
MIT /LCS/TM-235

THE IMPLICATION PROBLEM FOR

FUNCTIONAL AND INCLUSION DEPENDENCIES

A B C

a b c D E F

a C f

a

John C. Mitchell

February 1983

The ln1plication Problem for
Functional and Inclusion Dependencies

John C. Mitchell
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

February 2, 1983

Abstract

There are two implication problems for functional dependencies and inclusion
dependencies: general implication and finite implication. Given a set of
dependencies L U { a-}, the problems are to determine whether <J holds in all
databases satisfying Lor all finite databases satisfying L. Contrary to the possibility
suggested in [5]. there is a natural, complete axiom system for general implication.
However. a simple observation shows that both implication problems are recursively
unsolvable. It follows that there is no recursively enumerable set of axioms for finite
implication.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design

General Terms: Theory

Additional Keywords and Phrases: relational database, inclusion dependency, functional
dependency, complete axiomatization, undecidability, finite implication

The author is supported by a fellowship from the National Science Foundation.

l

1. Introduction

Functional dependencies and inclusion dependencies are simple and important integrity constraints

for relational databases. Both kinds of dependencies are first-order sentences that are useful for

describing or specifying database designs.

Functional dependencies have been studied extensively (e.g. [l, 7, 2]). The ubiquitous example of a .

functional dependency is the typical correspondence between employees and managers. Since

every employee has precisely one manager, any database of office personnel contains a function

between its employees and managers. Jn other words, the attribute EMPLOYEE functionally

determines the attribute MANAGER. Formally, this is written EMPLOYEE -+ MANAGER. For

functional dependencies, finite and general implication coincide. Implication for functional

dependencies has a well-known axiomatization [l] and an efficient decision procedure [2].

Inference rules and decision procedures have also been developed for functional dependencies in

combination with various other dependencies (e.g. [3, 11, 22]).

Although inclusion dependencies are common in database practice [4, 6, 8, 10], the theoretical

properties of inclusion dependencies have received relatively little attention until quite recently. An

inclusion dependency arises in the EMPLOYEE and MANAGER database. In a typical corporation,

every MANAGER is also and EMPLOYEE. Hence the set of employees in any office database will

include the set of managers in the database. This inclusion dependency is written MANAGER ~

EMPLOYEE. As for functional dependencies, implication and finite implication coincide for

inclusion dependencies. Recent theoretical papers on inclusion and functional dependencies

include [5] and [16]. In pa1ticular, [5] describes the interaction between functional and inclusion

dependencies and discusses previous work by other authors. In [5], a straightforward set of

inference rules for inclusion dependencies is presented and proved complete. Furthermore, the

implication problem for inclusion dependencies is shown to be PSPACE-complete (cf. [12]).

General implication and finite implication differ when functional dependencies and inclusion

dependencies are considered together [5]. Since we will most often be concerned with general

implication, the term implication will refer to general implication unless otherwise specified.

Implication for functional and inclusion dependencies has an unusual property, as shown by [5]. A

2

dependency a follows from a-set of dependencies '2: by k-ary implication if there is some subset of k

dependencies from L that implies a. In [5], the authors show that for every (sufficiently large)

integer k, there is a set of functional and inclusion dependencies which is closed under k-ary

implication but not closed under implication. This theorem suggests that there is no natural,

complete axiom system for functional dependencies and inclusion dependencies together. This is

because a single inference rule generally yields a single consequence of k antecedents.

Furthermore, there is some fixed upper bound on k for the entire system. Thus most axiom systems

are complete only for k-ary implication. Since k-ary implication for functional and inclusion

dependencies differs from implication, no straightforward, simply presented axiom system of the

usual sort is likely to be complete.

This paper presents axioms and inference rules that are complete.1 The rules differ from those

considered by [5] in two respects. A minor difference is that inclusion dependencies are allowed to

contain sequences of attributes with duplicate elements. This seems natural, and gives inclusion

dependencies slightly greater expressive power. Specifically, equality may be expressed using

inclusion dependencies. More importantly, one inference rule yields dependencies which mention

attributes that are not used in the hypotheses. This attribute introduction rule distinguishes the

inference system from the variety considered by [5]. The inference rules of the system are all "k­

ary" in that each rule yields a single new consequent by inspection of at most three antecedents.

However, attribute introduction is not sound in the usual sense. The inference system is also

"universe unbounded" (cf. [21]) since the set of attributes used in a single deduction may be

arbitrarily large.

The attribute introduction rule allows new attribute names representing "derived" attributes to be

introduced into deductions. An example will illustrate the intuitive interpretation for the new

attribute names. Consider a database of employees, managers and salaries. We can abbreviate the

names of the employee, manager and salary attributes to EMP, MGR and SAL. Each tuple, or row in

the database "table" lists an employee, his or her manager, and the employee's salary. Since every

employee has a single salary, we have EMP -+ SAL. In addition, since every manager is an employee,

1
Of course, since finite implication differs from general implicati~n. the rules are not complete for finite implication.

3

MGR ~ EMP. As a consequence, the database a5sociates a single salary with each manager. To find

the salary of a manager, say Bob. we find a tuple listing Bob as an employee, then look up the salary

given in that tuple. Since MGR ~ EMP, we know that Bob is somewhere in the relation as an

employee. Because EMP -+ SAL, the salary we find is uniquely determined. To describe the fact that

MGR uniquely determines "manager salary", we could add a new attribute to the database MSAL for

managers salarjes and write MGR -+ MSAL. The entries in the new column MSAL, with

MGR, MSAL ~ EMP, SAL

are completely determined by the employee, manager and salary entries in the original database.

As shown in Section 3, this follows from the fact that

MGR ~ EMP and EMP -+ SAL.

The attribute introduction rule simplifies reasoning about functional and inclusion dependencies by

introducing new attributes like MSAL which can be thought of as attributes whose entries are

computed or derived from the original portion of the database. Intuitively, the main use of new

attributes lies in the possibility of proving that they are equivalent to original attributes.

One way of viewing the new attribute MSAL is as an abbreviation for an attribute expression in an

extended dependency language. This perspective will lead us to a simple proof of undecidability for

both the finite and general implication problems. Any relation satisfying EMP -+ SAL contains a

function between its employee entries and its salary entries. We could name this function by putting

braces{,} around the functional dependency and write

SAL = {EMP-+SAL}(EMP)

to mean that the salary entry in any tuple (or "row") of the database is the result of applying the

{EMP-+SAL} function to the employee entry in that tuple. This function {EMP-+SAL} is related to

the new attribute MSAL since it is the "rule" for computing MSAL entries, i.e.

MSAL = {EMP-+SAL} (MGR).

We know that each manager is in the domain of {EMP-+SAL} since MGR k EMP. Instead of using

new attribute names like MSAL in deductions, we could use expressions like { EMP-+SAL}(MGR).

The use of attribute expressions leads one to thinking of inclusion dependencies as statements about

functions named by functional dependencies. For example, if we assume that A-+B and C-+D, then

the dependencies EFk AB and EFkCD can be interpreted as statements about the functions {A-+B}

4

and {C-+D}. These two inclusion dependencies imply that

F = {A-+ B}(E) and F = {c-+ D}(E).

This forces {A-+B} and {C-lD} to agree on all entries in the E column of the database. If the

domain of {C-+D} is in the range of {A-l B}, there are also dependencies which express properties

of the composition {A-+B} 0 {C-+D}.

In a sense, it is the fact that dependencies make statements about functions which makes functional

dependencies combined with inclusion dependencies intractable. The implication problem for

monoids (word problem) can be reduced to the general implication problem for functional and

inclusion dependencies by translating equations between compostions of functions into

dependencies. The same translation also reduces implication over finite monoids to the finite

implication problem for dependencies. Since the implications valid over all finite monoids are not

recursively enumerable [13, 14], there is no complete, recursively enumerable axiomatization for

finite implication of inclusion dependencies and functional dependencies.2

2. Databases and Dependencies

Formally, a relational data base scheme is a set~ of relation names. Each relation name RE~ has

associated attributes R[l], R[2], ... In practice, attributes have meaningful names like EMPLOYEE,

MANAGER, etc. but for the purposes of this paper the integers 1, 2, .. . do just fine. Infinitely many

attributes are used so that attribute introduction is easy to formalize. A relation r is a set of tuples

and a database for a scheme'% is a nonempty relation r for each RE~. A tuple tEr is a sequence of

entries<a1, a2, ... >. We write t[i] to denote the i-th entry oft. IfX is a finite sequence of attlibutes

<X1, X2, ... >, then t[X] denotes the sequence of entries <t[X1], t[X2], ... > and IXI denotes the length of

X. Note that some attribute may appear more than once in X. We write r[X] for {t[X] I t E r}. A

relation is finite if it consists of finitely many tuples and a database is finite if it consists only of

finite relations.

Following common convention, capital letters from the beginning of the alphabet A, B, C, ... will be

used to denote single attributes while capital letters from the end of the alphabet U, V, W, X, ... will

2
The author has been informed thal these undecidability results have also been obtained independently by Chandra

and Vardi, although presumably by different methods [9].

5

denote nonempty sequences 0f attiibutes. Lowercase s and t, possibly with subsc1ipts, will denote

tuples and r a relation (set of tuples).

A relation r' is an A-variant of r if there is a bijection f from r to r' such that for all tEr and all

attributes B:;tA, f(t)[B] = t[B]."

A functional dependency is an assertion of the form R:X-+ Y, where X and Y are nonempty

sequences of attributes. A relation r satisfies R:X-+ Y if, for any tuples s and t in r, s[X] = t[X]

implies s[Y] = t[Y]. An inclusion dependency is an assertion of the form R[X] ~ R'[Y]. A database

<r, r', ... > satisfies R[X] ~ R'[Y] if r[X] ~ r'[Y]. It is occasionally convenient to write

Ll== u

if every database satisfying L also satisfies O'. 'The notation L !=finite O' means that O' holds in every

finite database which satisfies L.

To keep the notation simple, all inference rules presented in this paper are written for functional

and inclusion dependencies which mention only one relation. Consequently, relation names are

omitted from dependencies. All the rules can be rewritten to apply to arbitrary database schemes.

The completeness proof in Section 4 is also easily extended to arbitrary schemes.

3 . Attribute Introduction Rules

The attribute introduction inference system combines several known rules for functional

dependencies or inclusion dependencies together with an equality rule and three new rules

involving both kinds of dependencies.3 The salient new rule of the system is the attribute

introduction rule,

From U ~ V and V -+ B derive UA ~ VB.

This rule is not sound in the usual sense since there exist relations satisfying U ~ V and V -+ B

which do not satisfy UA ~ VB. However, with the proper definition of proof, all proofs of the

system will be sound. Proo fa are defined following the presentation of the axioms and rules.

3
Two combined rules, listed as Fll and F12 below, were discovered independently by the author and by Casanova,

Fagin and Papadimitriou. The soundness proofs for these rules are Propositions 4.1 and 4.2 in the lBM Technical Report
version of [5]. The functional dependency rules Fl-F3 are from [1] and the inclusion dependency rules ll-13 from [5]as
published in the 1982 ACM PODS Conference.

6

Functional Dependencies

(Reflexivity Axiom)
Fl. X -+ Y if all attributes in Y appear in X,

(Augmentation)
F2. From X-+ Y derive XW-+ YZ when all attributes in Z appear in W

(Transitivity)
F3. From X-+ Y and Y-+ Z derive X-+ Z,

(Permutation and Redundancy)
F4. From X-+ Y derive U-+ V, where U and V list precisely

the same attributes as X and Y, respectively,

Inclusion Dependencies

(Reflexivity Axiom)
11. X ~ X

(Permutation, Projection and Redundancy)
12. From A1, ... ,An ~ B1, ... ,Bn derive Air·--,Aik ~ Bir--·•Bik' where l:::;ij< n forallj,

(Transitivity)
13. From X ~ Y and Y ~Z derive X ~ Z

(Substitutivity of Equivalents)
14. From AB~ CC and a derive T , where Tis obtained from <J

by substituting A for one or more occurrences of B

Functional and Inclusion Dependencies

(Pullback)
Fil. From UV~ XY and X -+ Y derive U -+ V, where IXI = IUI,

(Collection)
Fl2. From UV ~ XY, UW ~ XZ and X-+ Y derive UVW ~ XYZ, where IXI = IUI,

(Attribute Introduction)
FI3. From U ~ V and V -+ B derive UA ~ VB.

7

In an application of Fl3 where U (: V and V -, Bare used to derive UA ~ VB, the attribute A is

called the new attribute of the proof step. In order for the rules above to be sound, we need to

restrict the choices of new attributes in proofs. Formally, proofs are defined as follows. Let L

denote a set of functional dependencies and inclusion dependencies. A proof from Lis a sequence

of dependencies <cr1 , ... ,cr n> such that

(i) each <Ji is either an element of L, an instance of Fl or Jl, or follows from one or more
of the preceding dependencies cr1, ... ,0"i-l by a single rule,

(ii) if O"i follows from preceding dependencies by attribute introduction (rule FI3) then
the new attribute of O"i must not appear in Lor cr1, ... ,cri-l

An inclusion or functional dependency cr is provable from L, written L I- <J if there is some proof

<<J1,···,an> from L with <J = O"n and such that no attributes in cr are new in a 1, ... ,an. The

completeness theorem can now be stated.

Theorem 1: Let L U {a} be a set of functional dependencies and inclusion
dependencies. Then L I= CY iff L I- <J.

An induction on the lengths of proofs <a1, ... ,an> from L shows that if a relation r satisfies L, then

there is a relation r' which differs from r only on new attributes of the proof and which satisfies each

ai. lt follows that the inference system is sound. The only complicated cases of the induction are

when FI3 is used, and possibly the equality rule 14. The attribute introduction case is discussed

below and equality subsequently. The full proof of soundness is left to the reader.

The new attribute A in the attribute introduction rule should be thought of as implicitly

existentially quantified. Attribute introduction yields sound proofs since for every relation r

satisfying U~ V and V-,B, there is an A-variant r' of r satisfying UA ~ VB. The entries in r'[A] are

uniquely determined by r[UVB]. Specifically, we can construct r' from r as follows. For any

sequence of entries <v1, ... ,vk>Er[Y], define g(v1, ... ,vk) by

<v1, ... ,vk, g(v1, ... ,vk)> E r[VB].

Since r satisfies V-+B, this condition defines the function g uniquely. Furthermore, since r satisfies

U~V, the projection r[U] is a subset of the domain of g. Using g, we can definer' by

r' = {t' I t'[A] = g(t'[U])} and 3t Er such that 't/C ct: A, t[C]= t'[C]}.

Then r' is an A-variant of rand r' satisfies UA~VB. Thus for every r satisfying U~V and V-+B,

8

there is an A-variant r' satisfying UA~VB.

Jn [19], a slightly different formulation of the attribute introduction rule is compared to an

existential instantiation rule in a natural deduction system for predicate calculus. A sample proof

using FI3 and other rules is given at the end of this section.

Repeated Attributes and Equality

A dependency X ~ Y or X - Y has repeated attributes if there is some attribute A that appears at

least twice in X or twice in Y. As mentioned in the introduction, equality may be expressed using

inclusion dependencies with repeated attributes. Specifically, if any relation satisfies AB ~ CC, then

the A and B entries in any tuple of the relation must be identical. To see why this is so, let t be any

tuple in a relation satisfying AB ~ CC. Then there is some other tuple s in the relation with t[AB]

= s[CC], i.e. t[A] = s[C] = t[B]. The inclusion CC ~ AB does not imply any equality of attributes

but does express a nontrivial property of a database. Repeated attributes make no difference for

functional dependencies: any functional dependency with repeated attributes is equivalent to one

without

In [5], the authors consider repeating dependencies of the form X = Y. The repeating dependency

X = Y is equivalent to the inclusion dependency XY ~ XX. However, the inclusion dependency

XX ~ XY is not equivalent to any set L consisting only of inclusion dependencies without repeated

attributes and repeating dependencies. A simple modification to the proof presented in [5] extends

their "no k-ary axiomatization" theorem to the slightly more powerful dependencies with repeated

attributes.

Theorem [Casanova, Fagin, Papadimitriou]: For every k, there is a set L of inclusion and
functional dependencies such that all consequences of every subset of L of size k are
included in I, yet Lis not closed under implication.

The inclusion dependency rules II through 13 are taken from [5] and are shown there to be

complete for inclusion dependencies without repeated attributes. Specifically, if I is a set of

inclusion dependencies without repeated attributes and a is another such dependency, then I

implies a iff a is provable from L by 11, 12 and 13.

9

It may be shown that 11 through 14 are complete for inclusion dependencies with repeated

attributes. A corollary is that no set of inclusion dependencies without repeated attributes implies

an inclusion dependency with "nontrivially" repeated attributes. More precisely, if L is a set of

inclusion dependencies without repeated attributes and L implies the inclusion dependency er, then

er is equivalent to an inclusion dependency without repeated attributes. In contrast, inclusion and

functional dependencies together do not share this property. The following example shows that

there are sets of functional and inclusion dependencies without repeated attributes that imply

dependencies of the form AB~ CC.

Example Deduction

Although the results of [5] show that the rules of Theorem 1 cannot be complete without the

attribute introduction rule FI3, it is interesting to consider an example which illustrates where Fl3 is

needed. Let L be the following set of hypotheses:

(hl) C-+ D

(h2) AB~ CD

(h3) BA~ CD

(h4) B ~ A

and let a be AB~ BA. The reader may verify that a cannot be derived using inference rules other

than Fl3 by checking all possible deductions (there really are not very many).

Although a little tricky, it is not too difficult to see why I implies a. Consider any tuple t1 in any

relation r satisfying L. Suppose t1[AB] = <a, b>. Since B ~ A, there must be a tuple t2Er with

t2(AB] = <b, x> for some x. We will see that AB ~ BA by determining that x must equal a Since

AB~ CD, there must be some tuple t3 with t3[CD] = t2[AB] = <b, x>. Similarly, from BA~ CD

we know that there must be some tuple t4 with t4[CD] = t1[BA] = <b, a>. But since C -+ D and

t3[C] = t4[C], it must be that t2-(3)[D] = t4[D]. Thus x=a, which proves that a follows from L.

We can prove a from L using the inference rules as follows.

(1) A -+ B from (hl) and (h2) by Fil, Pullback,

10

(2) BE~ AB by F13 from (h4) and (1); note that E does no appear in Lor previously in
the proof,

(3) BE~ CD from (2) and (h2) by Transitivity, F3,

(4) BAE~ COD from (h3), (3) and (hl) by FI2,

(5) AE ~ DD by 12,

(6) BA~ AB from (2) and (5) by 14, Substitutivity of Equivalents.

This derivation shows how a new attribute may be introduced and then proved equal to an attribute

which appears in the original hypotheses.

4. Completeness

This section proves that the attribute introduction rules are complete; soundness is left to the

reader. Let Lo be a set of dependencies and <J a dependency that is not provable from Le) by the

attribute introduction rules. Theorem l is proved by constructing a relation that satisfies Le) but not

a. The relation is constructed from a larger set of dependencies L 'J Le) in stages, with a new tuple

added at each stage.

A slight inconvenience is that there are two cases: <J may be an inclusion dependency or <J may be a

functional dependency. To avoid considering each case separately, we choose three sequences of

attributes X0, YO and Zo and construct a relation in which both

x0 - YO and x0 ~ z0

fail. ff er is a functional dependency X0 -t Y 0, then choose Zo to be a sequence of attributes that do

not appear in Lc)U{<r} and with IZol = IXol- Jf a is an inclusion dependency X0 ~ Zo, then let Y0
be a single attribute which does not appear in Lc)U{a}. Note that if there is some relation that

satisfies Le) but not a, then there is also a relation that satisfies Lo but neither Xo-YO nor X0~z0.

Thus, since the rules are sound, neither x0- YO nor Xo~Zo is provable from Lo·

A set of dependencies Lis deductively closed if Lis closed under all inference rules except FI3 and

for all (U ~ V), (V---+ B) E L, there is some attribute A with (UA ~ VB) E L. We need a

deductively closed set containing Lo to carry out the construction. Let

L1 = Lo U { Xo ---+ Xo, yo- yo, Zo ---+ Zo}

11

so that L1 has the same consequences as 2il but also includes all attributes in X0, YO and z0. This is

so that any "new" attributes introduced in any proof from L'.1 will not be attributes which appear in

X0, YO or Zo- Let L ~ L'.1 be deductively closed. (We can construct such a set in stages by adding

formulas used in proofs, including those with new attributes, to LQ.)

Since all dependencies in L'.1 are provable from Lo, neither X0-i YO nor Xo~Zo is an element of L.

Theorem 1 is proved by constructing a relation that satisfies I but does not satisfy (j,

The outline of the construction is as follows. We fix some arbitrary infinite set S and choose

elements of S as entries in tuples. In the first stage of the construction, two tuples to and t1 are

chosen so that x0-Y0 fails in the relation r1 = {to, t1}. Then, at stage k+l, an additional tuple

tk+l is added to the relation produced so far to "help" satisfy some inclusion dependency Uk~Vk

in L. This is done in such a way that all functional dependencies in L hold at each stage.

Furthermore, no inclusion dependency not in I will be satisfied. If the relation rk produced at

stage k does not satisfy Uk~V k• then we pick a tuple½ with ½[Uk] not in rdV kl- The new tuple tk+ 1

for stage k+l has tk+ 1[Vk]=½[Uk]. The other entries in tk+l are chosen according to a "pullback

function" described later. The relation rk+ 1 formed at stage k + 1 is the rk U {tk+ 1}. We call k + 1

the index of tuple tk+ 1, i.e. the number of the stage at which it was added, and call tuple ½ the

predecessor of tuple tk + 1. All entries in tk + 1 either occur in its predecessor½ or do not appear in rk

at all. We write ~ for the reflexive and transitive closure of the predecessor relation, i.e. s < t if

s =tor if there is some sequence of predecessors leading from t back to s.

The final relation r = Uk rk will be shown to satisfy precisely the inclusion dependencies in L. This

is accomplished using a property(*), described below, which is shown inductively to hold at each

stage. Since r will not satisfy X0-i YO by choice of to and t1, and r will not satisfy X0~Y O since this

inclusion dependency is not in L, the relation r will not satisfy (j,

Attribute Equivalence and Pullback Function

In the remainder of the proof, with L fixed, two sequences of attributes X and Y are said to be

equivalent, written X= Y, ifXY ~ XX EL. The equation X= Y is used only to denote that X and Y

are syntactically identical sequences of attributes. We use (V)i to denote the i-th attribute appearing

in the sequence of attributes V. Thus (U)i= (V)j mean~ that L contains the inclusion dependency

12

AB~ AA, where A is the i-th attribute in U and B the j-th attribute in V.

A helpful tool in the construction is a pullback function p which is used to choose attributes in a

consistent manner. A function, rather than a relation, is used to emphasize that identical choices are

made in identical situations. For every pair of dependencies (U ~ V), (V --+ B) E I , there is an

attribute A with (UA ~ VB) E L. The attribute A is the image of U under the "pullback" of

function V --+ B to U. The following lemma show that the "pullback" is unique, modulo

equivalence of attributes.

Lemma 1: Let X and Y be any sequences of attributes. Suppose that (X ~ Y) is a
pennutation and projection of both (U1 ~ V1) and (U2 ~ Vi). If L contains the
dependencies

X ~ Y Y--+ B U1 ~ V1 U2 k Y2

and B appears in both V1 and V2, i.e. B = (V1)j = (V2)k for somej and k, then (U1)j =
(Ui)k.

Proof: Let A1 denote (U1)j and A2 denote (U2\. By projection and permutation, we
have

XA1 ~ YB and XA2 k YB

in L since L is deductively closed. By Collection, XA1A2 k YBB E L and so by
Projection and Permutation A1A2 ~ BB E L. Since A1A2 ~ A1A2 E L. we conclude
A1A2 ~ A1A1 EL. Thus A1 = (U1)j = (Ui)k = A2. I

Assume that (U k V), (V--+ B) E L. Define p(U,V,B) as follows:

(i) If B appears first as the k-th attribute of V, i.e. if B = (V)k and B * (V)j for all j < k,
then define p(U,V,B) = (U)k- Note that if B = (V)j = (V\, then (U)j = (U)k·

(ii) If B does not appear in V. then pick any inclusion dependency (UA k VB) E L.
Since Lis deductively closed, there is some (UA ~ VB) E L. Define p(U,V,B) = A. By
Lemma 1, this choice is unique up to attribute equivalence.

We may extend p to a "pullback" function for sequences by

(p(U,V,W))i = p(U,V,(W)i),

i.e. the i-th attribute in the sequence p(U,V,W) is the result of applying p to U, V and the i-th

attribute ofW. The critical properties of pare summarized in the lemma below.

Lemma 2: Assume (U k V), (V --+ B) E L.

13

(a) I f B appears as the k-th attribute in V, then p(U,V,B) = (U\.

(b) If A = p(U,V,B), then (UA ~ VB) EL.

(c) If (U ~ V) follows from (W ~ Z) E L by permutation, projection and
redundancy (rule 12), then p(W,Z,B) = p(U,V,B).

(d) lf (U ~ Z), (Z ~ V) EI, then p(U,V,B) = p(U,Z,p(Z,V,B)).

Proof: Properties (a) and (b) are easy consequences of the definition and Lemma 1. To
see that (c) is true, let A = p(U,V,B) and let C = p(W,Z,B). By property (b), we have

UA ~ VB and WC ~ ZB

in I. Since (U ~ V) is a projection and permutation of (W ~ Z), the inclusion (UC ~
VB) must be a projection and permutation of (WC ~ ZB). Therefore (UC ~ VB) E L.
Thus p(U,V.B) =A = C by (a).

The remaining case is (d). Let A = p(U,V,B), C = p(Z,V,B) and D = p(U,Z,C). It must
be shown that D = A. Since UD ~ ZC and ZC ~ VB, we have UD ~ VB. Therefore,
from UA ~ VB and UD ~ VB, we conclude D = A. I

Constructing the Counterexample Relation

At each stage in the construction, we verify inductively that the following property holds of the

relation produced at that stage:

(*) For any pair of tuples S, tk, if ½[X] = tk[Y] for any sequences of attributes X and Y,
then there is some common ancestor ½ :s; tik and some sequence of attributes Z such
that

lj[Z] = tJX] = tk[Y]

Furthermore, (Z ~ X), (Z ~ Y) E I and, for any attribute A, if (X --t A) E L then

½[A] = ½lP(Z,X,A)]

and similarly if (Y --t B) E I then

tk[B] = ½(p(Z,Y,B)].

We begin the construction by choosing two tuples to and t1 to ensure that the functional

dependency (X0 - Y 0) fails. Let X0 + consists of all attributes functionally determined by x0, i.e.

Xo+ = {A I (Xo--t A) EI}.

The first tuple to is chosen to have any arbitrary, distinct elements of S as entries, subject to the

14

restriction that to[A] = t0[B] iff A = B. For each attribute A E X0 +, let t1[A] = to[A]. For each A ([.

Xo +, let t1[A] be some new element of S not appearing in to- Again, the entries must satisfy the

equality constraint: t1[A] = t1[B] iff A = B. To avoid special cases in the remainder of the proof,

we say that to is the predecessor of t1. Hence to< to and to< t1.

It is easy to see that the relation r1 = { to, t1} satisfies all functional dependencies in L, as follows.

Suppose that to[X] = t1[Y]. By construction, to[A] = t1[B] iff A=B and A, BE X0 +. Therefore Y

must be obtained from X by substitution of equivalent attributes and each attribute in X must

appear in X0. Thus, for any (X --t B) E L, we have B E X0 + and hence to[B] = t1[B]. This also

demonstrates(*) for the first stage of the construction.

We now add more tuples, producing a sequence of relations r1 ~ r2 ~ ... such that the relation r =
Uk rk satisfies all inclusion dependencies in Land such that (*) holds in each rk. Let (U1 ~ V 1),

(U2 ~ V 2), ... be an enumeration of inclusion dependencies from L such that for every (U ~ V) E

L, there are infinitely many i such that (U ~ V) is a projection and permutation of (Ui ~ Vj). The

tuple tk produced at stage k is chosen by looking at (Uk ~ Vk).

Let rk be the result of the k-th stage. If rk satisfies (Uk ~ Vk), then let rk+l be rk. Otherwise, let~ be

the tuple with lowest index such that 1i[Uk] is not in rk[V k]. The tuple 1i will be the predecessor of

tk + l · The entries of tk + 1 are chosen as folJows. For each attribute B such that (V k --t B) E L, let

tk+1[B] = 1-j[p(Uk,Vk,B)].

For each attribute C not functionally determined by V k• let tk+ 1[C] be some new element of S not

appearing in rk. Choose all such tk+ i[Cl so that tk+i[Cl = tk+ 1[D] iffC = D. Note that since

p(Uk,Vk,Vk) = Uk, we have tk+i[Vk] = ½[Uk].

We now verify(*) for rk+ 1. Since(*) holds for rk, we need only consider the effect of adding tk+ 1.

Suppose that there is some tuple tj in rk with ½[X] = tk+ilYJ for some sequences of attributes X

and Y. Then by the choice of symbols in tk+ l• all the entries in tk+J[Y] must have been entries in y.
Hence (Vk --t Y) E L. Let W = p(Uk,Vk,Y). For each attribute (W)m of the sequence of attributes

W, the construction ensures that

½[(W)m] = tk+1[(Y)m].

By Lemma 2, each dependency UlW)m ~ Vk(Y)m is in L. Since.each (Vk--+ (Y)m) E L, it follows

15

from Fl2 that (Uk W h Y k Y) E L. Thus (W h Y) E L by perrnutation and projection. Since

½[(W)m] = tk+1[(Y)m]forall m,½[W] = tk+l[Y]. Wenowhavetk+l(Y] = ½(W] = t)X]and(W h

Y)E L.

Since½, tj E Mk, it follows from the induction hypothesis(*) for Mk that there is some tn ~ ti,tj such

that ln[Z] = ti[W] = ½[X] for some sequence of attributes Z. Furthermore, (Z h W) and (Z h X) E

L. By transitivity of equality, In[Z] = tk + 1[Y] and by transitivity of inclusion dependencies, (Z h

Y) EL. Thus

In[Z] = ½[X] = tk + l[Y]

and

(Z h X), (Z h Y) E L.

To finish the proof of(*), it must be shown that if (X -+ A) E L, then ½[A] = lnlP(Z,X,A)] and

similarly (Y-+ B) E L implies tk+l[B] = InlP{Z,Y,B)]. The first case, if (X -+ A), is a trivial

consequence of the induction hypothesis. Now suppose (Y -+ B) E L. Let C = p(W,Y,B). Then

(WC h YB) E L and, by Fil, (W -+ C) E L. Thus 1j[C] = ln[p(Z,W,C)]. Let D = p(Z,Y,B). By

Lemma 2, D = p(Z,W,C). It remains to show that tk+ 1[B] = Ln[D]. First note that since (Uk W h

VkY) extends (W h Y), and both (Y-+ B), (Yk-+ B) EL, we have p(Uk,Yk,B) = p(UkW, YkY, B)

= C. Therefore tk + 1[B] = lj[C]. Recall that tj[C] = lnlP{Z,W,C)]. But since D = p(Z,W,C), it

follows that ½[CJ = ln[D]. Therefore

tk + 1[8] = lj[C] = ln[D].

This demonstrates(*) for Mk+ 1.

Now consider the relation r = Uk rk. To see that r satisfies all functional dependencies in L, let X

-+ Y E L and suppose that there are two tuples ½ and tk in r with tj[X] = tk[X]. By (*), there is

some ½ ~ ½, tk such that

1j[W] = ½[X] = tk[X] and (W h X) E L.

Furthermore, for all m < IYI,

½[(Y)m] = ½[p{W,X,(Y)m)J = td(Y)mJ.

Thus tj[Y] = tk[Y] and (X -+ Y) holds. All functional dependencies in Lare satisfied by r, but by

choice ofto and t1 the functional dependency X0 -+ Yo is not

16

In addition, the relation r satisfies X ~ Y iff X ~ Y E I. This is demonstrated as follows. lt is clear

from the construction that if X ~ Y E I , then for any½ there is some rk with ti[X] E rk[Y]. Thus r

satisfies all X ~ Yin L. For the converse, assume (X ~ Y) (£ I. We show that to[X] (£ r[Y] using

property(*). Suppose that, on the contrary, there is some tuple tk in rk with to[X] = tdY]. Then by

(*) there is some½ ~ to, tk with ½[Z] = to[X] = tk[Y] and (Z ~ Y), (Z ~ X) E I. But the only tuple

½ with ti ~ to is ½ = to· Also, by construction of to, we have to[Z] = to[X] iff Z may be obtained

from X by substituting equivalent attributes. Therefore, by substitutivity of equivalents and Z!:Y E

L we conclude X!:Y E L. Since this is a contradiction, it follows that to[X] :;:. tk[Y]. Thus r satisfies

X !: Y iff X ~ Y E I . In particular, r does not satisfy X0 !: Zo since this dependency does not

appear in I. This finishes the proof of Theorem 1.

5. Undecida bility

A simple translation of equations into dependencies shows that both the finite and general

implication problems are undecidable. We know that the valid general implications are recursively

enumerable since the dependencies are first-order formulas. Since a simple enumeration of finite

databases will uncover all invalid finite implications (from finite sets of hypotheses), the valid finite

implications for functional and inclusion dependencies form the complement of a recursively

enumerable set. The reduction described below will show that both problems are as hard as any in

their respective classes (cf. [18)).

Intuitively, the idea of the reduction is to use functional dependencies and inclusion dependencies

to force the pairs of columns of a relation to contain functions (i.e. graphs of functions) from some

arbitrary set to itself. Since any monoid (semigroup with unit; cf. [18]) is isomorphic to a monoid of

functions from a set to itself, the relations satisfying this set of dependencies correspond to arbitrary

monoids. Using inclusion dependencies, we can then express equations between compositions of

functions. This translation of equations to dependencies provides reductions from the word

problems for monoids and finite monoids to the general and finite implication problems,

respectively. Although the reduction is not complicated, it is given in some detail to make the

presentation more readable and self-contained.

The translations from monoid equations to dependencies is simplified by adopting a slightly

17

peculiar syntax for equations.• A signatures is a pair <A,X> where A is an attribute and Xis a set of

attributes with A E X. A composition equation over a signature s = <A,X> is an equation of the

fonn

AB= AC 0 AD

where B, C, D E X. The pairs of symbols AB, with B E X, are called the terms of s. A monoid

interpretation for a signatures is a monoid M together with a mapping p from terms of s to elements

of the monoid. We assume that p(AA) is the unit of the monoid. A monoid interpretation< M, p>

satisfies an equation

AB= AC 0 AD

if p(AB) is the product of p(AC) and p(AD) in M. If TUT is a set of composition equations, then T

I= T means that every monoid interpretation satisfying T also satisfies T. We use !=finite for

implication over finite monoids. Since p(AA) is a unit, we can write AB = AC by writing AB =

AC 0 AA.

The word problem for monoids is well-known to be undecidable [20] (see also [18]). A convenient

version of the word problem is the following implication problem:

Given a finite set T U { T} of composition equations, determine whether T holds in every

monoid satisfying T.

In the corresponding finite version, we ask instead whether T holds in every finite monoid satisfying

T. The finite implication problem (word problem for finite monoids) is proved undecidable in [13]

(see also [14]).

Composition equations can be interpreted over any relation if the appropriate attributes of the

relation contain functions which generate a monoid. Fortunately, at least as far as the proof goes,

this is a property which can be described using functional and inclusion dependencies. Ifs= <A,X>

is a signature, then let Ls denote the set of dependencies

Ls= {A-+BIBEX}U{B~ AIBEX}.

A relational interpretation for a signature s = <A,X> is a relation r satisfying Ls· Note that if r is a

relational interpretation for s = <A,X> and B EX, then the set of ordered pairs r[AB] is a function

(in the set-theoretic sense, i.e. the graph of a function) from r[A] to r[A]. Furthermore, r[AA] is the

identity function on r[A].

18

If T is a composition equation AB = AC O AD over some signature s and r is a relational

interpretation for s, then r satisfies T if the function r[AB] is the composition of the functions r[AC]

and 11AD], i.e.

11AB] = { <a,b> I 3c with <a,c> E r[AC] and <c,b> E r[AD]}.

We can express composition equations as inclusion dependencies, as shown in the following lemma

Lemma 3: Let T be a composition equation AB = AC O AD over signatures and let r be
a relational interpretation for s. Then r satisfies Tiff r satisfies CB ~ AD.

Proof: First suppose that r is a relational interpretation which satisfies AB = AC O AD.
Let b, c and d denote the functions r[AB], r[AC] and r[AD] respectively. Then for any
tuple t E r, we have

t[B] = b(t[A]) = d(c(t[A])) = d(t[C]).

Since r is a relational interpretation, we know r[C] ~ r[A] and so there is some tuple t1 E
r with t1(A] = t[C]. Therefore

t(CB] = <t[C], d(t[C])> = <t1[A], d(t1[A])> = t1[AD].

This shows that r satisfies CB ~ AD.

Now assume that r satisfies CB ~ AD. For any tuple t E r, there is a tuple t1 E r with
t[CB] = t1(AD]. Therefore, for functions b, c and d as above, we have

t1(A] = c(t[A]) and b(t[A]) = d(t1[A]).

By substituting c(t[A]) for t1[A], we obtain

b(t[A]) = d(t1[A]) = d(c(t[AD).

Since this holds for all t[A], i.e. all elements of the domain of b, c and d, we can conclude
that b = c O d. Thus r satisfies AB = AC O AD. I

If Tis the composition equation AB = AC O AD, then we call CB~ AD the dependency translation

of T and write (CB ~ AD) = Trans{ T). Jf Tis a set of composition equations, then Trans{T) is the

set of dependency translations of equations from T.

Although the set of functions given by a relational interpretation r need not be closed under

composition, any relational interpretation can be expanded to a monoid interpretation. This is the

content of the lemma below.

Lemma 4: Let r be a relational interpretation for s. There is a monoid interpretation <M,
p> for s which satisfies precisely the same composition equations over s as r.
Furthermore, if r is a finite relation then Mis a finite monoid.

19

Proof: Define the set of generators from the interpretation r for S = <A,X> by

GENr,s = { r[AB] IBEX}

and let M be the smallest set of functions from r[A] to r[A] containing GEN rs and closed
under composition. Define p by p(AB) = r[AB]. It is clear that <M,p> satisfies the same
equations overs as the relational interpretation r. In addition, if r is a finite relation then
r[A] is finite and so there are only finitely many equations which can be in M.I

Lemma 4 has the following converse.

Lemma 5: If <M,p> is a monoid interpretation for s = <A,X> then there is some
relational interpretation r which satisfies precisely the same equations overs as <M, p>.
Furthermore, if M is a finite monoid then r is a finite relation.

Proof: The relation r will be constructed using a tuple for each element of M and using
elements of Mas entries. For each element m EM, let t,n be any tuple such that

tnJB] = (p(AB))(m)

for all 8 E X. In particular, ln,[A] = m. The remainder of the proof follows the usual
proof of Cayley's Theorem (cf. [15]) for monoids. Since there are as many tuples in r as
elements of M, the relation r will be finite whenever Mis. I

The main results of this Section follow easily from the equivalence between monoid implication

and relational database implication stated below.

Lemma 6: Let T U { T} be a set of composition equations over some signature s =
<A,X>. For '2: = Trans(_T) U Ls and <J = Trans{.<J) we have the following equivalences.

(i) T I= T iff L I= (J

(ii) T !=finite T iff L !=finite <J

Proof: We first show that if '2: does not imply a, then T does not imply T. If L does not
imply <J, then there is a relation r which satisfies '2: but not <J. Since r satisfies Ls !:: '2:, r is
a relational interpretation for s. Therefore, by Lemma 3, r satisfies T but not -r.

Furthermore, by Lemma 4, there is a monoid interpretation <M,p> which satisfies
precisely the same equations overs as r. Thus <M,p> satisfies T but not T. Note also that
if r is finite then so is M. This proves half of each equivalence.

For the converses, suppose that <M,p> is a monoid interpretation for s which satisfies T
but not T. Then by Lemma 5 there is a relational interpretation r which satisfies T but
not T . But then by Lemma 3, r satisfies '2: but not a. Recall that if M is finite then so is
r. This concludes the proof of the lemma. I

20

We now have

Theorem 2: The implication and finite implication problems for functional dependencies
and inclusion dependencies are recursively unsolvable.

as a simple consequence of the undecidability results of [20] and [13].

6. Conclusion

This paper presents a complete axiom system for functional dependencies and inclusion

dependencies. The system stands in contrast to the possibility suggested in [5] that no such system

exists. Essentially, the difficulties discussed in [5] are surmounted using an inference rule similar to

existential instantiation in a natural deduction system. A rule which allows new attribute nan1es to

be introduced into deductions simplifies reasoning about functional and inclusion dependencies.

Both the finite implication and general implication problems are shown to be undecidable. The

proof uses the simple observation that functional dependencies force projections of a relation to be

functions and inclusion dependencies can express equality between compositions of functions. This

reduces the word problems for monoids and finite monoids to the general implication and finite

implication problems for dependencies. Since there is no complete axiomatization for finite

monoids, there is no complete axiomatization for finite implication. It is interesting to note that

when relations are interpreted as monoids, introducing new attribute names corresponds to naming

products in a monoid.

Although the implication and finite implication problems are both undecidable, there are restricted

versions of these problems with polynomial-time decision procedures [17]. For example, as

suggested in [5], one may consider functional dependencies together with simple inclusion

dependencies of the form A ~ B, where A and B are both single attributes. These restricted

inclusion dependencies are called unary inclusion dependencies. In [17] it is shown that implication

for functional dependencies and unary inclusion dependencies is decidable in polynomial time. A

polynomial-time decision procedure for finite implication of functional dependencies and unary

inclusion dependencies is also given in [17], along with a complete axiom system for finite

implication.

21

The translation presented in Section 5 of monoid equations into dependencies uses only simple

binary inclusion dependencies of the form AB ~ CD, where A. B, C and D are single attributes.

Thus the results of [17] cannot be extended even to binary inclusion dependencies.

Thanks to Christos Papadimitriou, Albert Meyer and, in particular, Paris Kanellakis for many

helpful discussions.

7. Refe rences

1. Armstrong, W.W. Dependency Structures of Database Relationships. Proc. IFIP '74, 1974, pp.
580-583.

2. Beeri, C. and P.A. Bernstein. Computational Problems Related to the Design of Normal Form
Relational Schemes. ACM Trans. on Database Systems 4, 1 (March 1979). pp 30-59

3. Beeri, C., R. Fagin and J.H. Howard. A Complete Axiomatization for Functional and
Multivalued Dependencies in Database Relations. Proc. 1977 ACM SIGMOD Conference, 1977.
pp 47-61

4. Beeri, C. and H.F. Korth. Compatible Attributes in a Universal Relation. Proc. 1st ACM Conf.
on Principles of Database Systems, 1982.

5. Casanova, M.A., R. Fagin and C.H. Papadimitriou. Inclusion Dependencies and Their
Interaction with Functional Dependencies. Proc. 1st ACM Conf. on Principles of Database
Systems, 1982, pp.171-176. Also appears as IBM Research Report RJ3380 (40416), 1982.

6. Chen, P. The Entity-Relationship Model --Toward a Unified View of Data. ACM Trans. on
Database Systems 1, 1 (March 1976). pp 9-36

7. Codd, E.F. Relational Completeness of Database Sublanguages. In R. Rustin, Ed., Data Base
Systems, Prentice-Hall, New Jersey, 1972.

8. Codd, E.F. Extending the Database Relational Model to Capture More Meaning. ACM Trans.
on Database Systems 4, 4 (December 1980). pp 397-434

9. Chandra, A. and M. Vardi. Personal Communication (Vardi). January 1983.

10. Fagin, R. A Normal Form for Relational Databases that is Based on Domains and Keys. ACM
Trans. on Database Systems 6, 3 (September 1981). pp 387-415

11. Fagin, R. Horn Clauses and Database Dependencies. Proc. ACM Symp. on Theory of
Computing, 1980, pp. 123-143. To appear in (JACM).

22

12. Garey, M.R. and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP­
. Completeness. W.H. Freeman and Co., 1979.

13. Gurevich, Y. The Word Problem for Certain Classes ofSemigroups. Algebra and Logic 5, 5
(1966). pp 25-35.

14. Gurevich, Y. and H.R. Lewis. The Word Problem for Cancellation Semigroups with Zero.
Tech. Rep. TR-08-82, Harvard, 1982.

15. Herstein, I.N. Topics in Algebra. Xerox, 1975.

16. Johnson, D.S. and A. Klug. Testing Containment of Conjunctive Queries Under Functional
and Inclusion Dependencies. Proc. 2nd ACM Conf. on Principles of Database Systems, 1982, pp.
164-169.

17. Kanellakis, P.C., S.S. Cosmadakis, M.Y. Vardi. Unary Inclusion Dependencies Have
Polynomial Time Inference Problems. To Appear 15-th ACM Symposium on Theory of
Computing, April, 1983.

18. Machtey, M. and P. Young. An Introduction to the General Theory of Algorithms. North
Holland, 1978.

19. Mitchell, J.C. Jnference Rules for Functional and Inclusion Dependencies. Proc. 2nd ACM
Conf. on Principles of Database Systems, March, 1983.

20. Post, E.L. Recursive Unsolvability of a Problem of Thue. Journal of symbolic Logic 12 (1947).
pp 1-11.

21. Vardi, M.Y. The Implication and Finite Implication Problems for Typed Template
Dependencies. Tech. Rep. STAN-CS-82-912, Stanford University, 1982.

22. Yannakakis, M. and C.H. Papadimitriou. Algebraic Dependencies. Proc. 21-st IEEE Symp. on
Found. of Comp. Sci., 1980, pp. 328-332.

Table of Contents .

1. Introduction
2. Databases and Dependencies
3. Attribute Introduction Rules
4. Completeness
5. Undecidability
6. Conclusion
7. References

1
4
5

10
16
20
21

