LABORATORY FOR § R
COMPUTER SCIENCE 5 Tl TECHNOLOGY

MIT/LCS/TM-226

"HOARE'S LOGIC IS NOT COMPLETE WHEN IT COULD BE"

J. Bergstra
A. Chmielinska
J. Tiuryn I

August 1982

N

«

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/1.CS/TM-226

""HOARE'S LOGIC IS NOT COMPLETE WHEN IT COULD BE"

J. Bergstra
A. Chmielinska
J. Tiuryn

August 1982

Hoare’s Légic is Dot Complete
When [t Could Be

J. Bergstra 1

A. Chmielinska 2

J. Tiuryn =

5 August 1982

1. University of Leiden, Department of Computer Science, The Netherlands
2. University of Torun, Department of Mathematics, Poland
3. M.LT,, Laboratory for Computer Science, USA,

Boston University, Department of Mathematics, USA and

University of Warsaw, Department of Mathematics, Poland.

This work was supported in part by The National Science Foundation, Grant No. MCS
8010707, and by a grant to the M.LT. Laboratory for Computer Science by the IBM
Corporation.

Abstract

It is known (cf. [2]) that if the Hoare rules are complete for a first-order
structure 4, then the set of partial correctness assertions truc over A is recursive
in the first-order theory of 4. We show that the converse is not true. Namely,
there is a first-order structure € such that the set of partial correctness assertions
true over € is recursive in the theory of €, but the Hoare rules are not complete

for C.
KEY WORDS

Hoare Logic, Partial Correctness Assertions, Relative Completeness
1. Introduction

A first-order partial correctness assertion is a formula {P} « {Q}, where P and Q are first-
order formulae and « is a while-program. The assertion {P} a {Q} means that if P is true
of some machine state, and if the program « halts when started from (his state, then the
formula Q will be true in the halting state of a. Since the set of valid partial correctness
assertion is I'Ig - complete [6], there is no finitary sound and complete axiom system for

partial correctness.

Cook [4] has shown that the axiom system composed of the rules of Hoare [7] together with
the first-order theory of a structure is complete for a certain class of structures. More
precisely, for any first-order structure A, the system HL(A) consists of Hoare's inference
rules together with the first-order theory of L. The structure A is expressive if, for any
program a and first-order formula Q, there is a first-order formula P such that for all 3
AE=P@) =X =7} « {Q}.

Cook’s theorem states that if A is expressive, then HL(4) is complete. In general, however,
the set PC(A) of partial correctness assertions that are valid over A is H? in the first-order
theory Th(4) of A (cf. [1]) whercas HL(4) is 2? in Th(«). Thus HL(A) is not complete for

arbitrary A.

Although expressiveness is sufficient to guarantee the completeness of HL(4), it is not a
necessary condition. For example, any nonstandard model of the integers has a complete

Hoare logic, but cannot be expressive (cf. [2]). Moreover, proving properties of programs

over expressive structures may be considered a degencrate case. When expressiveness

holds, partial correctness assertions reduce to first order formulae.

Since PC(A) is always H? in Th(4) and HL() is E{f in Th(.4), then if HL is complete the
partial correctness theory PC(A) is recursive in Th(4). This paper is motivated by the
following question: is HL(A) complete for every structure A such that PC(A) is recursive in
Th(4)? We show that it is not. We will present a general construction of counterexamples
for this situation. A corollary of our construction is that the ability to code finite sequences
cannot be removed from the hypothesis of Harel's completeness theorem for arithmetical

universes (cf. [5]).

As pointed out in [S], any structure A can be expanded to a structure with a complete Hoare
logic by expanding to an arithmetical universe. This expansion may incrcasc the degree of
undecidability of the first-order theory of A. However, when HL(A) is incomplete but
PC(A) is recursive in Th(4), the structure A may be expanded in a much simpler way to
obtain a complete Hoare logic. We may consider proof systems HL(£,E) over a first order
theory E in language £. HL(.4) is then identified with HL(£, Th(.4)), when A is an
L-structure. It follows from [3] that A can be expanded to an £*-structure A* with £*-2
being finite, such that for some decidable theory T C Th(4™®),
PC(4) € HL(2* Th(4) U T).Thus Th(A) U T, where T is decidable but formulated in an

extended language, contains enough information to derive all of PC(A).

2. Preliminaries

We begin by presenting a version of Hoare’s inference rules that suits our purposcs. In the
following rules, P, Q and R denote first-order formulae, B denotes any quantifier-free first-
order formula, t a term, and x a variable. We use Q[t/x] to denote the formula Q with t
substituted for all free occurrences of x. Greek letters a and S8 denote arbitrary while-

programs.

(Assignment Rule) PO Qt/x] — {P}x: =t{Q}

(Composition Rule) {P} « {Q}, {Q} B {R} + {P} ;B {R}

(Conditional rule) {P A B} a {Q}, {PA - B} 8{Q}
= {P} if B then a else B fi {Q}

([teration rule) POR,{RAB}a{R}L, RA-BDQ
— {P} while B do a od {Q}

(Oracle axioms) Every P€Th(.4) is an axiom.

In the composition rule, the formula Q is called an interinediate assertion, and in the
iteration rule, R is called the loop invariant. Formally, HL(A) denotes the set of all asserted

programs {P} « {Q} provable from Th(.4) using the above rules.

The reader may easily verify that the Rule of Consequence,

PPy AP a) 920 - (B}
1s a dertved rule of HIL.. Another rule that is casily derived is

{P} a{Q} + {3xP}a{3xQ},
where x is a variable that does not occur in a. Together, these two rules imply that
superfluous free variables may be eliminated from invariants and intermediate assertions of
proofs.

Lemma I: Let X be the set of all variables occurring free in P,Q, or a. If HL(A)
proves {P} a {Q}, then there exists a proof of {P} a {Q} in HL(A) using only
invariants and intermediate assertions with free variables in X,

The idea of the proof is as follows. Suppose we have proof of {P} « {Q} in HL(.) and
assume that x is [ree in P or Q but does not occur in «. This proof can be transformed into

another proof by quantifying over x in each formula.

We define the disjoint union A @ of first-order structures .4 and % in order to state our

theorems. Let £; and £, be two similarity types. Let A and B be unary predicate symbols

and L a constant symbol, none of which belong to £; U £, Let 4, @ be
L1-, Ly-structures, respectively. For any integer 1 and set X let XXi denote Xx{i}. Let
L=21ULU {AB.L}. We define an L-structure 4 & B with carrier [A® %3] =
[A]X0 U 3]x1 U {£2,2>}. We interpret A as the characteristic predicate of |A4|x0, B as the
characteristic predicate of [#{x1 and L as <2,2>. We interpret the £; (respectively £)
function symbols as in A (as in @, respectively), provided all arguments are taken from
[A]X0 (from |8]x1, resp.) Otherwise, we take the valuc of a function to be L. We interpret
L (respectively £,) predicate symbols as in A (as in %, resp.), provided all arguments are
taken from |A|x0 (from |a]x]1, L'CSb.), and set to be false elsewhere. In particular, if

R € £;N&,, then cither all arguments of R should be taken from |.4]x0 or all from [s]x 1.

Clearly a meaningful alternative to this definition would be to use two-sorted structure, but

the disjoint union keeps us closer to the standard Hoare formalism,

We are now in position to formulate two general thcorems which answer the question
poscd in the introduction.
Theorem I: For every A there is a structure % such that

PC(Aé3) is recursive in Th(A®%), and

Theorem?2: For every two structures A and 8
if HL(4) is incomplete, then so is HL(A&©%).

The following corollary, stated as a claim in the introduction, follows immediately from

these theorems.

Corollary : There is a structure ¢ such that
PC(€) 1s recursive in Th(¢) and HL(¢) is incomplete.

Proof. Take A to be any structure for which HL(.A) is incomplete (cf. [1, 8] for examples).
Then, according to Theorem 1, exists @ such that PC(4&®%) is recursive in Th(ASDB).

Moreover, according to Theorem 2, HL(A®%) is incomplete. Thus we can put ¢ = AGHSB.

Theorem 1 also gives us some insight into Harel’s theorem on arithmetical universes (cf,

[5]). Let N stand for the standard model of arithmetic. By Theorem 2 we know that for any
A with HL(.4) incomplete, HL{A®N) is incomplete. Harel’s theorem says that if % is a
structure which contains the standard model of arithmetic (as a first order definable part of
) and if @ has the ability to code finite sequences of elements from |%], then the first order
language is cxpressive for while-programs over %, and therefore H L(%) is complete. Since
obviously N is a first order definable part of A®N, but HL(A®N) is not complete, Harel's

encoding assumption is necessary to ensure the completeness of his axioms.

We prove Theorem 1 in Section 3 and Theorem 2 in Section 4.

3. Adding an Expressive Structure

This section shows that for any structure A, there is a structure @ such that PC(A®B) is
recursive in Th(4®%). If the domain of A is finite, then $ may be chosen to be any finite
structure. Then ADD is finite and PC(ASD) is recﬂrsive in Th(A®%3). When A is infinite,
we will define % to be a copy of A which also has the standard arithmetic operations
defined on the elements of its domain. By constmdion, the first-order theory of 6 will
contain both the first-order theory of 4 and the first-order theory of arithmetic. As a
consequence, PC(A®%) will be recursive in Th(A@2). However, the structure A®% need
not be expressive since there may not be any way to code pairs of clements of |4] in

ﬂ](.}i@%).

Assume now that A is infinite and its sim.ilarity type is £;. We construct % so that
PC(4®b) is recursive in Th(A®s) as follows. First, we expand A to an arithmetic universe
in the sense of [5]. To do this, we add a defining predicate for "non negative integers” N,
arithmetic operations, constants 0 and 1, and in addition, we add a pairing function. The
resulting structure, B, has the same domain as A but has a richer similarity type which we

denote by £,.

It is clear that Th(®) is recursive in Th(A®®). This follows immediately from the

definition of the ®-construction. Because 4 is expressive (being an arithmetical universe),
HL(%8) is complete. Therefore PC(9) is recursive in Th(s). Thus, it remains to be shown

that PC(A®%) is many-one reducible to PC(%).

We will outline the reduction of PC(A4®%) to PC(%) by showing an effective simulation of

computations on A@S by those on B.

[n order to describe a smooth translation of asscrtions and programs, we introduce an
infinite family of new variables: yg,yy,... . The translation will take a formula with variables

XX 1o 10 @ formula with variables x(,y.X .y ... With double the number of quantifiers.

Because the structure % contains in its language names for 0,1 and 2 (since it contains the
language of arithmetic) it is natural to identify the clements of 8] which correspond to

these names with the actual numbers 0,1,2. By means of this identification, we can view

[A@s] = |Ax{0} U Jajx{1} U {K2,2>}
as a subset of [B]x|s] (recall that |4] = [s]). In what follows we usc the projection

functions on the coordinates, 71 and 7, on elements of || x|s].

We show an effective translation Tr of first order formula over the language of 4 @ % to
first order formula over £,. The translation will have the property that for every P(xy.....X,)
over the language of A® @, and for all ¢y,....c, € |ADWB],

A®DB = P(Xq,., XpCnCy]

iff

% =Tt (P)(‘(L,yl,...,Xn,yn)['ffl(Cl),'71'2((31),...,'iTl(Cn),‘?Tz(Cn)].
Because the formal definition of Tr is slightly cumbersome we present its details. We first
introduce some notations. For a term t we define Li(t) to be trwe if t is a term over

language £, and false otherwise.

We define Tr inductively. Suppose P is an equation t = t’, where t contains the variables

X =4 ieJ}, and t' contains the variables X' = {x;: i€J'}. Then we want Tx(P) to be true
iff
(a) both tand t have values in [A]X0 and t={, or

(b) both t and t" have values in |[B|x1 and t=t, or

(¢)both tand t" are L

Formulae (a) - (¢) can be written formally as follows:

@) A (=0)ALWOA LE)AL=T
ieJjury

b A (Gi=Dat=¢
i€Jur

@)V =0 VL OIA [V = DI A
ic] i€l
[V =0 v =Ly ALV (y;=1)]
i ey

Suppose P is an atomic formula R(t}....t;) with R € £; and let X = {x;: i€J} contain

variables that occur in P. Then Tr(P) is:

LA G=0AA" L] V A (=D} ARG..t,)
i€lJ i=1 €]

[f P is A(t), then Tr(P) is:

AG=0 A L.
i€]

The cases for P of the form B(t) or R(ty, ..., t,) with R € £5-2, arc simpler and we omit

them,
If Pis Py V Py, then Tr(P) is Tr(Py) v Tr(P,).
If P has free variables X = {x;: €]}, then Tr(=P) is

A (yi:() V yi:1 vV y]-=2) A —'*TF(P)
i€J :

Finally, Tr(3x; P) is
3x; y; ((y;=0 v y; =1 Vv y,=2) A Tr(P)).

This concludes the inductive definition of Tr for formulae.

The next step is to extend Tr to programs a over the language of A®% so that for all first
order formulac P, Q over the language of A®SB

(*) 4@s = {P}a{Q} iffs = {Tr(P)} Tr{c){Tr{Q)}.

Let a be a program and let {x;, ..., x,,} contain all variables occurring in . The translation

Tr(a) will use variables Xy, ¥y, ..., X, ¥, in such a way that the following diagram commutes

|4 & af" & > |4 @s|"
| |
T<W1,‘Tr2>n i <7T1,71'2>n§
ok ‘ Tr(a) v,
|G_B n .“__.__.._._.,.___u._.__._f,g e |GB[n

To achieve this, every assignment statement x; : =t in a is replaced by a pair of assignment
statements for x; and y;, depending on L;(t) and the values of yj’s corresponding to xj’s
occurring in t. Every test P in « is replaced by Tr(P). The details of this construction are

left for the reader.

It follows from (*) I‘hat Tr is many-one reduction of PC(4&®%) to PC(2). This completes

the proof of Theorem 1.

4. Hoare’s Logic over Direct Sum

In this section we will show that incompleteness of HL(4) implies incompleteness of

HL(4®3).

Let P be a first order formula over the language of A@®3. We define Py, a relativisation of
P to |4], inductively as follows.

(i) ifPisatomic, thenP, isP
(i) PV Q)yisPyVQyu

(iv) (3xP), is 3x (AX) A P).

If X is a finite sct of variables, then A(X) denotes A A(x). We define Py and B(X)
xEX
similarly.

Using relativized formulae, we can interpret PC(A) in PC(A®DR).

Lemma 2: Let P,Q be first order formulae over £, and let a be a while-program
over £;. Let X be the set ol all variables occurring free in Por Q or a. Then

AEA{P} a {Q} iff 4®®B k= {AX) AP} a {A(X)AQpL

Furthermore, if HL(4®%) proves {A(X) A Py} a {A(x) A Qu} using only
invariants and intermediate asscrtions with free variables in X and of the form
A(X) A Ry, then HL(A) proves {P} « {Q}.

The proof of this lemma is straightforward and is omitted. To finish the proof of Theorem
2, we need the following proposition.

Proposition 3: Let P be a first order formula over the language of A®% and let X
be the set of all variables occurring free in P. Then there cxists a first order
formula Q over £, such that

403 = (AK) AP) = (AC) AQy).

Before we prove Proposition 3, we show how it yields the proof of Theorem 2.

Proof of Theorem 2: Assume that HL(4) is incomplete and HL(A®%) complete.
Choose {P} a {Q} truc in A but not derivable in HL(4). Let X be the set of all
variables occurring free in P, Q, or a. By Lemma 2, {A(X) APA} «
{A(X) A Qu} is true in A®%, and therefore if HL(A®SB) = {A(X) A Pp} «
JACO AQy

10

We derive a contradiction by constructing a proof of {P} a {Q} in HL.(A). By
Lemma 1, there is a proof of {A(X) A P} a {A(X) A Q} in which all
intermediate assertions and invariants have their free variables in X. In addition,
cach {R} a {S} in the proof may be replaced by {A(X) A R} e {A(X) A S} to
yield another valid proof. Then, according to Proposition 3, all invariants and
intermediate assertions can be written in the form {A(X) A R\ } a {A(X) A
S'A} with R” and S are first order formulae over £;. By Lemma 2, HL(4) proves
{P} a {Q} in contrast to our assumptions. #

The proof of Proposition 3 uses Lemmas 4 - 6 stated below.

Lemmad: (L -e¢ lmlmuon) For cvery first order formula P over £ U {A, B, L}
there is a formula P over L1 U {A, B} such that

(i) A®BE=P= p--
(i) 4@se= @b =@t

Proof: It suffices to notice that we can define the constant L using the unary
rclationsAand B: x= 1 ilf —=A(x) A =B(x).1

We say that a formula P of the language of A @ 4 is normalized iff there is a number n,
formulae Fl,...,F“ over £y U {A,B} and formulac GI,...,Gn over £, U {A,B} such that P of
the form 1/_\1; (F)\ v Gp).

Lemma 5: Let P be a formula over £, U {A,B}. There exists a normalized
formula Q of the form /\ (Fly v GB) such that £ @ % = A(x) D (P = Q) and
X Is not free in GB= 1_1 n Morcover all variables free in Q are free in P.

Proof. Let us consider first the case when formula Py is atomic. If P is over £;
U {A,B} then Q can be Py Vv false. If'x does not occur in Py as a free variable,
then Q can be false v Pp. 1f Py is not over £, U {A,B}, contains x as a free
variable and is of the form R(tl;...) then A(x) implies P = false. The remaining
subcase is a formula of the form t; = t,, not over 2; U {A,B}, and containing x
as a free variable. Then A(x) implies Py = t; = t, = L, which means that Py is
equivalent to a propositional combination of clauses of the form A(y) and B(y).

If Py is not atomic, then we transform it to the desired form in four steps. Steps 2
and 3 should be skipped in case when Py is quantifier free.

STEP 1. Replace all atomic subformulac of Pj; containing x as a free
variable and not over £; U {A,B} by false or by a combinations of

11

clauses of the form A(x) and B(x), according to the previous reasoning,

STEP 2. Replace each atomic subformula containing both x as a
free variable and at least onc occurrence of a bound variable. Since
every bound variable y of Py is assumed to fullill B(y), we again can
replace such subformula by false il it is a relation, and by, combination
of A and B clauscs if it is term equality.

STEP 3. Transform Pp in such a way, that no subformula

containing x as a frec variable s in the range of any quantifier, and the

~set of all subformulae is unchanged (we can do it, because due to step
2 no such atomic subformula of contains any bound variable).

STEP 4. Use the laws of distributivity and the de Morgan’s rule to
transform Py to the form AY (F'v Gy) such that F's are created from

cxactly these atomic subformulae in which x occur as a free variable.

Due to the steps 1, 2 and 3 formulae F's are over £; U {A}, morcover they are
quantifier free (this is what assures that F is cqual to F). Since all atomic
subformulae introduced in the transformation are of the form A(y) or B(x), the
new Py is still over 25 U {A,B}. Moreover, no new variable has been introduced.
"Thus the new P is of the desired form.a

We observe that due to the symmetry of the construction of A®%, Lemmas 4 and 5 are true
when £ is interchanged with £, and A with B.

Lemma 6: For cvery formula P of the language of A @ % there is a normalized
formula Qsuchthat A @B =P = Q.

Proof. The proof is by induction on P. In the basis case, if P is over £, U {AB}
(resp. £, U {A,B}) then Q can be P V false (resp. false v P). In the remaining
case, if P is of the form R(t;....) then it is equivalent in A @ ® to fulse, and if it is
of the form t; = t, then it is equivalent to t; = t; = 1. The latter is equivalent
in A @ % to a formula over {A,B}.

The only nontrivial case in the inductive step is for P of the form vx Q. We
assume inductively, that over A @ @ the formula Q is equivalent to normalized
Q' where Q" is of the form AT (Fj, v Gp).

Since A8t P o= /\ vx (Fyy v G)

12

it is enough to show a transformation of every formula Vx(F v G}) fori=1,...,n
into a formula of the desired form. First we observe that such a formula is
equivalent over A®% to the conjunction of the formulae

() F\(L/x) v GL(L/)
(bb) vx[A() D (F), v Gl
(cc) Vx[B(x) D (F}, v GhI.

Using Lemma 4 we convert the (aa) into an equivalent formula of the desired
form. The transformations of (bb) and (cc) are similar and we present here only
a transformation of (bb).
Using Lemma 5, we can replace G}; in (bb):
’ ; . .
(bb) vx[AK) D (F, \/j/:\fln (HJA \% JJB))].
Since x does not occur free in Jj;, j=1,...n, (bb’) is equivalent over A®S to
” m -i i j
(bb") ATIvx (Fv EO) A V 3l
Because we assumed that F's and H’s are over £ U {AB} and J's are over 25 U
{A,B}, the last formula is normalized . This completes the proof of the lemma. 8

We can now prove Proposition 3.

Proof of Proposition 3: Let P be a first order formula over the language of A®%.

By Lemma 6 it is equivalent over A®% to _/\;L' (Fy Vv G}). where F's are over
b=

£y U {A,B} and G’s are over £, U {A,B}.

Let X be the sct of all variables which occur free in P. Using Lemma 5 repeatedly
for every variable from X we can get a normalized formula Q" of the form

i{:\1;](K},\ V LiB) such that
AOBE=AX)AP=AK) AQ”

and in L} no free variable occur. Let €; be rrue if 483 = A(X) A LiB, and false
otherwise.

Clearly
4ol AC)AP = AX) A ATKLVE).

13

Let the formula .Am(KE\V €;) be called Q and let Q be obtained from Q by

=
replacing subformulace of the form A(t) by true, and subformulae of the form B(t)
by false. 1t is casy to check that such a Q fulfills our requirements. 8

5. References

I. Bergstra, JLA. and J.F. Tucker. Some Natural Structures Which Fail To Possess a Sound
and Decidable Hoare-like Logic for their While-Programs. Theoret. Comp. Sci. 17,3
(March 1982). pp 235-350.

2. Bergstra, JA. and J.F. Tucker. Expressiveness and the completeness of Hoare’s logic.
Tech. Rep. TW 149780, Amsterdam University Mathematical Centre Report, 1980. To
appear in JCSS. '

3. Bergstra, J.A. and J.F. Tucker. Two Theorems on the Completeness of Hoare’s Logic.
Tech. Rep. IW 81, Amsterdam University Mathematical Centre Report, 1931, To appear in
Inf. Proc. Let.

4. Cook, S.A. Soundness and Com pl.etcness of an Axiom System for Program Verification.
STAM J. Computing 7 (1978). pp 129-147.

5. Harel, D. Lecture Notes in Computer Science. Vol. 68: Firsi-Order Dynamic Logic.
Springer-Verlag, 1979.

6. Harel, D., A.R. Meyer and V. Pratt. Computability and Completeness in Logics of
Programs: Preliminary Report. 9-th ACM Symposium on Theory of Computing, Boulder,
Colorado, May, 1977, pp. 261-268. Revised version, M.I.T. Lab. for Computer Science
TM-97, (Feb. 1978) 16 pp.

7. Hoare, C.A.R. An Axiomatic Basis for Computer Programming. CACM 12, 10 (1969).
pp 576-580.

8. Wand, M. A new Incompleteness Result for Hoare’s System. J. ACM 25, 1 (Jan. 1978).
pp. 168-175.

Table of Contents

1. Introduction
2. Preliminaries
3. Adding an Expressive Structure
4. Hoare's Logic over Direct Sum
5. References . 13

CO h o —

