
MIT / LCS/ TM-206

OPTIMAL PLACEMENT

FOR

RIVER ROUTING

Charles E. Leiseron
Ron Y. Pinter

October 1981

Optimal Placement for River Routing

Charles E. Leiserson
Ron Y. Pinter

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139-1986

Abstract
Programs for integrated circuit layout typically have two

phases: placement and routing. The router should produce as
efficient a layout as possible, but of course the quality of the
routing depends heavily on the quality of the placement. On
the other hand, the placement procedure ideally should know
the quality of a routing before it routes the wires. In this talk
we present an optimal solution for a practical, common version
of this placement and routing problem.

River routing is the problem of connecting in order a set of
terminals a1, ... , an on a line to another set b1, .. . , bn across a
rectangular channel. Since the terminals are located on modules,
the modules must be placed relative to one another before rout
ing. This placement problem arises frequently in design sys
tems like bristle-blocks where stretch lines through a module can
effectively break it into several chunks, each of which must be
placed separately. In this talk we shall present concise neces
sary and sufficient conditions for wirability which are applied
to reduce the optimal placement problem to the graph-theoretic
single-source-longest-paths problem. By exploiting the special
structure of graphs that arise from the placement problem for
rectilinear wiring, an optimal solution may be determined in
linear time.

Key words and phrases: analysis of algorithms, graph theory, longest paths, placement and
routing, river routing, VLSI layout.

This research was supported in part by the Defense Adva~ced Resea~d~- Projects Agency under Contract No.
N00014-80-C-0622.

1. Introduction

River routing is a special routing problem which arises often in the design of integrated
circuits, and it has been shown to be optimally solvable in polynor_nial-time for many wiring
models (see in particular [Tompa] and [Dolev et al.I) . In this paper we demonstrate that the

· placement problem for river routing is also polynomial-time solvable.

The general character of the placement problem for river routing is illustrated in Figure 1.
Two sets of terminals a1, ••• , an and b1 , ••• , bn are to be connected by wires across a rectangular
channel so that wire i is routed from ai to bi. The terminals on each side of the channel are
grouped into chunks which must be placed as a unit. The quality of a legal placement-one for
which the channel can be routed-can be measured in terms of the dimensions ·of the channel.
The separation is the vertical distance between the two lines of terminals, and the spread is the

horizontal dimension of the channel.

spread
T ________ __ ..;>~!-separation

I I
...:t__

Figure 1: Two sets of chunks on either side of a rectangular channel.
Terminal ai must be connected to bi for i = 1, ... , 10.

The wiring model gives the constraints that the routing must satisfy. Although our results
can be generalized to include a variety of wiring models (see Section 5), we concentrate on the
(one-layer) square-grid model. Crossovers are disallowed in the square-grid model, and all wires
must take disjoint paths through the grid.

The placement problem for river routing arises often during ordinary integrated circuit design.
A common instance is when the terminals of one or more modules are to be connected to drivers.
The various independent "chunks" are the modules, which lie on one side of the channel, and the
drivers, which lie on the other.

A more interesting manifestation of the placement problem occurs in the context of such
design systems as brii;tle-blocks [Johannsen] and DPL/Daedalus [Batali et al.]. These systems
encourage a designer to build plug-together modules so that the difficulties associated with general
routing can be avoided. A designer may specify stretch lines which run thro11gh a module and
allow the module to be expande<l perpendicular to the stretch line, as demonstrated in Figure
2. When two independently designed modules are plugged together, stretch lines permit the
terminals to be pitch aligned, that is, the distances between pairs of adjacent terminals are made
to match the distances between their mates, and routing is avoided because the separation of
the channel is zero. Unfortunately, this approach may not sncC"eed unless stretch lines are put
between every pair of adjacent terminals. The stretch lines may not. only disrupt the internal

1

structure of the modules, but the consequence may be an inordinate amount of stretching that
leaves the channel with a large spread.

The other extreme is to forego stretching altogether and river route between the terminals.
But the cost may still be large if a large separation is required in order to achieve a routing.
A reasonable compromise is to place stretch lines where it is convenient, and then do a little
stretching and a little routing. Determining how much of each to do is exactly the optimal
placement problem for river routing.

Figure 2: A module before and after stretching (courtesy of John Ba tali).

The remainder of this paper demonstrates that optimal solutions to the placement problem
can be achieved efficiently. Section 2 gives a concise necessary and sufficient condition for a
channel to be routable in the square-grid model. Section 3 shows that the form of this condition
allows the placement problem to be reduced to the graph-theoretic problem of finding the longest
paths from a source vertex to all other vertices in a graph. Based on this problem reduction,
a linear-time algorithm for optimal placement is given in Section 4. Section 5 shows that the
algorithm extends to wiring models other than the square-grid model, but its performance depends
on the particular wirability conditions for the mode!. Section 6 discusses the application of our
results to other routing situations and suggests further placement problems.

2

:2. Necessary and Sufficient Conditions for Wirability

To demonstrate the results of this paper, we adopt an extremely simple wiring model: the
(one-layer) sq1wre-grid model. All wires are constrained to run on an underlying grid of integer
lattice points. The terminals a1, ... , a71 and b1, ... , bn occ;upy grid points on opposite sides of the
channel. No two wires may occupy a single grid point which enforces unit separation of wires.
Figure 3 shows a solution to the problem of Figure 1 using this model.

b9 b10

Figure 3: A possible solution to the problem in Figure 1 for which the
separation is 5 and the spread is 27.

In order to establish constraints on wirability in this model, consider a straight line segment
drawn from (x1 , yi) to, but not including, (x2, y2). We ask the question, "How many wires can
cross this line?" A simple analysis shows the answer is max(lx2 - x 1 I, IY2 - y1 I). Without loss of
generality, assume the situation is as in Figure 4, and look at the grid points immediately below
the line, that is, { (x, lY1 + ~~=!'. (x - x1)J) I x = x1 , ... , x2 - 1 }. Any wire crossing the line
must perforce occupy one of these grid points, and therefore the number of such wires is bounded
by the cardinality of this set.

Figure 4: The number of wires crossing the half-open line segment is at
most the number of grid points immediately below the line.

Let us now turn to the river routing problem and examine how this constraint can be brought
to bear. Let a1, ... , an denote both the names of the terminals at the top of the channel and
their x-coordinates, and let the same convention hold for the terminals b1 , ... , bn at the bottom
of the channel. Consider a half-open line segment drawn from terminal a1 to terminal b1 as shown

3

ir F•igure 5. The j - i wires emanating from ai, ... , ai- l must all cross this line, and similarly
f Jr a line drawn from bi to ai, In order for a channel with separation t to hf' routable, therefore,
it must be the case that

max(a,. - bi, t) > j - i and max(bj - ai, t) ~ j - i

for 1 ~ i < j ~ n.

j - i wires

Figure 5: The j - i wires from ai, ... , aj- t must cross the dashed line
between bi and a,..

(1)

Although Condition (1) is a new condition for wirability, the analysis that leads to it is
essentially the same as that in [Dolev et al.] and represents previous work in the field. A more
compact condition exists, however, which is equivalent:

(2)

for 1 ~ i ~ n - t. The channel is always routable if t ~ n.
Condition (1) implies Condition (2) because Condition (2) is a refinement of Condition (1).

For the opposite direction, suppose first that j - i < t; then max(a7 - br:, t) > t > j - i. If
j - i 2 t, on the other hand, then ·

a1 - bi == ar:+t+(i- i- t) - bi

~ ar:+t - br: + (j - i - t)

~ t + (j - i - t)
= j - i

since ak+t 2 ak + 1 for all 1 ~ k < n. Thus the two conditions are indeed equivalent.
Figure 6 shows a simple geometric interpretation of Condition {2). The condition ar:+t-bi 2

t means that a line with unit slope going up and to the right from b, must intersect the top of
the channel at or to the left of terminal ai+t• And if the condition fails, terminal bi must be to
t.he right of a1 for i ~ j < i + t - 1, that is, each wire from a ai goes down and to the right,
which can be shown to follow from the fact that a1+1 2 ai + 1. (For b,+t - ar: 2 t the line

4

Permissible range for ai+t

t
ai Yllll/111/1//11/1/

Permissible range for bi+t

Figure 6: Geometric interpretation of ai+t 2':: bi+ t and b~+t 2':: ai + t.
with slope - 1 going down and to the right from ai must intersect the bottom of the channel at
or to the left of terminal bi+t-)

This geometric interpretation can be used to show that Condition (2) is not only a necessary
condition for routability of the channel, but a sufficient condition as well. In fact, a simple greedy
algorithm will successfully route a routable channel. Processing terminals left to right, the greedy
algorithm routes each wire across the channel until it hits a previously routed wire; then it follows
the contour of the opposite side until it reaches its destination.

To see that this algorithm works given Condition (2), we must be more precise about what
paths are taken by the wires. Consider without loss of generality a block of consecutive wires
that go down and to the right, that is, a, ~ b, for all wires in the block. For any horizontal
position x such that ai - t < x ~ bi, define

71i(x) = max(ai - x, max r).
b;-r:2'.:X

The path of wire i is then described by the locus of points (x + 77,(x), 77;(x)) for a; - t < x ~ b;.
A geometric interpretation of this formulation uses the same intuition as was given in Figure

6. The line with unit slope drawn from (x, 0) where xis in the range ai - t < x < b, must cross
wire i. The value 77;(x) gives the y-coordinate of wire i where it crosses this line of unit slope.
The two-part maximum in the definition of 77;(x) corresponds to whether the wire is being routed
straight across the channel or whether it is following the contour of the bottom. The value of
71i(x) for the latter situation is the number of wires to the left of wire i which must cross the line
of unit slope.

We must now show that the locus of points for a wire is a path, that the paths are disjoint,
and that they never leave the channel. That the locus of points is indeed a path can be seen
by observing that as x ranges from a, - t to b11 the initial point is (a,, t - 1), the final point
is (b;, 0), and with a change of one in x the coordinates of the path change by a single grid
unit in exactly one of the two dimensions. To show that the paths are disjoint, consider two
adjacent wires i and i + 1, and observe for ai+l - t < x ~ b; that ai - x < ai+i - x and
maxb,-r:2'.:X T < maxbi+t -r~ X r, and therefore 77,(x) < 71i+1(x).

To show a path of a wire never leaves the channel, we demonstrate that 17,(x) < t for all i
and x in the associated range. It is for this part of the proof that we need the assumption that

5

Condition (2) holds. If for a wire i, the two-p-art maximum in the definitior 01 17i(x) is achieved
'"JY a, - x, then 17i (x) must be less than t because x > ai - t. Suppose th\:n, that the two-part
maximum is achieved by the maximal r such that bi-r 2:: x. To show that r < t, we assume the
contrary and obtain a contradiction. But since bi-t 2:: bi-r 2:: x > ai - t, the contradiction is
immediate because ai - bi-t 2:: t from Condition (2).

3. The Structure of the Placement Problem

The objective of a placement algorithm is to set up a routing problem that is solvable and
minimizes some cost function. Many criteria can be adopted to measure the cost of a placement
for river routing, whether in terms of area (total or channel) or some other function of spread and
separation. A plot of minimal spread versus given separation reveals that the region of feasible
placements may not be convex although the curve is guaranteed to be monotonically decreasing.
(Figure 7 shows the plot for the problem of Figure 1.) Any measure of placement cost that is a
function of spread and separation and which is monotonically increasing in each of spread and
separation will therefore find a minimum on this curve.

spread

2
2
2
22

T,
I

I I I f I I ► separa-tion -
2 3 4 5 6 7 8 9 /0

Figure 7: The curve of minimum spread versus separation for the example
of Figure 1.

Thus we content ourselves with producing points on this curve, that is, determining a
placement which achieves the minimum spread for a given separation t, if indeed the channel is
routable in t tracks. If minimum separation is the goal, for example, binary search can determine
the optimum t in O(lg t) steps. Since the algorithm presented in the next section determineB a
placement for fixed t in O(n) time where n is the number of terminals, and since the separation
need never be more than n, a minimum-separation placement can be achieved in O(nlg n) time.

6

F ,r more general objective functions such as area, the optimum value can be determined in O(n2)

Lme.

We now examine the character of the placement problem for river routing when the separation
t is given. The n terminals are located on m chunks which are partitioned into two sets that
form the top and bottom of the channel. For convenience, we shall number the chunks from one
to k on the top, and k + 1 to m on the bottom. The order of chunks on each side of channel
is fixed, but they may be moved sideways so long as they do not overlap. For each chunk i, a
variable Vi represents the horizontal position of its left edge. Any placement can therefore be
specified by an assignment of values to these variables. We also add two variables v0 and Vm+i

to the set of variables, which represent the left and right boundaries of the channel. The spread
is thus Vm+l - v0 . Figure 8(a) shows the eight variables for the example from Figure 1.

Vo

a1 a2 a3 a4 I as as a1 as ag a10

V, V2
~ ¼ Vs \.i
_[9 I b3 b1, bs I I bs b1 bs I I bg b10 I

(a) Assignment of variables to chunks and channel boundaries.

10

(b) The placement graph for separation 3.

Figure 8: Representing the placement constraints as a graph for the ex
ample of Figure 1.

V7

Since the relative positions of terminals within a chunk is fixed, the wirability constraints of
Condition (2) can be reexpressed in terms of the chunks themselves to give placement constraints
that any assignment of values to the Vi must satisfy. If terminal ai+t lies on chunk h, and
terminal bi lies on chunk j, the constraint ai+t - b, ~ t can be rewritten as Vh - v1 ~ Th1 , where

7

TJij reflects t and the offsets of the terminals from the left edge of their res·.1e.:tive chunks. The
i:onstraint between two chunks determined in this way will be the maxim~l constraint induced
by pairs of terminals.

Additional constraints arise from the relative positions of chunks on either side of the channel.
For each pair of adjacent chunks i and i + 1, the constraint vi+1 - Vi 2 Wi must be added to
the set of placement constraints, where Wi is the width of chunk i. Four more constraints are
needed which involve the boundary variables v0 and vm+l· For chunks 1 and k + 1 which are
leftmost on the top and bottom, the constraints v1 - Vo 2 0 and vk+1 - Vo 2 0 enforce that
these chunks lie to the right of the left boundary of the channel. For chunks k and m which
are rightmost on the top and bottom, the relations Vm+1 - Vk 2 Wk and Vm+1 - Vm 2 Wm

constrain them to lie to the left of the right boundary, where wk and Wm are the widths of the
chunks.

Figure 8(b) shows a placement graph which represents the constraints between chunks.for the
placement problem of Figure 1 where the separation is 3 tracks. A directed edge with weight 6ki

goes from vk to Vt if there is a constraint of the form Vt - Vk 2 8kt• For example, the weight of 1
on the cross edge going from vs to v2 is the maximal constraint of.a9 - b6 2 3 and a 10 - b7 > 3
which yield v2 - vs 2 -1 and V2 - Vs 2 1 since ag = v2 + 5, a10 = v2 + 6, bs = vs+ 1,
and b1 = vs + 4. The side edge from V4 to Vs arises from the constraint that chunk 4, which is
5 units long, must not overlap chunk 5.

The goal of the placement problem is to find an assignment of values to the Vi which minimizes
the spread vm+1 - vo subject to the set of constraints. This formulation is an instance of linear
programming where both the constraints and the objective function involve only differences of
variables. Not surprisingly, this problem can be solved more efficiently than by using general
linear programming techniques. In fact, it reduces to a single-source-longest-paths problem in
the placement graph. The length of a longest path from v0 to Vm+1 corresponds to the smallest
spread of the channel that complies with all the constraints. The placement of each chunk i
relative to the left end of the channel is the longest path from v0 to vi. If the placement graph
has a cycle of positive weight, then no placement is possible for the given separation.

For the placement problem of Figure 1 with a three-track separation, the longest path from
vo to v2 in the placement graph {Figure 8) is Vo - v1 - v4 - vs - v2 with weight 13 which
corresponds to the positioning of chunk 2 in the optimal placement shown in Figure 9{a). Figures
9(b) through 9(d) show optimal solutions to the placement problem of Figure 1 for separations
t = 4 through t = 6. The constraints for t = 2 yield a cycle of positive weight in the placement
graph, and thus no placement is possible which achieves a separation of only two tracks.

4. A Linear-Time Algorithm for the Placement Problem

The analysis of Section 3 showed that the optimal placement problem for fixed-separation
river routing was reducible to the single-source-longest-paths problem on a placement graph.
For_ a general graph G = (V, E) this problem can be solved in time O(IV I · jEI) by a Bellman
Fo;d algorithm [Lawler). Better performance is possible, however, due to the special structure of
placement graphs. This section reviews the Bellman-Ford algorithm, and shows how it can be
adapted to give an O(m)-time algorithm for the longest-paths problem on a placement graph,
where m is the number of' chunks. Since the placement constraints can be generated in O(n)
time, where n is the number of terminal pairs, this algorithm leads to an optimal linear-time

8

(a) Separation 3, spread 27.

(b) Separation 4, spread 26.

bg b10

(c) Separation 5, spread 26.

(d) Separation 6, spread 23.

Figure 9: Opt imal placements and routings for the problem of Figure 1
with separat ions ranging from t = 3 to t = 6.

9

a1gorithm for the fixed-separation placement problem. The discovery of a linear-time algorithm
represents joint research with James B Saxe of Carnegie-Mellon University.

The linear-time algorithm is a refinement of the standard Bellman-Ford algorithm which for
each vertex Vi where i = 1, ... , m + 1, iteratively updates the length >.(vi) of a tentative longest
path from vo to vi. The algorithm initializes >-(v0) to zero, and all other >-(vi) to - oo; then it
sequences through a list E of edges, and for each edge (vi, v3) with weight 8;,i updates >.(v3) by

The list E of edges is the key to the correctness of the algorithm. The length of a longest
path from the source v0 to a vertex Vj converges to the correct value if the edges of the path form
a subsequence of the list E. (This can be proved by adapting the analysis of [Yen].) In the
normal algorithm for a general graph G = (V, E), the list E is IVI - 1 repetitions of an arbitrary
ordering of the edges in E, which ensures that every vertex-disjoint path in G beginning with
v0 is a subsequence of E. If there are no cycles of positive weight in the graph G, then from v0
to each other vertex in G, there is a longest path that is vertex-disjoint; hence the algorithm
is guaranteed to succeed. The condition of positive-weight cycles can be tested at the end of
the algorithm either by checking whether all constraints are satisfied or by simply running the
algorithm through the edges in E one additional time and testing whether the values of any >.(vi)
change.

The list [is also the key to the performance of a Bellman-Ford algorithm. For the general
algorithm on an arbitrary graph G = (V, E), the length of the list is (IVl-1) · IEI, and thus the
algorithm runs in O(IV I · IEI) time. For a placement graph it is not difficult to show that both
IV! and IEI are O(m), and thus the longest-paths problem can be solved in O(m2) time by the
general algorithm. But a linear-time algorithm can be found by exploiting the special structure
of a placement graph to construct a list E of length O(m) that guarantees the correctness of the
Bellman-Ford algorithm. We now look at the structure of placement graphs more closely.

The vertices of a placement graph G = (V, E) corresponding to the chunks on the top of the
channel have a natural linear order imposed by the left-to-right order of the chunks. We define
the partial order -< as the union of this linear order with the similar linear order of bottom
vertices. Thus u -< v for vertices u and v if their chunks lie on the same side of the channel
and the chunk that corresponds to u lies to the left of the one which corresponds to v. The
left-boundary vertex v0 precedes all other vertices, and all vertices precede the right-boundary
vertex Vni-tl· The partial order ::s is the natural extension to -< that includes equality.

The next lemma describes some of the structural properties of placement graphs. Figure 10
illustrates the impossible situations described in Properties (i) and (ii) and shows the only kind
of simple cycle that can occur in a placement graph together with the two consecutive cross edges
that satisfy Property (iii).

Lemma 1. Any placement graph G = (V, E) has the following properties:
(i) There do not exist cross edges (u, v) and (x, y) such that u -< x and y -< v.
(ii) There do not exist cro.ss edges (u, v) and (x, y) such that v -< x and y -< u.
(iii) All cycles have two consecutive cross edges (u, v) and (v, w) such that w ~ u.

Proof. Properties (i) and (ii) can be proved by considering which of the terminal constraints
from Condition (2) induce the edges in the placement graph. For each of these cases, suppose the
edge (u, v) was caused by the terminals i in u and i +tin v, and the edge (x, y) came from the

10

c(
(a) The situation forbidden by Property (i).

c(
(b) Th~ situation forbidden by Property (ii).

(c) Every simple cycle contains at most one vertex from the top or
at most one vertex from the bottom. The edges incident on the
vertex -~re a ~~!1sequence of Property (iii).

Figure 10: The properties of the placement graph- enumerated in Lemma 1.

terminals j in x and j + t in y. For Property (i) we have u -< x and y -< v, and thus i < j and
j + t < i + t. Can.::eling t from this latter inequality obtains the contradiction. The assumption
to be proved impossible in (ii) is that v -< x and y -< u, which implies i + t < j and j + t < i.
Since t is nonnegative, we gain a contradiction.

To prove Property (iii), we need only consider simple (vertex-disjoint) cycles. Since no cycle
can consist solely of side edges, every simple cycle must have a cross edge (u, v) going from bottom
to top. In order to complete the cycle, there must be a top-to-bottom edge (w, x) such that v -< w
and x =:; u. If v = w or x = u, then the pair of edges satisfies Property (iii). But if v ~ w and
x ~ u, then the pair of edges violates Property (ii). I

Each edge in the placement graph is either a top edge, a top-bottom edge, a bottom-top
edge, or a bottom edge. For each of these four sets of edges, there is a natural linear order of
edges based on -< , where (u, v) precedes (x, y) for two edges in the same set if u =:; x and v =:; y.
Property (ii) guarantees that the linear order holds for two cross edges in the same set. Let TT,
TB, BT, and BB be the four lists of edges according to the natural linear order, and include the
two edges out of v0 and the two edges into Vm+i in either TT or BB as appropriate.

The list E used by the Bellman-Ford algorithm is constructed by a merge of the four lists
which we call MERGE. At each step of MERGE, a tournament is played among the first elements
of each list. If (u, v) and (v, w) are the first elements of two lists, then (u, v) beats (v, w) if w ~
u. Since there may be more than one edge beaten by none of the other three, ties are broken

11

a.rbitrarily. The winner is appended to c and removed from the head of its li Jt. The tournament
L then repeated until no edges remain in any of the four iists. The performan..:e of the tournament
can be improved by recognizing that only six of the twelve possible comparisons of edges need
be tried, and that w i u is guaranteed for all but two. Figure 11 shows a possible ordering of
edges in c for the placement graph in Figure 8.

Figure 11: A possible ordering of edges in c for the placement graph in
Figure 8.

In order for MERGE to be well-defined, the tournament must always produce a winner,
which is a consequence of the next lemma.

Lemma 2. The list c produced by MERGE is a topological sort of the edges of E according
to the relation R where (u,v)R(v,w) ifw Jj u.

Proof. First, we show that the relation R is acyclic so that the edges can indeed be
topologically sorted. By definition of R, a cycle in R induces a cycle in the placement graph.
According to Property (iii), the cycle must have two consecutive cross edges (u, v) and (v, w) such
that w -< u. But since (u, v)R(v, w), we also have that w i u, which is a contradiction.

The proof that MERGE topologically sorts the edges of E according to R makes use of
the fact that if a vertex v is the tail of an arbitrary edge in any one of the four lists TT, TB,
BT or BB, then for every u ::5 v there is an edge in the same list emanating from u. Suppose
that MERGE does not topologically sort the edges of E according to R. Then there is a first
edge (u,v) inc such that there exists an edge (v,w) earlier inc and (n,v)R(v,w). Consider the
edge (x, y) in the same list as (u, v) that competed with (v, w) when (v, w) was the winner of the
tournament. For each of the possible combinations of lists for (u, v) and (v, w), it can always be
deduced that there is an edge emanating from y such that which makes (x, y) an earlier violator
of the topological sort than (u, v). I

Since each edge of E is included exactly once in the list c created by MERGE, the Bellman
Ford algorithm applied to £ has a running time linear in the number of chunks. The correct values
for longest paths are produced by the algorithm if for every vertex v, there is a subsequence of £
that realizes a longest path from v0 to v, under the assumption that there are no positive-weight
cycles in the placement graph. Since for every longest path, there is a vertex-disjoint longest
path, the following theorem proves the correctness of this linear-time Bellman-Ford algorithm.

Theorem 3. Let G be a placement graph with left-boundary vertex v0 . Then every vertex
dis)oint path beginning with v0 is a subsequence of the list c created by the procedure MERGE.

12

Proof. We need only show that ev•~ry pair of consecutive edges in a vertex-disjoint path from
v0 satisfies R because then Lemma 2 t:uarantees that the path is a subsequence of [. Suppose
(1i, v) and (v, w) are two consecutive edges on a vertex-disjoint path from v0 which violate R,
that is, w ~ u. If either (u,v) or (v,w) is a side edge, the pair must satisfy R, and thus both
must be cross edges with the vertices u and w on the same side. Since if w = u, the path is not
vertex-disjoint, we need only show that w -< u is impossible.

Assume, therefore, that w -< u, and consider the initial portion of the path from vo to u.
Since vo -< v and vo -< w, there must be an edge (x, y) on the path which goes from the set of
vertices to the left of (v,w) to the right of (v,w) in order to get to u. But then either Property
(i) or Property (ii) is violated depending on whether x -< v and w -< y, or y -< v and x -< w. I

5. Other Wiring Models

The reduction from the fixed-separation placement problem in the square-grid model to
the single-source-longest-paths problem is possible because the wirability constraints can all be
written in the form Vi - Vj ~ Oij• Thus for any wiring model where wiring constraints can be
written in this form, the reduction will succeed. Also, it should be observed that in general, the
performance of the single-source-longest-path algorithm will not be linear, but will be a function
of the number of constraints times the number of variables. This section reviews other models
and gives the necessary and sufficient wirability constraints for each.

1. One-layer, gridless rectilinear ([Dolev et al.]). Wires in this model must run horizontally
or vertically, and although they need not run on grid points, no two wires can come within one
unit of each other. The wirability constraints for this model are the same as for the square grid
model:

for 1 ::; i ::; n - t. As with the square-grid model, the fixed-separation placement algorithm for
this model can be made to run in linear time.

2. One-layer, gridless, rectilinear and forty-five degree ([Dolev and Siegel]). This model is
the same as the gridless rectilinear, but in addition wires can run which have slope ±1. The
constraints in this case are

a·+ - b > r..fi - t and b+ - a > rV2 - t i.r •- ir i _

for t/v2 ::; r < t and 1 ::; i ::; n - r . The placement algorithm for this model runs in
O(min(tm2 + tn, m 3 + tn, m 3 + n2)) time.

3. One-layer, gridless ([Tompa]). Wires can travel any direction. The const raints are

fort ::; r ::; n and 1 ::; i ::; n - r. The placement algorithm runs in O(m3 + n 2
) time.

13

4. Multilayer models. All the modf 1s presented until now have been on<:-layer models. It is
natural to generali.ze to l-layer models ill which wires may travel on different layers. Remarkably,
optimal routability can always be achieved with no contact cuts ([Baratz]), that is, a wire need
never switch layers. The necessary and sufficient conditions for these multilayer models are a
natural extension of the one-layer conditions. For example, in the one-layer, gridless, rectilinear
model the conditions are modified for I layers to be

for 1 :::; i :::; n - lt.
There are some wiring models, however, where upper and lower bounds for wirability do

not meet. For these models a constraint graph which represents upper bounds will give the best
possible placement for those bounds. A graph representing lower bounds will give lower bounds
on the best possible placement. Together, bounds can be established for some of these models,
and heuristic algorithms invoked to attempt routing within the feasible range of optimality.

6. Extensions and Conclusions

A variety of related placement problems can be solved by the method described in this paper.
Some entail extensions to the problem specifications, others employ different wiring models. In
this section we shall mention a few extensions we can handle and suggest further research on
more complicated problems.

• Nonriver routing. The placement algorithm gives optimal placements for river routing, but
there are other routing configurations for which it works optimally as well. One example is the
two-layer, any-to-any routing problem 'Nhere two sets of terminals must be ccnnected across a
channel, but they may be connected in any order.

• Parallel Channels. Multiple, parallel horizontal channels are easily handled within the same
graph-theoretic framework. Each row of chunks is represented by a chain of vertices (from a
common le~ margin to a common right margin), and the wiring conditions in the channels are
represented by edges linking adjacent chains. The optimal placement is achieved by solving the
whole system, using the Bellman-Ford algorithm. We do not know how to obtain (or show the
impossibility of) a linear-time algorithm to do the job in general, in contrast to the special case
(one channel) discussed in Section 4. However, the number of edges in the graph is still linear in
the number of vertices (chunks), thus the Bellman-Ford algorithm runs in time O(n+m2

) (where
n is the number of nets, m - the number of chunks).

• Range- Terminals. In some routing situations terminals occupy not a single point, but rather
a contiguous region along the edge of the channel. For example, the terminal might be a wire
that runs along the edge of the chunk, and connection can be made to the wire anywhere.
The additional flexibility of viewing a terminal as a contiguous range of points can
be exploited by both the greedy rout.ing algorithm and the placement algorithm in any of the
river-routing models we have discussed.

Each range-terminal is specified by an interval !a;-, a~] or [bf, bf]. The greedy routing
algorithm operates as before with minor changes. If the range-terminals overlap, the wire is
routed straight across. Otherwise, assume without loss of generality that ar < bf, and use the
standard greedy algorithm to route a wire from a~ to b;-.

14

The wirability conditions for placement are accordingly adjusted. In thr. rectilinear case, for
example, the condition ai+t - bi 2 t is rewritten as aft +t - bf ~ t and co11dition bi+t - ai 2 t
becomes bf:t_t - af 2 t. The transformation to chunk variables is as befo~·e and the placement
algorithm is unchanged.

An interesting extension of the river-routing problem studied here is the two-dimensional
problem illustrated in Figure 12. In the figure, a line between two chunks indicates that wires
must be routed between them. Unfortunately, in order to optimally solve this general problem,
it appears that the constraints indicated by the lines must be convex in both dimensions, not
just in one as is the case for the wiring models considered here. When the constraints are
convex, however, convex programming can be used to optimize a cost function such as the
area of the bounding box of the layout. One model which gives convex constraint s for the
general two-dimensional problem is the one in which all wires must be routed as straight line
segments between terminals such that no minimum spacing rules are violated. This model is not
particularly interesting from a practical standpoint, however. Heuristics for solving the related
two-dimensional compaction problem by repeatedly compacting in one dimension and then the
other can be found in [Hsueh].

Figure 12: A two-dimensional extension to the river-routing problem. A
solid line between two modules indicates routing occurs between
them.

A major deficiency of placement algorithms is that they lack knowledge about the wirability
of the routing problems that they set up. We have shown for river routing that wirability
conditions can be translated directly into placement constraints without the overhead of wiring
the channel. For rectilinear river routing, the running time of the greedy wiring algorithm is
O(n2), and any cost function for placement that is monotonic in spread and separation can be

15

o .,ti,nized in O(n2) time without the overhead of routing. Studying wirability in the general case
r.iay lead to the development of heuris';ics for wirability that do not involve routing. A program
that uses i,his heuristic knowledge should be able to outperform the iterative place-route, place-
route programs that dominate today. ··

Acknowledgments. We would like to thank Howie Shrobe of the :MIT Artificial Intelligence
Laboratory for posting the plots of the data paths from the Scheme81 chip which inspired our
interest in this placement problem and for his valuable comments on the practicality of our
work. We would also like to thank Alan Baratz and Ron Rivest from the MIT Laboratory for
Computer Sdence for numerous helpful discussions, and Shlomit Pinter also from the Laboratory
for Computer Science for influencing the direction of our proof of Theorem 3. Finally, special
thanks to Jim Saxe of Carnegie-Mellon University for his key contributions to the linear-time
algorithm for longest-paths.

References

[Baratzj

[Batali et al.]

[Dolev et al.]

Baratz, A. E., Algorithms for Integrated Circuit Signal Routing (Ph.D. disser
tation), Dept. of Electrical Engineering and Computer Sdence, M.I.T., August
1981.

Batali, J., N. Mayle, H. Shrobe, G. Sussman and D. Weise, "The DPL/ Daedalus
design environment," Proceedings of the International Conference on VLSI,
Univ. of Edinburgh, August 1981, pp. 183-192.

Dolev, D., K. Karplus, A. Siegel, A. Strong and J. D. Ullman, "Optimal wiring
between rectangles," Proceedings of the Thirteenth Annual ACM Symposium
on Theory of Computing, May 1981, pp. 312-317.

[Dolev and SiegelJ Dolev, D. and A. Siegel, "The separation required for arbitrary wiring barriers,"
unpublished manuscript (to appear in the Proceedings of the CMU Conferer.ce
on VLSI Systems and Computations, October 1981).

[Hsuehj

[Johannsen]

[Lawler]

[Tompaj

[Yenj

Hsueh, M.-Y., Symbolic Layout and Compaction of Integrated Circuits, Memo
No. UCB/ERL-M79/80 (Ph.D. dissertation), Electronics Research Laboratory,
Univ. of California, Berkeley, December 1979. ·

Johannsen, D., "Bristle blocks: a silicon compiler," Proceedings of the Caltech
Confere71,ce on VLSI, January 1979, pp. 303- 310. Also appears in the Proceed
ings of the Sixteenth Design Automation Conference, June 1979, pp. 310-313.

Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart and Winston, New York, 1976.

Tompa, M., "An optimal solution to a wire-routing problem," Proceedings of
the Twelfth Annual Symposium on Theory of Computing, April-May 1980, pp.
161-176.

Yen, J. Y., "An algorithm for finding shortest routes from all source nodes to a
given destination in general networks," Quarterly of Applied Mathematics, Vol.
27, No. 4, July 1970, pp. 526-530.

16

