
LABO RA TORY FOR
COMPUTER SCIENCE !t. ··~ MASSACHUSETTS

· INSTITUTE OF
TECHNOLOGY

MIT/LCS/TM-226

"HOARE' S LOGIC IS NOT COMPLETE WHEN IT COULD BE"

J. Bergstra

A. Chmielinska

J. Tiuryn

August 1982 ~ ·

~

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM- 226

"HOARE'S LOGIC IS NOT COMPLETE WHEN IT COULD BE"

J. Bergstra

A. Chmielinska

J . Tiuryn

August 1982

i--Ioarc's Logic is f\Jot Cmnplete
\4/hen It Could Be

J. Bcrgstra 1

A. Chrnielinska 2

J. Tiuryn 3

5 August 1982

1. University of Leiden, Department of Computer Science, The Netherlands
2. University ofTorun, Depa11ment of Mathematics, Poland
3. MJ.T., Laboratory for Computer Science, USA,

Boston University, Department of Mathematics, USA and
University of Warsaw, Department of J\-1athcmatics, Poland.

This work was supported in part by ·me National Science Foundation, Grant No. MCS
8010707, and by a frant to the M.l.T. L1boratory for Computer Science by the IBM
Corporation.

1

Abstract

It is known (c[[21) that if the Hoare rules a.re complete for a fi rst-order
structure .A., then the set of parfrtl correctness assertions true over .A. is recursive
in the first-order theory of .A.. We show that the converse is not true. Namely,
there is a first-order structure e such that the set of partial correctness assertions
true over e is recursive in the theory of e, but the 1-loarc rules arc not complete
fore.

KEY WORDS

Hoare Logic, Partial Correctness Assertions, Relative Completeness
1. Introduction

A first-order partial correctness assertion is a formula {P} a {Q}, where P and Q arc fJrst­

order formulae and a is a while-program. The assertion {P} a {Q} means that if P is true

of some machine state, and if the program a halts when started from this state, then the

formul::t Q will be true in the halting state of o'.. Since the set of valid partial correctness

assertion is TT~ - complete [6], there is no finitary sound and complete axiom system for

partial correctness.

Cook [4] has shown that the axiom system composed of the mies of Hoare [7] together with

the first-order theory of a structure is complete for a certain class of structures. More

precisely, for any first-order structure A, the system HL(.A.) consists of Hoare's inference

rules together with the first-order theory of A. The structure .A. is exprcssil'e if, for any

program a and first-order formula Q, there is a first-order formula P such that for all a
.A. 1= P(a) = ({x == a} a {Q}).

Cook's theorem states that if .A. is expressive, then HL(.A.) is complete. In general, however,

the set PC(.A.) of partial correctness asse11ions that are valid over A is n~ in the first-order

theory Th(.A.) of A (cf. [1]) whereas HL(.A.) is I~ in TI1(.A.). 1lrns HL(A) is not complete for

arbitrary .A..

Although expressiveness is sufficient to guarantee the completeness of HL(.A.), it is not a

necessary condition. For example, any nonstandard model of the integers has a complete

Hoare logic, but cannot be expressive (cf. [2]). Moreover, proving properties or programs

2

over expressive structures may be considered a degenerate case. When expressiveness

holds, partial correctness assertions reduce to first order formulae.

Since PC(.A) is always n~ in Th(.A) and H L(A) is I~ in Th(.A), then if H L is complete the

partial correctness theory PC(.A) is recursive in Th(.A). This paper is motivated by the

following question: is I-IL(.A) complete for every structure .A such that PC(.A.) is recursive in

Th(..,t)? We show thal it is not. We will present a general construction of counterexamples

for this situation. A corollary of our construction is that the ability to code finite sequences

cannot be removed from the hypothesis of Harel's completeness theorem for arithmetical

universes (cf. [5]).

As pointed out in [5], any structure .A can be expanded to a structure with a complete Hoare

logic by expanding to an arithmetical universe. This expansion may increase the degree of

undecidability of the lirst-order theory of .A.. However, when HL(.A.) is inco111plctc but

PC(.A.) is recursive in Th(.A), the structure .A may be expanded in a much simpler way to

obtain a complete Hoare logic. We may consider proof systems HL(L,E) over a first order

Lhcory E in bnguage L. HL(.A) is then identified with H L(L, Th(.A)), when .A is an

L-structure . .It follows from [3] that .A can be expanded to an L *-structure .A* with L * - L

being finite, such that for some decidable theory T ~ Th(.A*),

PC(.,,t) ~ HL(.t *, Th(.A.) u T).Thus ~n1(.A.) u T, where T is decidable but formulated in an

extended language, contains enough in formation to derive all of PC(.A).

2. Preliminaries ·

We begin by presenting a version of Hoare's inference rules that suits our purposes. In the

following rules, P, Q and R denote first-order formulae, B denotes any quantifier-free first­

order formula, ta tcnn, and x a variable. We use Q[tlx] to denote the formula Q with t

substituted for all free occurrences of x. Greek letters a and ,8 denote arbitrary while­

programs.

(Assignment Rule)

(Composition Rule)

(Conditional rule)

(Iteration rule)

(Oracle axioms)

3

P :::> Q[t/x] 1- {P} x: = t {Q}

{P} a {Q}, {Q} /3 {R} f- {P} a; /3 {R}

{P J\ B} a {Q}, {P /\, B} /3 {Q}
f- {P} ifB then a else /3 jl {Q}

P :::> R, {R /\ B} a { R}, R /\ -, B :::> Q
f- {P} while B do a od {Q}

Every PETh(.A.) is an axiom.

In the composition rule, tJ1e formula Q is called an intermediate assertion, and in ilie

iteration rule, R is called the loop invarianr. Formally, HL(Jl) denotes the set of all asserted

programs {P} n {Q} provable from Th(.A.) using the above rules.

The reader may easily verify that the Rule a/Consequence,

is a derived rule of I-IL. Another rule iliat is easily derived is

{P} a {Q} f- {3xP} a {3xQ},

where x is a variable that does not occur in a. Together, these two rules imply that

superfluous free variables may be eliminated from invariants an.d intermediate assertions of

proofs.

Lemma 1: Let X be the set of all va riables occurring free in P,Q, or a. If H L(A)
proves {P} a {Q}, then there exists a proof of {P} a {Q} in HL(Jl) using only
invariants and intermediate assertions with free variables in X.

The idea of the proof is as follows. Suppose we have proof of {P} a {Q} in HL(Jt) and

assume that xis free in P or Q but docs not occur in a. This proof can be transformed into

another proof by quantifying over x in each formula.

\Ve define ilie disjoint union Jt EB~ of first-order structures .A. and~ in order to state our

theorems. Let L 1 and L2 be two similarity types. Let A and B be unary predicate symbols

4

and ..L a constant symbol, none of which belong to 1,1 u 1 2. Let A, ~ be

L1- , 1 2-structures, respectively. For any integer i and set X let Xxi denote Xx{i}. Let

L = L1 U L2 U {A,B,.l}. We define an L-structure .A EB 'ffi with carrier IA EB ".Bl =
I.A.lx0 u l~lxl u {<2,2>}. We interpret A as the characteristic predicate of l.,tjx0, I3 as the

characteristic predicate of j".Bjxl and ..L as <2,2>. We interpret the 1 1 (respectively L 2)

function symbols as in .A. (as in '11, respectively), provided all nrguments are taken from

l ✓tlx0 (from l~njxl, resp.) Otherwise, we take the value of a function to be ..L. We interpret

.t 1 (respectively 1,2) predicate symbols ns in .A (as in~. resp.), provided nil arguments are

taken from IAlx0 (from l'lllx 1, resp.), and set to be false elsewhere. r n particular, if

R E t 1nt2, then either all [1rgumcnts of R should be taken from j.AjxO or all from l~nlxl.

Clearly a meaningful alternative to this definition would be to use two-sorted structure, but

the disjoint union keeps us closer to the standard Hoare fo11nalism.

We arc now in position to formulate two general theorems which answer the question

posed in the introduction.

Theorem I: For every....{ there is n structure 'ffi such that
PC(.A.E:B<J>) is recursive in Th(.AED".B), and

Thcorcm2: For every two structures A and <:P>
if HL(.A) is incomplete, then so is H L(AEB<:P>).

1l1e following corollary, stated as a claim in the introduction, follows immediately from

these theorems.

Corollary : There is a structure c such that
PC(e) is recursive in Th(e) ru1d HL(c) is incomplete.

Proof. Take .A. to be any structure for which HL(.A.) is incomplete (cf. [l, 8] for examples).

ll1en, according to Theorem 1, exists ".B such that PC(.AEB".B) is recursive in Th(Jt©".B).

Moreover, according to Theorem 2, HL(JtEB~) is incomplete. Thus we can put c = .A.EB~.

1l1eorern l also gives us some insight into Harcl's theorem on nrithmetical universes (cf.

5

[5]). Let N stand for the standard model of arithmetic. By Theorem 2 we know that for any

.A. with HL(.,t) incomplete, HL(.A©N) is incomplete. Harel's theorem says that if ".II is a

structure which contains the standard model of arithmetic (as a first order del1nablc part of

".II) and if'JI hns the ability to code 1inite sequences or clements from l<:nl, then the first order

language is expressive for while- programs over '1\, and therefore H L(%) is complete. Since

obviously N is a first order definable pa1tof .AEDN, but 1-lL(.A©N) is not complete, Harel's

encoding assumption is necessary to ensure the completeness or his axioms.

We prove Theorem 1 in Section 3 and Theorem 2 in Section 4.

3. Adding an Expressive Structure

This section shows that for any structure .A, there is a structure % such tlwt PC(.A(l)':.B) is

recursive in Th(.AEB%). lf' the domain of .A is finite, then ".Tl may be chosen to be any finite

structure. Then .AEB".Il is finite and PC(.AEB".Il) is recursive in Th(Jt©<J1). When Jt is infinite,

we will define ".Tl to be a copy of Jt which also has the standard arithmetic operations

defined on the elements of its domain . By construction, the lirst-orclcr theory of ".II will

contain both the first-order theory of .A. and the first-order theory or arithmetic. As a

consequence, PC(.A.EB~) will be recursive in Th(Jt©".Il). However, the structure .AEB".Il need

not be expressive since there may not be any way to code pairs of clements of I.Al in

Th(Jt©".Il).

Assume now that .A. is infinite and its similarity type is L1. We construct ".II so that

PC(.AEB".II) is recursive in Th(JtEB".II) as follows. First, we expnnd .. l to an arithmetic universe

in the sense of [5]. To do this, we add a defining predicate for "non negative integers" N,

nrithmctic operations, constants O and 1, and in addition, we add a pairing function. The

resulting structure, ".Tl, has the same domain as Jt but has a richer similarity type which we

denote by 1 2.

It is clear that Th(<:.B) 1s recursive "in Th(AEB':.B). This follows immediately from the

6

definition or the ©-construction. Because ':l\ is expressive (being an arithmeticnl universe),

HL('i)) is complete. Therefore PC(<:n) is recursive in 171(~). Thus, it remains to be shown

that PC(JtEB'i)) is many-one reducible to PC('i)).

We will outline the reduction of PC(-A©r:B) to PC(<:n) by showing an effective simulation of

computations on Jt(D':B by those on GJ, ,

ln order to describe a smooth translation of assertions and programs, we introduce an

infinite family of new variables: y0,y1, The translation will take a formula with variables

x0,x1, ... to a formula with varinblcs x0,y0,x1,y1, ... with double the number of quantifiers.

Because the structure :n contains in its language names for 0,1 and 2 (since it contains the

language or arithmetic) it is natural to identify the clements of l".BI which correspond to

thc~;e names with the actual numbers 0,1,2. f3y means of this identification, we can view

l ✓tEBGJ,I = 1-Alx{O} u IGJ,IX{l} u {<2,2>}

as a subset of lr:.Blxlr:nj (recall that I.Al = 16..BI). In what follows we use the projection

functions on the coordinates, n 1 nnd n 2 on elements of !<:n lxl".BI.

'Ne show an effective translation Tr of first order formula over the language of .A EE> ':l\ to

first order formula over .t2. The translation will have the property that for every P(x1, .. . ,xn)

over the language of .AEB %, and for all c1, ... ,c11 E I.AEB~I,

.A EB% l= P(x1, ... , x11)[c1_, .. . ,cnJ
iff

':Bl= Tr (P)(x 1,y1, ... ,X 11'Yn)[n1(c1),772(c1), ... ,771(c11),1ri(cn)l.

Because the formal definition of Tr is slightly cumbersome we present its details. We lirst

introduce some notations. For a term t we deline L1(t) to be true if t is a term over

language .t1 and false otherwise.

We define Tr inductively. Suppose P is an equation t = t', where t contains the variables

7

X = {xi: iEJ}, and t' contains the variables X' = {xi: iEJ'}. Then we want Tr(P) lo be true

iff

(a) both t and t' have values in j.Ajx0 and t= t', or

(b) both t :md t' have values in l<:Blxl and t=t', or

(c) both t and t' are _1_

Formulae (a) - (c) can be written formally as follows:

(a') /\ (Yi = 0) /\ L1(t) /\ L1(t') /\ t = t'
iEJUJ'

(b') /\ (yi = l) /\ t = t'
iEJUJ'

(c') [V (Yi:;: 0) V ,L1(t)] /\ [V (Yi :;t _l)] /\
iEJ iEJ

[V (Yi :;t 0) V ,Li(f)] /\ [V (Yi:;: l)]
iEJ' i EJ'

Suppose P is an atomic formula R(t1, ... ,tn) with R E L1 and let X = {xi: iEJ} contain

variables that occur in P. Then Tr(P) is:

{[/\ (yi=0) /\ /\n L1(tJ·)] V /\ (yi=l)} A R(t1,···,t~)
iEJ j=l iEJ

If Pis A(t), then Tr(P) is:

/\ (yi = 0) /\ L1(t).
jEJ

The cases for P of the form B(t) or R(t1, ... , ~1) with R E 12-L1 arc simpler and we omit

them.

lf P has free variables X = {x(iEJ}, then Tr(,P) is

/\ (yi=0 V Yi=l V Yi=2) /\ ,Tr(P).
iEJ

8

Finally, Tr(3xi P) is

3xi 3yi ((Yi =0 V Yi= 1 V Yi= 2) /\ Tr(P)).

This concludes the inductive definition of Tr for formulae.

The next step is to extend Tr to programs a over the lunguagc of JltD'il so that for all first

order formulae P, Q over the language of .A.CB'il

(*) .AEB'il F {P}C({Q} iff<:.B F {Tr(P)} Tr(a){Tr(Q)}.

Let a be a program and let {x 1, ... , x11} contain all variables occurring in a. The translation

Tr(a) will use variables x1, y1, ... , x11, Yn in such a way that the following clingram commutes

IA EB GJ.1 11 _____;_n;_· ----;)'- I.A EB 'ilf
i

·f
1'1112n __

To achieve this, every assignment stntement xi: = tin a is rcpluccd by a pnir of assignment

statements for xi and Yi, depending on L1(t) and the values of y/s corresponding to x/s

occurring int. Every test P in a is replaced by Tr(P). The details of this construction are

left for the reader.

It follows from (*) that Tr is nrnny-onc reduction of PC(AEB':il) to PC('il). This completes

the proof of TI1eorem 1.

4. Ho~irc's Logic over Direct Sum

In this section we will show that incompleteness of HL(.A) implies incompleteness of

HL(.A.EB'il).

9

Let P be a first order formula over the language of AEDC]. We define PA.• a rclativisation of

P to IAI, inductively as follows.

(i) if Pis atomic, then PA. is P

(iii) (P v Q)A is PA v QA.

(iv) (3x P)A. is 3x (A(x) J\ r 1.).

1 f X is a finite set of variables, then A(X) denotes J\ A(x). We cletine Pn and B(X)
xEX

similarly.

Using relntivized formulae, we can interpret PC(A) in PC(.A.©<:.B).

Lemma 2: Let P,Q be first order formulae over 1,1, and kt a be a while-program
over L 1. Let :X be the set or all variables occurring free in P or Q or a. Then

.At== {P} a {Q} iff .A.ED':.B I= {A(X) J\ PA} a {A(X) J\ QA}.

Fu11hermorc, if HL(.A.ED~.B) proves {A(X) J\ P1J a {J\(x) J\ Q1J using only
invariants and intermediate assertions with free variables in X and of the form
J\(X) J\ Rf\, then HL(.A) proves{?} a {Q}.

The proof of this lemma is straightforward and is omilted. To finish the proof of Theorem

2, we need the following proposition.

Proposition 3: Let P be a first order formula over the language of .A.EBG_B and let X
be the set of all variables occurring free in P. Then there exists a first order
formula Q over L 1 such that

JtED~ t= (A(X) J\ P) = (A(X) J\ Q/\).

Before we prove Proposition 3, we show how it yields the proof ofTI1corem 2.

Proof of Theorem 2: Assume that HL(..A.) is incomplete and HL(.A.ED~) complete.
Choose {P} a {Q} true in .A but not derivable in HL(.A). Let X be the set of all
variables occurring free in P, Q, or a. By Lemma 2, {A(X) J\ P /\} a
{A(X) J\ Q,\} is true in .AEB':.B, and therefore if HL(AEB~) I- {A(X) J\ PA} a

{A(X) J\ QA}.

10

\Ve derive a contradiction by constructing a proof of {P} a {Q} in HL(.A.). By
Lemma 1, there is a proof of {A(X) /\ P} a {A(X) /\ Q} in which all
intermediate assertions nnd invariants have their free variables in X. Tn addition,
each {R} a {S} in the proof may be rcplacccl by {A(X) /\ R} a {A(X) /\ S} to
yield another valid proof. Then, according to Proposition 3, all invariants and
intermediate assertions can be written in the form {i\(X) /\ R'i\} a {A(X) /\

S'A} with R' and S' arc first order formulae over L 1. By Lemma 2, HL(.A.) proves
{P} a {Q} in contrnst to our nssumptions. II

The proof of Proposition 3 uses Lemmas 4 - 6 stated below.

Lemma 4: (..L - elimination) For every first order formula P over 1 1 U { A, B, ..L }
there is a formula p..L over l 1 u { A, B} such that

(i) .A.EB% I= P = p..l

(ii) .A.EB'l> I= (P..L)A = (PA)..L.

Proof: lt su flices to notice that we can define the constant ..L using the unary
relations A and 13: x = ..L iff , A(x) /\ , H(x). I

We say that a formub P of the language of .A. EB ':B is normalized iff there is a number n,

formulae F1, .. . ,F0 over .t1 U {A,13} and formulae G1, ... ,G 0 over 1 2 U {A,13} such that P of

the form _/\ 11 (Fi v Gi).
I=l A B

Lemma 5: Let P be a forinu~a ove1: 1.,2 u {A,B}. There exists a normalized
formula Q of the_ form i0~ (F\ v G8) such that .A. (f) ':i> I= A(x) :J cPn = Q) and
xis not free in Gh, i = 1, ... n. Moreover all variables free in Q me free in P.

Proof. Let us consider first the case when formula P11 is atomic. If P13 is over 1 1
u {A,B} then Q can be P13 V false. Ifx docs not occur in Pn as a free variable,
then Q can be false V Pn. Tf P13 is not over 1 1 u {A,BJ, contains x as a free
variable and is of the form R(t1, ...) then A(x) implies Pn = false. 1l1e remaining
subcase is a formula of the form t1 = t2, not over 1 1 u {A,B}, and containing x
as a free variable. Then A(x) implies Pn = t1 = t2 = ..l, which means that Pn is
equivalent to a propositional combination of clauses of the form A(y) and B(y).

If Pn is not atomic, then we transform it to the desired fotm in four steps. Steps 2
and 3 should be skipped in case when Pg is quantifier free.

STEP 1. Replace all atomic subformulae of P13 containing x as a free
variable and not over .t 1 u -{A,B} by false or by a combinations of

ll

clauses of the form A(x) and B(x), according to the previous reasoning.

STEP 2. Replace each atomic subformula containing both x as a
free vnriable and at least one occurrence of a bound variable. Since
every bound variable y of P13 is assumed to fullill B(y), we again can
replace such subformula by false if it is a relation, and by, combination

of A and I3 clauses if it is term equality.

STEP 3. Transform Pn in such a way, that no subformula
containing x as a free variable is in the range of nny quantilter, and the
set of all subformulae is unchanged (we can do it, because due to step
2 no such atomic subformula of contains any bound variable).

STEP 4. Use the laws of distributivity and the de Morgan's rule to
transform Pn to the form i~ ~ (Fiv G\1) such thnt P's arc created from
cxaclly these atomic sub formulae in which x occur ,1s a free variable.

Due to the steps 1, 2 and 3 fo rmulue F's are over 1 1 u {A}, moreover they are
quantifier free (this is what assures that F is equal to F 1). Since all atomic
subformulae introduced in the transformation are of lhe form A(y) or B(x), the
new Pg is still over 1 2 U {A,B}. Moreover, no new variable has been introduced.
'01us the new Pn is of the desired form.I

\Ve observe that due to the symmetry of the construction of .;l9':B, Lemmas 4 and 5 are true

when i l is interchanged with 1 2 and A with B.

Lemma 6: For every formula P of the language of .A. ED <Jl there is a normalized
formula Q such that .A. EB ':B I= P = Q.

Proof. 171e proof is by induction on P. In the basis cnse, if Pis over 1 1 u {A,B}
(resp . .t2 U {A,B}) then Q can be P V false (resp. false V P). In the remaining
case, if Pis of the form R(t1, ...) then it is equivalent in .;l EB ':B to false, and if it is
of the form t1 = t2 then it is equivalent to t1 = t2 = ..L. The latter is equivalent
in .;l EB <Jl to a formula over {A,13}.

The only nontrivial cnse in the inductive step is for P of the form vx Q. We
assume inducti\·cly, that over .A. EB ':B the formula Q is equivalent to normalized
Q', where Q' is of the form .An (F~ V Gh).

l=l

Since .AEB':B I=
· n i i
P = J\ \ix (FA V G 13) I= 1

12

it is enough to show a trnnsformalion of every formula vx(F\ V G\3) for i = 1,. .. ,n
into a formula of the desired form . First we observe that such n formula is
equivalent over .AEB<:.ei to the conjunction or the formulne

(aa) F\(1-/x) V Gl/1_/x)

(bb) Vx [A(x) :J (F~ V G h)J

(cc) vx [B(x) :J (F\ v oh)].

Using Lemma 4 we convert the (aa) into an equivalent formula of the desired
form. The trnnsformations of (bb) and (cc) arc similar and we present here only
a transformation of (bb).

Using Lemma 5, we can rcplnce Gh in (bb):

(bb') Vx [A(x) :J (F~\ V _j0 ~1 (Hj/\ V J{3))].

Since x docs not occur free in Jh, j = l, ... ,11, (bb') is equ ivalent over .,{EB".B to

(bb") -0m[(vx (Fi V 1-lj))I\ V JtJ.
J -- 1

Because we assumed that F's and H's arc over L 1 u {A,13} and J's are over 1..,2 u
{A,13}, the last formula is normalized . This completes the proof of the lemma. a

¥le can now prove Proposition 3.

Proof of Proposition 3: Let P be a first order formula over the langunge of .AED<:.B.
By Lemma 6 it is equivalent over .A©".B to i0~ (F~ V Gh), where F/s a.re over
L 1 U {A,B} and G/s are over .t2 U {A,B}.

Let X be the set of all variables which occur free in P. Using Lemma 5 repeatedly
for every va riable from X we can get a normalized formula Q" of the form
_A m(K~ V Li13) such that
I = l

.A EB ".B I= A(X) A P = A(X) J\ Q"

and in Lh no free variable occur. Let Ei be true if .AEB':.B t= A(X) /\ Lh, and false
otherwise.

Clearly

.AEB~ t= A(X) A P A(X) /\ /\ 111(K i V E-)
i=l /\ 1 •

13

Let the formula /\rn(K'.\ v E1) be called Q' and let Q be obtained from Q' by
i= 1

replacing subforn1ulac of the form A(t) by true, and subformulac of the form B(t)
by false. It is easy to check that such a Q fulfills our requirements. a

5. References

I. Rcrgstra, J.J\. and J .F. Tucker. Some Natural Structures Which Fail To Possess a Sound
and Decidable Hoare-like Logic for their Whi/e-Progr8ms. Theoret. Comp. Sci. 17, 3
(March 1982). pp 235-350.

2. l3ergstrn, J.A. nnd J.F. Tucker. E)(pressiveness nnd the completeness of Hoare's logic.
Tech. Rep. IW 149/80, Amsterdam University Mathematical Centre Report, 1980. To
appear in JCSS.

3. Bcrgstra, J.A. and J.F. Tucker. Two Theorems on the Completeness of 1-Ioarc's Logic.
Tech. Rep. lW 81, Amsterdam University Mathematical Centre Repo1t, 1981, To appear in
Int: Proc. Let.

4. Cook, S.A. Soundness and Completeness of an Axiom System for Program Verification.
SI Aki.!. Computing 7 (1978). pp 129-147.

5. H8rel, D. Lecture Notes in Computer Science. Vol. 68: First-Order Dynamic Logic.
Springer-Verlag, 1979.

6. Hare], D., A.R. Meyer and V. Pratt. Computability and Completeness in Logics of
Programs: Preliminary Repo11. 9-th ACM Symposium on Theory of Computing, Boulder,
Colorado, May, 1977, pp. 261-268. Revised version, M.I.T. Lab. for Computer Science
TM-97, (Feb. 1978) 16 pp.

7. Hoare, C.A.R. An Axiomatic Basis for Computer Programming. CACI\,! 12, 10 (1969).
pp 576-580.

8. ·wand, M. A new Incompleteness Result for Hoare's System. J. ACAi 25, l (Jan. 1978).
pp. 168-175.

TalJlc of Contents
1. Introduction
2. Preliminaries
3. Adding an Expressive Structure
4. Hoarc's Logic over Direct Sum
5. References

1
2
5
8

13

