boxes in a
cascade as shown in Figure 14(ii). -

c. Y is an inpu stream and s>kx : Feed Y first through j 1 ,est boxes and
then hrough s kx cons boxes as shown in Figure 14(iii). Tl1e scalar
inputs for ams boxes are specified by entries in _(kx) m (s~ 1) locations
of the dependencr ma rix and must be a,,aH bl from the prelude.

d. Y is nm an input str am and s > kx :· Le Y(ky) be the elem em of Y in
new-elemcnts(k0) O<y > j). Connec S*kx + ky-j cons box .sin a cnscad as
hown in Figure 1 (i).

V.le win r fer to th code generated in step 8 as th s1eady·s1ate program.

9. For each output stream O imroduce f 1 cons cells connected in a cascade
Connect 0(1) to the scalar input , f th 1rst cons o]I 0() co the scalar inpm of

32

the nex cons cen and so forth. [f O(k0) i in new+ekm n k0) then connect he
output of th T-box TO in the stead -sw.ce program to the stream inpm of the
last cons cell oh rwise connec the ouput. of the cots ceU,; hose scalar ·np n is
O(k0) m the stream input of the last cons ceU. (The vnlu of 0(1), ~o O kf 1)
must have b e - 0 enerated j the pr]ude part).

• 7
,(k ·.k) conscs

o'J

roil ·•
[Oi(k Oi), ...]

□

Figure 13: G n ra ing Code for the Steady- tale Part R] . t d o an Output Stream

The behavior of A 1gorithm~SST when the olgorithm is appHed to the prog.ram of Figure

4 is summarized below.

k Step xecuted
1 23
2 2,345
3 2;3 .5
4 2 3.4,5.6 - 8.9

non-starred dependencies in ne -ielements(l)
nothing beyond C(l) or 0(3) in new-el men_ (2)
nothing be}rond C(2) In ne\v·elements(3)
steady- tate

For th - program of Figure 4. S ep of Algorithm-SST ~;m examine the d pendencies

between C(3) and B() C(3) and 0(4), and B(4) and D(3). Th code generated by Step 8

\ ill look 1ike.the code shown in Figure 11 with one minor difference - tllefork shm: n at the

output of the cons box with (4) as an input will not xist [nsread. Seep -~,ill g nerate a

T.hird chain of cons box s in \ hich there is only one cons bo : th" scalar inpu · o this cons

box will come from D(4) whil _ he tream i 1pu wiU b con ecced 10 T0 . 1l1e output of this

[X(k ¾···]

(i)Y is an input stream, s~kx

• CH) reslS

J

7
(s- k,Jconses

J
•
•

T ,
X

(X(k ~]

(iii) is a tr nm 'input s> k

• •

33

. ,

•

• • • •

(ii)Y is output ofa T-box,s< kx

• •
Tx

[X(ki···J

7
,(st)dcons,cs

J

f"Ty"l:
-~ ·y•·•-1

(iv)Y is OU pu _ ,of a T-bo .s > kx

Fi{Jure 14: G _ nerating Cod for the Steady-State Part

34

cons box win be conn c ed to the inpu o TC and TlY [t i~ not hard to modif,, Step 8 of

Algorithm-SST so that it. generates exac ly the code shown in Figure 11; however. it is a lo

eas·ier o understand Algorithm-SST as it stands,. and hence the modified s~.:p is omitted.

The graph for the code generated for this e amp]e is shown in Figure 5.

Suppose in the program of Figure 4 -- e also declare B to be an ou put str,eam. The reader

can verify that no change in new-elem ms will occur. In fact the only change wm be io the

a]ue of minimaHnputs(2) where elem en B(2) will b induded to be passed on as output

at stage k ~ 2 of the prelude. Cons quendy the behavior of Agoritlun-SS does not change

exc pt for cod gen ration at k=2. Ho\ v,er, if O and Care designated as ou put creams

then ne, ~, I ments also change as shown below :

k ne\ -eleme _ts(O k) new-elem nts(C k)
2 {0(2)} {}
3 {0(3) D(4) B(3)} {C(3) 0(4)}
4 {0(.C(3) D 5),8(4)} {C(4),DC).B(4)}

k. new-elm nts(k)
2 {0(2}
3 {0(3).D(4).B{3),C(3)}
4 {0(4),0() B(4) C(4)}

minimaHn uts(k)
{C() C(2) D(3)}
{B(2),C(2),D(2),D(3)}
{B(.),C(3) D{3),D(4)}

Algorithm-SST wi 1 ·n find the alu of k0 o be 4 bu the code for Stead. -state part wm
change as shown in Figure 16.

We now pro e the enninatiun of Aleoritb.m~SST. This proof is a little :nvolved, and the

reade can skip che rest of this section without loss of continuity. The difficu] · in proving

rmina ion ari from the fact that Conditions • 2 and 3 ar r,e)ated · the sense that if

Conditions 1 and ::. hold at some k0 th . n Condition must a1so hold at k0 in order for

C-0nditions land .· w hol for an k > k0. . n example which shows this connection is given

in lhe appendi . Henc we foHO\ an en ire1y di ffi r nt proof strategy in which we first

d fine wo steady·smt pun ms - one or new- I m n and the other for minima?~inputs.

\ hen hm thut for suf 1cj ntly large k ne ·elem en (k) and minimnHnputs(k) of e, ery

0 program conform to these patterns. ThL wi.11 cnnbJe us o d cm1ine an up er bom d for

35

1 I a6 a2 a3 a4 a5 a a8 I first .. i i+ .!+ J. ' '

,-l--1...

tc t -
D tB

t I -,--,r r • ,J. I I

tA tB
• p to

I -
al '1, .. ,,

p rt- ., .,
0 (1) to tc t

D
J

0(

~ J
'!Ill --- ~-~ -- I - Irr :

T♦ I -,.
--. I

r- --t r- 1• ..

2)
t
0

,I b 1) tB 0(3)

I I
- i' J .

,, r ,, , ..
I T -, ~

1, 11' , . ..--
I ,, . ~LJ

rcansl cons I
.L .i ' I ~ ..

cons I cons. J

,, .J '

loon '
~ I• .. ~ ~

,~ t '
j ' TB TC]cons I

,. t -
I
~ ► -

~

r I cons I 1 ... i
.,.

+o TD T 0
,._ ,-....

I I

-..,

Ficrure 15: Transformation of program in Figur 4 by Aigorithm~SST

C()

[0(4).0(5) .•.]

T
0

36

0(4} B(3)

[C(4).C(5) ...]

Figure 16: St_ ady-state Part of Program in Figure 4 if O and Care OutputS

the value of k0. It is possible that the termination of lgorithm-. ST can be proved in a

more di ct mann r - however we feel tha.t th proof strateg gi en here is i - eresting in its

own right. In order ·-o define the stead -state patterns described above. we construct a

weighted. directed graph for a data dependency matrix as follows.

Definition 19: Construct the weigh1ed graph of a dependency matrix as follows:

1. For each stream input and T-box in the program cr•eate a node and Iabel
1 ith the name of the input stream or T-box.

2. If BG)"' is a starred emry in position A(i) then create an nrc from to B
and gi 1e it a w ight of G~i). 1otice that, since for a large enough k. A(k)
must be a starred elemen i wm depend upon B(k j-i).

3. From the directed graph de1ete all nodes inaccessible from {Oi}, as well
as an_ edges to and from t.h -- nodes.

The II eigh ed graph for the progr min Figure 4 is shown in Figure 17.

L mma 20: If there ls a path of ,·ci"h . w from some. no · A o som node Bia
the clghtcd r"' ph. then. for sum_ iently large k. A ·)1 depends on B(k , .

37

B

0
Figure 17: The\ eighted Graph for the Program of Figure 4

Proof: This follows very simp]y from step (2) of the construction of the
weinhted graph. If the length of the path is 1, th n for an k such tha A(k) is a
starred element (k) wIU depend on B(k + w). Suppose mis is true for all paths
of 1ength n. A path of length n + 1 between A and B will have some node C such
that there is a path of l _ ngth n from A tO C and an arc from C to B .. Let the
\ eight of the path from A to C be wl nd the weight ofthe arc from C to B be
w2. Sine the path from A to C is of] _ ng h n A(k) will depend on C(k ~ 1) for
all k grea er than or equa] to some kn. If C(kn + · 1) is a tarred I men then
C(k + wl) ,(and hence (k)) , i I de end on B(k + wl w2) for all k > kn. [f
C(kn + wl) is no a Starred elemen th _ n suppose C(k) is a starred e]emen for an
k ~ kc where .kc must be great r than kn +wl. Th n, A(k) il1 depend on.
B(k wl w2) for aM k 2 cmw 1. Either , ay. since 11 1 + w - is the weight o the
path from A o B. we ha e proved the requir d result

□:

For any ou put stream Oi, let th - eight of the { ri ia]) path of length zero from o· to

itself be of wei.ght .z -r-o. Let us nm con id -r all possible pa.c.hs from each el rnent of {Oi} to

an} node X \vhere itseJf can be an element of {Oi}. in general. a 1eight d graph will

ha e cycles.(We do um consider the tri ial path of length .zero from Oi to iISeff to be a

qcle.) However the weight of a cycle (i.e. the sum of the w lghts of aJ me arcs in the

cycle) must be strictly 1 ss than 0. 0th rwise. from the previous 1 mma for some stream X

and a sufficien 1. 1 rge value of·, 1 (i) \ ill d pend upon X(i w) where \ >0,. hich will

r pr sen a de::id]ock. ince no cycl ha a po itive w ight, and there are only (inite1y many

output streams, there must b - a path (from omc omput Qi to) uch that no other path

from any oulpu Oj o hns a eigh - h1rg1;:;r than th weigh of this p th.

38

Defini I ion 21: maximal path to i a path from some Oi to X such tha no
other path from any Oj to has a larger weight.

In general, there can be mor,e than on - maximal path to X - for ·nstance, if there is some

path from Oi · o X that is a. maxima] path. and there is a path of ;i.•eight zero from Oj to Oi

then the path Oj ... Oi.. • . is maximal path to thar is. dearly distinct from the path

Oi...X. ln our argument, we can use any maximal path to X.

The signi 1cance ,of maximal paths can be appreda ed by]coking at Figure 17. The

maxim a1 path from O to C has a weight of -1. In addition there is a pa th O-C-B-C \ hose

~ eight i ~3. From Lemma 20, it fol1ow · that for a Jarge enough -. O(k) will dep nd on

C(k-1) and G(k-3). For a]arge enough k, C(-3), is required for the computa ion of O(k-2),

and hence it cannot be in new-elements(k). We wm now fonna11)T prove this connection

between maximai paths and new-elem,ents.

The foUowing definitions extract patterns from a weigh ed graph. We wrn subsequently

relate the e patlems to the steadr ate of the program.

Delfini •ion 2-: The se pauern-eJ,emems(·) is the set of elements of the fonn
· (k . w _) where X is a node in the weighted graph. and. Wx is the weight of the
maximal path o X.

D,efinition 23: The et pattern-.irzput5{k) is the union of the set of an elements
X(j +w) such that Y(j) is in pattern-el ment5(k) and there is an arc of eight w
from to X • and X(j+ w) js not in pattem-eJements(k) with the set of all
elemems Oi(k) that are not in !em-elements().

We encourage the reader to compare this definition to the definition of minimal·

inputs(k).

Defini ion. 24; The inte er gap is th · largest integer uch tha fa some ,elem nt
{k w) in pattern-elements(·). (k ~ x-gap) is in pauem-inputs(k).

For the weighted graph of Fig,ure , pauern-elen ems k) is {O(k), B(k),,, C(k-)

D(k · l,} and pattem-inpt ts() ls{, (k-2), D(k-1) D(k}}. The e should b compared with

ne v-el mems(k0) nnd minima1-inputs(· 0) com uted by ~orithm-SST. Gap for this

graph is 2 since D(k + 1) is in patt _ m-elem nts(k) nnd D(·-1) is in pat , rn-mpu (k).

39

The render ma 1rst want to rend the next two lemmas and th theorem that foHows

them (,'-'·ithout reoidin proofs) 1 m ord -r o understand the line of argument for · e proof of

termination.

Lemma 25: Ther - i ts a k1 su h that. for all k~kp

1. patter -e]ements(k) is a subset of new-elements(k),, and

2. if al] elements in pattcm-inputs(k) are a ailable then. n w-elements(k) =
pa nern-elemen ts(k }.

Proof: ,ve first compute the aJ e: ofk1 as follm s:

Let us defin a starred elen em o be an. elemen a1I of whose :immediate data
dependencies are starred. Compute the s t tmnsiem elemems which ·s the mion
of the transitive dosures of the data-dep ndencies of all non-starred elements in
the program. Fmm Lemma 13. it follows that e .can find a ecto -ofintegersjN
j13 •.. so that A(jA) BG 0), ••• are transient e]ements but AGA + 1). B(j8 +1) ... are
nm. Le us refer to this ector as the Transient Elemems Vector or TEV. k1 .is,
then, the minimum vo.Iu of k such that for even node X in the weighted graph,
k+w . > TEV[X].

1. \Ve ust show that, for all k > k • every (k ' wx), in pattern-elements(k)
must b m ~Oi(k)) for some Oi. le - Oi be an output from which mere is a
maxima? path to and consider a maximal path from Oi to X in th weighed
graph. f A is an inte.rmediat node on this path; then the path from Qi to A
mus be a ma'tim,il path o A. B; the above definition of k1 A(k+v A) be a.
starred elemen for an k > k . Since this holds for an node Ai□ becv.1een 01 and

Oi(k.) mus d pend on (k +wx).

_Since X(k ' x> is in ~Oi(k)). for an k > k1 to show that it is in new
elements(k) we must prove tha ir could not ha e been computed during the
computation of n w·elements() ... , ne, -elements(k~ 1). If it bad been
com pured then l ic be in ~OnG}) (1 < j < k-1). Consider the path in the
dependence graph of OnG) from OnG) to (k + wx)· Ei h r v,ery node on this
path is a starred _ lement. or th re is a 1 ast one nonwstarred element on this path.

inc_ k +, x > TE f X] h latter eris • is impossible. If tJ1e fonner is true. there
musr be a path in lhe weigh ed ~raph from On to · ' \ ith a weight of k wx·j.
Since k j > l, ch is , eight is > \ ' 1. This contradicrs h fact that th max.ima1
path to . is of _ight w . H nee X(+\\':x) is in new-elen ents(·) for aU k > k1.
A similar argument shows tlwt X k \\'x + 1), · (k-L \ r . 2),, ... cannm be in
ne\: ~et ments{l), ... new~demems{k).

40

2. We nm show tha for 'k > k1• if pattern-inputs(k) is nvailabl • then n w
elemems(k) = pauern-elements(k). If not. there must be some XO) in ne
elements(k) s · ch that (j) is not in panern-el ment(k). Since we ha e assumed
that patt rn-inputs(k) are a aiJ ble this iement can not be in patt rn-inputs(k).
Funher by the defini ion of new-elements. th re must be some Oi{k) in new
elemems(k) uch that in the dependence graph of Oi k), all imermediat.e
e] ments (if any) between Oi() and -. GJ must be in ne · -etemems(k). Since
Qj(k) is in pattem-e]ements(k), let YO) be the first el m nt on the path that is
neither in pan rn- lements(k) nor i pa tern-inpuG(k) (of course YO ma be
- 1G) itselt), and J t W(m) be the element on the · ath tha d pends on Y(i) {where
W(m) ma>' be Oi(k) itsert). From the definition of Y(i) \ (m) must be either in
pattern-elements(k) or in pattem-inputs(k). We now hav,e a comm.diction - if
\ (m) is in patern~elemems'(k) then Y(i) is in pa em-elements(k)' or in pattem
inputs(k).. ~hile if W(m) is in panem.-inputs k), then · (i) cannot b _ in new·
lemems k). Hence if pattem-·nputs(k) are availab. e then n,e\ -elements(k) =

pattern-elem en ts{k).

Lemma 26: For an k~J2 where k2=k1 + gap

1. all ekm nts in pattem-inputs(k) win be availabie.

2. min·mal-inputs(k) = partem-inpms{k).

Proof. l. For som k ~ k, suppose (k + a) is in attem-inpms(k). B_r the
defini ion o· pa em-inputs. there mus besom (k /J) in pattem-elemencs(k).
Since /3-cr. < gap, k-(.8-.a) i greater than k , and hence. (k+ a) mus be in in
the data.-dependende ,of som Oi(k + a~fJ). Therefore fork > k2• all elements
in patrem-inpms(k) are available.

2. From Lemma .25 and part 1. it follm s that for k > k new-elemems(k) =
pattern~ lemen (k). The condusion that pattem-inputs(k)-= m· nrmal-inp 1ts{k)
fo]]ow trivia] y from the definitions of pattern-inpu _ (k) and minimal-iaputs(k).

Theorem .;. : . gorithm-SST mus. t rminate.

Proor: We hav,e shown that for all k > k2• pan m-e1 ments(k) is equaI to new§
et ments(k) and pan rn-inputs(k) is qual · o minim Hnp ts(k . e . ill now
show 'thJ:!t th three condition of Algorithm ST are tn ,e at k2•

Condition 1:\Ve have shown thm new-e]em nts{k) = pnuern~.elemems k }.
For k > kl' no transient lement cnn be a me 1 -er of pan rn-el m 1ts(k).
H nee. all d "pend ·nci s betw en 1 ments of n . w-elemems(k2) must b uirred

□

□

41

Condition 2: (Proof by com adiction Let (kx) be in new elemen {k) nnd
assume .(i).for i>kx is in new-elements(1 U ... U ne -elements(k). Hence,,

(i) can not be in ne\ -elem_ nts(k2 + i·k). HO\ ever,, ·1 is in
pattern- 1emems(k2 i-kx)· This con radicts Lemma 26.

Condit.ion 3: All elements in pa ern-inp ,ts(k) are of the form X(i) \Vhere X is
a stre,am input or the output of a T~box .. At k2, al] dependencies bet\veen
elem ms of nev~·-elements0~2) and minimaHnputs(k2) are starred. Hence dause
(2b) of Condition 3 does not apply at k2• We m no show that dauses (1) and
(2a) of Conclition 3 are alid at k2.

Suppose some element Oi(k) is in minimal-· nputs{k). For each stream Oi
Oi(k+, 0i is in panem-elements('). Since (k .. - k m st be less than gap. k must
be > k1 and hence, by Lemma 26. aM elements of the form OI(k + It Oi(k 2)
.... Oi(·i-1) muse have been oo·mpu ,ed Hence clause (l) is satisfied.

The proof that clause (2a) of Condition 3 is satisfied at k2 is -exactly the snme
and is omit d. Hence Algorithm-SST must terminate at some k < k2•

□

The proof of correctness of the code generated b lgorithm- ST is omitted. One

possi.ble way of pro ing correctness is to show that the d pendence ·et of an)' element Oi(k)

of an output stream is exactly the same in both the unt-o. sformed and transfonned

programs. Since the code both in the prelude and in the steady-statJe pwgram was

generated directl from tl:le depende · cy matrix ,of the uotran formed L0 program tbe

proof is straight-forward .

. 6 Discussion of. lg.orithm·'. ST

Co dition 2 ensures that no stream element compu ed by the pr Jude is ver recomput d

by th . steady-stat prrnrram. The r ad r can vedfy that if recomputation of Stream elements

is no forbidd n then the program of Figure 4 \vill reach stead)-state a k = 2. The

tran formed program vouid compu e B{2) C(l) C{2) and D() t\vic - onc,e in the pr lude.

and once in th steady-sate program. On the oth r hand the advantag of doina this is that

the size of th preiud . and henc , of th ranstormed program j reduced. Our own

posi ion on this trad -off is thnt the overh od of · . computation outweigh th · benefits of a

maU .r program.

42

The reader can verify that if Claus 2b), of Condi ion 3 as omitted, then an L0 program

in general wiU reach s ,eady- tate at some k ~ k0. An eas_ wa of seeing this is o draw the

dependency matrix of the mmsfonned program, and appt Algorithm-SST to L 'The

reader can veri(tha if Clause (2b was not there the ransformed program \ ou[d get

further ransformed b]gorithm-SST. Clearly. this would not be a desirable s·t , ation.

We would like to point out that the cod for the steady- tate program can be derived

directly from the weighted graph. Once maximal paths ha e been detennined in the

weighted graph v e can easily de ennine pattern~el _ments and pattern-inputs.

Unfortunat ly, i is not easy to determin the smaUest va]ue of k at which a. program

reaches steady- tate. (Th alue ofk2 that was ,computed in the proof of termination of the

L0 program is an upper bound for the alue of k al which the program r,each s steady

srate). Algorithm-SST requfoes more computa.ti.on than this approach since we have to

compute w-elements(l) n w-ei _ ments{k0). On the oth r hand, the vatue of k0 that it

de1ermine:s will in general be smaU r than '2. Moreover we will use ne,;l.'•elements in the

next. secti.on to propagate demands in the transfonned Lo program ..

4 Makin! Tr n formed L0 Program Strongly-Safe
In this sec ion v make transfonned L0 programs that corr spond to the schema of

flgure 5 in o strong]y- afi . programs tha correspond o the schema of Figure 6. This is

done in nvo steps in the first step we s a gl.obal a1gorithm for propagating demand for

the outputs of the L0 program to dem nds for the inputs of the program. In the second

step. v e in roduce gates into the tra sformed program in order to make it safe. The

resul ing program is safe and i □pu -output equi a1ent to its lazy program and hence it is

strongly-safe (see Theorem 8) ..

,4.1 Global Pro,pa0 ation or Demand tream in L0 Programs

Given the anal • is of th last sec ion. d mnnd propagation in trnnsfonned L0 programs is

qu·c simple. Before giving the algorichm for demand propagation. we i] ustrate our

technique by means of a simple xam pl ..

43

DI
first.

DO()

t

T

I DO

Tnmsfonn,ed Program Demand Propag,ation
11 ~· resl(IJ·
0 == T(cons(firsl(Il) com(flrs1(I) res1(rest(l)))))·

fj,gure 18: Demand Propagation in an 10 Program

Consider the program shown in Figure 18. A demand for the first element of O must

generate ad mand for the second element of I. Our semantics or streams requires that the

generation of 1(2) be preceded by the g n ration of I(l). Consequ . ntly, the demand for

0(1) mus· generate a demand for both 1(1) and 1(2). Cons·cter now the d mand for 0(2).

This demand can come only aft r the de mmd for 0() - since the demand for 0() r sulted

in demands ~or be h 1(1) and 1(2) non w d mands for he 'nput need be gener ted. The

program of igure 18 reach st.cad ·-so at k = 3. rt hould be ens to see that the d mand

for O) should r suit in dem~nds for](3) and I(). Aft r k = 3 the prt em of dem· nd is

fi ed - each reque · for an element ,of the output treom r suits in a requ for one lement

44

of the input stream The reader can . erify that the graph sh0\ n in Figure 8 generates

precisely the patt m of demands for lhe input stream as discussed .above. \1 e now give an

a1gori hm for generating the code for propagation of dem~nds in an L0 program.. We ,viii

assume that the tran formation of the source program has' been done by applying

A1gorithm-SST.

Let al. al. · ... be scalar inputs to an 1 0 program and 11 12 be stream inputs to the

program. As before 01, 02 ... will represent the output streams of the L0 program. le

DO1 DO2 ... represent demand streams for O • 02, ... respectively. Th.e aJgorithm first

genera es code to con ert demand stream for ach output stream into separat- demands for

scalar and stream inputs. In the next step demands thus generated for an input are

combined into a single scalar demand or a single demand stream depending upon the type

of"n.put

A 11Jorithm·GDP: An a1gori hm for Global Demand Propagation in
Tr::m formed L0 Prog,rams.

1. For each ou p t str,eam O in {Oi} and each scalar inpu a, the code for
genera ing the demand for a rom the demand for O is produced as follows. Jfa.
does not occur in the ets new-e]ements(O 1)1

•• •• • new-eiemeats(O,k0) then ther,e
is no code to b generated for thjs pair of output stream nod input. 0th f\Yise
I j be the smallest integer such tha_ a i an element of n,ew-elemems(Oj).
]ntuitively., this mean that a is not req ired for the computation of 0() ...
OG-1). but wi.U be requfred for the computation ofO(j). The ,code for this case
is shown in , igure. 19(i).

2. For each ou put st ~earn O and ea.chi put stream I do the fo Im ing ti.vo ste s:

a. E~am·ne ne, -elemen (0 l) • .. .• new-e em nts(O,kf 1) in increas·ng
ord r of k. and fonn the sequenc of pairs (I(il) 1), -,O(i2),k2). ... such
that J(iJ) occu in ne\l -elem ms{kJ}. Delete rui pafr O(iJ),kJ) from this
sequ nee if i j preceded by some p::ii:r O(i),k) uch that i> i}. In the
remaining sequence {{l(iJ),kJ)} the inte,g rs il. i2 •.... , iU fonn an
increasing order. Let im be the arges integer in thi qu nc . The code
to be genera_ dis; then shown in Figure 9(ii).

b. l f no lemen of 1 occurs in n \ -elem nts(O.k0). here fs no code to b
generated. Ori erwis . 1 t n be th forges integ r such tha _ J(n is in
new· l men (O,k0). If n > im then tht: code · o b generated is shm n in

45

~a

+
~l

(j· l}re ts

J

(i) Demand for an El mentary Input

{from (ii)}
DO(km)

7
• (n~im) cons boxes

J
DO{k

0
)

(iii) Demand rom Steady State (n > im)

l
• (il con . bo>:es)

J
D0(k)

(i2 cons boxes

DO{_k_2)-~I
00

\ j

DO(km)
{from (iii) or (iv)}

(ii) Demand from Prelude for a Str am I npu

{from (ii)}
DO(km)

[DO(k O im-n + 1) ...]

(iv) Demand from Steady State (n < im)

Figure 19: Introducing D mand Str runs into L0 Programs

46

Figure 9(iil). Otherwis n < 1m and the code sho 1ld be enerated
according, m Figure l9(jv).

3. For every scalar input use a d"-unlon to combine an the d mands fo its value.
For every trea:m inpu .. use a D -u,1;011 lO combine the demands propaga ed to it
from the ·arious outputs.

□

As b fore, AJgorithm-GDP can be impro ed to yield better code - once again we have

not bothered to do this because e are im rested in presenting our me hod in a simple way.

Th final step in making a transform d L0 program in o a program that is inpu -output

equivaJ nt m its corresponding laz · program rs to introduce gates at the outputs of the

program. Cons·d r the program shown in Figure 15. A demand for O{l) , ill cause the

va1ues ofl(l) and al a2.. ... a8 to be fl din o the program. Onc,e these values are available.

O(l , \ ill be computed in the prelude. but so will th va]ues of the 0 (2) and 0(3).

Moreo r this , m also s an the comp tatiqn of 0(4), 0(5)1 ••• ·n the tead>' state part of

th program. n other words a demand for 0(1) wiU resul in the production of aU the

elem en s of 0. To ensure that the inpu -ou pu beha ior of the transfonned program is the

same as tha of th corr sponding lazy program, \ e must pu a gate at e eiy output of the

transformed program b. using the follm ing algorithm -
Afg,orith u IOE: In roducing Gates o En ore Input·,outpul Equiva ence Ylith

Laz programs.,

For each o tput Oi, introduce a gate on the l'ine that produces the stream Of
and feed th demand srream fo Oi imo the control input oftha gate.

Lemma .8: The transformed LD program that results from appl ing
Al 0 orithm-lOE has the sam input-output behavior as the corresponding iazy
program.

Proof: Omitted.

□

47

4.2 Introducing Gate to make L0 Pro0 rams afo

The fina1 Step in the transformation is ta nsure tha th ransformed prograrr wm always.

pertorm at most a bounded amount of computntion more than that pP..rformed by the

corr sponding · azy program. A program that resul.ts from applying A1gorithm- O, does

no n cessarih1 satisf this r, quirement for the foHm ing reason. Since adjustments and

prelude portions of the tra:nsfonned program are acyclic interconnections of first, rest, cons

and r-bo es 'th re cannot be an arbitrary amoun of computation performed there if no,

input has an arbitrary number of to ens in it. Since inputs are fed in on demand an input

r am can ha e an arbitrarily large number of tokens in it. if and only if the demand stream

for some output has an arbi rariiy large numb r of _okens in it. However. in that case the

co responding]azy program win also perform an arbitrarily large amoum of computation ..

0 the other band the steady state prog am i , in genera]. a cyclic interoonnec ion of

operators. Th refore operators in the stead. tate program can be enabled arbitrarily often

even if there is no arbitrnril,r large demand for any outpu · stream, as in the program shown

in Figure 15 To ensure safi-ty we must, therefore in roduc gates into the teady state

program. One , ay o do this is given in lgorichm-Safe.
: lgorithm- afe: Jntrodu in° Gate into the Stead -state portion of

Tr.amformed L0 Proorams.

1. · ntroduce a gate at the outpu of every cons chain that 1s ge · erated b· eps 8(b)
and 8(d) of A1godtbm-SST.

2. Us D-union operators to combine the demnnd streams [DOI(k0),, DO (k0 - l),
.. _. .]. [DO (k0) 002(0+ 1) •...] 1etc. and feed the output of the D-union
operator to th comro inpu of each gate introduced in St p .

Theorem . ·9: The resulting p ogram afier Algorithm-Safe is safe.

Proof: To comp] te th proof of safe y we mu t show that no operator in the
stead srnt program can be enabled arbitrarily often unless there is un ounded
demand for some output tream. If there is no unbounded demand for any
ou pu ream. then no gate opern: or in the transform d program can b nab] d
an arbi rarily large number of im s. Hence no srr am input. or the outpu of
any gate in the steady sta e program can have an unbound d numb r of to ·eas in
it.. TI1e efor , no o · erntor in ch acyclic teady state program can be enabled
arbi ·rnrily oft n. 1l1er for the progrnm ~1at r sul from lgorith m·S fe i afe ..

□

48

D

JgorithmTSafe introduces one gate for each cons chain (in the st ad , state program)

,,.,hose ream inpu is connected to the ou put of some T~box :in the acydi s_eady s ate

program. In many programs the nu b r of gates can be decreased stiU funher b)' using the

connectivity of the acyclic steady stare program. For exampie. me trnnsformed program in

Figure 15 can b made safe by th.e introduction of onl · one gate. as shown in Figure 20. -n

Figure 20 box TB in the acyclic stead. state program cannot be nab1ed arbitrafly ofie

(unless ther-e is unbounded demand). TI1is guarantees tha _there cannm be unbounded

input to box Tc '1 hich makes it unnecessary to have a gate at the input ,of box Tc·

Unfortunate]y, it can be shown that the problem of de ,ennining the smaHes · number of

gates that must be introduced in o an L0 program i.n order m make it safe is quivalent to

the vertex covering problem in graph theory - this problem is known to be P-complete.

Of cours.e, in any practical problem the number of in.puts o the acyc ic st ady scate

program is liket _o be quite smaI and hence nurn -ration of aJI possibilities for the

introduction ofgates may be qui e acceptable.

AlgorithmwSafe takes advantage of the fac that T-boxes are total functions in order tO

r,educ - the overhead of demand propagatio . Jotice that the control for gates permirs one

token to flow dm n each input line of the acyclic steady state program each time some

elemen of an output st .-eam is demanded. This is don ev n if the cornpu a ·on of that

element of the outp _ st earn does not require a . a1u on each input inie. To look at i

another way, a dota-driven evaluation of the program r,esulting from Algorithm-Safe may

perform a little ore computation than a strict demand-dri e evaluator would. Ho . ver,,

this caus no problems with iJ rmination because as \ e s id b fore T-boxes a e mtal

functions. The advantage of doiag thi is tha the o erhead of demand propagation hns

be,en lowered con id rably.

Figure 20 shows a afe ersion of the program of Figure 4.

0(1)

49
a6 a7 a8

PRELUDE

I B 2)
(2)

3)

0

B(3) 0(3) D{4)

Acyclic Steady-State

Program

[O{).0(5) .•.)
[13{4)J3(5]

ID(S).0(6)]

DO

. Dal Da8

• • • • •

Figure 0: Strongly-Safi Ver .ion of Program in Figure 4

50

5 u mmary and Fu rt her Work
[n this paper and the companion yaper. l , e defined a powerful stream processing

language L and a sup r-s t of L caned LD which was the ro.rg .,t ?nngua,ge of

transformation perfonn d by th compiler. I □ pape 1 e ga'.v a simple algorithm for

transforming an L program into a program in LD (called the faz.y LD rogram

corr spond~ng to the L program) which had the property that a data~driven ,evaluation o.f

the lazy program performed precisely the same computation on data lines as a demand~

d ·.ven evaluation of the original L program. This was proved by s.bo, ing that lazy

programs sa is] d four properties nam d Pl to P4.

In this paper. we showed that a Jaz program can be associated ith any 1D program and

explored the ooncep of safe LD programs which were LD programs that performed a

bound . d arno m of xua compu ation o er that performed by their corresponding lazy

programs .. Sine the set of safe prngrams is not dosed under composition. e d fined

strongfJ safe programs as b ing · hat subsec of safe progrruns 1,. hich is closed under

composi ion. class of t ongiy-safe programs. is the set of aH LD programs that are safe

and input-output equivalent to their corresponding lazy programs.

\ e then defined a subset of L caJJed L0 and gave three algorithms for transfonning any

L0 fr gntent of an L program into a strongly-safe program. This traosfonnatian . as used

to tra:ns.fonn a, · L program ·nto a strongly~safe program.

The work describ d here c n be extended in man ways. The language L does not

p nnit user-defined function cans. The transfonnationa scheme In this paper can be

applied without chang o a 1an.guag that has been augmented o permit user·de med

function cal s. An int rescing observation is that many user-defin d functions may b have

Jike T-boxes in the sense that the ha th one,in-,me-oul property. By treating such

f1 nctions as T~boxes it is possib? to xpand the scope of the transformational scheme to

include such func ion cans in .languag L0.

n interes i g rob]e is to in tiga e how thi work applies o languages with

51

ge eratii:ed reams - Le~ streams ,:vhose e] ments could be streams themsel es. W feel

that the view of a stream as a sequenc · of elem nts flmving down an arc in a data flow graph

must be abandoned in this case.

V hav,e not supplied any performance measures that oo 1Id d termine if the ad antage

of reduced complexity of demand propagation is neutralized by the disad antage of extra

computa ·on on data lines. Imp memiog the algorithms described in thr paper could

provide a due.

W,e feel that effid -nt imp), mentatio s of applicative languages are essential if such

languages are to comp t wi.th imper ti e]anguag . on sequentia processors. The

transformation described in this paper is on1y a beginning.

Acknowled0 ments:' An earfier draft of this paper (withou section 2 and under a different

1 I) was submitted o TOPLAS. We are indebted to referee B for reading that version

thoroughly and providing us with encouragement and detailed constructive criticism.

l An Exan1p·le

A

B

C

0

B(3).■

B(5),•

a

d.

C(l)

1

b

e

C(2}

2

52

I
•

C C(}

A(l) B{3)
!I

C(3) C(5}• I
3 4 5

Depend nc Matrix for Example

1 {0(1),C().d}

2 {0(2) C(2),e}

3 {0(3)1C(3) A(l) ,B(3),B(5).c}

4 {O(4),C{S),B(4)}

5 {0(5).C(6)}

6 {0(6).C{7),B(6)}

{0(7).C(8).B() C(4)}

8 {0(8 .C(9),B(8)}

minimal-i nputs(k)

{}

{}

{C(2)}

{C(1)}

{8(5)}

{C(3)}

{B(3)}

{C(5)}

-·

2

2

2

3

4

3

steady ta e

Figure I· l: An L0 Program ·n which Conditions l and 2 are Reiated

53

-Ref erenc.es

1. Arvind. K. P. Gastelo , and W. Plouffe.]nd terminucy. Monitors and Dam o . In
Operating Systems Review. Volume I J~· Proceedings of 1he SixJh ACM~ S mposium on
Operating Sys1ems Principles, ACM- IGOPS 19T. pp. 159~ 169 .. ·

2. Kahn, G. The Semantics of a Simple Language for ParalJ 1 Programming. lnformaton
Processing 74: Proceeding of the IFIP Congress 74, 1974, pp. 471-475.

3. Pingaii K. and Arvind. Efficient Demand-dri .en E alua.tion (I)i. Tech. Rep. ?
Laboratory for Computer Scienc , MIT. Cambridge Mass. 1983.

4. Wadge. W.W. An Extensional Treannen of Datafl.ov D adlock. In Lecrure mes in
Computer Science. Volume 70: Semaniics of Concurrem Compuiation. G. Kahn Ed .•
Springer-Verlag. 1979, pp. 285-299 ..

