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1. INTRODUCTION 

It is well known that several important combinatorial 

optimization problems can be formulated as the maximization 

of a linear functional over a polytope with 0-1 vertices. 

Examples include matching IS], the knapsack problem Il], the 

traveling-salesman problem {4], vertex packing and set packing 

[17], [18], the three-dimensional matching problem and many 

others. 

There has been a very large boc.y of literature aimed at 

the characterization of such convex polytopes by linear 

inequalities. The motivation apparently has been that such a 

characterization would bring a combinatorial optimization 

problem within the scope of linear programming methods, and 

thus might yield an efficient algorithm for its solution. This 

approach has worked in some cases, most notably the matching 

problem of Edmonds [6]. 

Unfortunately, there is now strong evidence that many combin

atorial optimization problems are not amenable to efficient 

algorithms because they are NP- compl·ete Il4] , I 8] . This means 
·' 

that there is no polynomial-time algorithm that solves these problems 

unless P=NP, a very unlikely event. Pis the class of problems 

for which efficient algorithms exist. NP is the class of sets 

that admit 0 good characterizations" in the sense of Edmonds. 

NP contains (appropriately stylized versions of) all "reasonable" 

combinatorial optimization problems, i.e., those for which 

feasibility checking and cost evaluation can be done efficiently. 

All combinatorial optimization problems mentioned so far are in 

NP; and all but matching are NP- complete. 

Despite the evidence that NP- complete problems are intractable, 

research on the description by linear inequalities of the convex 

polytopes associatc<l with NP-complete problems has continued~ 

besides the above references we mention [3], [9] ,[10] ,[11], [16] and 

[21). The main motivation has been the development of empirically 

reasonably efficient algorithms by applying the simplex method 

to a heuristically generated subset of the inequalities describing 
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the polytope. In .order for such an algorithm to be guaranteed 

to terminate at the optimum, a complete description of the 

polytope by inequalities must be available. If only a partial 

description is used, then certain objective functions will force 

the simplex algorithm to terminate at an infeasible point. 

Unfortunately, so far, despite much intensive research effort~ 

there has been no satisfactory description by linear inequalities 

of any convex polytope corresponding to an NP-complete combin

atorial optimizati:on problem. Note that, since an exponential 

number of inequalities might be required, such a description 

would not directly imply P=NP via the recently discovered 

polynomial-time algorithm for linear programming [15]. 

In this note we point out that no satisfactory description 

by linear inequalities of the polytope corresponding to an 

NP-complete combinatorial optimization problem is possible, 

unless NP=eo-NP. The class eo-NP consists of those sets 

whose complements are in NP. The hypothesis that NP=eo-NP 
is weaker than P=NP, but is generally considered almost as 

improbable. For example, NP=eo-NP would imply that there is 

a "good" characterization of non-Hamiltonian graphs, and that 

there is a short proof of every contradiction in the propositional 

calculus. 

We must, of course, define what we mean by a "satisfactory" 

characterization. For characterization to be satisfacto r y we only 

require that the set of inequalities comprising the description 

be in NP. In other words, if an inequality is presented to us, 

we should be able somehow to produce a short argument proving 

that it is in the set of inequalities describing the polyhedron. 

All such descriptions discussed in the literature are in NP; 
in fact, all but the comb inequalities of [3] and their generaliza

tions given in [10] are in P. 

A second result concerns the generation of violated inequalities. 

Given a co~binatorial optimization problem and a point xERn, such 

a generator either determines that x lies in the convex polytope 
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associated with the problem, or else produces a linear inequality. 

violated by x but satisfied by all points in the polytope. We 

prove that, .if there exists a polynomial-time generator of 

violated inequalities for an NP-complete combinatorial optimization 

problem, then P=NP. The proof depends in an interesting way 

on Khacian ' s polynomial- time J.inear prog.ramming algorithm [ 15] . 

Our results strongly suggest that one cannot attain a usable 

complete characterization by inequalities of the polytopes that 

correspond to hard combinatorial optimization problems. 

Q. COMBINATORIAL OPTIMIZATION PROBLEMS AND FACIAL DESCRIPTIONS 

A common type of combinatorial optimization problem is 

the following: 

maximize C•X 

subject to xE S 
( 1) 

· t n n where Sc Z is the set of feasible solutions and c E Z . 

It is well known that an equivalent formulation of (1) is the 

following: 

maximize C•X 

subject to xECH(S) 
(2) 

where CH(V) denotes the convex hull of the point set V. 

Taking a view toward algorithmic issues, we shall carefully 

distinguish between problems and instances. A problem will 

generally have an infinite number of instances, each of which 

is similar in form to (1). 

Definition 1 A combinatorial optimization problem (or, briefly, 

c.o.p) C is specified by; ··. * 
( i) a set L ~ { 0, 1} ; 

(ii) a function n from L into Z+; . 

(iii) for each zEL, a set S(z)~(Z+)n(z) such that each of the 

. following three languages is recognizable in polynomial time: 

+we denote the integers by z, the nonnegative integers by~+, and 
the rationals by R. 
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L, { < z , y> I I y I =n ( z) } and { < z , x > I x E S ( z) } . 

Definitions An instance of C is a pair < z, c > where z EL and 

: E Zn (z) 
C • 

The instance <z,c> corresponds to: 

min t;:) 
J,;,,l 

c.x. 
J J 

subject to x = (x1 ,x2 , ... ,xn(z))E S(z). 

(3) 

Weighted matching, set covering, integer programming, the 

traveling-salesman problem and a plethora of other problems 

can be expressed as combinatorial optimization problems. In 

one formulation of the undirected traveling-salesman problem, 

for example, z is the binary representation of a positive 

integer n, n(z) is (~), the number of edges in Kn,the complete 

graph on n vertices, and S(z) is the set of characteristic vectors 

of the Hamiltonian circuits of K. n 

Given a c.o.p C, define D(C), the decision problem f or C as 

D(C) ={<z,c,k>l< z,c> is an instance of C, 

k E Z and :3:x ES (z) such that c-x~k } . 

If D(C) is NP-complete, then C is called an NP-complete 

combinatorial optimization problem. 

A facial description of a c.o. p. C is a set F (C) such that: 

(i) each element of F(C) is of the form 

<z:,f,g> where 
z E L , f E Zn ( z ) and g E Z 

(ii) for each zEL, and for all x E Rn(z), the following are 

equivalent. 

a) x E CH ( S ( 'Z) ) 

b) for each triple <z,f,g>EF(C), f·x~g. 

Thus F (C) gives a description by linear inequalities of CH(S( z)), 

for each z EL . 
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The facial description F(C) is called a small facial 

description if there is a polynomial p(•) such that, for every 

<z,f ,g>EF(C), each component of f,g has absolute value :;:; 2:P( I z l +n(z)). 

The existence of a small facial descriptd:on implies, in particular, 

that, for every zEL, CH(S(z)) is a convex polyhedron (i.e., 

it is the intersection of a finite number of half-spaces). 

The c.o.p.'s that occur in practice invariably have small 

facial descriptions. We describe two especially common classes 

of such problems. 

(1) Zero-one problems This is the case where every vector in S(z) 

is a 0-1 vector; 

(2) Problems of integer programming type In this case the input 

z specifies an integer mxn matrix A and an integer n-vector b, and 

S(z) = {x!Ax:s:b, x~O, x integer} 

Lemma 1 Every zero-one problem or problem of integer programming 

type has a small facial description. 

Proof Any convex polyhedron Qin Rn can be expressed in terms 

of a finite set V of vertices and a finite set W of extreme 

rays; Q is just the set of vectors of the form x 1+x2 , where 

x
1 

is a convex combination of vertices and x 2 is a positive 

combinati•on of extreme rays. Let S be the unique minimum-dimensional 

affine subspace of Rn containing Q, and let the dimension of S be 

d. Then s-v 
1 

={ x-v 
1 

Ix ES} is a linear subspace of dimension d. 

Let B be a set of n-d unit vectors, none of which lie in S-v1 . 

Then Q can be described by a finite number of linear enequalities, 

each of the form f.x:;:;g, where f•x=g is the equation of a 

supporting hyperplane of Q. It follows that f and g are determined 

by some selection process of the following type: 

select l+l vertices v 0 ,v1 , ... 'i, where O:s:l:;:;n-l, and n-1-l 

vectors h 1 ,h2 , ..• hn-l-l from WuB, such that 

{v
1
-v

0
,v

2
-v

0
, ..• ,vl-v0 ,h1 ,h2 , ... ,hn-l-l} is linearly independent. 

Then f and g are determined, up to a constant multiple, by: 
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f•h.=O 
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i=l,2, ... ,l 

j=l,2, ... ,n-1-l 

We first show that, in the two cases of interest, the vertices 

and extreme rays of CH(S(z)) are integer vectors whose coefficients 

are small. In the zero-one case this is especially simple: 

the vertices are zero-one vectors, and there are no extreme rays. 

In the case where z is the binary encoding of an integer matrix A 

and a vector b, and S(z)={xlAx~b, x integer}, each extreme ray 

is a row of A; hence each of its coefficients is of absolute 

value ~2 l zl. As for the vertices, we can rely on a result which 

was independently discovered recently by many people, including 

[2], Sieveking, S.A. Cook, and [13): there is a polynomial q(•) such 

that every component of every vertex~ {xlAx~b, x integer} 

is of absolute value 2q(s~, where s=~TIJ.og(l+ x )l. Here x ranges 

over all entries of A and b; thus, SNlzl. 

Now we are ready to show that all coefficients off and g 

are suitably small. Recall that f satisfies W•f=O, where W 

is a{n-l)xn matrix of rank n-1; each row of Wis either of the 

form v.-v
0 

or of the form h .. Without loss of generality, assume 
i J 

that the first n-1 columns of Ware linearly independent, and 

write 
W = C:d, where C is a non-singular (n-l) x (n-1) 

matrix, and dis a column vector. Then f is determined by 

By 

f n-1 

Cramer's rule, 

-1 
(C ) . . 

1J 

( -1) i+j t:,, .. 
= J1 

lei 
where t:,, .. is the j-1 minor of C. Hence, we can take f to be 

J1 
the following integer vector (or its negative). 
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f. = ~ (-l)i+j~ .. d. 
1 ~ J1 J 

It follows that each component off or g is ~(2nx)n, where x 

is the largest absolute value of an entry in a vertex or extreme 

ray. And the result that, for a suitable polynomial p, each 

coefficient is s2P<lzl+n(z)) now follows from the bounds derived 

earlier on the coefficients of vertices and extreme rays. □ 

3. THE COMPUTATIONAL COMPLEXITY OF SMALL FACIAL DESCRIPT]!ONS 

The following theorem is our main result. 

Theorem 1 Let C be a c.o.p. and let F(C) be a small facial 

description. If F (C) E NP then D (C) E c.o-NP. 

Proof Assuming as given a nondeterministic polynomial-time 

algorithm for recognizing the triples <z, f ,g>EF (C), we give 

a nondeterministic polynomial-time algorithm for recognizing 

the complement of D(C). 

Algorithm B 

(i) If the input is not of the form <z,c,k>, where z EL, c E zn(z) 

and k E Z, then accept the input and halt . 

(ii) Generate nondeterministically a nxn matrix F=(f .. ) of integers 

having absolute value~2P(lz l +n(z)) and an-vector g
1
~f integers 

having absolute value~2P (lzl+n(z)) · 

(iii) Apply the nondeterministic polynomial-time recognition 

algorithm for F(C) to verify that each triple <z, (f. 1 ,f. 2 , •.. ,f. ) ,g.> 
i i in i 

is in F(C); 

(iv) Verify that Fis nonsingular and (in polynomial time) 
T solve the s ystem, y F=c; 

(v) Verify that y~0 and yTb>k. 

Alqorithm B clearly runs in polynomial time • . To prove that 

it accepts the complement cf D(C), we note the equivalence of 

the followinq statem~nts: 

(i) <z,c,k>~D-(C); 
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(ii) the program 

max c•x 

subject to x E CH ( S ( z ) ) 

has optimal value<k; 

(iii) the program 

max c•x 

(I) subject to f•x~g <z,f,g>EF(C) 

has optimal value< k; 

(iv) the dual of . progr~1 ( I}. has 

optimal value< k; 

(v) the dual of program (I) has a basic feasible solution of 

value< k; 

(vi) there exists a n(z)xn(~) matrix (f .. ) and~ n(z)-vector g 
l.J 

such that 

<z,(f. 1 ,f. 2 , .•• ,f . ( )),g:>EF(C), i =l,2, ... ,n(z) 
1 1. in z - 1. 

and the system 

yTF=c 

has a unique nonnegative solution y such that 

T 
y g < k. D 

Th~ following Corollary constitutes our evidence that 

computationally tractable facial descriptions for NP-complets 

combinatorial optimization problems are unlikely to exist. 

Corollary 1 If F(C) is a small facial description of a NP-complete 

c.o.p., and F(C) ENP, then NP=c.o-NP. 

Proof The NP-complete language D(C) is in c.o-NP. Since the 

complement of every language in NP is reducible to the complement 

of D (C) , it follows that c..o-NP CNP, and NP=c..o.:.; ( c.o-NP) C c.o-NP O. 

· Our approach can also prove a slightly different kind of 

result. Let F(C) be a collection of valid inequalities for C 

i.e., each element of F(C) is a triple <z,f,g>, such that 

f ·x~g holds for every x ES ( z). Suppose that F (C) E NP. Call 

an instance <z,d> of C bad for F if the optimum solution for 

the instance is not optimum for 
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max c•x 
subject to f·x~g <z,f,g>EF(C) 

Let I be a subset of the set of instances of C such that IE P 

but { <z ,c,k> j <z,c>EI and <z,c,k> ED(C)} is NP-complet~. 

Claim 1 If NP ~eo-NP then I contains infinitely many instances 

that are bad for F. 

Example Let F(TSP) be the ingenious partial characterization 

of the facets of the traveling-salesman polytope given in [10]. 

Call an instance of the traveling-salesman problem Euclidean · 

if the cost vector can be realized as the L
2 

distances of 

a finite set of points on the place. Then, since the Euclidean 

restriction of the traveling-salesman problem is NP-complete 

[19] we conclude that, unless NP=eo-NP, there exist infinitely 

many bad Euclidean instances of the TSP. Similarly, since 

the Hamiltonian circuit problem is NP-complete, we can claim 

that, unless NP=eo-NP, there exist infinitely many bad instances 

in which each component of c is O or 1. 

4 THE COMPUTATIONAL COMPLEXITY OF GENERATORS 

This section concerns the complexity of algorithms which 

generate violated inequalities. Given a c.o.p. C, a generator 

of violated inequalities is an algorithm G(C) which accepts as 

input pairs of the form < z ,p>, where z EL and p E Rn (z) . 

The output of G(C) is a follows: 

io PECH(S(z)) :the.n 'O.K.' 

e.l-6e. a. pair (f,g) such that fE Zn(z}, gE z, f•p>g and, for 

all xES(z), f·x~g. 

Associated naturally with any generator G(C) is the following 

facial description F(C}: 

FG(C}= {<z,f,g>j for some p, G(C) has input (z,p}and output (f,g}}. 

The generator G(C} is called a small generator if FG(C} is a 

small facial description. 

Most attempts to solve a combinatorial optimization problem 

C by exploiting its facial structure require the use of a generator. 

Given an instance <z,c>, the typical approach is to start with a 

collection of inequalities Ax~b satisfied by all x ES (z}, and solve 



the linear program 

max c•x 

subject to AX:Sb 

If the OFtimal solution x(l) is not in CH(S(z)) then one or 

more valid inequalities are generated and adjoined to the 

linear program. The process of solving a linear program and 

then generating and adjoining further valid inequalities is 

repeated until an optimal solution x(k) is found which actually 

lies in CH(S(z)). Ih practice the method of generating inequal

ities is ad hoc, and may even entail human intervention in the 

computational process [9],[27]. 

Theorem 2 Let C be a c.o.p, and let G(C) be a small generator 

of violated inequalities for C. If G(C) runs in polynomial 

time, then D(C') E P. 

Corrollary 2 If C is NP-complete, then it has no small polynomial

time generator unless P=NP. □ 

To prove Theorem 2 we show that, using a small polynomial

time generator G(C), one can test in polynomial time whether 

<z,c,k>ED(C). This is done by applying a variant of Khachian's 

algorithm for testing the feasibiil.ity of a system of linear 

inequalities [15] ,[7]. The algorithm is applied to the system 

c•x~k 

f•x:Sg 
( 4) 

which is feasible if and only if <z,c,k> E D(C). 

The proof of Theorem 2 depends on a series of lemmas. The 

proofs of some of these Lemmas (namely 2,3, and 6) which are 

nearly identical to the proofs of similar lemmas in [7] will 

be omitted. 

Let p(•) be a polynomial such that, for every <z,f,g> EFG(C), 
p ( I Z I +n ( Z) ) each component of f,g has absolute value~2 • For a 

2 . " fixed z, let t=(n(z)+l). ~ (p(I zl +n(z) )+l)+~{ r1og2cj l+l)+{ r.log
2
kl+l); 

J 
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tis an upper bound on the number of binary digits needed to 

write down all affinely independent subsystems of the system (4). 

Lemma 2 The system (4) is feasible if and only if the systems 

(5) and (5½) are both feasible , where 

c•x>k-2-t 

f · x < g+ E/ 11 fl < z , f , g > E F G ( C) { 5 ) 
t t 

-2 sx.s2 ·J'=l,2, ••. ,n( z), 
T 

-t 
and (5½) is (5) with the first inequality replacedby·c•x>k-½2 . □ 

Here by JI fll we denote the L
2 

norm of the vector f, and 

E=2-( 2h(i)+2)t. Notice that fx<g+~_Lfll is satisfied by those 

points x that have Euclidean distance less than E from some 

point x' satisfying fx'sg. 

Lemma 3 If the system (5) is feasible, then the set T of feasible 

points has volume in Rn(z) at least En{z) •□ 

Using the small generator G(C) for C, we shall test the feasibility 

of (5) --and (5½) -- by an iterative process. At the beginning of 

each iteration, the state of the computation is given by a pair 

(p,A), where pERn(z), A is an n(z)·xn(z) positive definite matrix, 

and the feasible region T contained in the ellipsoid E {p ,A)= 

{x: (z-p)TA- 1 (z-p)sl}. At the beginning of the computation p=O 
t 

and A=2 • In ( z)' 

At each iteration we identify, using G(C), either an inequality 

of (5½) violated by p, or a feasible point of {5). This is done 

as follows: We first check whether C•pSk- ½2t~ if so, we have 

found our inequality. Otherwise, we call G(C) with input (z,p). 

If the output of G(C) is "O.K.", then we are done, because we 

have identified a feasible point of (5). Also, if the output 

of G(C) is (f ,g) and if so happens that fp<g+ •€/llfll, then we 

have found the ineq uality sought. 

The tricky case is that in which G(C) returns (f,g), and 

g+ E/llfll~f•p·►,g. We cannot call G(C) again to obtain another 

inequality , since G(C) may keep returning (£,g). Our algorithm 

for identifying a violated inequality of (5½) proceeds in this 
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case ,as follows: We create a sequence of points p=p
0

,p
1

, ... ,pm' 

and a sequence (f0 ,:g0 ), ••• , (fm-l 'grri_1 ), o.f inequalities in FG(z), 

for some m~n(z). We let H.={x:f.x=g.} j=0, ... ,m-1. 
J J J 

The sequences {p.} and { (f .,g.)} have the following properties 
J J J 

(a) The hyperplanes in {H.} are affinely independent, and 
J 

p.E n H. for j=0, ... ,m. 
J i<j J. 

't 
(b) llp.-pll~€(2) -1) for j=0, •.. ,m. 

J 
't 

(c) The distance of p. from H. is~2J E, for j=0, ... ,m-1. 
J J 

(d) The output of G(C) to input (z,p) is either ""O.K." or 
m 

(fm,gm), such that f mp2!gm+ E/llfll. 

Originally, with m=0 and p
0
=p, the conditions (a-c) are 

vacuously satisfied. Inductively, once we have defined p
0

, ••• pj, 

we call G(C) with input (z,p.). If the output is "O.K.", or 
J 

a (fj,gj) satisfying (d), we stop with m=j. Otherwise, we let 

H. be the hyperplane corresponding to the output of G(C). We 
J 

have to prove that H0 , ••• ,Hj are all affinely independent. 

Lemma 4 Let r be a rational point with denominators bounded by 
t 

2 , and let H be a small hyperplane such that x ~ H. Then 

the distance from r to His at least 2-(n(z)+l)t_ 

Proof This distance is lfr-gl/llfll, where H={x:fx=g}. The 

numerator is a positive integer, whereas the denominator is at most 
llfll 2n(z)t ~:Jn.• 2p( z +n(z)) • 2n(z) •t~ 2 +(n(z)+l)t . □ 

Corollary Let r be a point at the intersection of affinely 

independent small hyperplanes {Hj}~=l and let H 

be a small hyperplane such that H n n H .=~. Then the distance 
J. <m J 

-(n(z)+l)t -
from r to His at least 2 . 

Proof The flat -~ Hj has at least one rational point r' with 
J-m 

t denominators at most 2 , and the distances from rand r' to H 

are equal. Apply Lemma 4. D 
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Therefore, if H. were affinely dependent on H0 , ••• ,H. 1 , 
J J-

then the distance from p. to H. would have been at least 
J J 

2-(n(z)+l)t, and therefore the distance from p to H. at least 
-(n(z)+l)t jt J 

2 -E(2 -l)~E, a contradiction. 

Once we have established that n H. i~, we define pJ.+l 
i::;j l. 

by projecting p. onto n H .. We have to show that (a), (b) and (~) 
J i::;j l. 

hold for Pj+l' in order to conclude the inductive step. 

(a) is immediate from the discussion above. To show (b) and(c) 

we nee the following Lemma: 

Lemma 5 Let H0 , •.• ,Hj+l be affinely independent small hyperplanes, 

let r E n H
1
., and let . the distance from r to HJ.+l be o. 

i::;j 

Then the distance r to n 
i::;j+l 

H. is at most 
i 

Proof Without loss of generality Hj+l={x:x1=0}, and r=(o,r2 , ... ,rn(~)). 

Also without loss of generality, suppose that the columns 2,3, ... ,j+l 

of tne matrix. whose rows are f 1 , ... ,f. {where H.={x:f.x=g.}, 
J l. l. l. 

i=l, .•. ,j) are independent. The point r is thus obtained by 

setting xk=rk for k=j+2, ... ,n(z), x 1= 9 and solving for the remaining 

x's. Similarly , one point r' in n H . is obtained by setting 
i::;j+l J 

xn=rk for ~=j+2, •.• ,n(z) ,x1=0 and solving for the remaining x's. 

It is easy to see that jlir-r' 0::;02P<lzl +n(z)) •n2 (z) .b, where b_ is 

the largest in absolute value element of the inverse of the non

singular matrix of the columns 2 through j+l of the matrix whose 

rows are f 1 , ... fj. Thus llr-r 1 0::;(2t-l)o.o 

(c) follows immediately from the Lemma. Also for (b), the 

distance of p. from P·+l is at most (2t-1)2jtE, and thus the 
J J t 't 't ('+l)t distance from p to pj+l is at most (2 -1)2J E+{2J -l)E=(2 J -l )E, 

and (b) is proved. 



-14-

It follows that this scheme will, after at most n(z) projections, 

produce an inequality (f,g) for which our original point p, the 

center of E(p,A), satisfies fp~g+o/llfll; or it will produce a ~oint 

p. satisfying f•p.<g+ E/llfll for all <z,f,g>E F (C); furthermore, 
J J ( G 

this point p. satisfies llp.-pll~E(2n z)t_l), and hence cp.>k-2-t, 
J -t J J 

given that c.p>k-½2 . 

To summarize, given the center p of the ellipsoid E(p,A), 

we can in polynomial time either determine a feasible point, 

or isolate a violated inequality of (5). Then using this violated 

inequality a new pair p' ,A' is computed. The ellipsoid E(p' ,A') 

has smaller volume than E(p,A), but does include those points in 

E(p,A) which satisfy the inequality violated at p. In particular, 

T~E(p',A'). Following the proof in [7], the following convergence 

result is obtained. 

Lemma 6 There is a constant c and a polynomial 1r such that, if 

(5) is feasible, then a feasible soiliution will be found within 

1r(n,t) iterations. This is time even if intermediate results are 

kept at only cnt bits of precision. □ 

Our variant of Khachian's algorithm tests feasibility of 

(5), and hence membership of <z,c,k> in D(C), in polynomial time. 

This completes the proof of Theorem 2. 

Our discussion of Khachian's algorithm involves a refinement 

which promises to be useful in other contexts. In discussing 

Khachian's method for testing the feasibility of a system Ax~b 

of m inequalities inn variables, references [15] and [7] introduce 

a parameter L representing the sum of the lengths in binary bf 

all the coefficients of the system. The bound on the number of 

iterations is stated in terms of L. However, the analyses 

remain valid if the parameter is instead taken to be an upper bound 

ton the sum of the lengths in binary of the coefficients of any 

(n+l)x(n+l) subsystem of the original system. This observation 

greatly improves the time bound in cases where m>>n. 

finally, we note that there is a positive way of looking 

at Theorem 2. Consider the class of combinatorial optimization 

problems that are known to be in P -- such as the minimum 
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spanning tree problem, matching, max flow, matroid intersection 

and parity, and many others. Khacian's algorithm and Theorem 2 

may be considered as a unifying algorithm which solves all of 

them, using generators of violated inequalities for each. It 

is therefore an interesting problem oo develop polynomial-time 

generators of violated inequalities for these classical combina

torial optimization problems. (This was recently done for 

matching by Padberg and Rao). 
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