MIT/LCS/TM-216

COPING WITH SYNTACTIC AMBIGUITY
OR

HOW TO PUT THE BLOCK IN THE BOX ON THE TABLE

Kenneth Church

Ramesh Patil

April 1982

Coping with Syntactic Ambiguity
or
How to Put the Block in the Box on the Table

Kenneth Church
Ramesh Patil

Massachusctis Institute of Technology
Laboratory for Computer Science
Cambridge, Massachuscus 02139

This research was supported (in part) by the National Institutes of Health Grant No. 1 P01 LM 03374-02 from
the National Library of Medicine, and by the Defense Advanced Research Projects Agency (DOD)
monitored by the Office of Naval Research under Contract No, NO0D14-75-C-0661,

Abstract

Sentences are far more ambiguous than one might have thought. There may be hundreds, perhaps
thousands of syntactic parse trees for certain very natural sentences of English. This fact has been a major
problem confronting natural language processing because it indicates that it may require a long time to
construct a list of all the parse trees, and furthermore, it isn't clear what to do with the list once it has been
constructed. This list may be so numerous that it is probably not the most convenient representation for
communication with the semantic and pragmatic processing modules, In this paper we propose some
methods for dealing with syntactic ambiguity in ways that take advantage of certain regularitics among the
alternative parse trees. These regularities will be expressed as lincar combinations of ATN networks, and also

as sums and groducts of formal power series.

We will suggest some ways that practical processor can take advantage of this modularity in order to
deal more efficiently with combinatoric ambiguity. In particular, we will show how a processor can efficiently
compute the ambiguity of an input sentence (or any portion thereof). Furthermore, we will show how to
compile certain grammars into a form that can be processed more efficiently. In some cases, including the
“every way ambiguous” grammar (e.g., conjunction, prepositional phrases, noun-noun modification),
processing time will be reduced from 0{113} to O(n). Finally, we will show how to uncompile certain highly
cptimized grammars into a form suitable for linguistic analysis.

Keywords: natural language, parsing, ambiguity

Tolle of Contents -3

CONTENTS

L Ambigiiey s a PIaccal PROBIEM. i i hamsss

2. FOTNAL POWOT SOTIES ..oreerescsseremsasenessassasssssesnsssssssessmssnemsssssssstsnsasssas sos sare eesrsssssasastamsss s msasanssrresnnsoa senasar samaan

' lumbe
3 CAtalan MUHTBRLS iinistmii i asi i s o re i

Lo)< ———

5. Parallel Decomposition ... s ens e ta et 23 TR AT AR A SRR R R

6. Series Decomposition .. ; PR :

6.1 Auto-Convolution of Catalan Grammars ...

14

6.2 Chart PATSING v.ocovressrsioe A BRI 20
6.3 Auto-Convolution of Unit Step Grammars e el e e) |

7. Computing the Power Series Directly from the Grammar ...

8. Computing the Power Scries from the ATN ..evecensinsssasssmasssssssmersess

5 An Example e B e B R e

10. Lexical Restrichonscocermssmsimssasons ‘ iy

i3l

. 11. Inverse Transforms ... T A B A U SRS

- |

X R IR s e S e R B s e ~

RS ;.

3 A L T BTTURTIRS i i e A G S PR B

Referencesooemesssesnens . T

.

Maost parsers find the sct of parse trees by starting with the empty set and adding to it cach time they
find a new possibility. We make the observation that in certain situations it would be much more efficient to
work in the other direction, starting from the universal set (i.c.. the set of all binary trees) and ruling trees out
when the parser decides that they cannot be parses. Ruling-out is casier when the set of parse trees is closer to
the universal set and ruling-in is easier when the set of parse trees is closer to the empty set. Ruling-out is
particularly suited for “gvery wity ambisious™ constructions such as prepositional phrases which have just as
many parse trees as there are binary tees over the terminal elements. Since every tree is a parse, the parser

doesn’t have to rule any of them out.

In some sense, this is a formalization of an idea that has been in the literature for some time, That is, it
has been noticed for a long time that these sorts of veiy ambiguous constructions are very difficult for most
parsing algorithms, but (apparently) not for people. This observation has led some researchers to hypothesize
additional parsing mechanisms, such as pscudo-attachment [1: pp. 65-71]1 and permanent predictable
ambiguity [14: pp. 64-65], so that the parser could “attach all ways” in a single step. However, these
mechanisms have always lacked a precise interpretation; we will present a much more formal way of coping

with “every way ambiguous” grammars, defined in terms of Catalan numbers [8: pp. 388-389, pp. 531-533].

Certain constructions, including the “every way ambiguous™ grammar, will be treated as primitive
objects (modules) which can be combined in various ways to produce composite constructions such as lexical
ambiguity which are also very ambiguous, but not quite “every way ambiguous”. Composite constructions

will be analyzed as lincar combinations of primitive components, in a sense to be made precise in terms of

formal power series. Equi-alently, in ATN notation, composite networks can be analyzed as scrics and
paralle] combinations of primitive networks. This approach has been strongly influenced by lincar svstems
theory, a classic engincering notion of modularity.

We will suggest some ways that practical processor can take advantage of this modularity in order to
deal more efficiently with combinatoric ambiguity. In particular, we will show how a processor can efficiently
compute the ambiguity of an input sentence (or any portion thereof). Furthermore, we will show how to
compile certain grammars into a form that can be processed more efficiently. In some cases, including the
“every way ambiguous grammar”, processing time will be reduced from O n3} to Of{n). Finally, we will show

how to uncompile certain highly optimized grammars into a form suitable for linguistic analysis.

1. The idea of pseudo-attachment was first prenosed by Marcus (privale communication), though Marcus does not accept the
formulation in [1].

Ambivuity is a Practical Problem -5- Section 1

1. Ambiguity is a Practical Problem

Sentences are far more ambiguous than one might have thought. There may be hundreds, perhaps
thousands of syntactic parse trees for certain very natural sentences of English. For example, consider the

following sentence with two prepositional phrases:
(1) Put the block in the box on the table.

which has two interpretations:

(2a) Put the block [in the box on the table].
(2b) Put [the block in the box] on the table.

These syntactic ambiguitics grow “combinatorially” with the number of prepositional phrases. For example,

when a third PP is added to the sentence above, there are five interpretations:

(3a) Put the block [[in the box on the table] in the kitchen).
(3b) Put the block [in the box [on the table in the kitchen]].
(3c) Put[[the block in the box] on the table] in the kitchen.
(3d) Put [the block [in the box on the table]] in the kitchen.
(3¢) Put [the block in the box] [on the table in the kitchen].

When a fourth PP is added, there are fourteen trees, and so on. This surt of combinatoric ambiguity has been
a major problem confronting natural language processing because it indicates that it may require a long time
to construct a list of all the parse trees, and furthermore, it isn't clear what to do with the list once it has been
constructed. This list may be so numerous that it is probably not the most convenient representation for
communication with the semantic and pragmatic processing modules. In this paper we propose some
methods for dealing with syntactic ambiguity in ways that take advantage of certain regularities among the
alternative parse trees.

In particular, we observe that enumerating the parse trees as above misses the very important
generalization that prepositional phrases are “every way ambiguous”, or more precisely the set of parse trees
over i PPs is the same as the set of binary trees that can be constructed over i terminal elements. Notice, for

example, that there are two possible binary trees over three elements,

(4a) [...block ..[..box ...table...]]
(4b) |[[... block ... box ..] ... table ...]

Armlidgreiey i o Practical Problem - 6- Sectlon [

corresponding to (2a) and (2b) respectively, and that there are five binary trees over four elements

corresponding to (3a)-(3c) respectively (see figure 1).

These “worst case”™ scenarios occur very often in practice, as indicated by our experience with the FQSP
parser [11] on the Malhotra Corpus [10}.2 Almost 2% of the Malhotra Corpus has 300 or more interpretations
according to EQSP. The sentences are given below with the number of parse trees. Note that the first sentence

i almost a thousand ways ambiguous,

958 In as much as allocating costs is a tough job 1 would like to have the total cosis related to cach
product,

692 For cach plant give the ratio of 1973 to 1972 figures for each type of production cost and
overhead cost.

654 Do you have a model to maximize contribution to the company subject to production and other
constraints?

556 Give actual and budeeted operating costs for all plants, and actual and budgeted management
salaries and interest costs.

512 Give me a breakdown of difference between list and average quoted price for each product for
1972 and 1973.

510 The intent of my question is to find out if you know if your accounting methods can relate the
changes in sales to changes in your expense structures.

322 Display the difference between list price and actual costs (direct + overhead) divided by list
price for plant 2 for the past four years.

382 What was the number of units of product 2 produced at plant 2 in 1973 times the unit price of
product 27

These sentences show that syntactic constraints are not always very restrictive. This fact has been a
major problem confronting natural language processing because it indicates that it may require a long time to
construct a list of all the parse trees, and furthermore, it isn’t clear what to do with the list once it has been
constructed. The list of parse trecs can be so numerous that it is probably not the most efficient repre-
sentation for communication with the semantic and pragmatic processing modules. A list representation fails
to take advantage of certain generalizations among the alternative parse trees, especially the “every way

ambiguous” generalization.

2 Malhotra gathered approximately 500 sentences in an experiment which fooled businessmen into believing that they were interacting
with a computer when they were actually communicating with & person in an ancther room.

Ambiguity is a Practical Problem -7~ Seetion 1

Fig. 1. Binary Trees Over Four Terminals

Over four terminals, it is possible to construct five binary trees. These five trees are illustrated below in
solid lines,

the block in the box on the wble in the kitchen

The block in the box on the wble in the kitchen

the block in the box on the table in the kitchen

the block in the box on the table in the kitchen

the block in the box on the table in the kitchen

Ambiguity v a Practical Problem «8- Seciion |

The “every way ambiguous” generalization is missed by most parsing algorithms currently in practice
including our own EQSP. These algorithms all construct the set of possible parse trees by starting from the
empty set and adding to it cach time they find a new set of analyses. We make the observation that there are
certain situations where it would be much more efficient to work in the other dircction, starting from the
universal set and ruling trees out when the parser decides that they cannot be parses, Ruling-out is casier
when the set of parse trecs is closer to the universal set and ruling-in is easier when the set of parse trees is
closer to the empty set. Ruling-out is particularly suited for “every way ambiguous™ grammars like PPs
because there are no trees to exclude. Similar comments hold for other “every way ambiguous™ constructions

such as adjuncts, conjuncts, noun-noun modification, and stacked relative clauses.

These constructions, which will be treated as primitive objects, can be combined in various ways to
produce composite constructions such as lexical ambiguity which may also be very ambiguous, but not
necessarily “every way ambiguous”, Composite constructions can be analyzed as linear combinations of
primitive components. Lexical ambiguity, for example, will be analyzed as the sum of its senses, or in flow
graph terminology [13], as a parallel connection of its senses. Structural ambiguity, on the other hand, will be
analyzed as the product of its components, or in flow graph terminology as a serics connection. For example,
the sentence

(5) Was the block in the box on the table?

is structurally ambiguous. The “box™ can be associated with cither the “block™ or the “table”. We will
analyze this sentence as a product of two polynomials, the first corres; onding to the subject noun phrase and
the second corresponding to the complement noun phrase. 'The standard definition of polynomial
multiplication correctly accounts for the two possible attachments of “box™. We prefer this linear systems
view to heuristic scarch strategies (c.g. [6]), because linear systems can capture generalizations that hold across
alternative interpretations, whereas scarch strategies tend to probe only a single interpretation (context) at a
time. At the very least, our approach is an improvement over cnumerating each tree individually, which

consumes exponential time in the worst case.

2. Formal Power Series

This section will make the lincar systems analogy more precise by relating context-free grammars to
formal power series (polynomials). Formal power series are a well-known device in the formal language
literature (e.g. [15]) for developing the algebraic properties of context-free grammars, We introduce them

here to establish a formal basis for our upcoming discussion of processing issues.

Formal Power Series - - Necrion 2

The power series for grammar (6a) is (6b).

(6a) NP — John | NP and NP

(6b) NP = John + John and John + 2 John and John and John
+ 5 John and John and John and John
+ 14 John and John and John and John and John <+ ..

Fach term consists of a sentence generated by the grammar and an ambiguity gggfﬁ;igml which counts how

many ways the scntence can be gencrated. For example, the sentence “John™ has one parse tree
(7Ta) [John] I tree

because the zero-th cocfficient of the power serics is one. Similarly, the sentence “John and John™ also has

one tree because its coefficient is also one,

(7b) [John and John] 1 tree
and “John and John and John™ has two because its coefficient is two,

(7c) [[John and John] and John], [John and [John and John]] 2 trees
and “John and John and John and John™ has five,

(7d) |John and [[John and John] and John]], [John and [John and [John and John]]], 5 trees
[[[John and John] and John] and John], [[John and [John and John]] and John],
[[John and John] and [John and John])

and so on. The reader can verify for himself that “John and John and John and John and John" has fourteen
trees.

Mote that the power series encapsulates the ambiguity response of the system (grammar) to all possible
input sentences. In this way, the power series is analogous to the impulse response in electrical engineering,
which encapsulates the response of the system (circuit) to all possible input frequencies, (Ambiguity
coefficients bear a strong resemblance to frequency coefficients in Fourier analysis.) All of these transformed

representation systems (e.g., power series, impulse response, and Fourier series) provide a complete

3. The formal language literature [3, 15] uses the term suppont instead of ambiguity coefficient.

Fanpal Power Series -i0- Section 2

description of the system with no loss of information* (and no heuristic approximations (e.g.. search strategics
[6])). Transforms are often very useful because they provide a different point of view. Certain observations

are more casily seen in the transform space than in the original space, and vice versa.

‘T'his paper will discuss several ways to generate the power series. Initially let us consider successive
approximation. Of all the techniques to be presented here, successive approximation most closely resembles
the approach taken by most current chart parsers including EQSP. The alternative approaches take advantage

of certain regularities in the power series in order to produce the same results more efficiently,

Successive approximation works as follows. First we translate grammar (6a) into the equation
(8) NP = John -+ NP-and - NP

where * 4+ connects two ways of gencrating an NP and “-" concatenates two parts of an NP, In some sense, we
want to “solve™ this equation for NP. This can be accomplished by refining successive approximations. An
initial approximation NP is formed by taking NP to be the empty language.

(9a) NP, =10

Then we form the next approximation by substituting the previous approximation into equation (8), and
simplifying according to the usual rules of algebra (c.g. assuming distributivity. associativity,® identity
clement, and zero element),

(9b) NP, = John + NP, - and - NP, = John + 0-and- 0 = John
We continue refining the approximation in this way.

(%) NP, = John + NP, - and - NP, = John + John and John

4. This nceds a qualification. 1L is true that the power series provides a complete description of the ambiguity response o any input
sentence. However, the power series representation may be losing some information that would be useful for parsing. In particular,
there might be some cases where it is impaossible to recover the parse trees exactly as we will see, though this may not be too scrious 2
problem for many practical applications. That is, it is oflen possible to recover most (if not all) of the structure, which may be adequate
for many applications.

5. The careful reader may correctly object to this assumption. We include it here for expository convenience, as it greatly smplifies the
derivations though it should be noted that many of the results could be derived without the assumption. Furthermore, this assumplion is
valid for counting ambiguity. That is, |A - B] ® |01 = |A| # [B- C], where A, B and C are sets of trees and |A| denotes the number of
members of A, and # is integer multiplication.

Fermal Power Series -11- Section 2

(9d) NPy = John + NP, and NP,
= John + (John + John and John) - and - (John + John and John)
= John 4 John and Joha + John and John and John + John and John and John
+ John and John and John and John
= John + John and John + 2 John and John and John
+ John and John and John and John

Eventually, we have NP cxpressed as an infinitely long polynomial (6b) above. This expression can be
simplificd by introducing a notation for exponentiation. Let x! be an abbreviation for multiplying x - x- ... -

x, 1 times.

(10) w~p = John + John and John + 2 John (and .lc;:l'm)z
+ 5 John (and John)? + 14 John (and John)* + ...

Note that parentheses are interpreted differently in algebraic equations than in context-free rules. In context-
free rules, parentheses denote optionality, whereas in cquations they denote precedence relations among

algebraic operations.
3. Catalan Numbers

Ambiguity cocfficients take on an important practical significance when we can model them directly
without resorting to successive approximation as above. This can res:It in substantial time and space savings
in certain special cases where there are much more efficient ways to compute the coefficients than successive
approximation (chart parsing). Equation (10) is such a special case; the coefficients follow a well-known
combinatoric series called the Catalan Numbers [8: pp. 388-389, pp. 531-533)% This section will describe
Catalan numbers and their relation to parsing.

The first few Catalan numbers are: 1, 1, 2, 5, 14, 42, 132, 469, 1430, 4862, ... They are generated by the

closed form expressiun:7

(11) c:a:n=(2;)-(n2_“1)

6. This fact was first pointed out to us by V. Pratt We suspect that it is a generally well-known result in the formal language
community, though its origin is unclear,

7 (g) is known as a binomial cogfficient. Tt is cquivalent to m%ﬁ,.
Binomial cocfficients arc very comman in combinatorics where they are intespreted as the number of +233 to pick b objects out of a set
of a objects.

where a! is equal to the preduct of all integers between 1 and 2.

Caralan Numbers -f2- Seciion 3

This formula can be explained in tenns of parenthesized expressions, which are equivalent to trees. Cat ¥ is
the number of ways to parenthesize a formula of length n. There are two conditions on parenthesization: (a)
there must the same number of open and close parentheses, and (b) they must be properly nested so that an
open parenthesis precedes its matching close parenthesis. The first term counts the number of sequences of
2n parentheses, such that there are the same number of opens and closes. The second term subtracts out cases

violating condition (b). 'This explanation is claborated in [8: p. 531].

It is very useful to know that the ambiguity coefTicients are Catalan numbers because this observation
enables us to replace equation (10) with (12), where Cat, denotes the i" Catalan number. {All summations

range from 0 to oo unless noted otherwise.)

a2 = 2, Cat, John (and John)
i

The i Catalan number is the number of binary trees that can be constructed over i phrases. This model
correctly predicts EQSP's behavior with prepositional phrases. That is, the EQSP parser [11] found exactly the
Catalan number of parse trees for cach sentence in the following sequence:

It was the number.

It was the number of products.

It was the number of produets of products,

It was the number of products of products of products.

14 It was the number of products of products of products of products.

A d =

These predictions continue to hold with as many as nine prepositional phrases (4862 parse trees).
4. Table Lookup

We could improve EQSP's performance on Pps if we could find a more efficient way to compute Catalan
numbers than chart parsing, the method currently employed by EQSP. Let us propose two alternatives: table
lookup and evaluating expression (11) directly. Both are very efficient over practical ranges of n, say no more
than 20 phrases or 0¥ In both cases, the ambiguity of a sentence in grammar (6a) can be determined by

counting the number of occurrences of “and John" and then retrieving the Catalan of that number. These

8. The table lookup scheme otght 10 have a way 1o handie the theoretical possibility that there are an unlimited number of prepesitional
phrases. The iable lookup routine will employ a more traditional parsing algorithm (eg, Farley’s Alsorithm) when the number of
phrases in the input sentence i not stored in the table

Tulle Lookup ~i13- Secrion 4

E ;) 9 3 i ; e
approaches both take lincar time (over practical ranges of n),” whereas chart parsing requires cubic time to

parse sentences in these grammars, a significant improvement,

So far we have shown how to compute in lincar time the number of ambiguous interpretations of a
sentences in an “every way ambiguous” grammar. However, we are really interested in finding parse trees,
ot just the number of ambiguous interpretations. We could extend the table lookup algorithm to find trees
rather than ambiguity coefficients, by modifying the table to store trees instead of numbers. For parsing
purposes, Cat, can be thought of as a pointer to the i entry of the table. So. for a sentence in grammar (6a)
for example, the machine could count the number of occurrences of “and John" and then retrieve the table

cntry for that number,

index trees
0 {[John]}
1 {|John and John]}
2 {[[John and John] and John], [John and [John and John][}

.
.
.

The table would be more general if it did not specify the lexical items at the leaves. Let us replace the table
above with

index trees
0 {[x]}
1 {[xx1}

2 {1x x] x, [x [x xI0}

-

and assume the machine can bind the xs to the appropriate lexical items.

There is a real problem with this table lookup machine. The parse trees may not be exactly correct
because the power series computation assumed that multiplication was associative, which is an appropriate
assumption for counting ambiguity, but inappropriate for constructing trees. For example, we observed that
prepositional phrases and conjunction are both “every way ambiguous™ grammars because their ambiguity

coefficients are Catalan numbers. However, it is not the case that they generate exactly the same parse trees.

9, The bncar tme resull depends on the assumpttan that table lookup (or closed form computation) can be performed n constant time.
This may be a fair assumption over practical ranges of n, but it 5 not trnue in general.

Table Loakup « 1E- Seciion 4

Nevertheless we present the table lockup pseudo-parser here because it seems to be a speculative new
approach with considerable promise. It is often more efficient than a real parser, and the trees that it finds
may be just as useful as the correct one for many practical purposes. For example, many speech recognition
projects employ a parser to filter out syntactically inappropriate hypotheses. However, a full parser is not
really necessary for this task; a recognizer such this table lookup pseudo-parser may be perfectly adequate for
this task.

Furthermore, it is often possible to recover the correct trees from the output of the pseudo-parser., In
particular, the difference between prepositional phrases and conjunction could be accounted for by modifying
the interpretation of the PP category label, so that the trees would be interpreted correctly even though they
are not exactly correct. In short, the table lookup pseude-parser is worth exploring even thougs: the results
are not always correct. The results are close enough for many applications (e.g., specch recognition) and the
mistakes can often be corrected.

The table lookup approach works for primitive grammars. The next two sections will show how to

decompose composite grammars into series and parallel combinations of primitive grammars.

(13a) G=G,;-G, . series
(13b) G = Gl + Gz parallel

5. Parallel Decomposition
Parallel decomposition can be very useful for dealing with lexical ambiguity, asin
(14) ... to total with products near profits ...

where “total” can be taken as a noun or as a verb, as in:

{15a) The accountant brought the daily sales to total with products near profits organized according to
the new law, noun

(15b) The daily sales were ready for the accountant to total with products near profits organized
according to the new law. verb

The analysis of these sentences will make use of the additivity property of linear systems. That is, each
case, (15a) and (15b), will be treated separately, and then the results will be added together. Assuming “total”
is a noun, there are three prepositional phrases contributing Cat , bracketings, and assuming it is a verb, there
are two prepositional phrases for Cat , ambiguities. Combining the two cases produces Cat 3+Ca£ s =5+2

= 7 parses. Adding another prepositional phrase yields Cat 4+Cat3 = 1445 = 19 ambiguitics. (EQSP

Farallel Devorposition 15+ Scetion §

chaved as predicted in both cases.)

This behavior is generalized by the following power series:

e {o\} Z (Cat,, | + Cat) (pNY
1

which is the sum of the two cases:

an e M i
{17a) % Cat, (PN) =PN Z Cat, . (¢ N) noun
(176) 10V D, Cat, (pN) verb
i

‘This observation can be incorporated into the table lookup pseudo-parser outlined above. Recall that
Cati is interpreted as the '™ index in a table containing all binary trees dominating i leaves. Similarly, Cat; +
Cat, 0 will be interpreted as an instruction to “append™ the e entry and i+ 1% entry of the table.

(18) (ADD-TREES (CAT-TABLE i) (CAT-TABLE (+ i 1)))

{This can be implemented efficiently, given an appropriate representation of sets of trees.)

Now suppose there were an oracle that disambiguated the word “total”. How could we incorporate this
information once we have already parsed the input sentence and found that it was the sum of two Catalans?
The parser can simply subtract out the inappropriate interpretations. 1f the oracle says that “lut.;al" is a verb,
then (17a) would be subtracted from the combined sum, and if the oracle says-that “total” is a noun, then
(17b) would be subtracted.

Furthermore, suppose that we wanted to evaluate the usefulness of a particular oracle. For example,
suppose that there was a semantic routine that could disambiguate “total”, but this semantic routine is very
expensive to execute so that we don't want to run it unless we are very sure that it has a desirable cost/benefit
ratio. We need a way to estimate the usefulness of the semantic routine so that we don't waste time working
on semantic constraints when they won't help very much. This analysis provides a very simple way (o
estimate the benefit of disambiguating “rotal”, 1f it turns out to be a verb, then (17a) trees have been ruled

out, and it it turns out to be a noun, then (17b) trees have been ruled out.

Sories Decomposition - 16 - Section 6

6. Series Decomposition

Suppose we have a non-terminal § which is a serics combination of two other non-terminals, NP and VP,

By inspection, the power serics of § is:
(19) s=NpP-VP

This result is easily verificd when there is an unmistakable dividing point between the subject and the
predicate. For example, the verb “is™ separates the PPs in the subject from those in the predicate in (20a), but
not in (20b).

(20a) The number of products over sales of ... is near the number of sales under ... clearly divided

(20b) 7sthe number of products over sales of ... near the number of sales under ...? not clearly divided

In (20a). the total number of parse trees is the product of the number of ways of parsing the subject times the
number of ways of parsing the predicate. Both the subject and the predicate produce a Catalan number of
parses, and hence the result is the product of two Catalan numbers, which was verified by EQsp [11: p. 53]
This result can be formalized in terms of the power series:

(1) (N ZCati(PN)i)(iSZCatj(PN)i)
i J

which is formed by taking the product of the two subcases:
(223) N 2, Cat, (B N) subject
i

(22b) s 2, Cat, (N predicate
i

The power series says that the ambiguity of a particular sentence is the product of Cat , and Cat i where
i is the number of Pps before “is” and j is the number after “is”. This could be incorporated in the table
lookup parser as an instruction to “multiply” the i entry in the table times the jlh entry. Multiplication is a
cross-product operation; L X R generates the set of binary trees whose left sub-tree | is from L and whose
right sub-tree 1 is from R.

(23) LXxR={LD|1EL&rER}

Series Decomposition -17- Seetfon §

This is a formal definition. For practical purposes, it may be more useful for the parser w output the list in

he factored form:
(24) (MULTIPLY-TREES (CAT-TABLE i) {CAT-TABLE j))

which is much more concise than a list of trees. It is possible, for example, that semantic processing can take
advantage of factoring, capturing a semantic generalization that holds across all subjects or all predicates.
Imagine, for example, that there is a semantic agreement constraint beiween predicates and arguments. For
example, subjects and predicates might have to agree on the feature £human. Suppose that we were given
sentences where this constraint was violated by all ambiguous interpretations of the sentence. In this case, it
would be more ¢fficient to employ a feature vector scheme [3] which propagates the features in faciored form.
That is, it computes a feature vector for the union of all possible subjects, and a vector for the union of all
possible VPs, and then compares (intersects) these vectors to check if there are any interpretations which meet
the constraint. A system such as this, which keeps the parses in factored form, is much more efficient than
one that multiplies them out. Even if semantics cannot take advantage of the factoring, there is no harm in
keeping the representation in factored form, because it is straightforward to expand (24) into a list of trees

(though it may be somewhat slow).

-

This example is relatively simple because "is” helps the parser determine the value of i and j. Now let
us return to example (20b) where “is” docs not separate the two strings of PPs. Again, we determine the

power series by multiplying the two subcases:

(25) m(w zﬂatf{PN]i) (> Calj(PN}i) =isN 2, 2, Cat,Cat, (px)*)
' i j P

However this form is not so useful for parsing because the parser cannot easily determine 7 and j, the
number of prepositional phrases in the subject and the number in the predicate. It appears the parser will
have to compute the product of two Catalans for each way of picking § and j, which is somewhat exp-cnsivc.m
Fortunately the Catalan function has some special properties so that it is possible algebraically 1o remove the
references to i and j. In the next section we will show how this expression can be reformulated in terms of n,
the total number of pps,

10. Earley's algorithm and most olther context-free parsing algorithms actually work this way,

Augo- Convolution of Catalan Grammars = I8~ Section 8.1

6.1 Auto-Convolution of Catalan Grammars

Some readers may have noticed that expression (25) is in convelietion form. We will make use of this in
the reformulation. Notice that the Catalan series is a fixed point under auto-convalurion (except for a shift);
that is, multiplying a Catalan power serics (ie., 1 + x + 2 + 5x° + 145" + - Cat, x'...) with itself
produces another polynomial with Catalan coefficients.! The multiplication is worked out below [or the first

fow terms.

14+ 24 2+ 54+ WY+ o

X 14+ x4+ 2+ 524+ Mt + ..
14+ x4+ 24+ 5+ '+ .
X+ =+ e 5y ..

B+ 4+ WY+ L

) Gl . L A

+ 4t + .

1 + 2x + 5x% + 148 + 4%

+

This property can be summarized as:

(26) z Cat, x! 2 Catjxj = 2 Cat %"
i j n

where n equalsi + j.

Intwitively, this equation says that if we have two “every way ambiguous” (Catalan) constructions, and
we combine them in every possible way (convolution), the result is an “every way ambiguous™ (Catalan)

construction. With this observation, equation (25) reduces to:

(27 is(r»: ?Cal.i{w]‘) (2 Cati(PN)j) =isN ECat“H(PN)“
i n

Hence the number of parses in the auxiliarv-inverted case is the Catalan of one more than in the non-inverted
cases. As predicted, FQsP found the following inverted sentences to be more ambiguous than their non-

inverted counter-parts (previously discussed on page 12) by one Catalan number.

11 The proof immediately follows from the z-iransform of the Catalan series [B: p. 388]: zB{a}lz =Nz - L

Auto-Convelution of Catalan Grammars -[9- Section 6.1

Was the number?
Was the number of products?

LA b e

Was the number of products of producis?
14 Was the number of products of products of products?
42 Was the number of products of products of products of products?

1 It was the number.
1 It was the number of products.
2 It was the number of products of products,
5 It was the nuimber of products of products of products.
14 It was the number of products of products of products of products.

How could this result be incorporated into the table lookup pseudo-parser? Recall that the pseudo-
parser implements Catalan grammars by returning an index into the Catalan table. For example, if there were
i pps, the parser would return: (CAT-TABLE i). We now extend the indexing scheme so that the parser
implements a series connection of two Catalan grammars by returning one higher index than it would for a

simple Catalan grammar. That is, if there were n prs, the parser would return: (CAT-TABLE (+ n 1)).

Series connections of Catalan grammars are very common in every day natural language, as illustrated
by the following two sentences which have reccived considerable attention in the literature because the parser

cannot separate the direct object from the prepositional complement.

(28a) Isaw the man on the hill with a telescope ...
{28b) Put the block in the box on the table in the kitchen ..,

Both examples have a Catalan number of ambiguities because the auto-convolution of a Catalan series yields
* another Catalan serics.'2 This result can improve parsing performance because it suggests ways to re-organize
{compile) the grammar so that there will be fewer references to quantities that are not readily available, This
re-organization will reap benefits that chart parsers (e.g. Earley’s algorithm) do not currently achieve because
the re-organization is taking advantage of a number of combinatoric regularities, especially convelution, that

are not easily encoded into a chart. Section 9 will present an example of the re-organization.

12. There is a difference between these two sentences because “put” subcategorizes for two objects unlike “see”. Suppose we analyze
“see” o Jexically ambiguous between two senses, one which selecis for exactly two objects like "put™ and one which seleets for exactly
one object s in] saw it." The first sense contnbures the same number of parses as “put” and the second sense contribuies an additional
Catalan factor,

Chart Parsing -20- Section 6.2

6.2 Chart Parsing

Perhaps it is worthwhile to reformulate chart parsing in our terms in order to show which of the above
results can be captured by such an approach and which cannot. Traditionally chart parsers maintain a chart
(or matrix) M, whose entrics M i contain the sct of category labels which span from position i to position j in
the input sentence. This is accomplished by finding a position k in between i and j such that there is a phrase
from i to k which can combine with another phrase from k to j. An implementation of the inner loop looks

something like;

(29) Mij ={}
loop for k fromitojdo
Mij 1= Mij UM, = Mkj

Essentially, then, a chart parser is maintaining the invariant

(0 M, = g My My,

Recall that addition and multiplication were previously defined over polynomials, We can preserve these
definitions if we modify the contents of the chart. Let us replace the set of category labels in Mij with a set of
factored polynomials. That is, let M‘i} denote the polynomial describing the ways to parse a phrase of category
% from position i to position j. For example, the notation

S _ MNP, MVP o MNP p VP
G Mg, =Mo" -Mpg + My - My,

indicates that there are two ways to combine an NP and a VP to form an S from position 0 to position 4,

This formulation of the chart can be compared with serial and parallel decomposition. Note that
M&T- M;T is cssentially the same as (MULTIPLY-TREES ME’IP Mff,’l. Similarly, adding matrix elements
corresponds to ADD-TREES. Hence, chart parsing is more similar to serial and parallel combinations than one
might have suspected. When the grammar is factored appropriately, chart parsers will be able to take
advantage of serial and parallel decompositions discussed above.

However, the examples above illustrate cases where chart parsers are inefficient. In particular, chart
parsers cannot take advantage of convolution and the “every way ambiguous™ generalization. That is,
Earley’s algorithm performs convolution the “long way”, by picking each possible dividing point k, and
parsing from i to k and from k to j. It is incapable of reducing the convolution of two Catalan as we did
above. Similarly, Earley’s algorithm is incapable of using the “every way ambiguots™ gencralization. That is,

it requires O(n°) time 1o parse Catalan grammars because there are no constraints on the choice of i, j and k.

Chart Parsing ~21 - Secrion 6.2

‘The algorithm will eventually enumerate all possible values of i, j and k. We suggest that a processor ought to

be able to notice the lack of constraints, and thus avoid cnumerating the space as Earley’s algorithm does,

Finally, in passing, we have one constructive suggestion for chart parsers. We observe that it is possible
to count the number of ambiguous interpretations in O(n®) time. This is an improvement over the obvious
algorithm which multiplies out all the trees just as if they were being printed. (Such an exponential algorithm
was actually implemented in FQSP.) We suggest keeping a second matrix A, where A}; holds the number of
ways of deriving a phrase of category x between i and j. The two matrices, A and M, are almost identical,
cxcept that A holds integers and M holds polynomials. Accordingly, addition and multiplication are defined
slightly differently on the two matrices. In A, they map integers into integers in the ubvious way; in M, they
map polynor.ials into polynomials as discussed above. Note that both matrices, A and M, can be computed
with exactly the same sequences of multiplications and additions. Hence, it is possible to compute the

number of ambiguous interpretations in cubic time.
6.3 Auto-Convolution of Unit Step Grammars

Let us return to the discussion of convolution. This section will illustrate a second practical example of
convolution. Consider the following grammar ("A™ denotes the empty slring}:u

(32) A—aAlA
We call this grammar a unit step grammar because all of its ambiguity coefficients are 1.

B) A=l+a+al+a+at+ad+. = D a0
n

In other words, the grammar is unambiguous.™ Embedded sentences are a typical example of (32) in English.
(34) Ibelieve you said he thought you were ...

Suppose for the sake of discussion that we choose to analyze adjuncts with a right branching grammar. (By
convention, terminal symbols appear in lower case.)

(35) ADIS — adj ADIS| A

13. Note that the empty language { } is distinct from the linguage of the empty string {A}. In particular, { A} is the identity clement
under series connection and { } is the identity clement under parallel connection, Thus, {A} is modeled as 1 in the power series
representation, whereas { } is modeled as 0.

14. Uni step grammars are not exactly the same as unambiguous grammars. The ambiguity coefficients of a unit step grammar are all 1,
whercas the ambiguity coefficients of an unambiguous prammar are either 1 or 0,

Auto-Convolurion of Unit Step Grammars <22- Section 6.3

52 that
(36) Will you go to the store tomorrow in the morning about 10:00 after ...?

has one parse, independent of the number of adjuncts. A similar analysis of adjuncts is adopted in [7]. This
analysis can also be defended on performance grounds as an efficiency approximation. (This approximation

is in the spirit of pscudo-attachment [1].)

The power series is
(37) ADIS = 2 adj!
i
Now, how many ambiguities will there be if we add a second clause to (36) as in:
(38) I will ask if you will go to the store tomorrow in the morning about 10:00 after ...?

Some of the adjuncts will attach to “go™ and the rest will attach to “ask™,. The number of parscs is determined

by multiplying the two subgrammars.

1

(39) ADIS- ADIS = 2 adjt 2 adj = 2 Z adji*
i

This equation has the same problem as cquation (25); because there is no clear dividing line between

the adjuncts that attach to “go” and the ones that attach to “ask”, it is not very easy for the parser to determine

i and j. Again, it might appear that the parser will have to try all possible values of 7 and j, 2 moderately

. expensive process. However, there are some special properties of the step function that enable us to remove

the references to i and j in equation (39). In engineering jargon, the convolution of two steps is a ramp. That

is, the product of two polynomials with step coefficients is a polynomial with increasing coefficients [8: pp. 89,
equation 16]). We have multiplied out the first few terms below.

1+ x4+ 2+ 2+ 2+

14 x4+ 24+ 24+ P
14 x+ 24+ 2+ 2P+
X + xz-i- x3+ o e

x2+ x3+ o

s RO o N

+ "ol T

1+ 2x+ 3+ 4% + 5°

-+

Auto-Convolurion of Unir Step Granmars - 23~ Section 8.3

The general result is:

) 248 2d= 2 @+
i i n

MNow cquation (39) can be simplified so that the references to 7 and j are replaced with », the total number of
adjuncts. This is much casicr for the parser to deal with because for a given input sentence there is a single

value for #, whercas there are multiple values for i and j.

(41) 2 adji E m;lj‘j = z (n + 1) agi®
i i n
‘This says that a string of n adjuncts induces n+ [parse trees, because there are n+ / ways to cut the string into
two substrings.l*" Now suppose there were three matrix clauses instead of just two.
(42) [will @sk if he will persuade you to go to the store tomorrow in the morning about 10:00 after ...

The number of parses in this case is the convolution of three steps.

(43) 2 s X, adf D, adft

] k

Again this form is ill-suited for parsing because there is no casy way to determine /, j and k. However, it is
possible to remove the references to the offending variables by taking advantage of some special properties of
the step function. In particular, there is a closed form for the convolution of d-+ I step functions [8: p. 90,
equation 20]:

(44) (zi“xi)un: z(n;-d &

Now we can remove the references to i, jand k:

@) (Za)=2 (") = Dia+n @
1 n n

15. The string can be cut between any two words (n— 1 places) or at cither end (2 places),

Aute-Couvolution of Unit Stop Grammars ~24- Secrion 6.3

These examiples show that standard well-known combinatorics can be used to dztermine the number of

ambiguities in many commion cascs,
7. Computing the Power Series Directly from the Grammar

In fact, the result derived in the previous section can be computed directly from the grammar itself.
First we translate the grammar into an equation in the usual way. That is, ADJS is modeled as a parallel
combination of two subgrammars, adj ADJS and A, (Recall that A is modeled as 1 because it is the identity

clement under series combination.)

(46a) ADIS — adj ADIS | A
(46b) ADIS = adj- ADIS + 1

We can simplify (46b) so the right hand side is expressed in terminal symbols alone, with no references to
non-terminals. This is very useful for processing because it is much casier for the parser o determine the
presence or absence of terminals, than of non-terminals. That is, it is casier for the parser to determine, for
cxample, whether a word is an adj, than it is to decide whether a substring is an ADIJS phrase. The
simplification moves all references to ADIS to the left hand side, by subtracting from both sides,

(46c) ADIS — adj- ADIS =1
factoring the left hand side,

(46d) (1 — adi)aDIS =1
and dividing from both sides.

(46¢) ADIS = (1 — ad))~!

This result is equivalent to the step formulation (37), as can been seen by performing the long division:

. . 2
(460) 1—_1=azj=1+—{%155=1+auj+—"ﬂ—

1 1 — adj
3
=1+&ﬂj+adj2+—43—-liadj=...= Zadjn

n

Computing the Power Serics Dircetly from the Grammar = 2o Section 7

The purpose of this scction was two folded. First, we presenied a simpler derivation of the power serics
far a unit step grammar. Secondly, and more importantly, we have introduced the notion of division. We

now have four combination rules:

(47a) scries combination {multiplication)
(47b) parallel combination (addition)
(47¢) inverse of series combination (division)

(47d) inverse of parallel combination (subtraction)

Series and parallel combinations are frequently found in many grammars formalisms currently employed in
the literature (c.g. context-free grammars, ATNs), ang consequently, they required very little motivation.
Subtraction was introduced as a “ruling-out™ operation. The next section will provide an intuition for
division in terins of ATNS,

8. Computing the Power Series from the ATN

This section will re-derive the power series for the unit step grammar directly from the ATN
representation by treating the networks as flow graphs [13]. The graph transformations presented here are
directly analogous to the algebraic simplifications employed in the previous section.

First we translate the grammar into an ATN in the usual way [16].
(48) ADIS — adj ADsS | A

: Cat adj Push AD] Pop
-+ ADIS: Y
. (49) 9— >(_))? el

Jump

This graph can be simplified by performing a compiler optimization called fail recursion ([2] and references
therein). This transformation replaces the final push arc with a jump:

Jump

Cat adj
L o

Jump

Computing the Power Sevies from the ATN - M- Section 8

Tail recursion corresponds directly to the algebraic operations of moving the ADIS ierms Lo left hand side,

factoring out the ADJS, and dividing from both sides.

Then we remove the top jump are by series reduction, This step corresponds to multiplying by 1 since a

jump are is the ATN representation for the identity element under series combination.

Cat adj

P
(51) ADIS: ?—ﬁ

Jump

The loop can be treated as an infinite scrics:
(52) 1+ adj + adi® + adj® + ..

where the zero-th term corresponds to zero iterations around the loop, the first term corresponds to a single

iteration, the second term o two iterations, and so on. Recall that (52) is equivalent to:

=
o N

With this observation, 1t is possible to open the loop:
1/{1-adj)

(54) aDIS: O , @ Jump *‘O Pop_

After one final series reduction, the ATN is equivalent to expression (46¢) above.

1/(1-adj) Pop

=) >

(54¢) ADIS: O

Now we can motivate division in intuitive terms. Division is a loop in an ATN.

How can division be implemented? We have two answers. First, division can be implemented as an
ATN loop. Alternatively, we can employ the table lookup scheme discussed above. That is. we formulate
division as an infinite sum;

(55) ﬁdjﬂ = z azqdji

1

Compuring the Power Series from the ATN - 27 Section 8

Then we constriict a table such that the i™ entry contains the it ambiguity coefficient. In other words, the i
location in the table tells the parser how to parse i occurrences of adj. The table lookup scheme is somewhat
more genera! than the ATN loop, because the table allows the it" coefficient to take on arbitrary values whereas
the ATN loop restricts the coefficients o 1. For example, the Catalan grammar (56a) could be implemented
with a table (56b). but not with an ATN loop.

(56a) A—AA|a Catalan Grammar
(56b) 2 {Zzlti a table implementation
i

However the table has the theoretical problem that it requires an infinite amount of memory. This is not a
problem in practice since the regions of interest are not that large. It is unlikely, for example, that a sentence

would contain more than twenty prepositional phrascs.

So far we have discussed five primitive grammars: Catalan, Unit Step, 1, and 0, and terminals, and four
composition rules: addition, subtraction, multiplication and division. Furthermore we have outlined three
implementation strategies: successive approximation (chart parsing), table lookup, and ATNs. We have seen
that it is often possible to employ these tools in order to re-organize the grammar so that these
implementations will perform more efficiently. We have idcmiﬁcd certain situations where the ambiguity is
combinatoric, and have sketched a few modifications to the grammar that enables processing to proceed in a
more efficient manner. In particular, we have observed it is important for the grammar to avoid referencing
quantities that are not easily determined such as the dividing point between a noun phrase and a prepositional
phrase.

9. An Example

Suppose for example that we were given the following grammar:

(57a) S — NP VP ADJS

(57b) S — V NP (PP) ADIS ADIS
(57c) VP — V NP (PP) ADIS
(57d) pP— P NP

(57e) NP — N (PP)

(57f) ADIS — adj ADIS | A

(In this example, we will assume no lexical ambiguity among N, V, P and adj.)

An Example ~ 28~ Section 9
By inspection, we notice that NP and Pe are Catalan grammars and thal ADIS is a Step grammar,

(583) PP = D, Cat, (P N)
130

(58b) NP =N 2 Cat, (P N)
i

(58) ADIS = D, adj

With these observations, the parser can process PPs, NPs and ADIS by counting the number of occurrences of
terminal symbols and looking up those numbers in the appropriate tables. We now substitute (58a-c) into
(57c)

(59) e = VNP(1+PP)ADIS =V (N 2 Cati(PN)i) (2 Cat; (» N)i) (2 miji)
i i i

and simplify the convolution of the two Catalan functions

o w=vin b Cali+l(PN)i) (Zmﬁ)
1 1

so that the parser can also find VvPs by just counting occurrences of terminals symbols. Now we simplify
(57a-b) so that s phrases can also be parsed by just counting occurrences of terminal symbols. First, translate
F (57a-b) into the equation:

(61) S = NPVPADIS + VNP (14PP) ADIS ADJS
and then expand VP

(62) 5 = NP(VNP(1+PP)ADIS) ADIS + V NP (14PP) ADIS ADJS
and factor

(63) s = (NP + 1) VNP (1+PP) ADIS?

This can be simplified considerably because

An Example - 29- Secrion 9

(64) ~Ne(l+pP) =N Z Cat, (P N) zﬂ: Cat, (PN) = N 2 Cat,, , (PN
i
and
(65) apis? = 2. adit 2 gt 2 (+1) adi
i i i
so that
(66) s= (?\ 2 Cat, (PN) + 1)‘n 2 Cat,, , (PN 2 (i + 1) adf
i i "

which has the following ATN realization:

N zCati(?N)i k. N Zc‘nm(m]i 2(i+1]adj:i

67 s (?_)O >(®)

The entire cxample grammar has now been compiled into a form that is easier for parsing. This formula says

Jump

that sentences are all of the form:
(68) S (NEN))VNEPN) adi

which could be recognized by the following finite state machine:

adj

Jump w Jump -3‘®

Jump

Jump

Furthermore, the number of parse trees for a given input sentence can be found by multiplying three
numbers: (a) the Catalan of the number of P N's before the verb, (b) the Catalan of one more than the number

of P N's after the verb, and (c) the ramp of the number of adj’s. For example, the sentence

An Exampie - 30~ Seciion §

(70) The man on the hill saw the boy with a telescope yesterday in the morning,

his Cﬂ[l * (’.“m3 + 3 = { parses. That is, there is onc way to parse “the man on the hill”, two ways to parse
“saw the boy with a telescope™ (cither “telescope™ is a complement of “see™ as in (71a-c) or it is attached to
“boy"” as in (71d-0), and three wayvs to parse the adjuncts (they could both attach to the S (71a,d), or they
could both attach to the ve (71b,e), or they could split (71c,D).

(T1a) [The man on the hill [saw the boy with a telescope] [yesterday in the morming.]]
(71b) The man on the hill [[saw the boy with a welescope] [vesterday in the morning.])
(71c) The man on the hill [[saw the boy with a telescope] yesterday] in the morning.

(71d) [Vhe man on the hill saw [the boy with a telescope] [vesterday in the morning.]]
(71e) The man on the hill [saw [the boy with a telescope] [vesterday in the morning.]]

(71f) The man on the hill [saw [the boy with a telescope] yesterday] in the morning.
All and only these possibilities are permitted by the grammar.
10. Lexical Restrictions

Now suppose there were an oracle (e.g. lexical restrictions) that disambiguated some of these
possibilities. How could we incorporate this information once we have already parszd the input sentence as
above? For example, the verb “see” has two lexical forms, a predicate of two arguments as in "I saw it” and a
predicate on three arguments as in I saw it with a telescope”. Now suppose we had an oracle which

disambiguated these two possibilitics. How could we take advantage of this information?

Consider the two argument case first. The previously assumed VP grammar (72a) simplifies to (72b)
with the two argument restriction.

(72a) vP — v NP(PP) ADIS
(72b) VP — V NP ADIS

If we re-derive the power series for §, we obtain:

13 s= (N 2, Cat, (P N) 4 1)w.= 2, Cat, (N)' 2, (i + 1) ad
i i i

This equation is the same as (66) except that Cat, _ , in (66) has been replaced with Cat,. The Cat, _ , resulted
from convolving the PPs generated in object position with those generated in complement position. Under
the two argument restriction, it is no longer possible to generate any PPs in complement position, and hence

Lexical Restrictions -3l - Seerion 10

all the pps must be in object positien. There are E‘mi ways to put them in object position as we have

discussed.

With this formula, we see that three of the six parses given in (71) meet the two argument restriction.
That is, there is still only one way to parse “the man on the hill” and three ways to parse the adjuncts, by the
same the reasoning applied previously. However, there are now only Cat, ways to parse "saw the boy with a
telescope”™ whereas there were Cat, ways before. The complement interpretations (7la-c) have been

excluded by the two argument restriction.

MNow suppose the oracle had selected the three argument form of “see”. How could we take advantage

of this information? In this case, the power series for s is the difference between (66) and (73).

(14) s= (N ECati{M}‘ +1] VN 2 (Cat,,, — Cat)) (P N) D G+ Dagf
i i i

We hope to generalize this approach to handle selectional restrictions and agreement facts.
11. Inverse Transforms

(Inverse transforms are a fairly self~contained topic which can be left for a second reading of this paper.)

The previous few scctions have outlined how it might be possible to use formal power series to compile
a grammar into a form for more efficient processing. This section will discuss the inverse process. That is,
given a compiled representation of the grammar, how can we recover a form suitable for linguistic analysis?

This scction will present a partial solution which we found very useful for analyzing BQSP,

. Let us consider an anccdotal example based on our experience with the EQSP conjunction mechanism,
Deep inside the code, there was a function called syntactically-parallelp which decided whether or not to
conjoin two constituents. Over the years, this function had acquired so many special case heuristics that it was
no longer understandable. However, we were able to determine the ambiguity coefficients by running EQSP

on the following sequence of conjunction sentences:

It was.

It was actual products.

It was actual products and actual products.

It was actual products and actual products and actual products.

It was actual products and actual products and actual products and actual products.

O h L B e

It was actual products and actual products and actual products and actual products and actual
products,

Tnverse Trangforms -32- Section 11

13 It was actual products and actual products and actual products and actual products and actual
products and actual products.

21 It was actual products and actual products and actual products and actual preducts and actual
products and actual products and actual products.

To our surprise the ambiguity coefficients did not follow the Catalan sequence as pradicted, but rather they
followed another well-known sequence calied the Fibonacci numbers [8). The first few Fibonacci numbers
are1, 1,2, 3,5, 8, 13, 21, ... The next value is formed by taking the sum of the two previous values, or more

precisely:

(75) Fib, = Fiby =1
Fib, = Fib__, +Fib_ _,

We can model the sentences above with the following power serics (ignoring the word “and™ which

complicates the analysis in ways that are irrelevant to the current discussion):
(76) s =Itwas z Fib, (actual products)’
i -

We were then able to recover the grammar from the power series because the Fibonacci series has a well-

known inverse transform. That is, a power series with Fibonacci coefficients obeys the following identity.

(77 2 Fibxf = —1—

i l=z—%
The reader can verify that this identity is correct by performing the long division. We were fortunate in this
case that the inverse transform for the Fibonacci numbers has a well-known closed form. In general, such
closed forms are very difficult to discover (if they exist at all), and for this reason, it can be very difficult or
even impossible to find a linguistically attractive grammar for an arbitrary processor. Nevertheless, closed
forms do exist for a large number of interesting cases. With some practice and a few educated guesses based
on partial knowledge of what the machine is doing, one can successfully “crack™ quite a number of

constructions. At least, this has been our experience with EQSP.

Returning to the conjunction sentences, we now have a closed form of the power series:

' 1
1 — (actual products) — (actual products)®

(78) s=Itwas

faverse Transforms - 13- Seetion 11

This has the following ATN realiation:

Jump

actual product »
It was L \

(79 s O.

)
actugl product “N_4 aetual product

We observe that rQsP employs a heuristic which prevents conjuncts from attaching more than two phrases
back. A full non-heuristic conjunction mechanism would permit conjuncts to “fold back™ arbitrarily far. In

which case the conjunction mechanism would be a Catalan grammar.

In this way, we were able to perform the inverse transform on the ambiguity coefficients in order to
recover the underlying behavior of the FQSP conjunction mechanism. We are now in a position to rewrite
syntactically-parallelp to be more comprehendable and more efficient, without disturbing the external

behavior,
12. Conclusion

We began our discussion with the observation that certain grammars are “every way ambiguous™ and
suggested that this observation could lead to improved parsing performance. Catalan grammars were then
introduced to remedy the situation so that the processor could delay attachment decisions until it discovers
some more useful constraints. Until such time, the processor can do little more than note [I'I.m the input
sentence is “every way ambiguous”. We suggested that a table lookup scheme might be an effective method

to implement such a processor.

In some sense, this approach is a formalization of a very old idea. That is, it has been noticed for a long
time that it might be advantageous to enrich a processor with the capability to attach certain ambiguous
constituents to several places in a single step. Pscudo-attachment [1: pp. 65-71] and permanent predictable
ambiguity [14: pp. 64-65] are two such proposals. However, these mechanisms have always lacked a precise
interpretation; Catalan grammars provide a much more formal way of coping with “every way ambiguous”
grammars. '

We then introduced rules for combining primitive grammars, such as Catalan grammars, into composite
grammars, This lincar systems view “bundles up” all the parse trees into a single concise description which is
capable of telling us everything we might want to know about the parses, (including how much it might cost

to ask a particular question). This abstract view of ambiguity enables us to ask guestions in the most

Conelusion -34- Secrion 12

convenient order, and to to delay asking until it is clear that that the pay-off will exceed the cost. This

abstraction was very strongly influenced by the notion of delaved binding.

We have presented combination rules in three different representation systems: power series, ATNs, and
context-free grammars, cach of which contributed its own insights. Power series are convenient for defining
the algebraic operations, ATNs are most suited for discussing implementation issues, and context-free
grammars cnable the shortest derivations. Perhaps the following quotation best summaries our motivation for

alternating among these three representation systems:

(30) A thing or ideca scems meaningful, only when we have several different ways to represent it —
different perspectives and different associations. Then you can turn it around in your mind, so to
speak: however it seems al the moment, you can see it another way; you never come to a full
stop.” [12: p. 19]

In cach of these representation schemes, we have introduced five primitive grammars: Catalan, Unit
Step, 1, and 0, and terminals, and four composition rules: addition, subtraction, multiplication and division.
We have scen that it is often possible to employ these analytic tools in order to re-organize (compile) the
grammar into a form more suitable for processing efficiently. We have identified certain situations where the
ambiguity is combinatoric, and have sketched a few modifications to the grammar that enables processing to
nroceed in a more efficient manner. In particular, we have observed it is important for the grammar to avoid
referencing quantities that are not casily determined such as the dividing point between a noun phrase and a
prepositional phrase as in

(81) Put the block in the box on the table in the kitchen ...

*We have scen that the desired re-organization can be achieved by taking advantage of the fact that the auto-
convolution of a Catalan scries produces another Catalan series. This reduced processing time from D{n3} o
O(n). Similar analyses have been discussed for a number of lexically and structurally ambiguous
constructions, culminating with the example in section 9 where we transformed a grammar into a form that
could be parsed by a single lefi-to-right pass over the terminal elements. Currently, these grammar re-
formulations have to be performed by hand. It ought to be possible to automate this process so that the re-

formulations could be performed by a grammar compiler. We leave this project open for future research,

Acknowledgments -35- Section 13

13. Acknowledgments

We would like to thank Jon Allen, Lewell Hawkinson, Kris Halvorsen, Bill Long, Mitch Marcus, Rohit
Parikh and Peter Szolovits for their very useful comments on carlier drafts. We would especially like to thank

Bill Martin for initiating the project.

References

1. Church, K., On Memory Limitaiions in Natural Language Processing, MI'1/1.CS/TR-245,
1980.

2. Church, K. and Kaplan, R., Removing Recursion from Natural Language Processors Based
on Phrase-Structure Grammars, paper presented at conference on Modeling Human
Parsing Strategies, University of Texas at Austin, 1981,

3. Dostert, B. and Thompson, F., How Features Resolve Syntactic Ambiguity, in Proceedings
of the Symposium on Information Storage and Retrieval, Minker, J. and Rosenfeld,
S. (eds.), 1971.

4. Earley, J.. An Efficient Contexi-Free Parsing Algorithm, Communications of the ACM,
Volume 13, Number 2, February, 1970,

5. Harrison, M., Introduction to Farmal Language Theory, Addison-Wesley, 1978,

6. Kaplan, R., Augmented Transition Networks as Psychological Models of Sentence
Comprehension, Artificial Intelligence, 3, 77-100, 1972.

7. Kaplan, R. and Bresnan, J., Lexical-Functional Grammar: A Formal System for
Grammatical Representation, in Bresnan (ed.), The Mental Representation of
Grammatical Relarions, MIT Press, 1981,

8. Knuth, D., Fundamental Algorithms, Vol 1 in The Art of Computer Programming,
Addison Wesley, 1975.

9. Liu, C. and Liu, J., Linear Systems Analysis, McGraw-Hill, 1975.

10. Malhotra, A., Design Criteria for a Knowledge-Based English Language System for
Management: An Experimental Analysis, MIT/LCS/TR-146, 1975.

11. Martin, W., Church, K., and Patil, R., Preliminary Analysis of a Breadth-First Parsing
Algorithm: Theoretical and Experimental Results, MIT/1L.CS/TR-261, 1981.

12. Minsky. M., Music, Mind, and Meaning, MIT A.L. Memo No. 616, 1981.

References - 35-

13. Oppenheim, A. and Schafer, R., Digital Signal Processing, Prentice-11all, 1975,

14. Sager, N., The Swring Parser for Scientific Literature, in Rustin, R. (ed.), Natural
Language Processing, Algorithmic Press, 1973,

15. Salomaa, A., Fennal Languages, Academic Press, 1973,

16. Woods, W., Transition Network Grammars for Natural Language Analysis, CACM, 13:10,
1970.

