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Abstract 

We show that the problem of detennining whether or not a lossless join property holds for a 
database , in the presence of key dependencies and cardinality constraints on the domains of the 
attributes is NP-complete. 
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1. Introduction 

The theory of relational databases has attracted a great deal of attention recently [l].[2]. In this model 
data is arranged into one or more multi-column tables called relations. Each column corresponds to an 
attribute. The values of the entries in a column arc chosen from a set called the domain of the corresponding 
attribute. A relation is therefore a finite subset of the Cartesian product of the domains of its attributes. 

New relations can be constructed from given ones using certain algebraic operations on relations. If R 
is a relation, then a(R) is its set of attributes. If R is a relation, then D(A) is the domain of the attribute A. 

ThusR C fiAEa(R)D(A). 1ft ER and XE a(R) then tx is a tuple t restricted to the attributes in X. The 
projection on X ofR is 1rx(R) = {tx It ER}. 

The natural join is an "inverse" of the projection operator, defined as follows: 
LetRi, ... 1 Rm be relations. then their natural join is defined as 

II D(A) I ta(R;) E Ri} 
AEUa(R;) 

(1) 

A relation R is usually represented by a relational schema S = (X, D). Xis a subset of2a(R) such that 
Ux;EX X,· = a(R). and Dis a set of dependencies (predicates on relations) that the relation satisfies. Thus 
R is represented by its projections { 1rx;(R):Xi EX}. 

There are many kinds of dependencies [4]. Among these we have functional dependencies. (F.D.'s) 
(X-+ Y meaning that for all t, t' E R tx = t :X. implies ty = t~ ). Functional dependencies of the form 
X -+a(R) - where X' + a(R) for all X' C X - arc called key dependencies. Other kinds of dependencies 
are multivalued dependencies (MVD's}. join dependencies (JD's). etc [4]. A differcnct kind of dependency 
introduced in [4] is the domain (or cardinality) dependency (DD) stating that I D(A) I= CA for some 
A E a(R). 

In the following section we will deal with tuples (rows) wi with symbols as entries ranging over the 
domains of the attributes (as the a's and b's of [l]). If two w' s have the same symbols in the set of columns 
X, and X-+ Y is an FD then applying X-+ Yon this pair of rows means we equate the symbols in the 
columns of Y in these rows. 

We say that a set Ll of predicates on relations logically implies a predicate 6 if all relations R satisfying 
Ll also satisfy 6. If S = (X,D) is a relational schema, we letD+ be the set of all predicates implied by D. 
The following important predicate (the lossless join property) is a desirable feature of any relational schema 
(X,D): 

m 

~ 1rx;(R) = R = LJ(X) (2) 
i=l 

If (2) is satisfied then X is an appropriate way for representing R without loss of information [I]. It is a 
central problem in relational database theory. given S = (X,D) to determine whether LJ(X) ED+ [6]. 
This can be done, in the case that D consists of FD's, in polynomial time. The purpose of this paper is to 
show that introducing DD's (as proposed in [4]) makes the problem much harder. In fact we show that deter­
mining whether LJ(X) E D+ is NP-complete even if D consists of only key dependencies and just one DD. 
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2. Complexity of Cardinality Constraints 
Consider the following problems of testing for the lossless join property in the presence of constraints. 

LOSSLESS JOIN: Given S = (X,D) is there a "Counterexample" relationR satisfyingD and notLJ(X) 

Theorem 1: The LOSSLESS JOIN problem is NP-complete, if D consists of key dependencies and just one 
cardinality constraint I Dom(A) I= 2. 
Proof: In order to prove that the problem is NP-complete, we will proceed by proving membership in NP 

and then reducing a known NP-complete problem to it 
To argue that the problem is in NP, we note that if X = {X1, ... , Xm} and R is a counterexample 

relation, then there exists a tuple t• in P47.:-1 ,rx;(R), which is not inR. If R has attributes A 1, A2, ... , Ar then 
from the definition of the join it follows that: 

p<q~1 1rx.(R) = {a102 ... a1 I there exist tuples w1, wi, .,.wm in R such that Wi has ai in position j if the 
attribute A3 is in Xi and an arbitrary value in position j otherwise} (3) 

Let w~, w;, ... w:n be the tuples corresponding tot. A relation consisting of these tuples is a short (at 
most m tuples) counterexample relation, which satisfiesD (keys and cardinalities) but not LJ(X). 
Reduction: We shall now reduce the exact hitting set problem (EHS) to our problem. 

{

EHS:Given a family {Vi} i = 1, ... , n of subsets of a set T = { t1, ½, ... tp}, where Vi = { ti 1, til, ti3}, is 
there "an exact hitting set", that is a set W C T such that I W n Vi I= 1, 1 -< i -< n? 

The EHS problem can be easily seen to be NP-complete (reduction from exact cover with three occur· 
rences of each element sec [5]). It was also used in [2]. 

Given an arbitrary instance of EHS consider the relation schema S = (X,D) and the relation R it 
resp resents with attributes a(R): 

constraints D = { d} UK, where d is the DD = D(A) = { T , F} (all other attributes have countably 
infinite domains) and K is the set of key dependencies: 

( 1 )A Vi V\ Y -+a(R) 
(2)A ViYTi 2T~1-+a(R) 
(3)A ViYT{ 3T~1-+a(R) 
( 4 )A Vi YT~3 T~2-+a(R) 
(5)ViYTbT11 T1JT~1 T~3T~2-+a(R) 
(6)V' iX-+a(R) 
where 1 -< i -< n 

and X = {X1, X'J., ... X1,, X'1, • •• , X' ,., X'} where: 
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X' = a(R) - {Y} 

I -<. j -<. p 

We use the notation X' i = Xv+2 and X' = Xn+v+I• Note that LJ1+f+ 1 X; = o(R) as required and 
A ~ X1 I -<. j -<. p, and V' i ~ X' 3 Now let us prove, that there is an exact hitting set W iff there is a 
counterexample relation C: 
a)"only if': Suppose that there is an EHS W. Consider the following m tuples w1 ••• 1 Wm,(m = n + P+ 1): 
w, has a3 in position j if the /h attribute is in Xi, and otherwise w3 contains in position j an arbitrary value, 

which appears no where else (such unique values can be chosen for all attributes except A). For attribute 

A (wi)A = Tfor p + 1 -<. i-<. n + p + 1 and for 1 -<. i -<. p if t, E W then (w,)A = T = 01 else 
( w,)A = F. (Figure 1 has an example of an EHS and a tableau of the w' s where only the o entries are noted 

and the values of A). Obviously t = Tai, ... asn+J is not among them tuples described, yet it should be 
part of any instance containing these tuples, if this instance is to satisfy LJ(X). We note that at this point 

FD's of types (2) to (6) are not applicable to any pair of tuples because type (6) requires equality of V' i and 

X and all other types require equality of Y and Tie and T~ entries. Type (1) FD's can be applied to pairs of 

w/ s, which correspond to elements of T belonging to the same subset V; and not belonging to W. Such an 

application does not make any of types (1) to (4) applicable, because the third element of V; has a different 
entry in A and the w corresponding to X' 3 has a different A entry also. Type (5) is also inapplicable, because 

all T~'s fork =/ l, 1 -<. k, l -< 3 do not have the same entries. Thus the tuples resulting from :he 

application of the FD's on w1, t.t>i, ... wm, satisfy all constraints of S = (X,D) and not LJ(X), thus they 

form C. LJ(X) is not satisfied because (6) can never be applied and 01ai ... asn+J ~ C. C is the required 
counterexample relation. 

b )"if': Suppose that a counterexample relation C exists. C should contain m tuples w1, wi, ... Wm (not 

necessarily distinct) as those described in (3) and should not contain their corresponding o1ai ... o, tuple. In 
fact. these tuples by themselves form a counterexample relation. Also we can replace all elements in these 

tuples, which do not correspond to a's and whose domains are unrestricted, with clements that arc nowhere 

repeated in the tuples. These new tuples w' 1, w' 2, ... w' m also form a counterexample relation that we will 

can C'. Let us assume there is no exact hitting set and reach a contradiction. We know that if no EHS exists 
then for the tuples, which correspond to X1X.J., ... Xp and therefore to t1, t-i, ... tp either: 

(a) 3k;.fl w'k, w', s.t. (tk, t, EV;} A (w' k)A = (w'1)A = T = 01 

or 

(b)3 k ,l,q w'k,w',,w'q s.t. (tk,t1,tq E V1) I\ (w'k)A = (w'1)A = (w'q)A = F:/:01 
di11tind 

(If o1 = F the conditions arc identical with T and F interchanged. If these conditions arc not satisfied we 
can construct an EHS from the assignment of T, F values to the A column). If case (a) is true by applying 

type (l) dependencies and then one of types (2) to (4) we render the application of V' iX-+o(R) possible and 

prove that a1, ai .. -asn+J must be one of the w' s. In case (b) by repeatedly applying type (l) dependencies 

we make the application of a type (5) dependency possible and then that of V' iX -+o(R} with the same end 

effect as before (also in this case application of (5) would imply o1 = F. although we assumed o1 = T). 
Thus C' cannot be a counterexample relation, which is the desired contradiction. This concludes the proof 

of Theorem 1. 
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3. Discussion and Conclusions 
We have proven that the LOSSLESS JOIN problem is NP-complete, even if D consists of only key 

dependencies and just one DD. This is directly connected with Domain Key Nonnal Fonn recognition [4]. 
If D contains only FD's the problem can be solved in polynomial time [l]. The best time bound to date 

is O(n2logn) [3]. If D contains MVD's or JD's the problem is open and the general procedure ("chase"), 
which attempts to construct a template of all counterexample relations [6] is inefficient 

Acknowledgment The author would like to thank Prof. C.H. Papadimitriou for many helpful suggestions in 
the presentation of this result. 
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