
MlT/LCS/J:M-157

ON THE EXPRESSIVE ~ OF O\'Nl!MIC lCGIC

Al.oort R. Meyer

Karl Winklnann

February 1980

,On The Expressive Power Of Dynando Lo l,o

Albert R. Meyer and Karl Winklmann.
Massachusetts Institute of Technology

Cambridget Massachusetts 02139'

February 25, 1980

Abstract. We ,sho·w tha "looping" of whi' e-programs can be expressed in
Regular First Order Dynamic Logic, diiproving a conjecture made by Hare) and
Pratt.

In addition we sho,w that the e~presst.ve power of quantifi.er-free
Dynamic Logic increases when nondeterminism is intr,odueed in the programs
that are par of form11lae of Dynamic Logic. Allowing assignments of random
values to variables also :increases expressive power.

This r,esearch was s onsored in part by National Science Foundation Grants
MCS77• 9754 and MCS77-19754A01. A pretimin ry version of tbi paper· has
appeared in Pr,oceedings of the Eleventh Annual ACM Co·njerenc-e on Theorp of
Computing, Atfanta, May 1979.

1. lntrod uction

Dynamic l<>gic has been introduced by V. R. Pratt [Pratt 19716,] as a
formal· .m for reasoning about programs. Pratt has observed that Dynamic Logic
provides simple 1expresscons for an assortment of familiar properties of programs:
equivalence termination, partial oorrectness,. and determinacy, for example ..
However, there r,emains a general question of the extent to which ,other
interesting properties ,of programs can. be expr,essed in the formalism.

One pr,ope:rty whose express'b'lity in First Order Dynamic Log·c (DL) has
been an open questi:on, first suggested to ·us by M. J. Fischer, is the property of
tloo,piog." A nondeterminisf c program is said to loopn if its ex,ecution tree has
an infin."te path. The concept o.f looping is a basic one in ce.rtaio definitions ,of
total correctness of programs [Harel 1979, Dijkstra 1976, Greif. Meyer 1979,
Hoare 1978:1, and tbe desire for .a formal system suitable for reasoning about
looping motivated the introductfoa of an augmented vers·.on of DL, called DL +,
in which aa assertion that a program loops is added as an expUcit primitive
l[Harel-Pratt 1978,. Harel 1979).

In Sect on 3, we show that DL as originally formulated was in (act
powerful enough. to express looping.. Thus. the introduction of DL + was. not
necessary to obta'n the desired expressive power. However, it is obviousJ as we
observe .in Section 2.3, that there is. no single formula scheme of DL which
uniformly ,expresses. looping of an arbitrary prograrn. So the introduction of DL +
can still be justified on the gr,ound that it provides such a uniform expr,ession of
looping.

3

In Section 4 we study the expressive po er of nondeterminism in the
context of DL. Since programs appear as syn.tactic objects within formulae of
DL, one can compare he expressive power of two versions of DL which differ
only in that one version uses nondeterministic p.rograms while th.e other does not.
This comparison of expressive power is substantially different from the standard

problem of comparing the computational power of deterministic and
nondeterministic programs, not the least difference being that we can obtain
definite results. We prove that for formulas without quantifiers:, allowing
nondeterministic programs inc eases expressive power. In Section 5 we consider
DL with prog;rams containing 'random assignment" statements .and show that
expressive power is, again incr,eased.

2. Syntax and Semantics of DL

Briefly1 DL is First Order Predicate Calculus augmented by a construct
<a>P with the meaning that there is an execution ,of program a. after which P
holds. The dass of programs we consider differs slightly from the class used in
[Harel 979,Pratt . 976). SpecificaJly, our programs. use if.then and while-do
,constructs rather than set union and Kleene star. However, none of our proofs
depends on these differences in terminology. The definitfons ,given in the
remainder of this Section are intended to make this paper seff<e>ntained.

2.1 Syntax of DL

The .symbols used in the language of DL contain the usual assortment
of symbols from First Order Predicate Calculus: p~edicate symbols like p, q, r,
P1, ... i function symbols Hke f, g, h, .(lt ... , each with an associated nonnegative
integer arity~ and the special symbols -,, v,. 3,), (, and = • Zeroary function
symboJ,s are caUed variables, and zeroary predicate symbols are caHed Boolean
variables. Typical variabiles are x, ·y, z,, x1, ... , and typical Boolean ·variables are
p, q, r., In addition DL u.ses. the pair of symbols < > (pronounced

4

'diamond ..), and a few special symbo!s-which are ~s.ed in programs: :=, while, do,

if, then, true, false, and choice Symbols which are &tticdy speaking not in the
JangtJage but serve to abbreviate formulae .are 'W, = ~ and [] ('tbox '). [] is an
abbreviation for ...,< > """, just as W is an abbreviation for · 3 ..,_

Termi and atomic formulae· are formed exactly as in First Order
Predicate Calculus with Equality. Formulae are also formed exactly as in Fir,s.t
Order Predicate Calculus e~c-ept that <a> may be used in place of 3x, whet,e a is
any program in a simple programming language to be defined below. 'Thus,
fo.rmulae are -characterized inductively as follows~

any atomic formula is a formula·

for any two formulae P and Q, variable x, and program a, the following
are formula :

..,p·, (PvQ), 3xP, and <a>P.

Fo.rmulae or DL + are characterized in he same way except that fo,r
,each program a there is a designated zeroary predicate symbol Loopa. which

ne er appears ,·n any _program. (This is not the definition given for DL + in
[Harel-Pratt 1978], but it will be easy to verify that our definition is merely a
notational variant of theirst and so both versio,ns of DL + have the same
expressive p0wer (c:f. i[Hare~ 1979]).)

Our programs are familiar if-then-while schemes with the .addition of a

choice"'5tatement where choice(a:.H) means nondeterministically choose to do,
either a or a·. The foilowin,g BNP-description is a convenient way to define the
syntax of these programs ..

s

<program> ::= <statement>; <prog,ram> I <statement>
<statement> ·:= <assignment stateme11t> I <if~ ta.tement> I

<while-statement> I. <choice-statement>
<assignment statement> ::= <variable> := <term> I

<Boolean variable> := <test>
<if.,statemen_> ::= if <test> then <program> fi

<while-statement> ::= while <test> do <program> od
<choice-statement> ::= choice(<program>,<program>)
<test> ::= <open .. formula of predicate calculus with ,equality> I

tr:ue, I £alse .

We refer to this c ass of prngrams as wh·te-progr.a.ms. The formal definition of
th ir semantics wm be given in Section 2.2.

It wil be convenient to have a tree-representation of such programs. For
each program a: we define a (rooted) tree Ta· Informally, this tree Ta is just
the flow.char • of the program a: unwound into an infinite tree i_n the obvfous way
(see e.g. [Oreibach 1975]). Nodes which correspond to a nondeterministic
choice (in the execufon of a choice-statement) are labeled choice. More
precisely, Ta is defined by induction on a as follows: If u is an.
assignment statementt then T 12 is the tree in. Figur 1, where the dashed arrow
indicates the root of T «.

For a choice-statement, T,hoice(a,8) is the tree in Figure 2.
Fo,r an it-statement, T.if B then a is the tree in Figure 3 ..
For any two trees S apd T,, let SoT denote S with each leaf (i.e., Halt~

node) replaced by a copy of T.. Then for a while-statement. T while B d.o « od is
the (unique) infinite tree which satisfies the equation a is the (\lnique) infinite
tree which satisfies the equation in Figure 4. If .z is a list of statements
s1is.z; ... isk, then. Ta is tb:e tree T61 oT82o, .,oT5k..

6

2.2 Semantics of DL

2.2. l Informal presentation

Note that what we hav,e called while~programs are actual y program
schemes, because they contain uninterpreted (unction and predicate symbols. By
gh•ing, an interpretation I to aU those symbols (i.e. by defining a s1a1e)1 the
schemes are made ioto programs and it is obrious how to e~ecute them. During
exetution ,of such a program, the in.terpretations (values) of some symbols may
change. Thus, the execution of the statement x·=f(y) will in generaJ change the

- -

value of the symbol x.

While-programs as defined above wiU .always leave functions and
predicates of positive arity unchanged. However, later in the paper we consider
1array assignments11

, like f(x):=y, which do change the interpretatio.n of function
symbo]s of positive arity. Th.us there is no reason to distieguish function
symbols from variabl.e.s, and we merge the standard ooncepts ,of a structure.
which provides an interpretation for all function and predicate symbols,, and a
valuation, wh"ch assigns values to al variables, into the concept. of a slate, which
,gives interpretations of alJ symbols.

For any state I and progn.m a, let a(l) be the set o.f states in w hlch «,
when started in state I, can terminat . Let m(c) = ((I,J):Jea(l)}. This relation
m(11) captur,es the ninput"'°utput behavior I of the program a:. ow to say that
after executing a starting in state l, it is poss"ble to ltatt and have P ho]d true,
which we expr,ess in symbols a Jt:=,<a>P, is th.e same a saying that there i a
state JEtZ(I) for which P' is true. (Tbe assertio.n lee(!) is of course equiva' ,ent
to the assertion (l,J)€m(«). It wiU be convenient to have both m.(oc) and a:(I)
defined, although one of th ,m wou d clearly be sufficient.) The semanti.cs of
formulae of forms other than <a>P are defined as in First Order Predicate
Calculns.

Looping of nondeterministic programs is a notioa which is mdependent
of their input-output behavior, ·viz., it cannot be defined in terms of the relation

7

m(a). For a program, oc, define the predicate Loop,. to, be true in a state l, that
is Ii=loopa, if the execution tree describing the possible computations of a
started i.n state I, has an mfimte pa th.

2.2.2. Formal Definitions

A stale I is a mapping of aU predicate symbols, function symbols,, and
(Boolean) variables to predicates, functions, and (truth) values on some domain
D. The mapping of predicates etc. to the s,ymbols observes the ari.ty of the
symbols~ every k-ary predicate symbol p is assigned a predicate PI 011 ok, every

k-a ry function symbol f is assigned a function f from ok to Di in particular, for
k=O, every Boolean variable p is assigned a truth value PJ, and every variable x is
assigned a value x1eD. The symbo,l = is always interpreted as equality. Given
rhe values P1, . . . ,f 1, . .. , and x1, .. . of all symbols p, ... ,f, . .. , and x, . .. ,, the
values t1 of terms t and the truth values of ,an program-free formulae under I
a.re defined in the standard way. As 1H1ual we write lt=P if a formula P is true
in state I and i=P if P is true in all states.

The execution tree Ta:(I) of a program« in a state I is obtain.ed from
T« (defined in Section. 2.1 above). It consists of the SJ.Jbtree of Ta whose nodes
receive labels according o the following, inductively defined procedure:

1. The root is labeled with the state I.
2. For any node · vhich oon ta.ins an assignment statement, if the node is

labeled J then its son is labeled. by the itate K which res-ul ts from ex.ecuting the
assignment statement in state J. Namely, K agrees with J o.n the interpretation
of all symbois except for the variable to the left of the symbol n:=11 in the
assignment statement. The v al.ue in K ,of the variable to the left of '1 :=u is the
value in J of the term to the right.

3. For any node containing cho.ioe·, if the node is labeled J then both ,of its
so.ns are also labeled J (i.e., nondeterministic ,choices, do not chang,e the state).

8

4. For any node contain·ng a test B. if the node ·s labeled with a s,tate
satisfying B. then the son pointed to by the arrow labeled true receives the same
state label, and the false son receives no state label. Symmetrically, if the state
label does not satisfy B, then the false son receives the same label and the true
son r,emains unlabeled.

Let a(I) = {J : T,iI) has a leaf labeled J}, and define lt=<a>P for .an
arbitrary formula P if{ there i a state Jeai(I) and Jt=P. The dermition of Ia=Q
for formulae Q not of the form <a>P .is the standard inductiv,e definition fro.m
First Order Predicate Calculus.. Thi com.pletes the def mition of the semantics
ofDL

Fo,r notational cqnvenience we define m(a) for a program. a to be
{(IJ) : Jiui(I)J,

i.e. t.1: (I) is the set or states in which program a can ter.mi.na.te when started in
state I, and m(a) ~ the input-output relation of a:.

Finally, we defio.e th.e predicate Loop« to hold in a ·state I iff Ta(I)
has an infi.nite path ..

It is easy (and will be useful) to give an equival.ent definition of Loopa
by induction on the structure of a: (cf. :[Ha11el 1979, pp.92-93,)). For .au states l,
programs a, fl, 'Y', and tests B, we define:

If a is an assignment-5tatement then JF-,£oop11;
if a is choice(,6',,-) then b=loopa: iff lt=(Loopa' V Loop..,);
if a is 6;,y then lt=Loopa iff lt=(loop11 V <{J>L,oop_,)-.,
if a is if B then fJ fl then I Loop• iff l1=(B /\ Loopa),
if a is wh.ite B do O od then I1=Loopa iff lF(Local~Loop,. V Glob·al•L,oop0)

where
lt=Local~L0:op,. is defined by

9

uThere is a. finite sequence of states Jo,11, ... ,Jk such

that I=Jo, Ji+1e6(Ji) for all O~i<k, Jit:::B for all ~ifk,
and Jk loop(J.'

and l~Global-Loopa is defined by

uThere is an infinite sequence of (not necessarily
distinct) states
Jo,J 1 t ... such that I=Jo, and Ji+ 1 ~~(Ji) and Ji B for all
i~O.'

2.3 The ,general p oblem of expressing loop'ng in DL

Before we go into the technical details in the next secti,on w,e wish to
point out that in our formulation of the problem of expressing Loop« in DL we
ha e made two apparently arbitrary choices, namely, our choice of while•
programs, a, and our definition of the associated trees Ta·

The definition of the: semantics of <a>P makes sense for any syn.tactic
object " which names a binary relation on states although we .have chosen to
restrict ourselves o the .r,elations m(«) named by while-programs. Howev r,
because the semantics of the statement <a>P depends only on the relation
associated ith program a, as opposed to the syntax of a. there is no loss in
genera it in our choice of while-programs compared to the class of regular
programs considered m previous studies [Pratt 1976, Harel 1979]. In particular,
·he relations definable by whU~programs are precisely the "regular' rela.ti.ons
d efi na bte by regular expressions over the alphabet of statements and tests, as in
[Pratt 1976, Harei 1979'], or equivalently the relations definable by

nondeterministic new-chart schemes over these statements and test .

10

We have chosen our wmite-prog;ram syntax in orde!r to, emphasize the
converse fact that looping is a property of programs, or more precisely a
,property of the trees associated v.~ith programs, as opposed to just the relations
named by the programs. Th.us, if the relations -associated with a and a .' are the
same,. then. b,y definition of the semantics of DL, a may be replaced by a' in
any formula. of DL and the meaning of the formula remains un.changed. This
implies that there cannot be a stngle DL-formu[a F with a 11prog:ram variable,"
say A, such that for any program u, the formula F with A replaced by« would
express loop" . To see this consider the two, programs, a: and a' where a is :
p:=false and a' is: p:=true; while p do cho,ice(p==true, p:=.fal5e) od.

Thes two programs a and a' have the same semantics,, i.e. m(a)=m(«'), and
are therefor,e 'indistinguishab]et to any formula F of the kind described. At the
same tim they satisfy =-iLoop« and =Loopa"·

We hope that the .simple definiti.on of Ta from a will persuade the t'leader
that the question of whetber T0 has an. infinite path accurately reflec.ts the
intuitive idea. that m "Loops.' that is, that one of the nondeterministic
computa fons by tr may not terminate.

There may be some loss of generality in our particular definition or
T «· Not all Ct:lmputation trees obtainable by simi 1ar, intuitively simple inductive
definitions aimed at defining ioop'ng for var"ous classes of programs are in fact
obtainable as Toi: for while•programs «.1) Howevert our proofs that 1.ooping is
expressible in DL do not involve such a !oss in generality, and in fact apply to
the more genera class ,of regular tr.ees whose edges .are labeled with assig.nments
and tests. These can be defined as state transition trees of finite automata each
of whic.h has as alphabet some finite set or assignments .and tests.2) It is easily
~n that T0 is regular for any while~program a: and we beHeve that any

sensible formulation of looping for wbile--programs, flowc11art schemes, ,etc:. will
naturally yield 1only regular trees.

Thus our result in its general form can be summarized informally as
saying that looping, i.e. having infinite paths, of regular tr,ees is definable in

11

regular DL This .naturally raises the question of what happens when we enrich
the class of ,programs and associated tree-s, e.g, we ,can ask whether looping of
context•free (or recursively enumerable) trees is expreeible in context-free (or
recursively enumerable) DL (cf. {Harel 1979)). for that matter,, we can ask
whether looping o.f r.e. tm;ees ~s expressible in re.gular DL. The context•free case
and the r .. e. tree in regular DL question remaio open, altho~gh we conjecture
that the techniques developed below w.ill extend to yield a positive answer in the
contex _-free .case. In the case that r.e. programs, are aUowedt i.e., in r.e. DL, the
construction •Of formulas that express Joopin__g presents n.o difficulty~ fo:r each r.e.
program a there is anoth.er r.e. program 6 which, informally spe.akin,g, carries out
a depth~first search of the execution tree of a. Thu' Loop« is, equivalent to

[#]I faise-3) No, such simple observation .seems to settle the problem of expressing
looping in regular DL which we consider next.

3. Expressing loopr,; in DL and in DL with array assilllllle,nts

In this Section we first .show that for any while-pro,gram «. the
predicate Loop a. can be expressed 'by a formula of DL (Theorem 1). T.hen we
show that this remains true if we allow "array assignments" in -wbile•programs
(Theorem 2). Note that Theorem 2 is by no means a corollary to Theorem 1.
Al.though allowing array .assignments adds to the po,wer of the language of DL,
it is also true that expressing Loop« fo.r programs ca with array assignments is ,a
more general problem than doing it for programs without array assignments.
Indeed our proof of Theorem 2 ·is quite different 'fr,om our proof of Theorem 1.

3.1 Expressing Loop• in DL

The crucial part of tile proof of Theorem 1 is a characterizatio,o lemma
about infinite, finitely branched "transitloR tree~{• (Lemma 1), which. we prove
first. Transition trees are the kind of trees ,one gets by 0 unwinding" finite or
infinite "state transition diagrams,' which are. typically in the f:orm of arbitrary
directed graphs. More formally, a transilion tree Tis a tree with. labeled nodes,

12

which has the property that any two nodes with equal labels have isomorphic
subtrees and sibling nodes have distinct labels. (Transition trees may have
infinitely many labels. It happens, that rqular trees mentioned in Section 2.3
coincide with transition trees with finitely many labels.) T is fl ni rely branched
if each node has only fimtely many sons. We shall use dep1·h(ir) to denote the
depth of a node n in T, with the depth of the root being 10; we ·shall -use label(n)
to denote the label of a node n, LabelsT to denote the set of an labels occurring
in T, and Nodesr to denote the set of all nodes in T. For any leLabelsr let

min-depth(/) = min {depth(n): neNodesT I\ labef(n)=I}

and s·milarly for max-depth. If there .·s no bound on the depths of oc-eurrences
of/ in T then max.-depth(l)~. We write max-depth(l)<oo if max-depth(/) is
bounded.

For any transition tree Twe defme

AT - (l,e.Labelsr: 31 ... eLabelsr (mux~deplh(I) < min depth(/''))}.

Note that if /EA 'fl then / must• not occur at arbitrarily deep levels in T. i.e.
max-depth(/) must he defined.

Lemma 1: A finitely branched ttansition tree Tis infinite if and only if
(i) two nodes along some path in T have the same .label,

or (ii) A T is, infinite.

Proof:
I. It is, easy to see that (i) and (ii) each imply infinity of T: If there is

a repetition of a label along a path in T, then by the definition of transition
trees .• T contains a subtree which properly contains a <:opy of i.t:self and hence is
infinite; and if A T is inrioite then. T is infinite because Ar is a ~subset of the
labels occurring in T.

2. To show that T being infinite implies (i) or (il) we assume

13

(1) T is infinite, and
(2) (i) does not hold, Le. no label repeats .along any path in T,

and conclude that Ar must be infmite.

Since T is finitely braochedt Konig's lemma is applicable and (I) is
therefore equivalen, to

(3) T ,contains an infinite path,

whk:h tog,ether with (2) implies

(4) labelsr is infinit .

Since Tis finitely branched only finitely many labels can ,occur u,p to any given
depth. This together with (4) implies that new" labels keep showing up at
arbitrarily deep levels, i.e

(5) {min-depth(/)~ IE.labels'Ji is unbounded,

which tog.ether with the defin.i.tioR of Ar implies

(In fact, AT = {leL abels T : max~depth(l)<o0}. but we do not need this fact.) w·e
f mish the proof by showing that

(7) 'rldeN 3/elabelsr (d=max-depth,(/)).

To prove (7), let d, .. .and ld = {label(n)' = ru;.Nodesr A .depth(n)=dj.
Define a r,elation -< ,on labels7 by

I< I'" iff there is a path from the toot in T along which I occurs after
(i.e. deeper than) 1~.

14

By the definition of transition trees, the relation < is transitive, and by
assump,tion (2) it is loop,-free. hence a partial ordering. So there is a (not
necessarily unique) maximal element in the finite set LcJ, i.e. there is a label

hi.£ d which does not oc,eur on any path below any of the labels in Lti' Since L d'
contains the labe: s ,of all the nodes ,of depth d, label I does not occur below
depth d. Hence max~d~plh{f~d, and because leLtJ, we have max-
depth,(l)=d. □

lemma 2: Let T be a finitely branched transition tree. Then AT is
infinite iff

(8) A rm A 'tile.AT 31',EA T (max-depth({) < min-depth(/1
)).

Proof. Clearly, (8) 'mplies that A 7is infinite. Conversely,, assume A 7 is
infinite, and let I be any el,ement of A r Then max-depth(f) < cc, since
otherwise lrtA T' Since Tis finitely branched there ar,e only finitely many labels
1° e.LabefsT with max-deplh(l) ~ min-deprh(/0

). Since AT r;,. Labe.lsr and AT
is infinite, ther,e must be a Jabel (in fact, infinitely many labels) /' eA T with
max-depth{{) < min-depth(/"). □

Theorem 1: For each while-program « there is a DL•formula equivalent to the
predic.ate loopti.

Pr;oof: We define he desired formula L" .ind ctively following the inductive
definition of the semantics of Loopm given at the end of Section 2.2. The ,only
problem lies in translating the definitions of Local-Loop« and Global-Loopa into
DL-formulae when e1 is while B do {J' • For Locaf~loop« this ls actually easy to do
assuming; by induction, that we can express Loopfj'• Namely, as the reader can
verify, Loc:al-Loop« is equivalent to

< choice(p:=tru.e, p:=false); while (pAB) do 6~ choice(p!=true, p;=talse) > (BALs) 9

where p is :a Boo ean variable no,t occurring in a:.

Global-Loop« poses a harder problem. In fact we shall only show how to
express Gfob.al-Loop« under the assumptio,n that L•ocal-Loopa does not hold,. i.e.,.
we sha 11 prove

lemma 3: There is a 0[...formuJa Gl« such. that

Note that for such a formula GLa, (Local~Loopa. v ,Global•Loop0) is equivalent
to (Local-Loop"- V GLa) . Assum·ng Lemma 3, we. can thus define the desired
formula Lo. following the indllctive definit on of the semantics or Loop"' given .at

the end of Section 2. This finishes the proof of Theorem l except for a proof of
Lemma. 3. □

Pr;oof of Lemma J: For any pmgram « of the form while B do j •nd and any
state It consider the smalles tree S

8
(l) whose roo,t is labeied by I and which has

an edge fr.om a node labeled J to a node labeled K iff .J1;=B and KE.P(J).
(lntuitively7 Sa:(l) is obtained from ~«(I) by ignoring an the steps 11inside0 any
pass through 81, record".ng entir,e passes through~· as, single nodes.) Note that
Global-Loop« is equivalent to S0 (1) having an infinite path, with the states Jo,11,
.... mentioned in the definitio.n of Glo-bal-Loopa being the labels along that
infinite path.

Cf aim: S4 (I) is a transition tree, and if I L,ocaf-Loop• then Scz(I) is finitely
branched.

Proof of Claim: By the definition of S:a(l), the number of sons, of a node and
their lab .ls are determined solely by the label of the node. This makes S

4
(I) a

transition tree.

16

If I= Local~loop«, assume that Sa(I) bas a nod - with: infinitely many son.s.
Let J be th label of such a node. Then the program « can enter that state
after :some number of passes through a and on th next pass through. tJ can
reach .infinitely many difforeat states. Hence,. since T~(J) is finitely branched, it
must have an infinite path, i.e. J LO'OPS1 which implies by definition that
lt=Locaf ~Loop0: This finishes the proof of the Claim.

This Claim makes Lemmas 1 and 2 appbcable and we can finish this
proof by defining GLa. o th.at I-~ G£0 iff

(A) Two nodes along, a path in Sa:(l) have the ame label
or

(Bl) (As.il)Jt0

and
{132) \t'KeAs-(I) 3Lds

12
(1) (mat-dtpth(K) < min-depth(L))).

for all states I where s.(I) is finitely branched. This is just a "programming
exercise11 in the language of DL,. which we carry out by grad11JaUy rewriting (A)

(Bl) (B2} into DL-formulae. For notatwnal convenience, let vi, ... , vs be .all the
Boolean variables o,f "• and let Ys+l' ... , vs+m be aU the other variables of a ..
For any state I, all the states in Sa(I) differ at most in. the val.:ues or v1 , ... , vs+m
and we can therefore identify each state in Sa(n, by th.e s+m·tuple of these
values. W,e call the s+m-tuple (v1, ... , vs.+m) a 1state variable" and denote it by
v. We shall use other state variables, denoted by J, K, K \ V' etc.t in various
pl.aces. These are s+m-tuples of variables, aH of which are pairwise difierent and,
except for 1, "s+m• are different from aJI symbols mm. Tests like v-J and
assignments like L:=K are abbreviations for

and

l'T

re~pectively. For any sta~ vari~b.le J, let "J.' 81 and BJ stand tor ,a,~ an~ B
with each vi replaced by Ji• I~1:5s+m .. Agam, let p be a Boolean vanable not
occurring in« and let BUZZ be the program whi e true do x~=x od.

As a. first refmement of the above formula we get

(A') (< choice(p:.~rue,, p:?faise)i,

while (p /\ B) do ~i choice(p;=true, p:=fabe) od;

if -,B then BUZZ fi;
V":=V;

IJ·
choke (p:=:true,, p:=f als,e }i,
while {p A B) do~; choice(p:=true,, p::=false) od> V;;V;)

V

(Bl") (3K(KEAs (I)l •
A

(B2') "dK 3L((KEAslX(I)) ~· (Le:As«(I) A max@deplh(K) < min-depth(L)))).

We now replace ev,ery subformula of the form ••ceA5
112

(ij11 by

3N elabelss«(I.) (max-depth(C) < min-.depth(N))

and the.n replace every subformula of the .form "max-depth(C) < min~deplh(D)"
by

where ,- is a program which. searches the tr,ee S,.(I) for an occurrence of' D with
an occurrence of C at an equal or greater depth. The p1rogram. ~ performs this,
search by first running two copies, ac .. an9 a0 ., of a for an equal. number of
passes through their while.,sta.tements there by setting c., and D" to fabels
occurring at the same depth. Then., runs "c' for zero or mo.re extra passes
through its wh'le-statement, thereby setting C' to a .label occurring at least as
deeply as D,.. Specifically the prn,gram -,· can be taken to be

18

choice (p:=true; p:=f be);

while {p I\ Be, I\ B0 ,) do (fJc,. ; #'0.,; choice (p:=true, p~false) od;

choice (p::=truej p:=false:);

whUe (p A B,c,) do ,~c-- od.

Finally we replace: all subform.ulae of the form "3NeLabe/ssa.(I)" by <3> where I

is the program

N:=V;
choice (p::=tru e, .P:=f al$e);
while (p A ~) do a'N; choice{p:=true p.:;f,1lte1

) od.

All these substitutions preserve meaniog1 a claim whose verification we leave to
the r,ea:der. Tb: .resulting formula. is the desired formula GL0,. This finishes the
proof of Lemma 3, C

We conclude immedia ely

Corollary J: For every DL +.formula tner,e is an equivalent DL•.formula.

3.2 Expressing Loopa in DL with array assignments

Array ass.ignme.n statements are of the form <term> ::::::: <term>.
Execution of an array assignment statement, say ,of f(t1, ... ,tk) :::::= t,, changes the
interpretation of (at 1he .single po.int specified by the values of ti, ... ,tk. The
definitions of Ta and To:(I) foom Section 2 can readily be modified to, account
for this. Speci lcaUy, i£ a node or ~11(1) contains the statement f(t1, ... ,tt) := t
and is labeled by a state J then its son is fabefed by the state K which agrees,
with J on all interpretations except that €K((t1)J1 .,. ,(tklJ) = t1, We denote this
version of DL by DLarray.

19

.
Theorem 1.: For each. while-program t11 (with array assignments) th.ere is a

DLarrays~formula La such that L0 is equivalent to L,oop,,_.

Proof: As in the proof of Theorem 1 the only difficulty ies in expressing the
predicat,e Gfobal~Loop" for « of the form while B do~, od. This, however, is, the
, nd of be analogy between the two proofs .. The r,eason why the techniques
from the proof ,~f Theorem 1 do not work here is the ract that the states which
can be reached by an unbounded number of repedtions of a can.not any Jo.nger
be described by the values of a bounded number of variables. R:epeated array
assignments may change the values of function symbols of posi ive arity at some
unbounded num er of points. Hence a oew approach is needed, which we now
outline.

First we define for each program a and state I the set Dom1(it) = (t1 ~ t
is a term formed from symbois that occur in a }. Cteady, execution of whUe B
do ~ od starting in state I cannot 'produce' any va ues not in Domr(a:) and hence

cannot change any -·-ary function at points outsid (Dom1(«))k. Finiteness of

Dom1(«) can be expressed in DLarrays by a formula Fina (Lemma 4). This
allows us to split the task of expressing Global L«>Pa. into two parts, according
to whether Dom1(a.) is finite or infinite.

When Dom1(") is finite then Global-Loopa. can be expressed by a formul.a.

L£in of DLarrays which, info.rmaUy speaking, says that 11a can be execut,ed in
such a way that it enters the , amc state just before two different passes through
611 (Lemma 5).

When Demi(«) is infinite we ca_n. express Global-loopa by a formula

L!0f of DLarrays which, informally speaking,, says "'For all n~O if there are n
different elements in Dom1(a) then (J can be executed n times and B is true
before each of these epetitions ,of J" (Lemma 16).

With the formulae from the three lemmas, Global-loop« can then be
expressed as

20

We finish this proof of Theorem 2 by formulating Lemmas 4,5, and ~
and indicating their proofs.

For the proofs of Lemmas 4-6, let f be a unary function symbot,
v,z,zo,,z1, ... be variables and let p and q be Boolean variab]es, none of which
occurs in«. Let x be a variable which does occur in. a. For any state I, define
Rr(I) = l(f4 (zo))1 : n~O}, where fll is the n~fold ,composition off w·th itself. In
what foUows Rf will serve as 1 ~orage device/ holding fi.nite portion of Dom1(«)

in a "circular chain" zo1 - f(~ ,e .f2(zo) rt .•• ¢ fffl(zo) - zo.

Lemma 4: Fo.r each while-priogram a (with array assignments) there is a
DLarrays-formufa Fine, such that for aU states I, I1=Fin« iff Dom1(«) is finite.

Proof: We construct a program FREEa which nondetermi.nisticaHy builds u.p
Rf to comprise an arbitrary finite subset of Domr(«). FREEa does this, by

entering into Rf the values of variables from a and also entering the va ues, at
arguments. that are already in Rft or £unction symbo s; from«. To write out
FREEa in a concise way, ec SET z for any variabl z be an abbr,eviation for

z:=zo~ q:=t rue j
while· q do z:=f(z); choice(q:=true, q:=f 11 . e) od.

Thust SET z is a program whkh sets z to an arbitrary value from Rf.
For any k-ary function symbol b in a, k~O, let APPLY h be the program

SETzt' ... ; SETzkj

:=h(z1, ,zic.); z:=f(zo);
while (z~zo I\ Zi"lV) do z:=f(z) od;

if z,av then f(v):=f(zo), f(zo)•=w,ii p:=true fi .

Assuming that Rr is in the form of a circular ,chain as described abovet this
program APPLY b. picks k random values from Rf, applies h to those values,

21

checks if the value thus obtained .is not yet in Rf , and, if it ·s not,. enters the
vafoe into Rf preserving the form of a circular list and sets a flag p to true
whenever a new value is entered into Re- For zeroary function symbols h, i.e.
for simple variables, the first line of the above program APPLY h is empty and
the seco•nd U ne reads •v~=h 1

•

Let APPLY• be a program which nondetiermin~stieaily chooses a function
symbol from Cl to uapply." If h ,, ... ,hr are all the function symbols in.«,
including v ariabies1 then. APPLY« is the program

choice(APPLYh
1
,thoioe(APPLYhf ... ,choice(APPLYnr'APPLYhr) ...)),

and FREE.x is the program

zo:=x; f(zo):=zo;
p:=true,
wh iJe p do p:=fa 1st i APPLY._ od.

Any execution of FREEa: in a state I has the effect or making Rf into a finite
subset or Dom1(«}, and conversely,, for each finite subset of Domr(«) containing
xi there is some execution. of FREE.a which makes Rf into that finite subset of
D~mr{«). Hence w,e can express .finiteness of Dom1(a:) by th,e following formula
Fino.;

where CLOSED,. stands for the formula

which asserts that Rf is closed under application of function :symbols (in.eluding
zeroary .fun.ction symbols, i.e. variables) from a. This ends the proof of Lemma:
4. □

22

.Lemma 5: For each while--program a: (with array assignments) ,of the form while

B do /J there is a DLarrayfformula L!in such that for aU states I, if Dom1(•) is

fioi te then l1=(Global-loop a. - L! in.).

Proof' of Lemma 5: Define the tree Sa(I) as, in the proof of Lemma 3. As

mentioned in the proof of Lemma 3, I~G/ol)af loopa is equivalent to Scx(I)
having an 'nfinit,e path, w'th the s,tate.s Jo,J1, ... mentioned in the definition of
Global Loopa being the lab -ls along that infinhe· path. If' Dom1(a) ·s finite then

there are only fini dy many different states (labels of nodes) in Sa(I). This is so

because execution of fJ', no matter how often repeated cannot ,change the values
of any k-ary function symbols, kL0t on arguments o,utside (Dom1(a))k and it
canno, set those values to anything outside Dom1(a:). Hence, under the
ass~mption that Domi(«) is finite, Sa(I) has, an infinite path iff there is a
repetition of a state atong some pa h. The existence ,of a s,tate. which is repeated
along some pa.th in Sa(l) can be expressed by a formuia L£in of DLarrays again
under the assump, ion that Dom1(a:) ~s finite. We finish this proof of Lemma 5

by sho,wing how to constru,ct such a formula t£in ..

As in the proof of Lemma 3, let V be a vector of aU the variables ,of «,
Boolean and oth.ers, and let V.,, be a v,ector of new symbols matchi11g the types

of symbol.s, .in V. Let H=(h1, ,hr) be a vec or of all tbe function symbols in a:

of positive arity and let H'=(h ', ... ,hf') be a matcbin,g vector of new symbols.
Let V":==V, V'=V, H":-H, H'=H stand for componentwise assignments and
equality. (Obviously, DLarrays does no _ provide for the ass~gnments and tests
between whole functi.ons we are using here, and we may not use such whole.sale
assignments and tests in the final formu a L!in) The assertion that a state
repeats along a path in S4 (I) can then be expressed as,

2.3

< choice(p,:=true, p:=false);
while (p A B) do 6; choice(p:=true, p:=fabe) od;,
if then BUZZ fi;

V":;;;;V; H":=H;

/Ji
choke(p~=true., p:=fahe).

while (p A B) do fj,~ cihoice(p~=true, p:=false) od>

(V=V" A H=H") .

This formula is entir,ely analogous to the formula (A') in the proof of Lemma 3,
except that now. due to the presence of array assignments., functions as well as
simple ariables are subject to change and consequently have to be remembered
(H ';=ff) and later compared (ff' :;;H).

As akeady pointed out, DLarrays. does not provide any means fo,r assigning
and comparing wboie func ions. But note that the program a obviously cannot
change the values of functions on arguments outside Dom'J(«). Hence it would
suffice to ha e both the assignments and the comparisons between functions
restricted to arguments. .from Dom1(«). In addition, remember that we are
assuming that Dom1(«) is f1'nite. If we assume that Rr(I) = Dom1(«), then we
can express egual'ty of two k•ary function _ymbds h. and h" on arguments from
Dom1(0:) by the foll.owing formula EQUAL(h,h"):

[SET z ; ... ; SETzk] (b(z1, ,zt)=h'(z1, ... ,zk)) .

Let EQUAL,.(H,H") to be the conjunction of the formulae EQUAL(hj,h(),
lfifr.

Assuming simi ady that Rr(l}=Dom1(a:) and Dom1(a:) is finite, it is
straightforward to .vrite a program, ASSIG (h,h"), which uses k nested loops to
run k variables through all ,po~ible k-tuples from (Dom1(«))k and assigns the
value of h to h' on all those arguments. Let ASSIGNe11:(H'',H) be the program
ASSIGN(h(,h1); ... ;ASSIGN(h/,h,).

24

The desired formula L!1n can .now be written as.

<FREE0 > (CLOS,ED« A

<choice(p:=true., p:=f l&e);
whUe (p A B) do ~i choi~(p,=true, p::false)od;
if --.B then BUZZ fi;

V ':=V; ASSIGNo:(H ',H),

fl;

choke(p:9:rue,. p::false);

while (p, I\ B) do /J , ehoice(p~=true, p:=f.alse)od>

V=V' A EQUAL«(H H'))).

ote that the ini iai portion °<FREE0> (CLOSED« f\ ...
0 in the above formula

allows us. to assume that Rf(I)=Dom1(cr) and Dom(a) is finite w.hen ASSIGN« is
ex,ecu,ted and EQUAL,« is evaiuated. 0 1

Lemma 6: For each while•progratn a (with arr,ay assignments) of the form
whUe B do IJ there is a DLarrays•formuia L!nf such that for all states l, if
.Dom1(a) is infinite then

Proof of Lemma 6: Let L!nr be the formula

with FREEo: as in the proof of Lemma 4 ..

To understand why the above formula Llnf has the desired pr,operty,
note that it can be paraphrased as foUows: No matter what finite subset of
D.omi(a) one puts into the circular chain Rr (' {FREE0 J11

), it is always possible to
e.i\:ecute at least as many passes through (J: .as there are e ements in Rr(I) (to be
precise, minus one). The var'ab)e z1 is used to 1COLln.t the passes through~ by
moving along the chain of Rf- This finishes the proof of Lemma 6 and
Theorem 2. D

25

The proofs or Theorems 1 and 2 do not depend o.n what tests are
allo ved in wh."le-programs. Hence they carry over without change to the version
of regular DL defined in [Pratt 1976, Hare! 1979] where tests can be any
formulae of First Order Predicate Calculus, as well as to the version ,of DL
caUed nrich-test" DL in (Harel 9'79] where the syatai of tests is defined
inductively to aHow any DL9 .formtdae as tests.

4. Oetermimstic. versus nondeterministic DL

In this Section. we show that in. the absence of quantifiers the
expressive po ,;,er of DL decreases if we re.strict ourselves to deterministic white•
programs. A whil.e-p,rogram is deterministtc if it does, not oontain .any choice-
s. atements. A Dhformula is deterministic if all the prog ams it contains are
deterministic.

Theo·rem J: There is a quanffier-free DL-formula for whieh there is no
equivalent quantifier-free deterministic DL-for.mula.

Proof. A parr;:al stale specifies a domain D and an arity-.respecting
assignment of partial functions and predicates on D to function and p.redica.te
symbols. We now iet I,J, ... denot1e partial states a:s weU as states and let f 1
denote the function or predicate assigned by .I to the symbol f.

A partial function. or predicate f 1 is an ex1ension of f 2 iff f 1 r•estricted to
the domain of f;z is ,equal to f2, The extension is ftnlle iff domain (f 1) •
domain (f2) is finite. We say that a part'a1 s ate J is a (finite) extension o,f a
partial state I iff f J is a (fintte) extension of f1 for all symbols f.

If I is a partial state and Fis a DL.-formuia, we say that I satisfies F, in
symbols Ii=F, if Ji:F for aU states J which extend I. Fm.any., w,e say that 1
determines iff !Ff or J~-,f.

The main part of the pr•oof rests on the foUowing lemma.

26

.lemma 7; Let F be a quantifier-free deterministic DL•formula. .For any
partial st-ate there is a finite e:tten!S°on which determine-s, F.

Assumin,g Lemma 7 for a moment, we can complete the proof of Theorem
3 by conside -ing the foUowing formula F:

<p:=true; whUe p do x.- f(:x); choice(p:~rue,p:=fabe) od>

(p:=true; while p do x:;:::f(x); choi•ee(p:~rue,p:-=falst) od] q(x) .

Let l be a partial state whose domain is the integers and such that f1 is the
successor function, x1=0, and the domain of q1 is empty. For states extending I,
the formula F ·s eq-uiva ent to the assertion (3n>O)(i;!m>n)q(m)t whose truth is
obviously not det,ermined by any partial interpretation of q with finite domain.
Hence no1 finite extension of I determines F, and therefore F canniot be
equi.va ent to any quantifier free determini tic DL-formula.

Proof of L,emma 7: The proof is ~y induction on the structure of F. The
cases in which F .is atomic, a conjunction, or a negated formu~a follow easily ..
Suppose F is of the form «<>O, and let l be a partial state. There are two
possibilities.

First, suppose that thue is no xtension of I on which a halts, i.e., a(l) =
0 for al states J w hk.h extend I. Then I alr ady determines the truth value of
<C'l>G, viz., false.

So we may assume that there is some tate Io, extending I such that" halts
started in state lo· More precisely, because ex is deterministic we may assum.e
that Ta (Io) consists of a single pa th from the root to a halt node. Now,

because the path is finite and the tests are quantifier-free,. he outcomes. of the
tests on this path depend on the va!u,es in lo of only a finite number of terms.
Thus there is a finite exten.sion 11 of I whfoh ensures that a wm behave as
though it wer star ed in Io 'That is, let •o be the pro,gr.am consisting of the

27

successive assignment statements on the path in T
11

{Io). Then for any $ta.te J
extending 11, w have a(J) = tro,(J).

It follows that there is a partial sta.te, whicb for obvious reasons we call
aoCI1), uch that if a state J extends I, then oo(J) = {J,l for some r e,i:tending
«0CI1), and conversely if r is a. state extendi.Qg «o01J, then {J') = «,o(J) for
some state J e:xtending 11- Moreover, f1

1
differ- from faio(Ii) a ,only finitely

many .arguments, for all symbols f.

Now by induction, there is a finite extension 12 of •0U1) which determines
G. Let 13 be the partia state such that c13 restricted to the domajn of f1

1
is

equal to r11, and fr
3

restricted to doma·o (f13) - domain (f11) is equal to f1
2

for

all symbols f. Then 13 is .a finite extension of 11 which determines «<>G, as the
reader may verify. □

It is worth pointing out that Lemma 7 does not depend on our restriction
to whi e~programs. It depends only on two facts about the programs under
,considera ion~ fir-st, the truth value of any test can be determined by a finite
extension of any give.n partial state, and, second, in any terminating computation
of a program only finitely many evaluations, of tests are performed. Thus
Lemma. 7 and The,o,rem 3 wou 'd remain true if we considered pro,gratni a
descri ed by trees T oc which are not effectively ,generable; it would also remain
true ·r we allowed tests to be quantifier.free deterministic Dvformufas
tbemsel¥esi- and it would remain true if rre allowed array ass·g.nments or, for
that matter, even assignments of whole functions to function .symbols by a single
statement. Natural]. it would br,eak down. if w,e intr,oduced assignments of
random values to variables (·cf~ Section 5) since s-uch assignments can obviously
simulate nonde erminism.

The proof of 'Theorem 3 works equaUy well for P.r,opositional Dynamic
L-0,gic ("POL', cf. [Pratt 1976., Harel 1978]). We only need to choose F to be
the formuia <a• >[a •)q and in erpret. the symbols a and q to mean ux:::f(x)'' and
I q(x)I •

28

Theorem 4: There is a POL-formula for which there is no equivalent
deterministic PDLpformula.

w·e conjecture that even in the presence of quantifiers,,
nondeterminism adds t.o the expressive power of deterministic DL, although we
e:irpect the proof to be more co.mplicated in this case.

S. Random assignments versus quantifiers

We let x~=? denote assignment of an arbitrary '*random11 value to the
variable x. Formally, m(x:==?) .!;; {(I)) : 'I= SJ for all ·symbols s:iex}. It is easy to
see that assigaments of random -values from the domain make quantifiers
superfluous in DL~ instead of 3x we can use <x:=?>1 ,cf. [Harel 1979]. Similarly,
random as:sigmnents can replace chofoe...;tatements. Random assi,gnmeots can
however be used in more powerful ways~

Theorem .5: The predicate "(xty) is in th.e reflex:iv,c transitive closure of the
binary relation R" cannot be expressed in. DL without random assignments. It
can be ,expressed in DL with random assignm.ents.

The choice of this kind of predicate is due to V. R. Pratt. A simplification
of an earlier proof of the second author is due to M. Paterson.

Proof.· With random ass~grunents the predicate. "(x,y) is in the r flexive
tram;itive closure of the binary reiation Il I can be expressed as

To show that the same predicate cannot be expressed without random.
assignmeA.ts, we first p,rove two lemmas.

Define two programs a and a to be equivalent if m(cr) - m(.a). Call any
w.hile~program which does, not contain any function symbols of posidve adty a

29

shuffle program. (Such ,programs can only 'shuffle" the values •Of variables but
cannot 11create' any new values during execution.) A while~program is while-free
if it does not contain any while-statement.

Lemma 8: Any shuffle program« is equiva[e11t. to some program of th.e form

if C th n BUZZ fi;,,

where ? is a while-free shuffie pr,ogram.

Proof: Let x 1, .. , ,x0 be the variables of 11. In the absence of function.
symbols, the program a: can only 0 shurfle I the values of "1'•Xn around but it
canaot "create'' any new alues. 'FcrmaJly this means that for all states I and J,
wbere J is the label of some node in Ta(I), we have f(x1)1, ... ,(xn)d ~ {(x1)J,

... ,(xnhJ.4) This can be proven easily by induction on the trees, Ta(I). For any
shuffling s of values among x I, ... ,xn (which could be formalized as a mapping
from (1, ... 7D} to itself)1 whether Ta(l) contains path from the root to a hait
nodes whose execution .results in the shuffling s is determined by the vatues ,of
all predicate symbols from a on arguments from {(11)i, ... ,{x11)i} simply because

the outcome of all the tests in Ta: is determin.ed by these values. Hence there is
a test Cs which is true in state 1 iff T « (I) contains a pa th which accomplis-hes
the shuffling s. Using these formulae C5, it is straightforward to write the
desired whUe-fr,ee program .., . Similarly,. there is a test C, namely the
conjunction orver alls of -,C6, which is true in state I iff a(I) = 0 CJ

Now observe tlu:t for a program a: of the form described in the Lem.ma 8,
the formula <a>P is equivalen.t to -, CA <,->P. By techniques from [Pratt
1976], if 1' is a while-free p.r-ogram then taere is a first o.rder formula which is
equivalent to <,>P. This impiies the following

Lemma 9: Let R be a DL-formula· which does, not contain any fun.cdon symbols
of positive arity. Then there is a program•free DL-fonn:ula, i.e. a first order
formula, which is equivalent to R.

30

To finish the proof of Theorem 5., assume that some DL•formula Q expresses the
predicate .x,y) is in the reflexive transitive closure ,of R.11 Constder s,cates which
have the integers as domain interpret he pt1edfoate R(u,v) as the successor
predicate u+l=v, int,er,pret every predicat . symbo except R and = a-s being true
on all arguments, and interpret all function symbols of positive arity as identity
functions on the first argument. _ ote that in such states the predicate 11(x,y) is
the the reflexi v•e transi i ve cJosur,e of RI is eq u i va tent to the preil icate x~y.
Consider the formula Q' obtained fr,om Q by (recursiveiy) .replacing each term
of th.e form f(t1, ... ttk), k>O, with its first argument, t1, and by replacing with
true each atomic formula containing a predicate symbol other than R. In sta~es
of the kind we are considering,, th.is formula Q" is equivalent to Q.. By Lemma
9t there is an equivalent first order formula Q" '. 1£ we replace in. thls formula
Q;, each term of the form R(u,,v) by u- v+l, we obtain a formula 1of the First
Order Theory of Su,ccessor wrucb expresses the predicate x<y. But it is weU~
known that this predicate .cannot be expressed in the Fi st Or-der Theory of
Successor. □

Theorem 5 hods for a much w'der dass. of programs than just the while~
pmgrams w,e are considering. First we can generalize the structure of the tree-s
T « by allo,wing any trees whose edges carry labels from. a finite set of
assignment statements and tests. This generalization. co ers 11context•freef .and
"r.e." DL (cf. [Harel 1979D a w l as versions of DL where the trees Tar are not
effec ively generable. Second, we can exp,and the set T of tests allowed in the
programs. Fore ample, Lemma 9 and conseguendy Theo.re.m 5 ho.Id. for "rich
testu DL, where tests are inducti ely defined to be D&formulae themselves cf.
(Harel 1979].

6. Other Results and Open Prob ems

The results reported above are part of a study of the comparative expressive
power of different versions of DL. Related re.suits which will be reported in
subsequent papers rev,eal1 for example, that DL with array assignments and DL

J,1

with random assignments are incomparable in expressive power, a.nd
consequently, both are strictly Jess. expressive than DL with both. .array and
random assignments which .·s. equivalent to one formulation of Weak Second~
Order Pr,edicate Calculus. If we permit a very gen.erous notion of program,
namely r.e. programs with infinitety many urich I tests (cf [Harel 19791)., then
the corres,ponding vetslOn of DL is equivalent to the cons.tructive segment of the
infin.itary langua_ge LCl.lt,<0' This latter result was obtained by the first author in

co la boration with. Rohit Par"kh.

The major open problem c-oncerning the topics discussed in this paper is the
expressive power of nondeterminism in. the presence of quantifiers (cf. Section
4). As mentioned, we conjecture that nondeterminism adds to the expressive
power of DL even :in the presence of quantifiers ..

Another open question similar to, the problem of expr,essing looping i:s
whether the f

1in tersection • opera tor, of A ·gori thmic Logic [Rasiow.a 1977,
Salwicki 19'70] can be expressed in DL, The meaning of the Algorithmic Lo,gic
formula na P was originaUy defined only for deterministic programs 1:11 and there
are at],east two differ-ent sensib]e ways to extend its meaning to nondeterministic
programs. We can define naP t,o be eq,.dvalent to Vn~O <a0 >P, where an
stands for the n-fold repetifon of er. It ~s still an open question whether or not
\f n~0 <An>P can be expressed in DL, with or without array assignments. A
different and perhaps mo.re na urai ext-ension ,of the meanin_g of naP to
nondeterministic pro,grams a is achieved by defining n«P t,o be ,equivalent to
Gfobal-Loopp with fJ = while P do a od. (Se · Section 2.2 for a definition of
Global-Loop.) Again we do .not kno•w if this predicate is expressible in DLt w.ith
or without array assignmen.ts.

Acknowledgme1ts. W-e wish to, thank Mic.hael J. Fischer for raising the
question about the expresslbnity ,of looping in DL, Micnael Paterson fo.r
simplify'ng an earlier· proof of Theore.m 5, and Karel Culik, Joe Halpern, David
Harel, R.ohlt .Parikh, and Vaughan R. Pratt for helpful comments.

32

1'. References

E. Dijkstra. A Ditcipline of Programming. Prentice-Hall, Englewood Cliffs, N .J ,,
19761 217 pp.

S. Greibacb. Theory of Program Structures: Schemes, Semantics, Verification.
Lecture Notes in Computer Science, vot 36, Springer-Verlag: Berlin-Heidelberg•
New York 1975.

I. Greif and A. R. Meyer. Spec.ifying the semantics of while-p,ro,grams. Tech.
Memo. 130. Labora to.ry for Computer Science, Massachusetts Institute of
Techno.logy, April 1979,

O. Hare]. Flrst Order Dynamic Logic. Lecture Notes in Computer sc·ence, vol.,68,,
Springer-Verlag: Berlin-Heidetber:g.-- ew York 1979 133 pp. (Revised version or :
D. Harel. Logics of Programs: Axiomatics and Desc.r.iptive Power. PhD Thesis,
Dept .. of Electrical Eng,ineedng and and Computer Science,, Massachusetts
Institute of Te-ehnology, May 1978, 152 pp.)

D. Harel and V. R. Pratt. Noadeterminism in Logics ,of Programs. 5th Annual
Symposium on Principles of Programming La~guages, January 1978, 203·21 J ..

C. A. R. Hoare. Some properties of predicate transformers, Journal of the ACM,.
ZJ, 3 (1978), 461480.

R. Hossley and C. Rack.off. The ,emptiness problem for automata ,on infinite
rees. 11th Annual Symposium on' Switching an-d Au1omata The()r:,. October 1972.

V. R. Pratt. Semantical Coasider.ations on Flo,yd-Hoare Logic. 171h Annual
Symposium on Pdnclples of Programming Languages, Jaauary 197~ 109-12.l.

M. Rabin. Automata on infinite trees and the synthesis, problem. Technical
Report No. 3,7, Hebrew Umver,sity1 Jerusalem, January 1970.

33

H. Rasiowa. AWgorithmic Logic. Report No. 281 Institute of Computer Science,
Pol"sh Academy •of Sciences, Warsaw, Poland, 19771 206 pp.

A. Salwicki. FormaHzed algorithmic languages. Bull de l"Acad. Po.fonai1e des
Sciences, Serie des Science math., astr .• et phys. - vol. XYIII. S; 1970, 227-232

36

B

Figure l. Tree for if B then • fi.

T

Figure 4. Equation defining the tree for while B do a: od.

