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&1. Introduction

The use of logic in program verification is an old idea, as such
ideas go. Early work by Engeler, Floyd, Hoare and Salwicki [E,F,Ho,Sa2] has
already developed into a rich field with many workers. However the
propositional versions of these logics are relatively new; work in this
field goes back only to Fischer and Ladner's 1977 paper where they showed
that the propositional version of Pratt's dynamic logic is decidable. Since
then the field has developed rapidly, a very large number of preliminary
questions have already been settled, and interesting side areas are
developing. In what follows, we shall trv to give an overview, stating some
of the main results and referring the reader to the original sources for the
more difficult or elaborate proofs.

Propositional logics of programs bear the same relationship to
ordinary (first order) logics of programs that the propositional calculus
has to first order logic. In particular, the various propositional logics of
programs are decidable. Moreover first order program logics tend to be
highly undecidable (usually Hi) so they cannot be axiomatised

recursively; an axiomatisable logic must be recursively enumerable. By
contrast, the propositional logics do have nice axiomatisations
[Ga,KP,Pa,Se,V,Hal HKP] that cast some light on the logical nature of the
various program constructs and the way they interact with the usual Boolean
operations.

In Propositional Dynamic Logic (PDL), programs are treated as
modalities that operate on properties to produce other properties. Since
syntactically, a property is expressed as a logical formula, a program
expression becomes a modal operator on the syntactic category of formulae.
Models for such logics are, naturally enough, generalisations of Kripke's

1. Research qupponed in part tn NSF grant MCS 79 10261.




models for modal logic. Thus in dynamic logic the basic model of computation
is the state space. A program may be thought of as a means of travelling
about in this state space, and @ property is something that is true or false

of an individual state. Thus a property will be realised mathematically as a
ser af stares, those states where the property holds, whereas a program

a is a sct of pairs of siates (s,1) where s is the initial siate of

some computation of e and t is the final state.

Once we have the notion of model, we can easily define the notions.
of satisfiability and validity. A formula is satisfigble if it holds at ‘
some state in some model. It is valid if it holds at every state in every
model. Many of the logics that we shall consider will have the finite model
property. That is, if a formula A has a model at all, then it has a finite
model whose maximum size can be estimated by looking at the formula. This
immediately gives us a way of deciding satisfiability for a given formula of
these logics. Since a formula A is valid (true under all interpretations)
iff A is not satisfiable, we also ger decidubility of the validity
problem.

In PDL both the basic programs and the program constructs are
allowed to be nondeterministic. The basic programs may be nondeterministic
in the sense that an initial state s does not need to determine the final
state. Moreover, two of the program constructs, U and * are also
nondeterministic and convert deterministic relations into nondeterministic
ones. We can get special versions of PDL by imposing determinacy conditions.
If we require the basic programs to be deterministic, i.e. to be partial
Sunctions on the state spuce, then we get the logic DPDL. If the program
constructs are afso required to be deterministic, then we get strict DPDL,

i.e. SDPDL. In SDPDL, the nondeterministic constructs U and ¥ of PDL and
DPDL are dropped and we replace them with the deterministic constructs
"if...then...else...” and “while...do...". It is clear that SDPDL is a

subsystem of DPDL, but DPDL is nor a subsystem of PDL. Rather the other
way around. Just as the theory of dense linear orders is an extension of

the theory of all linear orders, so the theory of deterministic programs is

an extension of the theory of all programs. In fact DPDL proved to be more
intricate than PDL and the busic questions have been solved only recently by
Ben-Ari, Halpern and Pnucli [BP], [Tal].

In the Kripke models for PDI. a program is represented as a binary
relation on the space of states. This representation is adequate for stating



4

the correctness conditions of @ program. Thus for instance the formula
A-[alD, where A and B are formulae and a is o progrium, says that if the
precondition A holds before the program a begins, then the postcondition B
will hold if and when a terminates. When a is represented as the binary
relation R, then A=[a]B holds in a model M iff for all pairs of states
(s,0) such that (s,t) € R, if s satisfies A then t satisfies B. However,

we may also want to state conditions that have to hold as the program is
running and the notation and semantics for dynamic logic do not directly
allow us to do this. The binary relation R  contains information only
about the initial and final state and is a little like a commuter who

drives from his house to his place of work without noticing what he sees on
the wiay. Thus if we do want to tuke the intermediate states of the program
into account, then a program had better be represented not as a set of
pairs, but rather as a set of sequences of states, the sequences being the
trajectories of the program as it runs. This sort of extension of the
language and models to include intermediate states of a program leads us
from dynamic logic into process logic, #n area which seems to have clear
potential for applications in parallel programming.

In dealing with process logic, it is most useful to see it as an
elaboration of dynamic logic. In the [HKP] version of process logic, this
fact is explicitly made use of, the Scgerberg axioms for PDL [Seg] are
retained and supplemented by axioms that talk about intermediate states, and
we get o very smooth completeness theorem. Alas, the decision procedure is
not (Kalmar) elementary, but perhaps nicer bounds can be found for some of
the simpler formulae that are more like those that actually arise in
applications.

Another nice offshoot of PDL is dynamic algebra. There seem to be
two principal versions of dynamic algebra which differ slightly, and which
are due respectively to Kozen and Pratt. Pratt [Prd] uses his algebras to
give an algebraic proof of the completeness theorem for PDL. Kozen [K1]
gives a representation theorem which relates concrete Kripke models with his
abstract dynamic algebras, thereby generalising the Stone representation
theorem for Boolean algebras. The theorem shows in essence that there is a
duality between "non-standard" Kripke models and certain topological spaces
that extends the more familiar duality between Boolean algebras and totally
disconnected topological spaces.

Any survey necessarily reflects the point of view of its author. We
have given more space to results that we knew better, or which seemed more



interesting to us. However, the lust section, brief notes, contains some
pointers to items not adequately covered here. We apologise for any
distortions or omissions of other people’s work.

£2. The Language of PDL

The basic notion in dynamic logic is that of a state, Other notions
of dynamic logic are derived from it. Thus we think of a program as raking
us from a state of our computer 10 another state of the same computer.
Similarly, a properry is something which a state hus or fails to have.
What we study is the interaction between properties and programs in this
state context. Properties are expressed by formulae of our logic, and they
will be closed under the boolean operitions =, V, A. Programs in
propositional logics will be constructed from some basic programs by means
of regular flowcharts, syntactically realised by means of the Kleene
operations U | ;  and * ., The informal meanings of these constructs are
as follows: a8 is the program "do a, then do §". «UB is the program,
"non-deterministically do a or 8". And finully, ¥ is the program, "do
@, zero or more times". Then in addition, if A is 4 formula, then A? will
be a program which equals "if A then skip, else abort”, Where “skip" is the
identity program, and "abort" is the null program. In terms of this notion
of ?, we can define "if A then do a else do 8" as (A7;a)U(—A?8).
Similarly, "while A do a" can be expressed as (A?:a)¥{—A?). The precise
mathematical definitions of the semantics of ; , U and * are given in
definition 2.4. Unless otherwise stated, we shall confine ourselves to
regular constructions of programs.

.

The special feature of dynimic logics is the box operator which
equals, roughly, Dijkstra’s weakest liberal precondition. The box operator
operates on formulae A and produces new formulae [a]A, where the program a
is also variable. Since we allow non-deterministic programs, there is a
choice. We take “"the state s satisfies the formula [a]A" to mean: every
terminating computation of a, which begins at the state s, results in
condition A holding. The dual construct <a>A, which can also be defined as
“[al™A, means: some computation of a which begins at the state s,
terminates with condition A holding.

Now we give precise definitions of the basic notions of PDL. A
reader familiar with PDL may skip or skim over these but we recommend some
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attention to the note following definition 2.2 and to the comments at the
end of definition 2.4.

Definition 2.1: The symbols of PDI (also DPDL) include atomic program
symbols — ay,..,4,, atomic propositional symbols Pl,...,Pm, and U
5‘;1*1?! h1v1_1‘[7]!(1>F{l]'
w Te -

Z= i"‘l:“*l‘[“!*
Definition 2.2: We define program expressions a and formulae A
by simultaneous recursion. (Program expressions will be called just
programs) “

(i) Each a; is a program. Each P, is a formula.

(i) If A, B are formulae, so are (AvB), (AAB), (mA).

(iii) If &, B are programs, so are (a;8), (aUB),(a¥)

(iv) If A is a formula and a is a program, then [a]A and <a>A
are formulae.

(v) If A is a formula then (A7) is a program.

Notez  The programs created by condition (v) above are called rests. We
shall use the convention that + stands for the truth-functional connective,
and = for the English "implies". The symbol - > will be used for “is mapped
into". Letters a, B etc. will stand for programs and A, B, etc. for
formulae.

Definition 2.3: A model M for PDL consists of

(1) @ nonempty universe W

(2) for each atomic propositional symbol Pj a subset p(le of W,

and

(3) for each a; in T u subset R; of Wx\V,

Now we define the semantics of PDL. The semantics assigns to each
program expression a, a binary relation R on W, and to each formula A,
and state s € W, a fruth valve. Intuitively, (s,t) € R should be
read, "the program a can take us from the state s to the state t". If a is
deterministic, then t is wniguely determined by s. M,sEA is read, "the
formula A /folds at the state s of the model M".

Definition 2.4: Given a model M, u state s, a formula A and a program
a, we define R, and MseA, by simultuneous recursion, as follows:




(1) M,sksz iff s e p{Pj].

(1) M,seAvB iff M,sEA or M sEB.

(similarly A and )

(i) M,sELa]A iff for all 1, (s,1) € R 2 M,tFA
M secad>A iff for some t, (s,1) e R, and M, tEA.

(iv) If @ = a; then R = R,
(v) Ru;ﬁ = (RalutRﬂ]

= {(s,1) | (Gud(s,w) € R A (u,1) € Rg )i.
(vi) Rﬂuﬁ = R'ﬁ’URﬁ'
(vii) R x = reflexive transitive closure of R,.
(vit) If a = (A?) then R, = ls9) | M sEAL

Finally, we let, MI=EA iff for all se W, MsEA. (g stands
for "global".) If T' is a set of formulae, then M sED if for all A in
', MsEA. Similarly thl". Now we get two notions of
consequence.

T'EeA iff for all M,s, M,skl' implies M skA.

l"l=gA iff for all M, ME_I' implies ME_A.

2 g
The formula A is said to be valid iff it holds at all states in all
models, iff ¢=A iff ¢I=gA.
Local consequence and global consequence coincide if T' is empty.
But if T' is nonempty, then local conscquence is stricter. E.g. we do not
have P Fla]P since running the program e may destroy the fact that P
holds. However with global consequence, we do have Phg[a]P. In £6 we

are concerned with global consequence which is the natural one for partial
correctness. However, theorem 7.1 applies to both kinds of consequence.

£3. Decision Methods and Complexity

Propositional dynamic logic beuins historically with Fischer and
Ladner's paper [FL] where they define PDL, show that it is decidable, and
establish upper and lower bounds. The decision method consists of the
refinement of a technique known among modal logicians as filtration. We
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shall give a brief account of this technique in our present context where
programs are present.

Let A be a formula of PDL. Suppose now that A is satisfiable, that
is to siay, A has a model. We would like to ask if A has a finite model, and
if so, how big that model might be. Clearly, if we know how big the model
might be, then we can find this madel by brute force, i.e., by simply
searching through all models of a certain size or less.

The existence of a finite model for a satisfiable formula is
obtained in the following way. Given a formula A let FL(A), the
Fischer-Ladner closure of A, be the set of all formulae that are relevant
to the semantics of A. If we were studying propositional logic, the
corresponding set would be the set of all the subformulae of A. In the
present context it is the smallest set S such that

() A€S

(i) If BAC € § then B, C € 8. Similarly for Vv, =,
(iii) If [B;y]B € §, then [F1[v1B, [v]B € §.

(iv) If [BUy]B € 8, then []B, [y]B € S.

(v) If [8*]B € S, then B, [B][6*]B € §.

It can be shown that the size of S is no greater than the length of
A, which we will always take to be the number n of symbols in A. Now given a
model M of A define an equivalence relation = on W by letting s = t iff
for all B € §, M,seB « M ,1eB.

Cleurly the relation = defined this way has at most 27 equivalence
classes. Let W/= be the set of equivalence classes of W under =, Then
Fischer and Ladner show how to convert the model M of A into a new model
M/S whose state space is W/=. We immediately get

Lemma 3.1: If a formula A of PDL is satisfiable, then it has a model of
size at most 27 where n is the length of A.

it It is not hard to show that given a model N of size k, we can find
out in time polynomial in k und the length n of A, if a given formula A is
satisfied in N at all. Thus we get the immediate corollary.
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Theorem 3.2 (Fischer-Ladner): The satisfiability (validity) problem for
PDL is decidable in NDEXPT(n) (non-deterministic exponential time) where n
is the length of the formula.

Proof: Nondeterministic, because we have to guess a model of size < 21
and then check if it works. However, Pratt [Pr2] was able to eliminate the
guessing gamne, and we get,

Theorem 3.3 (Pratt): PDL is decidable in DEXPT(n) where n is the length
of the formula.

In the same paper, Fischer and Ladner also gave a fower bound for
the computational complexity of PDL.

Theorem 3.4: (Fisher-Ladner): There is a constant ¢ > 1 such that the

satisfiability (validity) problem for PDI. is not @ member of DTIME (c™)
where n is the length of the formula, in number of symbols.

Proof: See [FL] theorem 7.2. (The lower bound given there /ooks different
since the length of a formula is measured, not in the number of symbols, as
in 3.2 above, but in the number of bis.)

In view of Pratt's improvement (theorem 3.3) of the upper bound,

theorem 3.4 yields a complete characterisation of the time complexity of
PDL.

$4. Axiomatisation

In their paper [FL] where Fischer and Ludner defined PDL and proved
that it was decidable, they left open the question of axiomatisation, Of
course, if a logic is decidable, then it has some recursive axiomatisation.
However the question whether there is u mice axiomatisation with axiom
schemes was not clear and results of Redko [R] cast some doubt on the
existence of such an axiomatisation. See also [Sall.

A set of axioms for PDL. wus suggested by Segerberg [Segl and proved
complete, independently, by Gabbay [G] and Parikh [Pal]. We give below the
resulting axiomatic system. We are treating [al as basic. <a> is an
abbreviation for =[a]=. In (1)-(10) below, a is an arbitrary program and
A is an arbitrary formula.




10
(1) All (or enough) tautologies from the propositional calculus.
(2) [a)(A = B) = ([a]A = [«)D)
(3) [aUBJA = [alA A [BIA
(4) [a:f]A = [a[B]A
(5 [«*]A -+ A Al[alA
" (6) [a*]A = [a¥][a*]A
(7) (Induction) A A [a*](A = [a]A) = [a*]A

Rules of inference:

Theorem 4. I: (Gabbay-Parikh-Segerberg) A formula A of PDL is valid iff it
is provitble in the systemn above.

Proof: For a particularly easy to follow proof, see [KP]. Pratt [Pr2] gives
a Gentzen style system for PDL.

It can be shown [Pal] thar the converse operation & --> a™ can
be accomodated if the axioms

(8a) A » [al<a™>A and (8h) A = [a JKedA
are included. The semantics of a™ are given by:
Ry = (R =119 |G e R, |

Tests are not provided for in the axioms given above, but they can be taken
ciare of witn the additional axioms

(9) [B?JA =~ (B + A).
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£5. Results on PCAs

The partial correctness assertion (PCA) Ala}B, expressed in PDL
as A-[a]B means: "if the precondition A holds when a begins, then the
post-condition B holds if and when a terminates.” In other words,
MEAlalB iff M?:EA-[a]B. (We do not need to say MFSAIa}B, since it
is part of the semantics of Afa|B that it holds throughout the model.) In
the section on PCA's below, tests are restricted to be program-free
formulae A. Moreover, the formulie that occur in the statements of
theorems ure also program free. lLe. they are formulae of the
propositional calculus (PC from now on). If T is a set of formulae, and
A is a single formula, then TE_.A means that A is a truth-functional

consequence of I'. If T' is empty, then E
of PC.

pcA means that A is a tautology

Clearly questions about (propositional) PCAs are questions in PDL,
but since they are questions of a special type, one may hope for extra
information or comparative ease of decision procedures. We shall be
interested in the questions: (1) When do u finite number of PCAs imply
another? and (2) What is the computational complexity of deciding such an
implication? We give information about such questions for the case of (i)

a single program, (ii) several loop-free programs, and (iii) arbitrary
regular programs with progrim-free tests.

D(‘ﬁﬂ.'.ﬂ.ﬂﬂ 3. AIIHIIBI"”’AL;"L:;BL |=A:£I=B iff for all
models M, if MI--Aitai}Bi for Vi ¢k, then MEA|a}B.

Theorem 5.2: The set of expressions
(Al{al}Bl,,Akiak}Bk,Ala{B) such that

Ajyle 1By, Apla By, FAlaiB is a context sensitive language
(CSL).

Proof: See [Pad].
It can be shown that if C is any truth functional combination of

Allal}nl,...,A"{a"}Bﬂ then the guestion “is C satisfiable?" is still

in CSL. Moreover, if a is star-free, then the problem is in
(NP)N(linear space).
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Theorem 5.3: In theorem 5.2, if the progrums a; are *-free
(loop-free), then the problem is NP-complete.

It is known ([St] p. 90, remark 4.14) that the inequivalence of
regular expressions is log-lin complete in CSL. Let @ = B mean that a
and @ are equivalent regular expressions, ie. the languages L and
Lg are equil. Then a = § iff PlajQFPIB)Q and P} {QEP[a]Q, hence
the PCA problem is also log-lin complete in CSL. Thus the bound of
theorem 5.2 is best possible.

*

i's all equal a. This
simple case has some nice charicterisations. If Ai,Bi,A,B are formulae
of PC, we write (ApBLALBY) HAB  for
(Va)(Aja)By,...,AplaiB EAlalD)).

We now consider the cuse where the «

We state the following lemmas without proof. One of the lemmas is
well known. The other also probably occurs in the literature.

Lemma 4: Let T, L respectively, stand for the truth values true and
false. If ¢ is any formula with propositional variables Py,...,P,
then ¢ is equivalent to

(6(Py,....P, 1, IAP JV(($(P},....P._,L)AP )

n-1° n-1°

Definition 5.4: The propositional function ¢(Py,...,P) is monotone
iff ¢ can never go from T to L when some P; goes from L to T, the
other Pj being fixed.

Lemma B: ¢ is monotone iff ¢ is identically T or identically L or can
be expressed using A and v only.

Proof: The proof is easy using lemma A above and induction on n.

Definition 5.5: The Floyd-Hoare rules for a single program are:

------------------------------------- where ? is v or A.
(A7A,){a}(B?B,)




The axioms are LialB and Ala}T.

Notational Remark: For theorem 5.6, ler the forinulie
AlyoApBy,,BL,AB of the PC be constructed  from the propositional
letters Pl,...Pm_ A’i etc. are obtained from A; etc. when each P; is
replaced everywhere by a new Q;-

Theorem 35.6:
(a) The Floyd-Hoare rules above are complete, for proving assertions of
the form (AI'BIJ""‘(Ak’Bk) E(A,B).
(b) () (Ay,By),....(AL,By) E(A,B) iff
(i) there is a monotone ¢ such that A bpc ¢(AI,...,Ak} and
¢(Bl,...,BkH=pCB iff

(lll) |=pc ((AI*B{ )/\/\(Ak"BL'n tn (A"B').
(c) The set of all true assertions of the form
(A1,By), (AL, By) HAB) is NP-complete.

Proof: See [Pad]
£6. On Models for PDL

PDL lacks the compactness property. It is possible for an
infinite set ' to (semantically) miply a formula A even though no finite
subset of T does. An example is I' = |P, [a]lP, [a;a]P,..., [a™]P,...}.
Then TE[a*]P. But no finite subset of T' implies [a*]P. (A slightly
more complicated argument shows that F is also incompact.) Fischer and

Ladner have used a filtration technique in their decision procedure which
gives us some information about finite models, but none about infinite
ones and incompiactness makes the lutter harder. The reason is that as
is shown in [FL], every consistent formula, and hence every consistent
finite set of formulae, has a [finite model. A consistent infinite set of
formulae (i.e. one from which a contradiction cannot be proved) will
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have the property that every finite subset has a model. However, the set
itself may or may not have a model.

A second complication is as follows: Suppose My, M, are two
models with the same set W of states and such that for all s ¢ W, for all
formulae A of PDL, Ml,sl'-‘A iff M,sEA. Are Ml' M, isomorphic?

The answer turns out to be "no.”

For example, let W = 10,1,2,....0. Let M],il=Pj iff
Mz,ilsz iff j<i. Ml,thj and Mz,ml:l’j for all j. Now let

R, in My be the set [(0,)) | Ko} and in M4 the set {0,)) | Ko}

Then M, M, are not isomorphic but have the same formulae holding at
the same states of W,

In Definition 6.1 below we define two notions of equivalence
between models, (in addition 10 isomorphism) and provide canonical
elements in the equivalence classes for ecach kind of equivalence.
Roughly, in a canonical model there is no duplication of states and each ~
R, is "as large as possible” without destroying the semantics. A
canonical closed model is a canonical model with the additional property
that it has all the states thar it "might” huave. Le. if a “possible
state” is arbitrarily closely approsimated by states already in the model,
then that possible state is also there. Thus a canonical closed model
corresponds to a closed set of real numbers which contains all its limit
points. Dexter Kozen, [K1] has also pointed out that such notions are
essentially topological in nature. If we consider the topology (sce also
[Pa5])) on W induced by the family of all sets Uy = {s ¢ W | M skEA},

then if M is canonical then this topology is Huausdorff and if it is
canonical closed then M is a closed subspace of M, below. However,

M, is not compact since, as we noted hefore, the logic is not compact.

Definition 6.1: Given models M, M5 of PDL,
() My < M, iff Vs e Wy, VB, 3t ¢ W,, M ,sEB iff M4,tEB.
(i) My = M, iff M; ¢ My and M, ¢ M

(i) My < My iff¥s e Wy 3t e W, VB,
M ,sEB iff M, teB. (The subscript s stnds for “strong”. The

difference between (i) and (i) is that in (iii) the state t depends only
on the state s.)
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(iv) My = M, iff My ¢ M, and M, ¢ M.

Theorem 6.2: My = M 3, My s isomorphic to M)

Proof: Trivial.

None of the reverse implications hold. Thus the equivalence
classes for =, =, are not singletons (modulo isomorphism). However, we

can find canonical elements of them. Le. in each equivalence class under =
or £, there is a "nicest" element.

Definition 6.3: M is canonical iff
(la) ¥p, g e W, p # q => (3B)M,peB A M ,qE=—1tB).
and  (1b) Vp, q ¢ W, (p,g) ¢ R, iff VB, M,p E[a]B => M,q FB.

M is canonical closed iff

(2a) it is canonical and

(2b) Given M'y, if for all B 3p such that M',q EB» Mp
EB, then Ip,, such that VB, M'gq FB-M,p, EB.

Note that the “"only if" half of condition 1b above holds in all
models of PDL simply because of the semantics of [a]. However, in canonical
models, the R, are "packed full* so that the other direction holds as well.
The process of filling out the R, will always produce a filled out model
without changing the semantics. Now if the states that satisfy the same
formulae are identified, then we get a canonical model, in which each state
still satisfies the same formulae. This proves part 1 of theorem 6.4,
next. A canonical closed model has an extra property. If M is canonical
closed, and there is a “"possible state” s, und M has arbitrarily close
approximations to s, then M contains a copy of s. hence the word
“closed”, which can be given a topological meaning.

Theorem 6.4:
(1) VM 3IM’, M" is canonical and M~ M.
(2) VM 3IM’, M’ is canonical closed and M = M,
(3) 3! universal Mu canonical closed such that for all M,
38 : W --> W“
s.t. VB, M,pEB iff M
a4 unigue...).

pOPEB. (Iere 3! means: there is
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Proof: See the appendix.

In the theorem below, 8 ranges over finite Fischer-Ladner
closed sets of formulas of PDL. M/S is the factor model, as defined in
g3

Theorem 6.5:
(i) M = M,
iff (i) v§ , er’S - M,/5
iff (iii) v§ , Ml,/S e M:!H
iff (iv) VS , M]f’S szﬁ.

Proof: See [Pad].
&7. DPDL and PDL:

DPDL has the linguage and semantics of PDL  but the class of
models is restricted by the requirement that all atomic programs are
deterministic. Le. each R, is a partial function. The filtration
technique, used in [FL] for PDL, fuils for DPDL which is therefore less easy
to understand. The reason ic that if one starts with & model M, which is,
in fact a model for DPDI, and then facrorises out a congruence relation of
a suitable kind, as is done in [FL], [Pal] for PDI, one need nor get a
finite model of DPDL. Rather one can cud up wentifying distinet initial
states in W and the result i that an atomic program which was deterministic
in M may become non-deterministic in the fuctor model. Thus DPDL is not
vasier to study than PDL, but more complex. We substantiate this argument
in this section by pointing out a translition from PDL to DPDL which yields
a lower bound for the complexity of the latrer.

Notation: For this section only, if A is a formula of PDL then A’ is

abtained when every program atom a; is replaced by {:ii;b*} where b is new.

Note that the map A --> A" is computable in linear time and leads
to a linear growth in length.
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Thearem 71: TEA in PDL ff T"EA" in DPDI.

Proof: The proof given in [Pad] contains a mistake. For a corrected proof,
see the appendix.

Theorem 7.1 above is not dependent on the class of programs being
regular. It applies equally well to context free (recursive) programs
or even larger classes of progriams.

Since theorem 7.1 reduces PDIL to DPDI., the lower bound for PDL
([FL] theorem 7.2) automatically becomes a lower bound for DPDL.

Theorem 7.2: There is a constant ¢ > 1 such that the satisfiability

(validity) problem for DPDL is not @ member of DTIME (c™ where n is the
length of the formula, in number of symbols.

Proof: This is an immediate corollary of theorem 7.1 uabove and [FL]

theorem 5.2, which is exactly like theorem 7.2 except that it is about
PDL.

Theorem 7.3 (Ben-Ari-Halpern-Poucli). The validity problem for DPDL is
decidable in time deterministic exponential in the length of the formula,
Moreover, for a formula A of length n, if A is sutisfiable, then it has a
model of size at most 4™.n!,

Finally, while every formula in the notation of PDL that is valid in
PDL, is also valid in DPDL, deterministic programs e satisfy the
additional formulae

(10) <a>A - [alA

where A is arbitrary. It has been shown by J. Halpern [Hal] that adding
axioms (10) where a is a primitive program yields a complete
axiomutisation for DPDL. His argument to show this is quite literally
thorny. See [Hal] to appreciate this pun. Another, independent proof, also
appears in [V].

Theorem 7.4 (Halpern-Valiev): Any complete axiomatisation for PDL becomes
a complete axiomatisation for DPDL if the axiom scheme
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GA = [alA

is added where a is an arbitrary atomic program and A is an arbitrary
formula.

We could also define a strict version of DPDL where not only the
atomic programs but also other progrims are deterministic, i.e. where U and
* are eliminated in favour of "if..then..else..” und “while..do..". We do
not have any specific informution about strict DPDL, except what we know
about it as a subsystem of DPDI.

%8. Process Logics

Process logics in the context of dynamic logic occur first in [Pr3]
where Pratt defined several process connectives to augment the box and
diamond of dynamic logic. An example of such a connective is throughout,
written wi., Thus if & is a program, A is a formula, and M is a model,
then WaA holds at a state s if the property expressed by A holds
throughout every execution of « thar begins ur s. Now clearly this property
of @ cannot be ascertained merely by looking ut the binary relation R

which knows only about the initial and final state of any execution of a.
To be able to talk about connecrives like W at all, a must be
represented, not as a binary relation, but as a set of rrajectories, a
trajectory being a complete list of states during any one execution of a
progrim.

In [Pa3] we defined a language SOAPL for process logic which
included Pratt's process logic. SOAPIL was proved decidable by reducing it to
SnS, whose decidability had been proved by Rubin [Ra]. Harel [H1] showed
that SOAPL was more expressive than Pratt’s version of process logic defined
in [Pr3]. However, apart from the fuct that the decision procedure did not
look elementary, the system in SOAPL was syntactically quite complex. A
simpler system, using results of uns Kamp to achieve expressive simplicity,
wits defined by Nishimura [Ni]. The principal result of [Ni] is that the
Nishimura system includes SOAPL.  Nishimura's system is further refined in
[HKP] and completeness and decidability results are proved. the system PL of
[HKP] is not elementarily decidable because the first order theory of linear
order is reducible to it. We give below the syntax and semantics of PL and
give the set of complete uxioms. For details sce [HKP].
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The syntax of PL is obtained from that of PDL by adding three new
operators f (for "first") chop, and suf (for "suffix"). We extend
definition 2.2 by adding the condition:

(vi) If A and B are formulae, then so are fA, AchopB, and AsufB.

The difference in semantics is greater. In a model of PL, truth
vilues of formulae are attached not to srates, as in PDL, but to finite or
infinite sequences of states, called puths, from now on. Thus a model of PL
consists of a universe of stutes W, together with an assignment of a set
R, of paths to each atomic program a, and a ser of paths p(P) to each

atomic formula P. In what follows, M is a model and p,q are paths. The
symbols s,t refer to states as usual. If p, q are paths (sﬂ,i..,sk) and

(1(+--s-2) respectively, (p must be finite, but q may be finite or
infinite), then pq is defined iff s = 1 und in that case pq =
(SQpe+esSg st aeees-). The length I(p) of p is k, the number of states

on p minus 1. Note that l{pg) = {p) + g). We shall use the words "prefix”
and "suffix" respectively, to denote initiul segments and final segments of
paths. We assume that the given atomic predicates are state predicates. Le.
that if p,and q are two paths with the same initial state, then for an
atomic P, p € p(P) iff ¢ € p(P). This last condition will be called the
locality condition, and models satisfving this condition will be called

local 'models.

Definition 8.1: We define the semantics of Process Logic.

(i) R, is given and we define
R‘aUﬁ = RﬂURﬂ
R,g=ipa|peR, Aqgé€Rg]

Rox = {P1---py, | m20 and for all i<m, p; € R, I

(ii) M,pEP iff p € p(P)

(iii) M,pEAVB iff M,pEA or M, pEB

(iv) M,pE—A iff M p#EA

(v) M,pE[a]A iff for all ¢ € R, if pq is defined, then M,pqrA

(vi) M,pEfA iff M (sgEA.
(Note that (sg), denoted first(p), is a prefix of p of length 0)
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(vil) M,pEAsufB iff 3q such that
(1) q is a proper suffix of p and M,qEB and
(b) if r is a proper suffix of p and q is a proper suffix of r,
then M, rEA.

(viii) M ,pEAchopB iff 3q, r such that p = qr and
M.,q=A and M, reB.

Using the given notions of PL, we can easily define some very useful
auxiliary notions. Recall that T stands for "true”, L for "false”.

Definition 8.2:
(1) nA = LsufA
(1i) A = A
(1i1) Ly = nT
(M,pLy iff p has length 0.)
(iv) someA = TsufA
(v) allA = “somenA
{(vi) fin = LD v smne[,{]

We see now how the notions of temporal logic [GPSS] can be
interpreted in PL. The connectives ~ome, all, next, and suf correspond to
the connectives F, G, X. until of TT {temporal logic). Thus PL is
expressively as rich as TL. 1t also ncludes PDL, and indeed, we can think
of (locall PL as a sort of least upper bound of PDL and TL. We now state
some decidability and undecidability resulis for PL.

Theorem 8.3: The validity problem for local Process logic with the
connectives f, suf, and chop is decidable bur not elementary.

Proof: The proof of part of this result has already appeared in [HKP],

where the decidability of PL. without chop is proved by reducing it to SnS in
the same wiay as SOAPL. The extension to include chop is straightforward.
The non-elementarity of PL is shown by using it to describe the computations
of Turing machines with i bounded (but very large) amount of tape.

Theorem 8.4: The validity problem tor Process logic withour the locality
condition is undecidable.

Proof: This theorem is proved by showing that the problem of the
satisfiability of equations between regular expressions with variables for
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languages, is undecidable, and then showing how to reduce this problem to

the satisfiability problem for (non-local) Process logic. For details, see
[CHMP].

£9. Dynamic Algebra. (Nore This section is due 1o Dexter Kozen)

Dynamic algebra is an algebraic abstraction of the standard Kripke
model semantics of PDL. It plays exactly the same role in PDL as Boolean
algebra in classical propositional logic: it provides a cleaner level of
abstraction, independent of the vagaries of syntax. Theoretical computer
science provides many examples of dynamic algebras besides Kripke models;
see [Pr5].

Dynamic algebras were first introduced in [K1] and subsequently
studied by Pratt [Prd,5,7], Reitermun and Trnkova [RT1], Nemeti [N], ;md the
author [K1-5]. A survey of these results follows.

Definition of dynamic algebras

PDL has two sorts, propositions and programs. Accordingly, a
dynamic algebra is a two-sorted algebraic structure (K,B,©), where: B is
a Boolean algebra; K is a Kleene algebra or algebra of regular events [C]
with operators ; , U, ¥ 0, X (identity), ind sometimes ~ (reverse); and
<> is a "scalar multiplication" K x B-B.

There are several possible definitions of Kleene algebras (see [C]).
As the axioms we will use appeur elsewhere in this volume [K2], we will
restrict ourselves to some examples: the family of all binary relations on a
set §, where U is set union, ; is relational composition, 0 is the null
set, A is the identity relation, and * is reflexive trunsitive closure; the
family of regular sets over {0,1*, where ; is concatenation and X is the
set containing only the null string of {0, 1'3" any Boolean algebra, where )
is 1, ;is A, and a*= 1 for all a; and the hlrutlmL MIN consisting of
the extended nutural numbers WU where U gives the minimum of two
numbers, ; is addition, the Klecne algebria constant A is the number 0, the
Kleene algebra constant (0 is =, and o = 0 for all «. The last structure
appears in the study of shortest path problems [AHU]. Other examples appear
in [Pr5].
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The axioms for scalar multiplication <> are just the Segerberg
axioms for PDL, with the exception that Segerberg induction axiom

(ind) (X A [«*)(X-[a]X) -+ [«*]X

is replaced by the stronger *-continuity condition

(+-cont) a*>X = V“<a X

which says that <a*>X is the supremum of the countable collection <a™X
with respect to the natural ordering £ on the Boolean algebra B.

The definition above is the original definition of dynamic algebras
that appeared in [K1], however Pratt [Prd,5,7] later adopted a more gencral
definition of dynamic algebras in which K was not required to satisfy any
axioms at all and < was not required to satisfy the *-continuity condition,
but only the induction axiom. In other words, Pratt’s definition says that
a dynamic algebra is simply 2 two-sorted algebra satisfying the Segerberg
axioms. In the interest of conservation of terminology, we shall for the
present adopt Pratt's terminology and use "dynamic algebras" to refer to
this wider class of models and call those models satisfying the original
definition above *-continuous.

In a nonstandard Kripke model, the *-continuity condition does not
imply that <a*>X = U,.(a")‘{ in general, since the set uncaﬂ:;x may
not be ign element of B; it wavs rather that <a*>X is the smallest element
of B containing all the sets <a™X. All dynumic algebras arising in
practice, including and especially the standard Kripke models, are
*_continuous. A proof that =-cont implies ind can be found in [K1] and a
non-*-continuous dynamic algebra is given in [PrS5].

The scalur multiplication < is so called because three of the PDL
axioms, namely

<aUBPX = <adX V X
CaXXVY) = <adX V <Y
Cafi>X = <adX<BX)
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are reminicent of the axioms for scalar multiplication in vector spaces or
modules, with U and V playing the role of addition and ; playing the role
of multiplication of scalars.

The property of separability

A dynamic algebra D = (K B,0) is called scparable if for any
a, 8¢ K, a#8, there exists iun X ¢ B such that <adX 7 <BOX;
in other words, distinct elements of K are distinguished by their action as
scalurs. A Kleene algebra KK is inherently sepurable if there exists a
separable dynamic algebra over K . The property of separability turns out
to be very impc‘-rt:’lnt' in the theory of dynumic algebras.

Not all dynamic algebras are separable and not all Kleene algebras
are inherently separable (an example of a non-inherently separable Kleene
algebra is the MIN example given above; sec [K1]). However, the Kleene
algebra of any standard Kripke model is inherently separable, since the
Boolean algebra can be augmented to include all subsets of states.

If we define the relation = of inseparability by
a = B iff for all X, <adX = <X

then the relation = is a dynamic algebra congruence, thus there is a
quotient algebra D/= = (K/=.B,), where

K/= =}la/ |lae K |

and a/= is the =-congruence class of «. The quotient algebra is
separable, and (K,B,<) is separable iff = is the identity on K .

The equational theory of dynamic algebras

If the defined propositional operator = is considered an equality,
then without loss of generality PDL can be considered an equational system.
Instead of the PDL assertion X one writes the equation X = 1, and instead
of the Hilbert-style rules of inference proposed by Segerberg one uses the
single rule of substitution of equals for equals. It then follows that the
completeness of the Segerberg system for PDL is equivalent to the
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coincidence of the equational theory of dynamic algebras and the equiational
theory of standard Kripke models. This is explained in more detail in
[Prd4]. In that paper, Pratr argued that the following models of computation
give examples of dynamic algebras, and ull have the same equational theory,
namely that of dynamic algebras: standard Kripke models, nonstandard Kripke
models, finite Kripke models, flowchart models, regular languages,

trajectory models, predicate transformer algebras. The class of
¥-continuous dynamic algebras should be included in this list as well, since
it contains all Kripke models and is contained in the class of dynamic
algebrias.  These results say that several extant models of computation,
although intuitively quite distinet, are logically indistinguishable as far

as equations are concerned.

In [Pr7], Pratt proved u purely algebraic result about dynamic
algebras that generalizes the Fischer/Ladner finite model property [FL] and
admits the completeness of the Segerberg axioms of PDL as a corollary:

Theorem [Pr7]. Every free separable dynamic algebra is a subalgebra of a
direct product of finite dynamic algebras.

In fact, Pratt’s theorem is somewhat stronger, but this version
suffices for all practical purposes.

Proof. Let D = (K,B,©) be the free separable dynamic algebra
on the generating sets B, K. Then D is isomorphic to the term algebra over
B and K modulo the Segerberg uxioms and the relation = defined in the
previous section.

If X is any term over B and K, construct a finite dynamic algebra
D as follows: let FL(N) denote the finite set of elements of B

represented by terms in the Fischer/Ladner closure of X (see [FL]) and let
B\ be the finite Boolean subalgebra of B generated by FL(X). Let KX

the set of all functions a: By --> By, satisfying the two properties (1)

alYVZ) = a(Y)Va(Z) and (2) «(0) = 0. D is made into a dynamic
algebra by defining <a>Y = alY). Also, D is separable.

Now define the map fy:D-->Dy us follows: for generators P ¢ B,
if P appears in the term X then fy(P) = P, otherwise fy(P) =0. For
generators a ¢ K,
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xlad(Y) = | ZeBy | <dY £ Z 1.

Since D is freely generated by B und K, fy extends uniquely to a
homomorphism fy;D-->Dy.. It can now be proved by induction on the
structure of terms that for uny Y ¢ FL(X), [x(Y) = Y5 in particular,
fx(X) = X. |

Now let [TDy be the dircet product of all these Dy for all
terms X. D is embedded in IIDy. via the map f = IIfy, which takes Y to
the sequence Miy(Y) and a 10 the sequence l'lf.\-(r:]. The map f is
onc-one on B since if fIX) = {Y) then (IXAY) = 0 (where XAY = X-YUY-X)
and hence f.\-awl-(.\iﬁ‘u’] = (), therefore NAY = O and X = Y. It is also
one-one on K since if fla) = {(8) then f(<a>X) = f(<>X) for all X, so

<a>X = <f>X for all X by the above argument, therefore a = 8 by
separability. B

Corollary. The Segerberg axioms for PDL are complete.

Proof. It suffices to show that the equational theory of the class of
dynamic algebras coincides with the equational theory of the standard Kripke
models. The inclusion in one direction is trivial. Now suppose the

equation X = Y holds in all standard Kripke models. Then it certainly holds
in all finite Kripke models. Since every finite dynamic algebra is
represented by a finite Kripke model, it holds in all finite dynamic

. algebras as well.  Since equations are preserved by direct products and
subalgebras, it follows from the above theorem that X = Y in any free
sepirable dynamic algebra, and therefore X = Y in all separable dynamic
algebras. Now for any dynamic algebra C, C/= is separable, hence X = Y
in C/=. Therefore X =Y in C R

Another corollary to Pratt’s theorem is that every free dynanic
algebra with at least one Boolean generator is separable and represented by
standard Kripke model. Nemeti [N] has removed the restriction that there be
at least one Boolean generator.

The representation of dynamic algebras

The Stone representation theorem for Boolean algebras says that
every Boolean algebra is isomorphic to a Boolean algebra of sets. An analog
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of this result holds for separable dynmmic algebras and nonstandard Kripke
models:

Theorem [K1). Every separible dynamic algebra is isomorphic to a (possibly
nonstandard) Kripke model.

Proof. The construction is an extension of that of the Stone
representation theorem for Boolean algebrus. Let (K,B,<>) be a separable
dynamic algebra and let u, v denote ultrafilters of B. The set S of states
will be the the set of ultrafilters of B. For each X ¢ B, the set X'

will be the set of ultrafiliers containing X, and B’ will be the set of all
such X'. Under the set-theoretic Boolean algebra operations, B’ is a
Boolean algebra isomorphic to B (this is just the Stone representation
thcorem). Now for euch a ¢ K, define the binary relation a’ on § by:
(u,v) ¢ a' iff <a>X ¢ u whenever X e v, or equivalently, iff X e v
whenever [alX € u. It turns out that the set K" of all such &' is a
Kleene algebra under the usual binary relation theoretic interpretations of
the operators ; , U, and ~, am! K' is isomorphic to K . Moreover, under
the standard Kripke model interpretation of ¢, (K',B',¢0) is a dynamic
algebra isomorphic to (K,B,<). In general, however, the * operation in
K’ will not be reflexive transitive closure in the binary-relation

theoretic sense, hence (K',B',<») may be nonstandard. @

Dynamic algebras which are not Kripke models

There are examples of dynmmic algebras, even separable *-continuous
dynamic algebras, which are not isomorphic to uny standard Kripke model
[K3,RTI,K4]. The following counterexaumple is from [RT1]:

Let B be the power set of w, Define the function <a>B --> B
by

OY = § x| 3y e Y |5y £111f Y is finite, w otherwise.

I.et K be the Kleene algebra generated by <a> under union for U and
functional composition for ; , with X = @ for all X # 0, <a*>0 = Q.

It is not hard to show that (K ,B,0) is a separable dynamic algebra.
Moreover, it is *-continuous, since for any « and X # 0, the sequence
<a'™X is a chain of sets whose union is @, and <a*>X = w. However,
(K,B,<) is not represented by any standard Kripke model, because it does
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not satisfy the following condition, which is clearly satisfied by any
standard model: if Y“ is a set of Doolean elements for which VHYH
exists, then for any a, Vn<a>T“ exists and 1s equal 10 (n:)Vn'Yn.

This does not hold in the (K,B,¢>) constructed above, which can be seen by
taking "1’” = l4n} and « = a.

This counterexample does not work in the presence of the reverse
operator

Proposition [RT2]. In all dynamic algebras with 7, if Y is any set of
Boolean elements whose supremum V, Y exists, then for any a, VY,
exists and is egual 1o Ca)Vn‘i'".

Proof. Clearly <adV Y is an upper bound for <a>Y,. If Z is any
other upper bound, then <a>Y < 7 for ull n, so [a"KedY < [a]Z

for all n, since [a”] is monotone, and by one of the = axioms,

Y, < [akeoY, < [a7]Z

for all n, therefore VnYn < [«"]Z. DBut then by the other axiom for

@V, Y, $@la]Z <7,
therefore <a>V Y is the least upper hound.

Nevertheless, even in the presence of 7, not every separable
*_continuous dynamic algebra is isomorphic to a standard Kripke model;
counterexamples can be found in [K3,K4]. On the other hand, there are
certain conditions under which dynamic algebras are represented by standard
Kripke models. For example, every finite dynumic algebra is so
representable. A harder example is given by

Theorem [K4]. Every *-continuous scparable dynamic algebra over an atomic
Boolean algebra is represented by a standard Kripke model.



The duality of dynamic algebras and Kripke models

A Boolvan space is a topological space that is compact and
Hausdorff and has a base of clopen sets. There 1s a well-known duality
between Boolean algebras and Boolean spaces: after performing the Stone
representation theorem on a Dooleun algebra B to obtain a Boolean algebra
B’ of subsets of a set §, if the sets X' ure allowed to generate a topology
on S, then the resulting space is 4 Boolean space. Likewise, the clopen
sets of any Boolean space form a Booleun algebra. This duality is very
useful in that it admits the perspectives und techniques of two branches of
mathematics. .

Like set-theoretic Booleun algebras, Kripke models (S,K,B) with
state set 8§ have a natural 1opology on 8, namely that generated by the
elements of B. Attempting to adapr the Stone duality to dynamic algebra
leads us to define dynamic spaces as thowe topological Kripke models
(S,K,B) for which (1) (§,B) is a Boolean space, and (2) all elements of
K are closed in the product topology. We arrive at a duality between
separable dynamic algebras and dynamic spaces completely analogous to the
duality between Boolean algebras and Boolean spaces.

If D is a separable dynamic algebra, let SID) denote the
nonstandard Kripke model obtained in the representation theorem. If A is a
Kripke model, let (04) denote its dynamic algebra.

Theorem [K2]. (1) If D is a separable dvnamic algebra then S(D) is a
dynamic space. (2) If A is a dynumic space then (A) is a separable
dynamic algebra.

Theorem [K2]. (1) If D is a separable dynamic algebra, then D is
isomorphic to ASD). (2) If A is a dynmmic space, then A is
homeomorphic to SIAA)).

This duality gives a useful topological perspective to problems in
dynamic algebra.  For example, the *-continuity condition for a dynamic
algebra says that in the corresponding nonstandard Kripke model obtained
from the representation theorem, the ser <a®>X is the topological closure
of the set Un(a“>."{, so that the set <a®*>X - Un<a“>X of "nonstandard

points” for a and X is nowhere dense. (In standard models, since * js
reflexive transitive closure, <a*>X = U <aX))



Further details are given elsewhere in this volume [K2].

Induction vs. *continuity

If dynamic algebras, *-continuous dynumic algebras, and standard
Kripke models are indistinguishiuble by equadions, what does the assumption
of *-continuity give us? This question is answered in the two papers
[K4,5]. Recall the relation = of insepurability defined above. If 4 is a
dynamic algebra, let 4/~ denote the separable quotient algebra. It is not
hard to show that if 4 is *-continuous then so is A/=,

Theorem [K4]. Any countable separable *-continuous dynamic algebra is
isomorphic to A4/= for some standard Kripke model A.

Proof. Let (K,B,©) be a separable *-continuous dynamic algebra. 1If the
construction of the representation theorem of [K1] is carried out, the
result is a (possibly nonstandiird) Kripke model with the same dynamic
algebra (K,B,). Let § denote the set of states,

In spite of the fact thut <@*>X need not he Unc:a“}}(, the
*_continuity condition guarantees that <a®>X is the least element of B
containing Unm">}£, In the natural topology on § (generated by the

elements of B), this says thut sets of the formn <a®*>X - Unm“ﬁ: are

nowhere dense. Therefore, if K and B are both countable, then the union
of all such sets, call it M, is meager. The DBaire Category Theorem then
implies that every nonnull X e B intersects § - M; using this fact, it can
be shown that all points of M can be dropped from the Kripke model without
changing the dynamic algebra.

The resulting Kripke model may still be nonstandard, for although
now <a¥*>X = U“<a“)}{, it is still not necessary that a¥ be the
reflexive transitive closure of a. However, the elements of K | taken as
primitive, generate a standard Kripke model 4, using reflexive transitive
closure instead of ¥. Since <a*>X = U <a'™>X, this process introduces
no new Boolcan elements. Using this and the fact that (K,B,O) is

sepiarable, it follows thar (K,B,®) ~ 4/=, thus 4 is the desired
standard model.

The above result does not hold for non-*-continuous algebras., This
is the kev to the power of *-continuity. Iet us extend the equational
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language to allow quantification over the X and a 1o get the first-order
language L, and extend further 10 allow countable conjunctions and
]

disjunctions to get the infinitary first-order language Lm1 -
| ¥

Lemma [K5]. A and A/= are equivalent with respect to all I.ml -

sentences.
Proof. Straightforward induction on formula structure. B

Theorem [K5]. (1) There is a first-order sentence true in all standard
Kripke models but violated in some sepirable dynamic algebra. (i) The class
of *-continuous dynamic algebras and the class of stundard Kripke models
have the same I'w],m theory.

Proof. (1) An arom of a Boolean algebra is o minimal nonzero element. An
eclement X of a Boolean algebra is aromfess if there does not exist an atom
Y € X. An element X is said to be atomic if no nonzero Y £ X is atomless,
or in other words, if every nonzero Y £ X has un atom Z £ Y. The
properties of being atomless or atomic are first-order expressible. We
construct an dynamic algebra (K ,B,©) whose Boolean algebra B is a
subilgebra of the direct product of an atomic Doolean algebra and an
atomless Boolean algebri, K has a program 8 such that both the atomic
part and the atomless part of B are preserved under application of <8,

but neither part is preserved under <6*>. The structure (K,B,0)

therefore violites the first-order property “for any a, if <adX is

atomless whenever X is, then <e®>X is atomless whenever X is." On the
other hand, any standard Kripke model has this property, since <a*>X =

U <a™X, and if all elements of a family of sets are atomless, then so

is their union.

(i) Let ¢ be any sentence of L We wish to show that

{I.II,IB'
@ is safisfied by some stundurd Kripke model iff ¢ is satisfied by some

* continuous dynamic aleebra,  One direction is trivial. Now suppose ¢ is
satisficd by sone #-continvous dvimmne algebra. By the downward
I.owenheim Skolem theorem tor infinicoy logic [Kel, ¢ is satisfied by a
countable ¥ continuous dvpamic alpebri 5 By the Lemma, ¢ is also
satisfied by the countable *-continuous dymmic algebra B/=, and B/= is
sepitritble, thus by the Theorem of [K4], B/= ~ A/= for some standard
Kripke model 4. Again by the Lemma, 4 E ¢.
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It can also be shown that the *-continuity condition for Kleene
algebras gives a natural (although infinitary) complete axiomatization for
the algebra of regular events. It has been shown thar there is no finite
equational axiomatization [R] and the finitary axiomatizations that have
been given iare somewhat unnatural and difficult 10 prove complete [Sal].

£10. Brief Notes

In a paper of this size, there are bound to be omissions. We have
not discussed several topics that we do not know well enough or which have
already been discussed quite adequately in other places. We briefly mention
some of these topics and refer the reader to the appropriate sources in the
literature.

Prapositional algorithmic logics: These are propositional versions of
algorithmic logic, just as PDL is the propositional version of dynamic
logic. For details see [Mi].

Probabilistic legics: If a progriam is non-deterministic, it is very

tempting to assign probabilitics 10 the virious executions of the progriam.
Then the problem arises, of computing the probubilities for a complex
program in terms of the probubilitics of its components. Once this is done
in a satisfactory way, guestions of completeness and decidability will

arise. There is some spadework in [K6] and [Re], but the subject is still in
a developing state.

Parallel programs: Tt is not hard 10 see that the semantics of PDL does
not contain enough information to tell us how the program will act when it
is interacting in parallel with other programs. That is, two programs a and
B may satisfy R_ = Rg, and yet, & and 8 may act differently in the
presence of another program v with whom they are acting in parallel. One
approiach is to augment PDL by ‘adding a shuffle operator. This is done in
[Ab].

Appendix

Proof of theorem 6.4: We already have shown (1), To see (3)  take all
semantically consistent, complete sets of formulae, Le. for any s in
any madel M, let § be the set of formulae that hold in M at s. Let
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W,, be the set of all these § coming from these millions of models. And

now define R, - the relation R, mM
L] H ‘4

(5,0 | (VAN[aJA e s > A ).

w 1o be the set

It is quite straightforward to show that M ,SFA iff A ¢S This
M, is the required universal model. For any M the map 8(s) = 5 is
the required map.

Finally, to see (2), the M’ there is just the subset of Wu

consisting of those § such that every clement of § is true at some
state of M.

Proof of theorem 7.1: Suppose TEA in PDL, then by substituting the
programs (a;b¥*) for the atomic programs 4, we have I'"EA' in PDL.
However, every model of DPDL is also @ model of PDL and hence whatever

happens in all PDL models of T must also happen in  all DPDL models of
I. Le. I"EA'in DPDL.

Conversely, suppose that THA in PDI. Then there is a
(countable) model M of PDI in which T holds and A does not, say at some
state s. By standard techniques one can show that M can be a tree model.
Such tree models are obtuined by unwinding loops. This converts a4 possibly
finite model with loops into an infinite tree model which is, in some sense,
simpler. W is, of course, countable. Now for each state s of W consider the
states t such that (s,1) € R.. Enumerate them in some order tys.... Let
(s,tl) € R:a" and for all n, if the They Doth exist, then the pair
('n"ml) € Ry,. (If there are no such stutes 1, then R, will
have no pair of states whose first element is s.) It is easily seen that
cach R, and Ry, is deterministic und R, = R, % Thus the program

. € i ]
R. .y takes us to precisely the places where R, docs, but is made up
L 3 “
of deterministic atoms R Ry Replacing the various R, by the
‘ Lt
R, and Ry, defines a new model M* such thut M’ is a model of DPDL

and such that if the state s satisfics u formula A in M then s satisfies
A" in M". Thus s satisfies T in M’ and does not satisfy A" in M".
Hence " ¥ A’ in DPDL.
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