
MIT/LCS/TM- 137

ALGORITHMS FOR SCHEDULING TASKS ON

UNRELATED PROCESSORS

Ernest Davis

Jeffrey M. Jaffe

June 1979

ALGORITHMS FOR SCHEDULING TASKS ON UNRELATED PROCESSORS

Ernest Davis and Jeffrey M. Jaffe

June 1979

This report was prepared with the support of a National Science
Foundation graduate fellowship, and National Science Foundation
grant no. MCS77-19754

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

Algorithms for scheduling tasks on unrelated processors

Ernest Davis + and Jeffrey M. Jaffe *

Abstract. Several algorithms are presented for the nonpreemptive

assignment of n independent tasks to m unrelated processors. One algorithm

requires polynomial time in n and m, and is at most 2✓m times worse than optimal

in the worst case. This is the best polynomial time algorithm known for

scheduling such sets of tasks. An algorithm with slightly better worst case

performance requires polynomial time in n but exponential time in m. This is

the · best algorithm known that requires time O(nlog(n)) for every fixed value of

m.

Keywords. Nonpreemptive schedules, worst case finishing time,

performance ratio, unrelated processors, largest processing time.

1. Introduction

This paper presents a number of polynomial time algorithms for the

scheduling of a set of n independent tasks on m processors of different speeds.

The processors are unrelated in the sense that there is no notion of a fast

processor always requiring less time than a slow processor, irrespective of the

task being executed. Rather, the time required for the execution of a task on

--------------------------------· --
+ CE Lummus, Inc., Bloomfield, NJ

* Laboratory for Computer Science, MIT, 545 Tech. Sq., Cambridge, MA 02139

This report was prepared with the support of a National Science Foundation

graduate fellowship, and National Science Foundation grant no. MCS77-19754.

2

a processor is a function of both the task and the processor. This models the

situation that general purpose processors have specialized capabilities that

permit them to execute certain tasks more efficiently than others. An example

of this might be in a distributed system where the time requirement of a task

on a processor may depend on communication costs.

The decision problem of determining whether a given set of tasks can be

assigned with finishing time smaller than a given bound is NP-complete (6). As

a re.sult it seems unlikely that an algorithm can be found which runs in

polynomial time and always produces the optimal assignment (3). It is thus

worthwhile to investigate approximation algorithms.

Polynomial time approximation algorithms for such sets of tasks were

first studied by Ibarra and Kim in [6). Five algorithms were. presented, each

of which was guaranteed to be at most m times worse than optimal in the worst

case. In addition, four of the five were proved to be exactly m times worse

than optimal in the worst case. The fifth algorithm was left as an open

problem - its effectiveness was shown to be between 2 and m times worse than

optimal. (In Section 8 an example is presented which indicates that this

algorithm is at least t+logz<m) times worse than optimal in the worst case.

Thus the gap left in (6] is somewhat tightened, but is still left open.)

The first new algorithm that we present is at most 2.S✓m times worse

than optimal in the worst case. Thus it may not be as good as the fifth

algorithm of [6], but it is provably better than the other four, and may in

fact be better than all five. The running time of this algorithm is

O(mnlog(n)). We also show that there are examples for which the algorithm ts

as bad as Z✓m times worse than optimal, indicating that the analysis is tight up

to a factor of 1.25. This algorithm is somewhat similar to that of [7) in that

3

processors do not execute tasks for which they are very inefficient. This

algorithm is best possible (up to a constant factor) among algorithms using a

certain restricted class of heuristics.

The second new algorithm is a modification of the first, which adds a

largest processing time (LPT) heuristic. This algorithm is at most (1+✓2)../m

times worse than optimal and also runs in polynomial time. The worst example

known for this heuristic is ✓m times worse than optimal, and we believe that

this heuristic is actually more of an improvement over the original algorithm

than the worst case bound suggests. The LPT heuristic has been a useful

heuristic in situations where the processors are identical [4].

The third algorithm is a different modification of the first with a

substantially longer running time. Whereas the first two require polynomial

time in terms of both the number of tasks and the number of processors, this

one requires exponential time in terms of the number of processors. When

assigning tasks on a bounded number of processors, however, th_e algorithm runs

in polynomial time. The worst case behavior is at most 1.5../m times worse than

optimal. Horowitz and Sahni [5,12] devise algorithms of time complexity

O(n2 m/E) whose worst cases are within t+E of optimal. Our algorithm requires

time O(mm+mnlog(n)). Thus its running time is less sensitive to large numbers

of tasks executed on moderate numbers of processors.

All three of these algorithms may be varied in trivial ways to get

performance bounds which are better than the above bounds by a small constant

factor. While we are able to obtain slightly better performance bounds with

these modifications, we do not believe that the resulting algorithms are

actually more effective than the original algorithms.

One final result that we present is an additional algorithm which is m

4

times worse than optimal in the worst case. This algorithm has the useful

property that when extended to an algorithm for scheduling tasks subject to

precedence constraints, i.e., partially ordered tasks, it is still at most m

times worse than optimal.

There has been other work on the scheduling of tasks on unrelated

processors. Preemptive scheduling of tasks on unrelated processors is studied

in [10,13]. In [1,Z] a different optimality criterion is studied. Special

cases in which certain processors cannot execute certain tasks are studied in

[8,9, 11].

2. The scheduling algorithm

Definitions.

A task system of n tasks and m processors is an n x m matrix µ with

entries in IR+U{ co} for n,m~ 1 such that for every t there is a p such that

µ(t,p)tco (1stsn).

The value µ(t,p) is the time requirement of the rth task on the /h

•
processor (19sn, tspsm).

The execution of jobs by processors is modelled by the notion of an

assignment function for a task system. An assignment Junction A is a map

A:{1, ... ,n} ... {1, ... ,m} such that µ(t ,A(t))lao for t=t, ... ,n. If A(t)=p we will

often say that task t is assigned to processor p. In general we will often

th . th refer to the index t as the t task, and the mdex p as the p processor.

The finishing time of an assignment, A, (denoted f(A)) is defined by:

J(A)= max µ(t,p)

15p5m t:A(t)=p

5

An optimal assignment is any assignment that minimizes the finishing time.

For two assignments A and B, the performance ratio of A to B is J(A)/J(B).

Intuitively, the assignment function assigns jobs to processors. The

finishing time intuitively represents the largest amount of time needed by any

of the processors to execute the tasks assigned to it.

It is useful to associate a starting time function s, with a given

assignment function A . Intuitively, for 19~n the value s(t) represents the

time at which processor A(t) begins to execute task t. Formally, a starting

time function s, is a map s:{ 1, ... ,n }➔IR satisfying conditions (a) and (b)

below. The value s(t) is called the starting time of the task t. Task t is

being exewted on processor p at time x providing that p=A(t) and

s(t)~x<s(t)+µ(t ,p).

A starting time function satisfies:

(a) For p= 1, ... ,m, at most one task is being executed at any time on

processor p.

(b) For p= 1, ... ,m, if O~x<l;t:A(t)=p µ.(t,p) then at least one task is

being executed at time x on processor p.

Intuitively, the first condition forces all tasks assigned to a

processor to be executed sequentially, and the second condition prevents any

idle periods on the processor.

By abuse of notation J(t)=s(t)+µ(t,A(t)) is called the finishing time

of the task t . Similarly, if Tc{l, ... ,n}, J(T)=maxteT J(t).

The matrix µ associates m possible time requirements with each task.

The best time of the t th task, (denoted b(t)), is the smallest of these m

values (i.e. b(t)=minp {µ(t ,p)}). The efficiency of the pth processor on the

,
th

task (denoted ef(t,p)) is b(t)/µ(t ,p). Note that the maximum efficiency

6

is one.

The following algorithm devises_ an assignment A and a starting time

function s for a given task system.

Algorithm 1.

1. For 15.p5.m sort the n values ef(t,p), 15,tS,n. Set sump=O

for p= 1, ... ,m. Designate all processors as being "active" and all tasks as

being "unassigned".

2. Find any value of p such that sump is minimal among active

processors. (Note that there must always be such a p.>

3. Find the task, t with largest value of ef(t ,p) among unassigned

tasks. If there are no such tasks then HALT. If ef(t,p)z.1/-im go to Step 4.

Otherwise designate p as being inactive and go to Step 2.

4. Define A(t)=p. Designate t as being assigned. Define s(t)=sump

Set sump=sump+µ(t,p). Go to Step 2.

It may be noted that A is an assignment function. The algorithm

terminates when there are no unassigned tasks remaining. Note that at

termination some processor is active. For, the processor that has the best

time on the last task assigned could never have been deactivated.

Since each iteration of the main loop (steps 2-4) either assigns a task.

or deactivates a processor, the algorithm terminates after n+m iterations.

It may be noted that this algorithm can be applied as a run time

scheduler even if the absolute time requirements of each of the jobs are not

known in advance, as long as the efficiencies are known. The only place that

the time requirements were needed was in determining which processor is the

7

next to be assigned a task. If this decision is made at run time (i.e., after

a processor completes all tasks already assigned to it), . then the time

requirements are not needeq while the assignment is being made.

The assignment A and starting time function s determined by Algorithm 1

satisfy the following three conditions:

(1) If A(t)=p then ef(t,p)?_ ll✓m.

(2) If s(t)>s(u). then ef(t,A(u))~ej(u,A(u)) (19,u~n).

(3) If !t:A(t)=p µ(t ,p)<s(u), then ef(u,p)<t!✓m.

Intuitively, condition one indicates that a task is executed on a

processor only if the processor is "somewhat" efficient for the task. The

second condition ensures that if a task u is assigned at an earlier time than

t, it must be that processor A(u) is more efficient on u than t. The third

condition prevents a processor from stopping as long as it is still somewhat

efficient for some unstarted task.

The fact that Algorithm 1 satisfies condition (1) is immediate from the

way tasks are assigned. Condition (2) follows from the fact that if s(t)>s(u),

then the fact that u (and not t) is assigned to A(u) implies that u must have

at least as high an efficiency on A(u) as t. Condition (3) also follows

immediately from the way tasks are assigned.

In the sequel, the only facts used about Algorithm 1 are conditions

(1). (2), and (3) above. Thus the analysis of Algorithm 1 applies to any

algorithm that follows these principles. In Section 6 we combine Algorithm 1

with a different heuristic which preserves (1), (2), and (3), and thus the

entire analysis applies to the modified algorithm.

To analyze the running time note that the presorting requires time

O(nlog(n)) for each value of p (if sorting is done with comparisons). Consider

8

the total time spent on iterations in which the value p is chosen in Step 2.

Determining if a given task is unassigned requires time O(log(n)) if that

information is stored as a bit array. Thus, steps 3 and 4 of all iterations in

which a particular p is chosen require time at most O(nlog(n)) (assuming that

the list of tasks sorted by ej(t,p) is maintained with a pointer to the task

that will be looked at next). If a data structure is maintained which keeps

sump sorted, the m+n iterations of step 2 require at most time

O((m+n)(log(m))). If m>n, a slightly different data structure permits the

execution of step 2 in time O(mlog(n)). Thus the total running time is

O(mnlog(n)).

3. Analysis of Algorithm 1

To analyze Algorithm 1 for a given task system, we fix a particular

assignment A and starting function s consistent with (1), (2), and (3).

Certain subsets of {1, ... ,n} will be defined based on s,A, and an optimal

assignment function B. Let z be the last (or one of the last if there are

ties) task, to be completed, i.e., J{z)=J(A). Consider a value p such that

µ,(z,p)=b(z), i.e., processor p is one of the processors that is most efficient

on z. Without loss of generality assume that p=t, i.e., that processor 1 is

· most efficient on z.

Definition. Let K consist of those tasks executed on the first processor with

starting time earlier than s(z), i.e. K ={t: A(t)= 1 and s(t)<s(z)}.

By condition (3) the first processor may not finish earlier than s(z).

Furthermore, all tasks of K must have efficiency one on the first processor or

g

else condition (2) is violated.

The set K will be partitioned into two sets. The. assignment of each

task in B determines the set to which it belongs.

Definition . . Let L={t: tEK and ej(t,B(t))'z,1/✓m}.

Thus L consist of those tasks executed on processor 1 before time s(z),

that are assigned somewhat efficiently in B. The second subset of K will be

denoted K -L.

Let A- 1({2, ... ,m}) be the set of tasks that A does not assign to the first

. -1 processor, 1.e. A ({2, ... ,m})={t:A(t)fl}.

To proceed with the proof, it is convenient to define a few more

quantities. For a set of tasks Tc{t, ... ,n} and an assignment function A, tlte

actual workload of T under A (denoted E(A,T)) is ltETµ(t ,A(t)). The minimal

workload for T (denoted £0 (T)) is "1;tETb(t).

In order to evaluate J(A)/f(B), it is convenient to consider a related

task system, /J '. This task system has almost identical entries to µ, differing

only in the en tries for tasks in K -L. In addition, there is a starting time

function, s,,, associated with A such that s' is consistent with (1), (2), and

(3), and s" starts all of L, before it starts any of K -L.

Lemma 1. Let /J be an n x m task system, A an assignment function for

I' obtained from Algorithm 1, and s the associated starting time function. Let

K and L as above. Let B be an optimal assignment for µ. Then there is an n x m

task system /J,,, and a starting time function s,, (with finishing time J")

associated with A such that:

10

(i) The starting time function s' with the assignment A is consistent

with (1), (2), and (3) for µ '.

(ii) f(A)=f'(A) and f(B)=f'(B).

(iii) The sets K and L are identical when defined in terms of µ, s, and

A, as when they are defined in terms of µ. ', $ ', and A'.

(iv) For every t 1eL and t2eK-L, s'(t
1

)<s'(t
2

).

(v) E0(L)=j'(L)

Proof. Define µ' as follows. For tt.K-L µ.'(t,p)=µ.(t,p). For teK-L,

µ'(t,A(t))=µ.(t,A(t)) , µ'(t ,B(t))=µ.(t ,B(t)), and µ.'(t,p)=oo for pM(t) and

p,B(t). Note that f(A)=j'(A) and f(B)=j'(B). (In fact B is still an optimal

assignment). The starting time function s' is defined to be only slightly

different from s. For tt.K, s'(t)=s(t). For tEL:

s'(t)= 1;

ueL:s(u)<s(t)

For teK-L:

ueK -L:s(u.)<s(t)

Thus, all of the tasks in L are scheduled before all of the tasks in

K -L, and within each set (L and K-L), the order that the tasks are scheduled is

the same. Also E0(L)=j'(L) and the sets K and L are unchanged.

Note that A withs' is consistent with the (1), (2), and (3) for p.'.

Condition. (1) follows immediately since tasks are executed on the same

processors, with the same efficiency as in s. Condition (2) needs to be

verified only for tasks in K. If ueK and s' (t)>s'(u) then since ej{u, 1)=1,

11

cj(t, t)~ej(u, 1). If tEL, s/(t)>s'(u) and A(u)~1, then since

s(t);:;~_s''(t)>s'(u)=s(u), ej(t,A(u))S~f(u,A(u)) (using the fact that (2) was true

for s). If, tEK -L and s'(t)>s'(u), condition (2) follows from the fact that in

the primed system all tasks tEK-L have efficiency less than 1/../m for all but the

first processor. Con~ition (3) follows in a similar manner. □

This modification of µ to µ' is an ad hoc modification needed to make

the technical assumption (v).

To obtain a bound on f(A)/J(B) we compute a bound on the ratio using

the starting function s / on ·the task system µ /. Note that J(K)2.s(z) by

condition (3) on A and s. Also, J(A)=s(z)+E(A,{z}). Therefore,

f(A)~E(A ,{z))+E(A,K-L)+E(A,L). A bound will be obtained on the three summands

in terms of J(B). This will be used to get a bound on J(A)IJ(B). In the

sequel, we will drop the primes of µ, s, and f, for notational convenience.

The proof however refers to this modified task system and starting time

function.

Lemma 2. Let A,B as above and 19Sn. Then E(A,{t})s✓m J(B).

Proof. This follows from the fact that A assigns tasks to processors that are

somewhat efficient for the task. That is,

f(B)2.E (B ,{t})=µ (t ,B(t))2_b(t)=ej(t ,A(t))µ(t ,A(t)). By condition (1),

ej(t ,A(t))2. 1 /-J m. Thus ef(t ,A(t))µ(t ,A(t))2_µ(t,A(t))!-Jm=E(A ,{t})/../m. □

Lemmas 3,4, and · 5 are technical facts that are needed for ·the proof of

Lemma 6.

12

Lemma 3. · Let A,B,K,L as above. Then ✓mE(A,K-L)~E(B,K-L).

Proof. E(B,K - L)=!,tEK ·L µ(t,B(t))'?._!,tEK ·L ✓m µ(t,A(t)) by the definition of

K-L. Thus E(B,K -L)?_E(A,K-L)✓m. □

Let tiEL be the i
th task of L (ordered by starting time). Assume

ILl=q.

Lemma 4. Let A ,L as above. Then

!,tel b(t)f(t)=!,i~ 1b(ti)!, / = l b(t}'c_(!,i~ 1b(t})
2

t2=E(A,L)
2

/2.

Proof. The first equality follows from the fact that for !EL, A(t)=l, and the

fact that all tasks in L are executed sequentially with no intervening tasks.

The last equality follows from the definition of E(A,L). To get the inequality

T,i~ 1b(ti)!,j =tb(t/?._(!,i~ 1b(ti))
2

/2 note that on the left hand side of

the inequality the term b(t.)b(t .) appears exactly once. This term appears
l)

twice on the right hand side for i~j and once for i=j in the expansion for

E(A,L)2 . Dividing by two proves the result. D

-1 } Lemma 5. Let A,B,A ({2, ... ,m),L as above. Then

Eo(LUA- 1 ({2, ... ,m}))?_(£(A,L)2 /2f(B))-E(A ,L).

Proof. The main intuitive idea will be to show that if the set L is

large, then £ 0 (A- 1 ({ 2, ... ,m})) .must be large. The reason is as follows. Consider a

task tEL. Since processor B(t) is somewhat efficient on t, processor B(t) is a

candidate processor for t to be assigned to in A. The only reason that t would

13

not be assigned to processor B(t) is because the workload in A of tasks

assigned to processor B(t) exceeded s(t) (by condition (3)). Thus if L is a

large set, it must be that the total workload of A- 1({2, ... ,m}) is large, or else

tasks of L would be assigned earlier to different processors. Thus a relation

is derived relating the size of L to the value of £
0

(A- 1({2, ... ,m})).

To make the above intuitive ideas precise, it is convenient to divide L

into m portions. Lp=LnB- 1(p) is the subset of L that is assigned in B to the

pth
process~r, and in particular is executable efficiently ·on the pth

processor. The set A- 1 (p) (the tasks assigned to the p th processor by A)

is the set that we will show is large, based on the size of L p- Note that

- 1 m -1
A ({2, ... ,m})=Up=zA (p).

For the rest of the proof, fix a value of p and define the following

parameters (which have an implicit dependence on p). Let e be the number of

tasks in LP' and let these tasks be denoted t 1 , ... ,t e with

s(t 1)<s(t 2)< ... <s(te). For i=l, ... ,e, define Ut{tEA- 1(p) : s(t)<s(ti)).

The set U. is the subset of A-1(',) started before task t ..
l f' l

Note that ef(ti,p)z. 1 /✓mby the definition of L. Thus, by condition (3)

-1
f(A (p))z.s(ti) for every i. Thus some task in Vi finishes after s(ti) and

thus J(U .)>s(t .).
l - l

For i =1 , ... ,e, define efi to be the smallest efficiency of any of the

tasks in U i on p, i.e., cfi=mintEU _ef(t ,p). Note that if k>i, then efk ,S,efi
l

since UicU k' Also, ef(ti,p)~efi by condition (2) since otherwise ti would have

been assigned to p before the last task in U i was assigned to p. Note that

14

This follows because f(B) exceeds the actual workload assigned to any

one processor in B. Also note that

Using the above definitions and inequalities, we may now show that the

minimal workload of the set A- 1(p) must be large if LP is large.

For convenience define U 0 =0, /(0)=0, and efe+ 1 =O. From the

definitions we have

Using (3) and ef(t,p)~cfi for tEUi-Ui - l produces

Combining (4) with the fact that It U U µ.(t,p)=f(U.)-f(U. 1) produces
E C i -1 l l-

The last equality is obtained by rearranging indices. Now, using

f(U .)>s(t .)=(11t .)-b(t.)) we have:
i - l ':/ 'i I

15

To get (6) from (5) note ef/z.efi+l ·

Let X=~= 1J(ti)(efi-efi+l) and Y=~= 1(eft-efi+l)b(t/ Then

E 0 (A-
1
(p))~X-Y. Note that ef/:.1 for every i. Thus Y<;,~=f(Ti).

Also, for each k we have:

, Equation (7) follows from eji2efi+ 1 for every i and f(ti)>f(ti- 1) for

every i. Using (2), (7), and (1) (successively) provides:

Thus X2ItEL f(t)b(t)/f(B). This together with the bound on Y
. p

provides us with

A special computation is done for E0(L). We claim that

(10) £ 0 (L)~ItEL ((f(t)b(t)/f(B))-b(t)).
1

This follows from ItEL
1
((J(t)b(t)/f(B)-b(t))<;,ItEL fOb(t)/f(B)

S(maxtEL l(t))ItEL b(t)/j(B) 5,maxtEL f(t)=E0(L). The last equality follows
1 1

from Lemma 1. This is the step for which we had to transform the original task.

16

system into µ /.

Finally, we compute £ 0(LU[1({2, ... ,m))).

£ 0 (LUA -
1
({2, ... ,m}))=(Ip=fo(A- 1(p)))+E0(L) by definition. By (9) and (10),

E o<LUA-
1
({ 2, ... ,m}))z(I p=z It EL p ((f(t)b(t)f f(B))-b(t)))+(ItEL t ((f(t)b(t)/f(B))-b(t))). Thus

(11)

By Lemma 4 and equation (11), £0(LUA- 1({2, ... ,m}))~(E(A,L)2 tzf(B))-E(A,L). □

Lemma 6. Let A,B,K ,L as above. Then E(A,K-L)+E(A,L)~(t.5-./m +1+(1/2-v'm)V(B).

Proof. Combining Lemmas 3 and 5 we derive that

E(B,{ 1, ... ,n})zE0(LUA- 1({2, m}))+E(B,K -L)z(E(A,L)2 tzf(B))-E(A,L)+-v'm-E(A,K - L).

Note that mf(B)zE(B,{ 1, ... ,n}), since B can do no better than divide the

workload of all the tasks equally among the m processors. Thus

mf(B)z(E(A,L)2 l2f(B))-E(A,L)+✓m E(A,K-L). Let a=E(A,K-L)/f(B) and

b=E(A,L)/f(B). Then, 2mzb2-zb+Za✓m. To prove the lemma, we determine the

maximum value for (E(A,L)+E(A,K-L))/J(B)=a+b subject to 2mzb2-zb+2a✓m.

Note that the maximum value of a+b occurs at a=(2m-b2+2b)/2-v'm(for any

fixed value of b). Now, to maximize b+((Zm-b2+Zb)/2✓m), differentiate with

respect to b, and set the derivative to 0. Solving 1+(2-2b)/2✓m=O produces

b=1+✓m. For that value of b, the maximum value for a is (-v'm/2)+(1/2-v'm).

Thus the maximum value of a+b is 1.5✓m +1+(1/Z✓m) and the lemma is proved. D

17

Theorem 1. Let A be an assignment function for a task system consistent with

(1), (2), and (3). Let B be an optimal assignment function. Then

f(A)/f(B)'!:,2.5✓m+ 1+(1 /2✓m).

Proof. Reduce µ to µ' as above, and analyze f(A)/f(B), by analyzing

the assignment function A together with the starting function s'. Note that by

Lemma 2 E(A.{z})'!:,✓m f(B). Use f(A)~E(A,{z})+E(A,K -L)+E(A,L) together with

E(A,{z})'!:, ✓m J(B) and E(A,K -L)+E(A,L)~(1.5✓m+1+(1 /2✓m)lf(B) to get the theorem. D

4. Achieving the bound to a constant factor

Consider the following m+ 1 x m task system. For t= 1, ... ,m-2, µ(t, 1)= 1,

µ(t,t+2)=E+✓m, and µ(t,p)=oc, for p11,t+2. The value E)O is a parameter which

will be sent to zero to get as tight a bound as possible. In addition,

µ(m- 1 ,2)=E and µ(m-1,p)=cc, for pf2; µ(m,3)=m-2-E, µ(m,2)=✓m, and µ(m,p)=«> for p~Z,3;

µ(m+t, O=✓m, µ(m+1,3)=m, and µ(m+1,p)=oc, for p;t,3.

An optimal assignment is as follows. For t=t, ... ,m-2, B(t)=t+2,

requiring time E+✓m. B(m-1)=B(m)=2, and thus the actual workload of the

tasks assigned to processor 2 is E+✓ m. Finally, B(m+ 1)= 1, requiring time ✓m.

An assignment consistent with (1), (2), and (3) may proceed as follows.

First note that no tasks may be assigned to processors 4, ... ,m since no task is

sufficiently efficient on those processors. A(l)= 1 for t= 1, ... ,m-2 with

s(t)=t-1. A(m-1)=2 with s(m-1)=0. A(m)=A(m+ 1)=3 with s(m)=O and s(m+ 1)=m-2-e.

It is straightforward to verify that this satisfies (1), (2), and (3).

Due to the tasks assigned to the third processor, f(A)=2m-2-e. The

ratio between finishing times is (2m-2-e)/(€+✓m). As e gets smaller the ratio

approaches 2·./m-(2/✓m). D

18

5. Scheduling with limited information

In this section we indicate that no algorithm with certain limitations

can have better worst case behavior which is orders of magnitude better than

that of Algorithm 1. Specifically, assume that the scheduler knew the matrix

of efficiencies but not the matrix that specifies the time requirements. Such

a circumstance is imaginable if the tasks had known characteristics, but the

actual time required was unknown (for example due to loops of undetermined.

number of iterations).

If only the efficiencies are known, any algorithm that develops an

assignment based only on this information must be at least ✓m times worse than

optimal in the worst case. This is true even if before assigning a task to

start at a given time, the scheduler knows the absolute time requirement of all

tasks finished by that given time (as one might expect that the scheduler would

at least have access to that information). This indicates that our algorithm

is within a constant factor of optimal for this type of scheduling. This fact

is independent of running . iime; no algorithm can do better than vm times worse

than optimal irrespective of the amount of time it takes.

Consider the following m x m efficiency matrix. The entries are

ef(t, 1)= 1, and ef(t ,p)= 1 / ✓m for p> 1. If an algorithm assigns all of the m tasks

to the first processor then in the worst case, the assignment is vm times worse

than optimal. This occurs when µ(t, 1) is the same for t= 1, ... ,m. Then

assigning all tasks to the first processor requires time m, whereas assigning

the , th task to the , th processor requires time ../m.

On the other hand, if any of the tasks are not assigned to the first

processor, the performance ratio is still ../m times worse than optimal in the

worst case. Assume that the t th task is the first one not assigned to

19

processor 1, and is instead assigned to processor p. Assume that µ(u, l)=e: for

u# and 1,t(t, 1)= 1. Then an asymptotically optimal assignment has B(t)= 1 and

B(u)=u for uf.t. This requires time t+e, whereas the heuristic requires at

least time. ✓mby assigning the tth task to the · 1th processor. Thus the

heuristic is ✓m times worse than optimal. D

Note that the processors are "uniform" in this example. That ·1s,

ej(t,p) depends only on p and is independent of t. For t_his case, an algorithm

was presented in [7] which is asymptotic to ✓m times worse than optimal in the

worst case, even if there are precedence constraints. In this environment of

incomplete information, the heuristic presented in (7] is asymptotically

optimal.

Even in this restricted environment, where the matrix µ is not known,

the above result is not a strong result for the following reason. A very weak

form of preemption avoids the difficulties illustrated in the example.

Specifically, if at "run-time", a ti3sk which has been begun on one processor

may be reassigned to be rerun from the beginning on another, then the above

task system may be executed relatively efficiently even if the absolute time

requirements are not known a priori.

6. Two improved algorithms

In this section we consider two minor modifications to Algorithm 1

which provide slightly· better performance bounds:

Algorithm 2 .

Step 1. Same as Step 1 in Algorithm 1, except that if ej(t,p)=ej(u,p), then

t is ordered before u if µ.(t,p)zµ.(u,p).

Steps 2-4. Same as Algorithm 1.

20

This algorithm satisfies the following stronger form of condition (2).

_(2") If s(t)>s(u) then either ej(t,A(u))<ej(u,A(u)) or ej(t,A(u))=ej(u,A(u))

and µ(t,A(u))sµ.(u,A(u)).

We obtain a bound on this algorithm of approximately (1+✓2)✓m times

worse than optimal.

Using the notation of Section 3, we wish to place a bound on

(E(A,K-L)+E(A,{z}))!j(B). If K-L is empty then

E(A,K-L)+E(A,{z))!f(B)=E(A,{z))IJ(B) s✓mby Lemma 2. If K-L is not empty,

choose teK -L. Then f(B)zµ.(t,B(t))z✓m µ.(t, 1)z✓m µ.(z, 1)2µ.(z,A(z))=E(A,{z}). Thus

E(A,{z})/f(B)=1. Furthermore, by Lemma 3, ✓m E(A,K-L)sE(B,K-L). Since

mf(B)2E(B,K -L) , we conclude E(A,K-L)!J(B)~✓m. Hence in either case

(E(A,K-L)+E(A ,{z}))!f(B)s✓m +1.

Applying the inequality E0(LUA- 1({2, ... ,m}))s"if(B) to Lemma 5, we obtai~

mf(B)2(E(A,L)2 l2f(B))-E(A ,L). Let x=E(A,L)!f(B). Then mz(x2 tz)-x. Solving

this for the maximum possible value for x yields x=(t+✓ 2m+1). Thus

E(A,L)/f(B)st+✓Z-lm+ (1/2-12-lm). Using the above inequalities proves:

Theorem 2 . Let A be an assignment given by Algorithm 2 and let B be an optimal

assignment. Then f(A)/f(B)$(1+✓2)✓m +2 + (1/-18-lm).

Next we present a different modification of Algorithm 1, which has a

worst case performance ratio of 1.5-/m time worse than optimal. This algorithm

has running time O(mm+mnlog(n)), and is therefore quite useless if the number

21

of processors is an input to the problem. However, in the situation that the

scheduler needs to deal with a bounded number of processors, this is still an

O(n log(n)) algorithm.

Algorithm 3.

1. Devise an assignment A 1 and starting function s, using Algorithm 1.

2. Let u be the task that has latest starting time in s, and let

U ={tif(t)> s(u) } .

3 . Determine an optimal assignment for the set U (considered as entire

task system) by trying all possible assignments. Assign each task in U to the

processor that it is assigned to in this optimal schedule (the tasks in U are

assigned to start after the other tasks already assigned to the relevant

processors).

First note that IVl~m. This follows from the fact that if t 1,t
2

EV

then A 1 (t 1)tA 1 (t 2). For if two tasks are assigned to the same processor,

the later one must have starting time which is later than s(u). Note that the

running time of Algorithm 3 is O(mm+mnlog(n)). Step 1 requires time

O(mnlog(n)). Step 3 requires time O(mm) since each possible assignment

must be considered. Once these mm schedules have been tried, determining the

best assignment also requires no more time than O(mm). We proceed as in

Section 3, letting A be an assignment resulting from Algorithm 3, and letting B

be an optimal assignment for µ..

The sets K and L are defined on the basis of u. At time .s(u), if

ej(u,p)= 1, then (informally speaking) processor p is still executing tasks that

have efficiency one. Assume again that p= 1. The set K consists of all tasks

22

assigned to processor one with starting time earlier than s(u). As in Section

3, L ={teK :ef(t .B(t))'?_ 1/✓m}. The proof that E(A,L)+E(A,K-L)5',(1.5✓m + 1+(t/2v'm)V(B)

still applies, even though the sets L and K -L are not the same as those defined

in Section 3.

Let I'(U) be the "optimal finishing time" of the set of tasks U when

considered as a separate task · system (i.e., not as part of µ). Then it follows

from the design of the algorithm that f(A)~E(A,K-L)+E(A,l)+J-(U). Thus to obtain

a bound on f(A)lf(B) it suffices to get a bound on J-(U) in terms of f(B). But

clearly I'(V)$f(B). Using this fact together with Lemma 6 provides:

Theorem 3. Let A be a schedule obtained with Algorithm 3, and let B

be an optimal schedule. Then f(A)lf(B)~(1.5✓m +2+(1/2,/m)).

To show that the bounds on Algorithms 2 and 3 are achievable (to within

a constant factor), consider the m x m task system given by µ(t,1)=1,

µ(t,t)=e+✓m, and µ(t,p)=«> for pil,t. The heuristics assign all tasks to the

first processor and perform ✓m times worse than optimal. □

The E approximation algorithms of Horowitz and Sahni [5, 12] require

time n2m /E . Even for a relatively small value of m this algorithm

requires too much time, as n lO or n20 algorithms are actually not

feasible. Algorithm 3 requires time O(nlog(n)) for any fixed value of m and

thus for most values of m it is more feasible than the algorithms of [5, 12].

7. Improving the constant factor.

The threshhold of efficiency chosen by Algorithms 1, 2, and 3 is that

if A(t)=p then ef(t,p)'?_ 1/✓m. While we feel that this is the best threshhold to

23

choose, we can actually obtain a better bound using a different threshhold.

Consider the heuristic which is identical to Algorithm 1, except that

it uses a threshhold of 1 /c✓m. Most of the analysis of the algorithm is the

same with the following easily verifiable changes. (Note that the choice of

whether tasks go into L or K -L depends on the threshhold of 1/c✓m.) It is

curious to note that Lemmas 4 and 5 do not depend at all on the threshhold.

(1) E(A,{z))sc✓mj(B).

(2) c✓m E(A,K-L)sE(B,K-L)

(3) In the proof of Lemma 6, when trying to maximize a+b, the relevant

inequality· that constrains the maximization is as(2m-b2+2b)/2c✓m. This

occurs at b=1+c·-im. For that value of b, the maximum value of a is

(✓m(2-c2)/2c)+(1 /2c✓m).

(4) Putting together (1) and (3) provides a bound on the algorithm of

✓m((3c/2)+(1/c)), neglecting lower order terms. The smallest value of this

occurs at c =✓ 2/3 , where the bound is ✓ 6m times worse than optimal. This

is marginally better than the original bound of v 6.25m times worse than

optimal. D

Using this technique in conjunction with Algorithm 2 provides slightly

better results. If K -L is empty then (E(A,{z))+E(A,K -L))/f(B)scvm and

E(A,L)/f(B)s✓2✓m. If K-L is nonempty then E(A,A- 1({2, ... ,m)))/f(B)st, and

E(A,K-L)+E(A,L)s((c/2)+(1/c))vm. The best value of c to choose is the one that

minimizes max(c+✓ 2,(c/2)+(1/c)). Choosing c=2-v2 provides a bound of 2-./m. D

· Using this technique in conjunction with Algorithm 3 provides

m _arginally better results. In that case, E(A,{z}) does not effect the bound,

and E(A,K -L)+E(A,L)s✓m((c/2)+(1/c)) plus lower order terms. For this case,

24

choosing c=../2 gives a bound on Algorithm 3 of being at most ./2../m times worse. than

optimal. □

8. Two other heuristics

The following is "Algorithm D" from [6]. This is the · algorithm that

was shown to be between 2 and m times worse than optimal in the original paper

of Ibarra and Kim. and we will show that in the worst case it is at least

1 +logz<m) times worse than optimal.

Algorithm D:

Step 1. sump=O for 1~p~m, S={1, ... ,n}.

Step 2. If S=0 then end.

Step 3. Find an index tES such that mt {sump+µ(t,p)}~min {sump+µ(t",p)}

all t "ES. Let p be such that su.mp+µ(t,p) is minimum. Define A(t)=p. Set

~~mp=sump+µ (t,p) and S=S-{t}. Go to step 2.

for

The basic idea behind "Algorithm D" is the following. After i tasks

have been scheduled, the scheduler sets up a temporary goal of trying to

schedule one more task and minimize the total finishing time of the t+t task,

t ask sys tem. The scheduler chooses the task to use as the i+tst, and which

processor to assign it to. After iterating this procedure n times, all tasks

have been assigned.

· The following is an m x m task system for which algorithm D performs

poorly. The e ntries are µ.(t ,p)=l if m-t+1 'c_ p and µ(t ,p)=«> if m-t+t<p. An

optimal schedule has B(t)=m-t+1 with a finishing time of 1. However, the

following schedule is consistent with Algorithm D.

25

Assume that m is a power of 2. The first m/2 tasks to be assigned are

tasks 1, .. . ,m/2 with A(t)=t. After these are assigned, the workload assigned

to each of the first m/2 processors is 1. Next, tasks (m/2)+1, ... ,(3m/4) are

assigned. Task (m/2)+p is assigned to processor p. Continuing in this manner,

tasks 1,(m/2)+1,(3m/4)+1, ... are all assigned to processor 1. Thus the total

workload assigned to processor 1 is l+logz(m). The finishing time of A is

t+log
2

(m). D

The exact worst case performance of this algorithm is left as an open

problem. Note, that while it may be a better algorithm than the algorithms of

this paper in terms of worst case performance, it has a longer running time.

Algorithm 1 requires time O(mnlog(n)) whereas "Algorithm D" requires time

O(mn 2).

We mention one final trivial algorithm which is quite simple, and in

fact generalizes to the situation where there is a precedence relation. If

there is a precedence relation between tasks, then the starting time function

is needed in order to determine the finishing time of an assignment function.

This is due to the fact that if t<u, the restriction s(u)?j'(t) is imposed.

Thus different starting functions for the same assignment might have different

finishing times. In particular, the finishing time is not just the maximum of

the workloads of each processor. Instead, the finishing time of the task

system is the maximum finishing time of the individual tasks. Other than that,

none of the definitions change, and the concepts of optimal schedule and

performance r atio still apply.

This naive algorithm is to assign each task to a processor which has

26

efficiency one for the task. Since there is a precedence relation in this

general case, processors may be temporarily idle and reactivated. However, we

insist that at no time (before the finishing time) are all processors idle.

Let A be a schedule consistent with the heuristic and B an optimal

schedule for such an ordered set of tasks. Clearly j(A)~E0({1, ... ,n}), since

E(A,{1, ... ,n})=E0({1, ... ,n}), and at least one unit of E(A,{1, ... ,n)) is

executed per unit time (before the finishing time). However,

f(B)~E0 ({1, ... ,n})/m. This follows from the fact that B can certainly do no

better than assign all tasks to their best processor, and furthermore do them m

at a time. D

This bound of m times worse than optimal is achievable even without

any precedence constraint. Consider the m x m task system with µ(t, 1)= 1 (for

t>t), i,t(t,t)=l+E, and µ(t,p)=«> for pt-1,t. The heuristic assigns all m tasks to

processor 1 and requires time m. Optimal scheduling assigns task t to

processor t and requires time l+E. As E goes to 0 , the ratio approaches m. □

' This algorithm was worth mentioning only because precedence constraints

have a tendency to make scheduling heuristics perform quite poorly. For

example, it can be shown that the natural extension of Algorithm 1 to the case

that there are precedence constraints provides an algorithm which is as bad as

m✓m times worse than optimal in the worst case.

9. Conclusions

We have presented a number of algorithms with behavior which is O(..Jm)

times worse than optimal in the worst case. While this is the best possible

behavior for a limited class of schedules, (as explained in Section 5), there is

little reason to believe that this cannot be improved when considering a larger

27

class of schedules. Algorithm D of (6] still has not been fully classified,

and appears to be a promising candidate for better order of magnitude behavior.

An even more difficult problem seems to be finding an algorithm that

has better than O(m) behavior in the presence of a precedence constraint. Such

algorithms have been devised in the situation that the processors are of

different speeds, but uniformly so (7] (i.e., the efficiency of a processor on

a task is independent of the task).

Acknowledgements

The authors would like to express their thanks to Albert Meyer for many

helpful comments oii. earlier drafts of this paper.

References

1. J. Bruno, E. G. Coffman Jr., and R. Sethi, Scheduling independent tasks to

reduce mean finishing time, CACM 17, 7 (July 1974), 382-387.

2. J. Bruno, E. G. Coffman Jr., and R. Sethi, Algorithms for minimizing mean

flow time, IFIP 74, North-Holland, Amsterdam, pp. 504-510.

3 . M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the

Theory of N P·Com pletcness, W. H. Freeman, San Francisco (1979).

4. R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM j. of Appl.

Math. , 17, (1969) 263-269.

5 . E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling

nonidentical processors,]ACM, 23, 2 (April 1976), 317-327.

6. 0. H. Ibarra, and C. E. Kim, Heuristic Algorithms for Scheduling Independent

Tasks on Nonidentical Processors, J ACM 24, 2, (April 1977), 280- 289.

7 . J. M . Jaf f e, Efficient Scheduling of Tasks Without Full Use of Processor

28

Resources, MIT Laboratory for Computer Science Technical Memo 122, January

1979. Also to appear in Theoretical Computer Science.

8. J. M. Jaffe, Bounds on the Scheduling of Typed Task Systems, MIT, Laboratory

for Computer Science Technical Memo 111, September 1978. Also, submitted to

SIAM J. Comput.

9. D. G. Kafura and V. Y. Shen, Task scheduling on a multiprocessor system

with independent memories, SIAM j. Comput. 6, (March 1977), 167-187.

10. E. L. Lawler and J. Labetoulle, On preemptive scheduling of unrelated

parallel processors by linear programming,]ACM, 25, 4, 1978 612-619.

11. J. W. S. Liu and C. L. Liu, Performance Analysis of Multiprocessor Systems

Containing Functionally Dedicated Processors, Acta Informatica, JO, 1, (1978)

95-104.

12. S. Sahni, Algorithms for scheduling independent tasks, J ACM, 23, 1, (Nov.

1976), pp 116- 127.

13. S. Sahni and T. Gonzalez, Preemptive scheduling of two unrelated machines,

Tech. Rep. 76-16 Comptr. Sci. Dept., U. of Minnesota, Minneapolis, MN

(November 1976).

