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The Dcducibility Problem in Propositional Dynamic Logic 

1 Introduction 

Propositional Dynamic Logic ( P DI.) [ I] is an extension of propositional logic in which "before-after" 

assertions about the behavior of regula1 progrnm schemes can be made directly. Propositional 

calculus, temporal logic and the most familiar versions of propositional modal logic arc all embeddable 

in PD!., but P/JL nevertheless has a validity problem decidable in (deterministic) exponential time (4]. 

In this paper we consider the deducibili1y problem for PDL, namely the problem of when a formulap 

follows from a set r of formulae. The problem comes in two versions: 

(1) pis implied by r if and only if Ar-+ pis valid. 

(2) p can be inferred from r if and only if pis valid in all structures for which /\ r is valid. 

Note that if pis implied by r then it can be inferred from r, but the converse docs not hold in general. 

For a finite set r. the question whether pis implied or inferred from r reduces to whether a formula of 

PD/. is valid and so is decidable. However, axiomatizations of logical languages such as the 

propositional calculus or PDL arc often given in terms of axiom schemes, namely, fonnulae whose 

variables may be replaced by arbitrary formulae. Thus, a single axiom scheme actually represents the 

infinite set of all formulae which arc substitution instances of the scheme. Our main result is that 

the problem of whether an arbitrary PDLformula pis deducible from a single fixed axiom 

scheme is of extremely high degree of undecidability, namely 111
1-complete. 

This result appears unexpected for at least two reasons. First, the easily recognizable infinite set of 

substitution instances of a single scheme seems initially to provide little more power than a single 

fonnula. For example. the problem of whether a single PDL scheme is a sound axiom, i.e., whether all 

its substitution instances are valid, is equivalent to the question of whether the scheme itself regarded 

as a fom1t1la is valid. Hence it is decidable whether a scheme is sound. 

Second, many familiar logical languages satisfy the compactness property, namely, that if pis deducible 

from r. then in fact pis deducible from a finite subset of r . lt follows directly from compactness that 

the deducibility problem from r is recursively enumerable relative to rand the set of valid formulae 

of the language. Since the set r obtained from a single axiom scheme and the set of valid fonnulae of 

PDL arc each decidable, compactness of PDL would imply that the dcducibility problem was 

recursively enumerable, whereas n i1-complcteness in fact implies that the deducibility problem for 
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PD/. is not even in the arithmetic hierarchy. This provides a dramatic illustration of the familiar fact 

that PD L is not compact. 

The idea ofour proof is based on an observation of Mirkowska and Pratt [2] that with a finite set of 

axiom schemes one can essentially define the integers up to isomorphi"m. This idea is extended below 

to define structures isomorphic to the fi ve dimensional nonnegathe imegcr grid"' ith coordinatcwise 

successor and predecessor functions and an arbitrary monadic predicate. Program schemes interpreted 

over these grids can compute arbitrary recursi,·e functions of integer and monadic predicate ,·ariablcs. 

The ,alidity of fo rmulae asserting termination of program schemes corresponds tti the validity of 

arithmetic formulae asserting the existence of roots of such recursive functions. V .ilidity of such 

arithmetic formulae with predicate variables is well known to bean 1
1-complcte problem. 

In the next section we review the syntax and semantics of PD I. and gi , c formal definitions of the 

implication and inference problems from axiom schemes. In Section .'l we define the structure~ called 

grids and show that they arc precisely characterized by a single axiom '->Cherne. This easily yields the 

main result in Section 4 that the deducibility problems arc n 1 Lcompkte for PD!. schemes. The 

argument is then sharpened to show that n I Lcomplcteness of the inference problem holds even for a 
restricted version of PDL, namely, deterministic PDL with atomic tests. Section 5 lists some open 

problems and related results. 
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2 Pro1wsitional Dynamic Logic 

We arc gi, en a sci of atomic program~ 11 0 and a sci of' ;110111ic proposilions <1>0. Capital letters 

A. U. ( · .... from the beginning of'the alphabet will he used to drnotc clements of n0. and capital 
letters /'. Q. R . ... from the middle of' the alphabet will he used to denolc clements of <1>0. 

!Jcfi11itio11: The set of programs. n. and lhe sci or fi,rmulac. <I>. of pmpositiw,,,I dy11a111ic logic ( PD!,) 

arc defined incluclivcly as follows (note the use of lcucrs a. b. c. . . . Lo denote clements of 11 

and p. q. r • ... to denote clements of <I>): 

fl: (l)n0 ~nand8EIT 
(2) If a. b E 11 then a;b, aUb, a* E TT 

(3) If p E <I> then p? E TT 

<I>: (1) <l>o ~ <t> 
(2) lf p, q E <I> then • p, p&q E <t> 

(3) If a E 11 and p E <I> then <a>p E <t> 

/h'.fi11itio11: I\ /'/)!, structure is a lriplc S = < V. I= s- < > s> where 

(I) U is a non-cm ply set. the universe of states. 

(2) I= sis a satisfiability relation on the atomic propositions, i.e. a predicate 

on Ux n0. 

(3) < > s maps each atomic program A to a binary relation <A> son states, 

i.c <A>s C Ux U. 

Defi11i1io11: For any structure S, the relation I= sand map <>scan be extended to arbitrary fonnulae 
and programs as follows: 

(]) u I= s •p iff not u I= s p. 

(2) u I= 5 p&q iff u I= s p and u I= sq. 

(3) u l=s<a>piff3v. u<a>sv& vl=sP· 
(4) u<O> sv for no u. v. 
(5) u<a;b> sv iff 3 w. u<a> sw and w<b> sv. 
(6) u<aUb> sv iff u<a> sv or u<b> sv. 
(7) u<a*> sv iff u<a> s*v, where <a> s * is the reflexive transitive closure of <a> s 
(8) u<p?> sv iff u = v and u I= s p. 

The standard semantics for PDL given above fix the meaning of the program 8 as the empty program. 

If a and b arc two programs, then a:b is the program in which a is followed by b. The program aUb 

permits the nondctcnninistic choice of either a orb. The program a* permits a nondeterministic choice 
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of some number (possibly zero) of repetitions of a. If pis a fonnula. 1hrn p? is a test or guard program 

which acts as the identity program if pis true and acts as the empty program 8 otherwise. 

Notation: If r is a set of formulae, then we write u I= s r if and only if u I= s p for every p E r. 

Deji11itiu11: If pis a formula and S = <U. I= s· <>:/is a structure, then pis l'a!id in S if and only if 
u I= s p for all u E U. If r is a set of fonnulae, then r is l'alid in S if and only if every 
fomrnla in r is valid in S. We say that r implies p if and only if for all structures Sand 

states u, if u I= s r then u t== s p. We say that r i1ifers qi f and only if q is valid in every 

structure in which r is valid. 

Remark: If r implies p then r infers p, but the converse docs not hold in general. 

Definition: If p and q arc formulae and Q is a primitive proposition. then p/ is the formula obtained 
by substituting q simultaneously for every occurrence of Qin p. If Lis a set of formulae, 

then PQ Lis the set of formulae obtainable by substituting an arbitrary formula of L for Qin 

p, i.e. p/· = {p/ I q EL}. 

Definition: The scheme implication problem for a set of formulae Lis to determine, for given formulae 

p and q and primitive proposition Q, whether pQ L implies q. The scheme inference problem 

for /, is to detcnninc whether p/' infers q. 

It is technically convenient, given a stnicturc, to identify or collapse stales which arc indistinguishable 

by fonnulae. 

Definition: If S = < U, I= s, <> s> is a structure and Lis a set of formulae, then the L-collapse ofS is the 
structure T = < V, I= r < > ,?, where the clements of V arc equivalence classes of U modulo 
l, where u is equivalent to v modulo L if and only if u and v satisfy exactly the same 

formulae of L. For atomic propositions P and equivalence classes [u] E V, we define the 

satisfaction relation I= :rbY the condition [u] I= T P iff 3 v E [u]. v I= s P. For atomic 
programs A and equivalence classes [u], [ v) E V, we define the map < > T by the condition 

[u]<A>1{v] iff3wE [u]. 3zE [v]. w<A>sz. 

Lemma 2.1: If Tis the PDL-collapse of a structure S, then for all PDL formulae p and states u of S, u 

l=sP iff[u] t=Tp. 

Proof. Straightforward, by structural induclion on formulae. I 

It will be convenient to consider structures in which there is a designated initial state u, and the entire 

universe is accessible from u by programs using a given set of primitives. 
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Defi11itio11: If S = < U. I= s· < > s>, u E U, and a is a set of ;itomic programs, then the a-cut of S from u 

is the structure T = < V. l=r <> 7>. where V = { v E U I u<(A 1 U · · · U An)*> sv for some 

A1, . .. , An E a} . We let u l= T P iff u I= s P and we let u< A> :r" iff A E a and u< A> sv. 

l.emma 2.2: Suppose th;it Tis the a-cut from the state u of some structure S ;ind that a contains all the 

atomic programs appearing in some PD/. fonnula p. Then for all states v of T, v I= :rP if 
;ind only if v I= s p. 

Proof Straightforward, by structural induction on formulae. I 

Coru//a,y 2.3: If a contains all the iltomic programs appearing in ;i PD/. formula p, then for all 

structure-. S, pis valid in Si f and only if pis valid in all the a-cuts of 5,'. 

!'roof h,llows immcdiat<:ly from / ,cmma 2.2. I 



7 

3 Characterizing the Integer Grid by an Axiom Scheme 

No1a1io11: We define the following familiar and convenient abbrcvi:1tions: 

[a]q = df • <a>•q 
A = df 0* 
pV q = ctr(• p)&(, q) 

p-+q = df (•p)V q 

1i-q = ctr (p-+q)&(q-+p) 

/rue = df />·➔ p 

fi1/se = df •/rue 

(fl= df,\ 

a11 = a· · · · · a (11 o's for 11 > 0) df • • ' 
if p then a C'!se b = df(p?;a)U(•p?;b) 

while p do a = df(p?;a)*;,p? 

For the remaindcrofthispapcrlct a= {Ai, A2, A3, A4, A5, R1, B2, 83, H4, B5} be a fixed set of 
atomic programs and let Q and R be fixed atomic propositions. For 1 5 i :$ 5, let zeroi be an 

abbreviation for [B)false and let zero be an abbreviation for A L:$i:$S zeror 

Nu1atio11: N5 is the set of quintuples of natural numbers. We will use variables x. y .... to denote 

vectors <x
1
• x2• x.1. x4• x5>. <y1• y 2. y3, y4, y5>. · · ·. The five successor functions a 1• a 2, a 3, 

a 
4
. a 

5 
arc defined by y = a 

1
(.x) if and only if yi = -\+ I a11<.l y1 = x/or j -:I= i. 

I\ ca11011ical grid is a structure S = <N5. I= s· < > s> such that 11; acts like a i' H; acl'> like the inverse of a; 

(so that zero; = df[B;lfa/se is true only at vectors whose / 1 coordinate i-; zero). and R depends only on 
the first coordinate of vectors. /\ grid is any structure isomorphic to a canonical grid; we give a fonnal 

definition below. 

Definilion: A grid is a structure S = < U, I= s• < > s> with a bijection cp: U -➔ N5 such that: 

(1) For all u," v E U, u< A;> sv if and only if cp( v) = a 
1
( cp(u)). 

(2)Forallu, vE U,u<H/svifan<lonlyifcp{u) = a 1(<p(v)). 

(3) For all u EU, if u l=s I? then,, l=s R for all v such that cp(v) 1 = cp(u)1• 
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/)(ji11itio11: I .ct grid-sche111e be an abbr,;viation for the conjunction of the following formulae: 

zero-axiom: <JJ1 *: /J/: 8/; IJ4 *; IJ5 *>zero 

idc11tily·axio111: "isiS5 <A,)<IJ,)true 

A/J-axi11111: A 1Si7"JSS (<A;XB/true- <JJ/<A,)true) 

IJ/J-axio111: A 1<1·,·<· (<JJ.><Jr>trul' - <JJ><Jr>true) 
_ 0 _ .> I J } I 

R-axiu111: R - A 2SiS'- ([Ailf? & [npm 

de/('l'/llillis111-schl'IIIC: I\ I s iss (<A?Q - r A;IQ) 
idr11lily-.1c//('/I/(': "isiss (Q - lA;:ll;IQ) 

AA-schl'lllf: "isi..i~S (<A ;:A/Q- lA/f;lQ) 
A/J-schr111e: A 1<i':t=J"<S (<A;:IDQ- [/3.;A;]Q) 

- - 1 J 
IJ/J-sclw1111': I\ ISiJss (<JJ;;fl/Q - [/JiB;lQ) 

J>mpositio11 3. /: The grids arc precisely (up to isomorphism) the a-cuts of PD/.-collapscs of structures 

Sin which grid-scheme/'Dl is valid. 

/;roof It is straightforward to verify that grid-scheme/'DI. is valid in every grid and that every grid is 

(isomorphic to) the a-cut of the J> D / ,-collapse of a grid. 

For the converse. suppose that T = <V. l= 'f' <>? is the wcut from an equivalence class [u_@rrl of the 

/'/)/,-collapse ora structure S = <U, I=.\·· <>s> in which grid-sc/1('111c/'1>l. i:; \·,ilid. We shall show that 

Tis a grid. l.rn1111as 3.2 through J.13 will establish the existence of a bijection cp: V - N5 which 

makes '/' a grid. 

l ,e11111w 3.2: There is an equivalence class [uzcrol E V such that [uzcrJ I= T zero. 

J>mof Since grid-sc/1e111e/'DL is valid in S, zero-axiom is valid in S, hence 

u 1 'F= r<JJ1*;/J/;JJ3*;fl,*;fl5*>zero. Heneethcreisastateu . E Usuchthat 
.1 art ,, _ .. ze10 

11_1.1a,1< Bi*; !Ji*; l!/:11/;l/s*> 8u Lero and u zero I= S zero. Then [uz,nJ 1= T zero, since Tis the 
a -cul from [11smril of the /'/)/,-collapse of S. I 

/)('ji11itio11: An A /J-progra111 is any program of the form a1; ... ;a,,. where each a. is "'A or an ;f. or a B. 
J I I 

An A-progra111 is simply an A /J-prorgram without any B/s. A canonical A-program is an 

A-program of the form A/1;A/\A/3;A4 \A/5 for some XL, X2, X3, X4, X5 ~ 0. We 

b . XL X2 X3 t4 X5 ( ) a brcvtatc A1 ;A2 ;A3 ;A4 ;A5 by prog x. 

!,e111111c1 3.3: !flu] E Vanda is an A-program, then there is at least one [ vj such that (u]<u> 1[ v]. 

Proof W c first pro\·e this lemma for the case where a is 11. for some i. By ide11tity-axio111, 11 I= S' 
I • 

<A ;><JJ,)rrue, so that there is at least one v E U such that u< A/ s''· Then [u]< A/ 1[ v], since Tis 
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an a-cut of the J>/)/.-collapsc of S. The lemma can now be pro\cd for arbitrary. I-programs by 

an easy induction on the length of programs. II 

l.e111111a 3.4: If [u] E Vanda is an A-program. then there is at most one [ l'j such that [u]<a> .1[ v]. 

Proof We first prove this lemma for the case where a is A; for some i. Suppose that [11]< 11;> .1[ v] and 

[u]< A;> J w]. Then u< A /s1' and u< A/ sw. Let q be any forn111la such that v l=s ll• so that 
11 I= <·< A .>q. By detcr111i11is111-sche111e, u I= v < A .>q - [ , f .]q. Si nee II I= <·< A .>11. u I= <· [A]</, so • > I ,> I I ,> I , > I 

w l= _s· q. Hence I' and 11· agree, i;1 ,r..,·, on .ill formulae. so [r] = I 1v). Therefore there is at most 

one [ r] such th.it [11]< ii;>'/[ 1•]. The lemma c.111 nov., be proved liir arbitrary A-pnigrams by an 

easy induction on the length of programs. I 

l.e11111w 3.5: l fa is an ii-program and b is any program and [ u]< a> 1( r[ and [u]<a;b> 1( wj, 

then [ 1']< b> 1( w]. 

Proof If[u]<a;b>
7
(iv] then there is a [z] such that [u]<a>,[z] and [z]<b> 1[w] . By l.e111111a 3.4, it follows 

from [uj<a>}v] and [11]<a> 1[z] that [l'j =: [z]. So [v]<b> 7[w]. I 

Defi11itio11: Given two programs a and b. we say that a and b arc T-cquivalcnt if and only if 

<a> T = <b> 1, i.e. for all states u and v, u<a> Tv iff u< b> Tv. 

Lemma J.(i: The program A;: Bi is T-equivalcnt to the identity program A. 

Proof By identity-axiom. u I= e <A.>< ID true. I lcncc there is a state 1v E U such that u< A> <'w and 
, > I I I , > 

w I= <·< /J )tmc. l knee there is a v such th,1t iv< /J > <.\' an<l u< ti : /J > vV. Now let v be any st.ate in 
., I I ,> I I ,> 

U such that 11< A.: IJ .> <·"· I .ct q be any formula such that u I= " q. By ide11tity-sche111e, 
I I ., ,> 

u I= 
5 

q - [Ai:JJ;)q. Since u I= sq. u I= 5 [A;:H;Jq, so v l= s q. Hence u and v agree, in S, on all 
formulae, so [u] = [ r]. Therefore, A;: !Ji is the identity program in the l'D /,-collapse of S, hence 

also in T. I 

Lemma 3. 7: If a and b arc ti-programs and a is a permutation of b, then a and bare T-equivalcnt. 

Proof By an induction on the length of a and b, using AA-scheme. I 

!.c111111a 3.8: If a is an A B-prograrn not containing A I' then a: ni and !Ji;a arc T-eq uivalcnt. 

Proof By an induction on the length of a, using ,W-axio111, JW-11xio111, Af)-sche111e. and IJIJ-s<'hc111e. I 

l,e11111za 3. 9: If a is an A fJ program not containing A I or n I and i r [ uJ<o> .,[ 11]. then [ 111 I= TR if and only 

if[v] l= rR. 

Proof By an induction on the kngth of a, using N-oxio111. I 



IJ11i11ilio11: t\n AIJ program a is 1101111ega1ive if and only if every prefix of a contains at least as many 
A ·s as /J .'s, for 1 < i < 5·. 

I I - -

l.e111111a 3. /0: Every nonnegative AH-program is T-cquivalcnt to an A-program. I 

Proof' If a is a nonnegative AB-program. then a is T-cquivalcnt to b:A;:c:B;:dwhcrc band c arc 

( possihly trivial) A-programs, c contains no A /s. and dis an A 8-program. By l.e111111a 3.8, a is 

T-cquivalcnt to b:A :B :c:d. and by l.c111111a 3.6. a is '/~equivalent to b;c:,l which is nonnegative 
I I 

and contains one less /J. than a. The lemma ftillows hy an c-;1sy induction 1i11 the number of /J's 
I } 

in a. I 

/,m1111a 3.1 /: If the A /J-program a is not nonnegative, then there is no [u] such that [u iJ<a> 1[u]. 

Proof: If a is not nonnegative, then a is cqivalcnt to b: /J;:c,..,, here band c arc A /J·programs such that b 

contains no A /s. By Lemma 3.8, a is T-cquivalent to /J;;b;c. Since uzcro I= s ZffO, there can be 

no u such that u
2
",./ B;> su, hence no LI such that LI zero <a> su, since a is T-cquivalcnt to B;;b;c. 

Hence there is no [u] such that [uzero]<a>1[u]. I 

For the rest of the proof of Proposition 3.1, we will use LI, v. w, ... to denote clements of V. since we no 

longer need to make use of the fact that clements of Varc equi\'alcncc classes of clements of U. Let 

11 be that clement of V such that u ero !=1. zero. zero z 

l.e111111a 3.12: For all u E V, there is at most one x such that uzero <pm1,{x)> 1u. 

Proof' Suppose x * y, but uzero <pro6{x)> .1u and uzero <prog(y)> 1u. Without loss of generality we can 

suppose that x 1 > Yt. prog(y); B t x I is not non negative, so by I.c11111w J. I I. there is no v such that 

uzer/pro6{y);B/L>Tv, hence no v such that u< Btl > Tv. Therefore u l== r[B/°'lfa!se. 

prog(x);Btl is, by l,e111111as 3.8 and 3.6. T·equivalcnt to pru6{z) for some z. By !.emma 3.3, 

there is a iv such that 11 <prog(_z)> 1.w and hence such that u <prog(x); B
1
xl> 

1
.w. By Lemma 

zl'ro zero 
3.5, u< JJ1 x, ►,'/'11'. Hence u l==T<Bt1>tnie, a contradiction. Sox -:;t; y is not possible. I 

We llll\\' prm·e that t11c relation between a state u E Vanda vector x defined by u <prog(x)> ,..,u is the zero 1-· 

desired bijection. 

l.e111111a 3.13: There is a bijection cp : V - ,if> such that cp(u) = x if and only if u <prog(x)>
1
u. zero 

Proof' Let u E V. Since Tis an a·cut, there is an A/J-program a such that u <a>
1
u. By !,emma 3.11 zero ' 

a must be nonnegative. By / ,e111111a 3.10, a is T·cquivalcnt to some A-program b, which, by 

l,e111111a 3. 7, is T-equivalcnt to prog(x) for some x. By Lemma 3.12, xis unique, so we may 

define cp(u) = x. To show that cp is an injection, suppose that cp(u) = cp( v) = x. By the 
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definition of qi, uzero <prog(x)>1u and uzero <prog(,x)> r l'. By l.e111111a 3.4, 11 = 1·. To show that 'P 

is a surjection, let x E N5. By Lemma 3.3, there is au such that uzero <wog(x )>-1u. 

so qi(u) = x. I 

Finally, we will show that cp makes Ta grid. by proving that the three defining properties of grids hold 

of Tand cp. 

(1) Suppose u<A/rv. Then ·uu,,./prog(cp(u))> 7u and uzero<prog(,cp(u));A;>tv. By l .e111111a 3.7, 

uzero <prog(o/cp(u)))>r1'. By l.e111111a 3.13, cp(v) = a/qi(u)). 
Comerscly, suppose <p(v) = a,{cp(u)). Then 11zrrr/pro1:,{cp(u))>'f'1 and ul<',./nog(a/cp(u)))>rv· By 

l.c111111a 3.7. 11
2
cro<prog(cp(11)):A/rv· By l.e111111a 3.5. u<A;>Tv. 

(2) Without loss of generality let i = l. Suppose 11< /J 1 >-rl' where cp( 11) = x and cp( v) = y. Then 

uzero <pmg(x): B? Tv. By l.e111111a 3.8, u0< A I x1; /J1; A/2; A/.3;A/4; A/5> r1'. By axiom.1' 

uzero F [JJ1lfri/sc, so x1 > 0. 13y Lemma 3.6, uze,
0
<A

1
Xt·l;A/2;A/3;A/4;A/5>Tv. Therefore 

x = cp(u) = ai(qi(v)) = ol(y). 
Conversely, suppose cp(u) = a1(cp(v)) = oi(x). Then uzer/prog(ai(.x-))>-J'iand uzer0<prog(x)>Tv. 

By Lemma 3.6, uzero <A/1 + l;B1;A/2;A/3;A/4;A/5>Tv. Dy l.emma 3.8, 

uzero <prog(a1(x));B/rv. By Lemma 3.5, u<B/Tv. 

(3) Suppose u F T R and <p(u)i = cp( v)i. Let q:>(u) = x, cp( v) = y. Then uzero <prog(x)> 7u and 

uzer/A/1;A/2;A/3;A/4;A/5>Tv. By l.em111as 3.6 and 3.8, 

uzero <proi{x); B/2; B/3; JJ/4; n5 xs; A/2;A/3;A/4; A/5> Tv. By !.emma 3.5. 

u< JJ/2;LJ/3;!J/4;JJ/S;A/2;A/3;A/4;A/S>rv. By f ,emma 3.9, v FT R. This completes the 

proof of Proposition 3.1. I 

Corollary 3. I 4: If a contains all primitive programs appearing in a formula p, then pis valid in all grids 

if and only if grid-scheme/'DL infers p. 

Proof By definition, grid-scheme
0

PDL infers p if and only if pis valid in all structures in which grid

scheme0PDL is valid. By Lemma 2./, the latter is true if and only if pis valid in all PDL

collapses of structures in which grid-schemeQPDI. is valid. 13y Corol/a,y 2.3, this is so if and only 

if pis valid in all a -cut<; of PDL-collapscs of structures in which grid-sche111eQPDL is valid. By 

Proposition 3.1. this is so if and only if pis valid in all grids. I 

Corollary 3. ! 5: If pis a formula all of whose atom.ic programs arc in a, then pis valid in all grids if and 

only if ([a*]grid-sc/1eme)/'Dl. implies p. 

Proof I .eft to the reader. I 
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4 n 11-complcteness of the Deducibility Problem for PDL 

f .f111111a 4.1 : I .ct f 2N x N1 - N be a partial recursive funclion of one set variable and three integer 

variables. There is a/'!)/_ program ,~.such that. in every grid S, u<a/.~-v if and only if 

[<p(1')] 1 = fl.-'<.\' cp(u) 1• cp(u)2• <p(u)3), where Xs = {cp(w)1 I 1v l==s /?}. 

Proof. /\n oracle counter machine is a computing device possessing registers capable of holding 

arbitrary nonnegative integers and a processor capable of' incrementing and decrementing 

(when the result is 1101111cgativc) 1.he contents of a specilied register. testing whether the contents 

of a spcci ficu register is zero or 11ot, and testing the contents of the lir~L register for membership 

in a fixed but arbitrary set called the "oracle". (The formal definition is analogous to that of 

oracle Turing machines [5, 6] and is omitted.) ;\ 5-countcr machine is capable of computing 

any parLial rccursi, c function of one set variable and three imcgcr variables, where we assume 

that the three inputs arc initially stored in the first three registers (the extra two registers arc for 

temporary results and may initially contain arbitrary values) and that the single integer output is 

stored, at the end, in the first register. ;\ program a/O compute such a function/can be written 

as a regular program using the primitives (where l ~ i ~ 5): Ai to increment register i, Bi to 

decrement register i. zero/ and , zero/ to test register i for zero, and R? a11d , R? to test 

whether the contents of register 1 is in the oracle set Xs. In a grid S the standard PD!, 

semantics interprets a1as a program which computes/, i.e. that u<a/ sv if a11d only if cp( v)1 = 
fl.i'_<,, q:,(u)1, cp(u)2, cp(u)3). I 

hir the remainder of this paper let Y be a fixed fl i1-complcte set of natural numbers, so that there is a 

fixed recursi \'C functionflX. x. y, z) of one set variable and three integer variables such that 

Y = { x I V X ~ N. 3 y. V z. fl x. X, y, z) = 0}. 

Corollary 4.2: There is a Pl)!, formula Py such that for all natural numbers m, the fonnula 

zero
1 

- <A i°'>Py is valid in all grids if and only if m E Y. 

!'roof. By the preceding kmma, for all grids S ;111d states u, u I== S <aJzero1 if and only if 

./(.\'.\, cp(u)1. q:(11)2. cp(u)3) = 0. The program IJ/;A/ is capable of arbitrarily altering the 

contents of the / 1 register. Hence u l== s [IJ/;A/]<aJzero1 if and only if 

V z EN. f{.r·.'>'' cp(u)1• <p(u)2• z) = 0. Similarly, u l==s<IJ/;A/>[IJ3 *;A/]<ajzero1 if and only 

if 3y E N. V z E N. ./(Xs, cp(11)1, y, z) = 0. f .ct Py be <B2 *;A2 *>[fl3 *;A3 *]<aJzero1. 

If II l==s zero1, then II l==s<At>Pyifand only if3y EN. 'r/z EN.JU<,\, m, y, z) = 0. As S 
ranges o, er all grids, x,\· ranges over all sets of nonnegative integers. Therefore, zero

1 
-+ 

<A t>JJ y is valid in all grids if and only if V X C N. 3y E N. V z E N. j(X, 111, y, z) = 0, i.e. if and 
only if ,n E Y. I 

t>rv/msilion 4.3: The scheme inference (respectively, implication) problem for PDL is n 11-completc. 
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Proof By Corollaries 3.14 (3.15) and 4.2, there is a /'/JI. formula pr s11d1 that ,11 E r i Lrnd only if grid· 

schemeQPDl. infers (implies) zerol-+ <A
1
m>Pr· This prmcs that n 1

1 is many-one nxludbk to 
the scheme inference (implicadon) problem for !'DI .. It is not hard lO show that either problem 

is in n 1
1; we omit the proof. I 

We now define some sublanguages of !'DI. and show that the scheme implication and inference 

problems arc n 1
1-cumplctc for some of these sublanguagcs. 

Dr/inition: The fonnulac of test-free pmpositio11al dy11a111ic logic arc those in whicl, no tests appear; the 

formulae of atomic test prop ,si1io11al dynamic logic arc tlwsc in which the construction p? 

appears only when pis an atomic proposition. 

Thevrt'III 4.4: If/. is a :subset of /'DI. which contains ato111ic-tcst·l'DI. then the scheme implication 

problem for l. is n 1
1-complete. 

/'roof. The non-atomic tests of Py arc of the form zero;?, ,zero?, and -, R?. Choose new atomic 
propositions Z

1
, N

1
, and M. Let qy be the result ofsubstirnting Z? for zero?, N? for ,zero;?, 

and ,\/? for ,R? in Py- Let equiv-scheme be grid-scheme& [a*J(Z1 - zero1 & ... & Al -
,R). \Ve leave it to the reader to show that the problem of deciding, for a given 111, whether or 

not equiv-scheme/· implies zero1 -+ <At>qy is n i1-complete. I 

Definition: The set of programs, n d' and the _set of formulae, <1> d' of deterministic propositional dynamic 

logic (!)!'DI.) arc defined inductively as follows. 

ni (I) 110 ~ ndand 0, A E lld 
(2) If a, b E fldand JJ E <!> d' lhcn (a;b), (ifp tltrn a else b), (while p do a) End 

<l>i (l)<l>o~<l>d 
(2) If p, q E <t> d then •p, p&q E <I> d 

(3) If a E n d and p E <I> d then <a>p E <I> d 

Proposition 4.5: If Lis a subset of l'DL which contains Dl'DL, then the scheme inference problem for 

Lis n i1-complete. 

/'roof First, note that a/>f l,emma 4./ can easily be written as a program in nd' Second, note that for 
all programs a and formulae p, <a*>p is equivalent to< while ..,P do a>true. Hence, there is a 

formula ry in nd which is equivalent to fly = t1/ IJ2 *; A2 *>[ 113 *; A3 *]<a.rzero1. Finally, note that 
every conjunct of' grid-scheme is in 11 "except fi>r zero-axiom = df< H1 *: IJ2 *:JJ3 *;H4 *: IJ5 *>zero. 

There is a fi.,nnula in I I ,1 which is equivalent Lo Zl'm·axi11111 in all structures: let det·sche111e be 

grid-scltc1111• with zero-axiom replacl'd by this fi,rmula. We leave il lo the reader lo show that 

the problem of deciding, for a give11 111, wlK·thcr or nol dl't-sc/11·1111·/· infers zero1 - < A 11/l>r y is 
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rt 1
1-cornplcte. I 

/Jc'fi11itio11: The formulae of a10111ic-tes1-DPD!. arc those in which the constructions ifp 1hc11 a else b 

ancl while p do a appear only when pis an atomic proposition. 

Theore111 4.6: If/. is a subset of PD!. which contains ato111ic-tes1-DPDI., then the scheme inference 

problem for/, is n 11-complcte. 

!'roof I .ct drt-sche111e and q 
1
, be as in the proof of l'roposition 4.5. Replace their non-atomic tests by 

new atomic tests as in the proM of Thcort'111 4.4. (This replacement must be performed 

recur\ivcly on nested test-;.) I 

5 Conclusions and Open Problems 

Because of its many decidable properties, f'DI. appears to be a reasonably tractable extension of 

prnpositional logic. However, we have revealed a dramatic contrast between PDL. and ordinary 

propositional logic in the case of the scheme dcducibility problem, which is n1 Lcomplcte for PDL, 

but decidable for propositional logic. 

J\n important hint at the power of PDL axiom schemes was provided by the observation ofMirkowska 

and Pratt [2]. who showed that the nonnegative integers could be characterized (as cuts of PDL

collapscd structures) by a finite set of axiom schemes. Hence this set of axiom schemes docs not satisfy 

the finite model property, n:1mcly these schemes have a model but no finite model. Since all the 

r re, iuu<,ly knl)wn decidability res,ilts for PD/. ultimately rest on the finite model property of PDL 

fi>rmube, the Mi rkowska-Pratt observation helps clarify the contrast between schemes and finite sets 

of axioms. 

However, violation of the finite mlidcl property should not be taken as primafacie evidence of 

undecidability. h>r example, Mirkowska has observed that the nonnegative integers can also be 

uniquely characterized by a single formula of PD!, extended with a looping predicate and the converse 

opera Linn on programs [3]. Nevcnhelcss, by extending the results or [7}, Streett can show that this 

extension of NJ/. is still decidable (in fact, elementary recursive). This result will appear in a later 

paper. 

The degrees of u ndecidabilily tor decidability) of several restricted dcducibility problems remain open 

q uc5tions. 
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Ope11Problem: Arc the scheme implication and inference problems for test-free-PD/, n 1
1-complcte? 

Ope11 Problem: Is the scheme implication problem for DPDL or atomic-test-DPDL n 11-complctc? 

Open Prob/e111: How hard arc the scheme dcducibility problems for propositional temporal ,t1hl modal 

logics? 

Ack1101vledgeme111: We arc grateful lo A. Salwicki for pointing out the possibility of characterizing the 

integers by PDL axiom schemes, and for several useful discussions about these 
result-;. 
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