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Algorithms for scheduling tasks on unrelated processors 

Ernest Davis + and Jeffrey M. Jaffe * 

Abstract. Several algorithms are presented for the nonpreemptive 

assignment of n independent tasks to m unrelated processors. One algorithm 

requires polynomial time in n and m, and is at most 2✓m times worse than optimal 

in the worst case. This is the best polynomial time algorithm known for 

scheduling such sets of tasks. An algorithm with slightly better worst case 

performance requires polynomial time in n but exponential time in m. This is 

the · best algorithm known that requires time O(nlog(n)) for every fixed value of 

m. 

Keywords. Nonpreemptive schedules, worst case finishing time, 

performance ratio, unrelated processors, largest processing time. 

1. Introduction 

This paper presents a number of polynomial time algorithms for the 

scheduling of a set of n independent tasks on m processors of different speeds. 

The processors are unrelated in the sense that there is no notion of a fast 

processor always requiring less time than a slow processor, irrespective of the 

task being executed. Rather, the time required for the execution of a task on 
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a processor is a function of both the task and the processor. This models the 

situation that general purpose processors have specialized capabilities that 

permit them to execute certain tasks more efficiently than others. An example 

of this might be in a distributed system where the time requirement of a task 

on a processor may depend on communication costs. 

The decision problem of determining whether a given set of tasks can be 

assigned with finishing time smaller than a given bound is NP-complete (6). As 

a re.sult it seems unlikely that an algorithm can be found which runs in 

polynomial time and always produces the optimal assignment (3). It is thus 

worthwhile to investigate approximation algorithms. 

Polynomial time approximation algorithms for such sets of tasks were 

first studied by Ibarra and Kim in [6). Five algorithms were. presented, each 

of which was guaranteed to be at most m times worse than optimal in the worst 

case. In addition, four of the five were proved to be exactly m times worse 

than optimal in the worst case. The fifth algorithm was left as an open 

problem - its effectiveness was shown to be between 2 and m times worse than 

optimal. (In Section 8 an example is presented which indicates that this 

algorithm is at least t+logz<m) times worse than optimal in the worst case. 

Thus the gap left in (6] is somewhat tightened, but is still left open.) 

The first new algorithm that we present is at most 2.S✓m times worse 

than optimal in the worst case. Thus it may not be as good as the fifth 

algorithm of [6], but it is provably better than the other four, and may in 

fact be better than all five. The running time of this algorithm is 

O(mnlog(n)). We also show that there are examples for which the algorithm ts 

as bad as Z✓m times worse than optimal, indicating that the analysis is tight up 

to a factor of 1.25. This algorithm is somewhat similar to that of [7) in that 
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processors do not execute tasks for which they are very inefficient. This 

algorithm is best possible (up to a constant factor) among algorithms using a 

certain restricted class of heuristics. 

The second new algorithm is a modification of the first, which adds a 

largest processing time (LPT) heuristic. This algorithm is at most ( 1+✓2)../m 

times worse than optimal and also runs in polynomial time. The worst example 

known for this heuristic is ✓m times worse than optimal, and we believe that 

this heuristic is actually more of an improvement over the original algorithm 

than the worst case bound suggests. The LPT heuristic has been a useful 

heuristic in situations where the processors are identical [ 4]. 

The third algorithm is a different modification of the first with a 

substantially longer running time. Whereas the first two require polynomial 

time in terms of both the number of tasks and the number of processors, this 

one requires exponential time in terms of the number of processors. When 

assigning tasks on a bounded number of processors, however, th_e algorithm runs 

in polynomial time. The worst case behavior is at most 1.5../m times worse than 

optimal. Horowitz and Sahni [5,12] devise algorithms of time complexity 

O(n2 m/E) whose worst cases are within t+E of optimal. Our algorithm requires 

time O(mm+mnlog(n)). Thus its running time is less sensitive to large numbers 

of tasks executed on moderate numbers of processors. 

All three of these algorithms may be varied in trivial ways to get 

performance bounds which are better than the above bounds by a small constant 

factor. While we are able to obtain slightly better performance bounds with 

these modifications, we do not believe that the resulting algorithms are 

actually more effective than the original algorithms. 

One final result that we present is an additional algorithm which is m 
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times worse than optimal in the worst case. This algorithm has the useful 

property that when extended to an algorithm for scheduling tasks subject to 

precedence constraints, i.e., partially ordered tasks, it is still at most m 

times worse than optimal. 

There has been other work on the scheduling of tasks on unrelated 

processors. Preemptive scheduling of tasks on unrelated processors is studied 

in [10,13]. In [1,Z] a different optimality criterion is studied. Special 

cases in which certain processors cannot execute certain tasks are studied in 

[8,9, 11 ]. 

2. The scheduling algorithm 

Definitions. 

A task system of n tasks and m processors is an n x m matrix µ with 

entries in IR+U{ co} for n,m~ 1 such that for every t there is a p such that 

µ(t,p)tco (1stsn). 

The value µ(t,p) is the time requirement of the rth task on the /h 

• 
processor (19sn, tspsm). 

The execution of jobs by processors is modelled by the notion of an 

assignment function for a task system. An assignment Junction A is a map 

A:{1, ... ,n} ... {1, ... ,m} such that µ(t ,A(t))lao for t=t, ... ,n. If A(t)=p we will 

often say that task t is assigned to processor p. In general we will often 

th . th refer to the index t as the t task, and the mdex p as the p processor. 

The finishing time of an assignment, A, (denoted f(A)) is defined by: 

J(A)= max µ(t,p) 

15p5m t:A(t)=p 
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An optimal assignment is any assignment that minimizes the finishing time. 

For two assignments A and B, the performance ratio of A to B is J(A)/J(B). 

Intuitively, the assignment function assigns jobs to processors. The 

finishing time intuitively represents the largest amount of time needed by any 

of the processors to execute the tasks assigned to it. 

It is useful to associate a starting time function s, with a given 

assignment function A . Intuitively, for 19~n the value s(t) represents the 

time at which processor A(t) begins to execute task t. Formally, a starting 

time function s, is a map s:{ 1, ... ,n }➔IR satisfying conditions (a) and (b) 

below. The value s(t) is called the starting time of the task t. Task t is 

being exewted on processor p at time x providing that p=A(t) and 

s(t)~x<s(t)+µ(t ,p ). 

A starting time function satisfies: 

(a) For p= 1, ... ,m, at most one task is being executed at any time on 

processor p. 

(b) For p= 1, ... ,m, if O~x<l;t:A(t)=p µ.(t,p) then at least one task is 

being executed at time x on processor p. 

Intuitively, the first condition forces all tasks assigned to a 

processor to be executed sequentially, and the second condition prevents any 

idle periods on the processor. 

By abuse of notation J(t)=s(t)+µ(t,A(t)) is called the finishing time 

of the task t . Similarly, if Tc{l, ... ,n}, J(T)=maxteT J(t). 

The matrix µ associates m possible time requirements with each task. 

The best time of the t th task, (denoted b(t)), is the smallest of these m 

values (i.e. b(t)=minp {µ(t ,p)}). The efficiency of the pth processor on the 

,
th 

task (denoted ef(t,p)) is b(t)/µ( t ,p). Note that the maximum efficiency 
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is one. 

The following algorithm devises_ an assignment A and a starting time 

function s for a given task system. 

Algorithm 1. 

1. For 15.p5.m sort the n values ef(t,p), 15,tS,n. Set sump=O 

for p= 1, ... ,m. Designate all processors as being "active" and all tasks as 

being "unassigned". 

2. Find any value of p such that sump is minimal among active 

processors. (Note that there must always be such a p.> 

3. Find the task, t with largest value of ef(t ,p) among unassigned 

tasks. If there are no such tasks then HALT. If ef(t,p)z.1/-im go to Step 4. 

Otherwise designate p as being inactive and go to Step 2. 

4. Define A(t)=p. Designate t as being assigned. Define s(t)=sump

Set sump=sump+µ(t,p). Go to Step 2. 

It may be noted that A is an assignment function. The algorithm 

terminates when there are no unassigned tasks remaining. Note that at 

termination some processor is active. For, the processor that has the best 

time on the last task assigned could never have been deactivated. 

Since each iteration of the main loop (steps 2-4) either assigns a task. 

or deactivates a processor, the algorithm terminates after n+m iterations. 

It may be noted that this algorithm can be applied as a run time 

scheduler even if the absolute time requirements of each of the jobs are not 

known in advance, as long as the efficiencies are known. The only place that 

the time requirements were needed was in determining which processor is the 
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next to be assigned a task. If this decision is made at run time (i.e., after 

a processor completes all tasks already assigned to it), . then the time 

requirements are not needeq while the assignment is being made. 

The assignment A and starting time function s determined by Algorithm 1 

satisfy the following three conditions: 

( 1) If A(t)=p then ef(t,p)?_ ll✓m. 

(2) If s(t)>s(u). then ef(t,A(u))~ej(u,A(u)) (19,u~n). 

(3) If !t:A(t)=p µ(t ,p)<s(u), then ef(u,p)<t!✓m. 

Intuitively, condition one indicates that a task is executed on a 

processor only if the processor is "somewhat" efficient for the task. The 

second condition ensures that if a task u is assigned at an earlier time than 

t, it must be that processor A(u) is more efficient on u than t. The third 

condition prevents a processor from stopping as long as it is still somewhat 

efficient for some unstarted task. 

The fact that Algorithm 1 satisfies condition (1) is immediate from the 

way tasks are assigned. Condition (2) follows from the fact that if s(t)>s(u), 

then the fact that u (and not t) is assigned to A(u) implies that u must have 

at least as high an efficiency on A(u) as t. Condition (3) also follows 

immediately from the way tasks are assigned. 

In the sequel, the only facts used about Algorithm 1 are conditions 

( 1 ). (2), and (3) above. Thus the analysis of Algorithm 1 applies to any 

algorithm that follows these principles. In Section 6 we combine Algorithm 1 

with a different heuristic which preserves (1), (2), and (3), and thus the 

entire analysis applies to the modified algorithm. 

To analyze the running time note that the presorting requires time 

O(nlog(n)) for each value of p (if sorting is done with comparisons). Consider 
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the total time spent on iterations in which the value p is chosen in Step 2. 

Determining if a given task is unassigned requires time O(log(n)) if that 

information is stored as a bit array. Thus, steps 3 and 4 of all iterations in 

which a particular p is chosen require time at most O(nlog(n)) (assuming that 

the list of tasks sorted by ej(t,p) is maintained with a pointer to the task 

that will be looked at next). If a data structure is maintained which keeps 

sump sorted, the m+n iterations of step 2 require at most time 

O((m+n)(log(m))). If m>n, a slightly different data structure permits the 

execution of step 2 in time O(mlog(n)). Thus the total running time is 

O(mnlog(n)). 

3. Analysis of Algorithm 1 

To analyze Algorithm 1 for a given task system, we fix a particular 

assignment A and starting function s consistent with (1), (2), and (3). 

Certain subsets of {1, ... ,n} will be defined based on s,A, and an optimal 

assignment function B. Let z be the last (or one of the last if there are 

ties) task, to be completed, i.e., J{z)=J(A). Consider a value p such that 

µ,(z,p)=b(z), i.e., processor p is one of the processors that is most efficient 

on z. Without loss of generality assume that p=t, i.e., that processor 1 is 

· most efficient on z. 

Definition. Let K consist of those tasks executed on the first processor with 

starting time earlier than s(z), i.e. K ={t: A(t)= 1 and s(t)<s(z)}. 

By condition (3) the first processor may not finish earlier than s(z). 

Furthermore, all tasks of K must have efficiency one on the first processor or 
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else condition (2) is violated. 

The set K will be partitioned into two sets. The. assignment of each 

task in B determines the set to which it belongs. 

Definition . . Let L={t: tEK and ej(t,B(t))'z,1/✓m}. 

Thus L consist of those tasks executed on processor 1 before time s(z), 

that are assigned somewhat efficiently in B. The second subset of K will be 

denoted K -L. 

Let A- 1({2, ... ,m}) be the set of tasks that A does not assign to the first 

. -1 processor, 1.e. A ({2, ... ,m})={t:A(t)fl}. 

To proceed with the proof, it is convenient to define a few more 

quantities. For a set of tasks Tc{t, ... ,n} and an assignment function A, tlte 

actual workload of T under A (denoted E(A,T)) is ltETµ(t ,A(t)). The minimal 

workload for T (denoted £0 (T)) is "1;tETb(t). 

In order to evaluate J(A)/f(B), it is convenient to consider a related 

task system, /J '. This task system has almost identical entries to µ, differing 

only in the en tries for tasks in K -L. In addition, there is a starting time 

function, s,,, associated with A such that s' is consistent with ( 1), (2), and 

(3), and s" starts all of L, before it starts any of K -L. 

Lemma 1. Let /J be an n x m task system, A an assignment function for 

I' obtained from Algorithm 1, and s the associated starting time function. Let 

K and L as above. Let B be an optimal assignment for µ. Then there is an n x m 

task system /J,,, and a starting time function s,, ( with finishing time J") 

associated with A such that: 
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(i) The starting time function s' with the assignment A is consistent 

with ( 1), (2), and (3) for µ '. 

(ii) f(A)=f'(A) and f(B)=f'(B). 

(iii) The sets K and L are identical when defined in terms of µ, s, and 

A, as when they are defined in terms of µ. ', $ ', and A'. 

(iv) For every t 1eL and t2eK-L, s'(t
1

)<s'(t
2

). 

(v) E0(L)=j'(L) 

Proof. Define µ' as follows. For tt.K-L µ.'(t,p)=µ.(t,p). For teK-L, 

µ'(t,A(t))=µ.(t,A(t)) , µ'(t ,B(t))=µ.(t ,B(t)), and µ.'(t,p)=oo for pM(t) and 

p,B(t). Note that f(A)=j'(A) and f(B)=j'(B). (In fact B is still an optimal 

assignment). The starting time function s' is defined to be only slightly 

different from s. For tt.K, s'(t)=s(t). For tEL: 

s'(t)= 1; 

ueL:s(u)<s(t) 

For teK-L: 

ueK -L:s(u.)<s(t) 

Thus, all of the tasks in L are scheduled before all of the tasks in 

K -L, and within each set (L and K-L), the order that the tasks are scheduled is 

the same. Also E0(L)=j'(L) and the sets K and L are unchanged. 

Note that A withs' is consistent with the (1), (2), and (3) for p.'. 

Condition. ( 1) follows immediately since tasks are executed on the same 

processors, with the same efficiency as in s. Condition (2) needs to be 

verified only for tasks in K. If ueK and s' (t)>s'(u) then since ej{u, 1)=1, 
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cj(t, t)~ej(u, 1). If tEL, s/(t)>s'(u) and A(u)~1, then since 

s(t);:;~_s''(t)>s'(u)=s(u), ej(t,A(u))S~f(u,A(u)) (using the fact that (2) was true 

for s). If, tEK -L and s'(t)>s'(u), condition (2) follows from the fact that in 

the primed system all tasks tEK-L have efficiency less than 1/../m for all but the 

first processor. Con~ition (3) follows in a similar manner. □ 

This modification of µ to µ' is an ad hoc modification needed to make 

the technical assumption (v). 

To obtain a bound on f(A)/J(B) we compute a bound on the ratio using 

the starting function s / on ·the task system µ /. Note that J(K )2.s(z) by 

condition (3) on A and s. Also, J(A)=s(z)+E(A,{z}). Therefore, 

f(A)~E(A ,{z))+E(A,K-L)+E(A,L). A bound will be obtained on the three summands 

in terms of J(B). This will be used to get a bound on J(A)IJ(B). In the 

sequel, we will drop the primes of µ, s, and f, for notational convenience. 

The proof however refers to this modified task system and starting time 

function. 

Lemma 2. Let A,B as above and 19Sn. Then E(A,{t})s✓m J(B). 

Proof. This follows from the fact that A assigns tasks to processors that are 

somewhat efficient for the task. That is, 

f(B )2.E (B ,{t} )=µ (t ,B(t))2_b(t)=ej(t ,A(t) )µ(t ,A(t)). By condition (1 ), 

ej(t ,A(t) )2. 1 /-J m. Thus ef(t ,A(t))µ(t ,A(t))2_µ(t,A(t))!-Jm=E(A ,{t} )/../m. □ 

Lemmas 3,4, and · 5 are technical facts that are needed for ·the proof of 

Lemma 6. 
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Lemma 3. · Let A,B,K,L as above. Then ✓mE(A,K-L)~E(B,K-L). 

Proof. E(B,K - L)=!,tEK ·L µ(t,B(t))'?._!,tEK ·L ✓m µ(t,A(t)) by the definition of 

K-L. Thus E(B,K -L)?_E(A,K-L)✓m. □ 

Let tiEL be the i
th task of L (ordered by starting time). Assume 

ILl=q. 

Lemma 4. Let A ,L as above. Then 

!,tel b(t)f(t)=!,i~ 1b(ti)!, / = l b(t}'c_(!,i~ 1b(t})
2 

t2=E(A,L )
2 

/2. 

Proof. The first equality follows from the fact that for !EL, A(t)=l, and the 

fact that all tasks in L are executed sequentially with no intervening tasks. 

The last equality follows from the definition of E(A,L). To get the inequality 

T,i~ 1b(ti)!,j =tb(t/?._(!,i~ 1b(ti))
2

/2 note that on the left hand side of 

the inequality the term b(t.)b(t .) appears exactly once. This term appears 
l ) 

twice on the right hand side for i~j and once for i=j in the expansion for 

E(A,L)2 . Dividing by two proves the result. D 

-1 } Lemma 5. Let A,B,A ({2, ... ,m ),L as above. Then 

Eo(LUA- 1 ( {2, ... ,m} ))?_(£(A,L)2 /2f(B))-E(A ,L). 

Proof. The main intuitive idea will be to show that if the set L is 

large, then £ 0 ( A- 1 ( { 2, ... ,m})) .must be large. The reason is as follows. Consider a 

task tEL. Since processor B(t) is somewhat efficient on t, processor B(t) is a 

candidate processor for t to be assigned to in A. The only reason that t would 
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not be assigned to processor B(t) is because the workload in A of tasks 

assigned to processor B(t) exceeded s(t) (by condition (3)). Thus if L is a 

large set, it must be that the total workload of A- 1({2, ... ,m}) is large, or else 

tasks of L would be assigned earlier to different processors. Thus a relation 

is derived relating the size of L to the value of £
0

(A- 1({2, ... ,m})). 

To make the above intuitive ideas precise, it is convenient to divide L 

into m portions. Lp=LnB- 1(p) is the subset of L that is assigned in B to the 

pth 
process~r, and in particular is executable efficiently ·on the pth 

processor. The set A- 1 ( p) ( the tasks assigned to the p th processor by A) 

is the set that we will show is large, based on the size of L p- Note that 

- 1 m -1 
A ({2, ... ,m})=Up=zA (p). 

For the rest of the proof, fix a value of p and define the following 

parameters (which have an implicit dependence on p). Let e be the number of 

tasks in LP' and let these tasks be denoted t 1 , ... ,t e with 

s(t 1 )<s(t 2 )< ... <s(te). For i=l, ... ,e, define Ut{tEA- 1(p) : s(t)<s(ti)). 

The set U. is the subset of A-1(',) started before task t .. 
l f' l 

Note that ef(ti,p)z. 1 /✓mby the definition of L. Thus, by condition (3) 

-1 
f(A (p))z.s(ti) for every i. Thus some task in Vi finishes after s(ti) and 

thus J(U .)>s(t .). 
l - l 

For i =1 , ... ,e, define efi to be the smallest efficiency of any of the 

tasks in U i on p, i.e., cfi=mintEU _ef(t ,p ). Note that if k>i, then efk ,S,efi 
l 

since UicU k' Also, ef(ti,p)~efi by condition (2) since otherwise ti would have 

been assigned to p before the last task in U i was assigned to p. Note that 
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This follows because f(B) exceeds the actual workload assigned to any 

one processor in B. Also note that 

Using the above definitions and inequalities, we may now show that the 

minimal workload of the set A- 1(p) must be large if LP is large. 

For convenience define U 0 =0, /(0)=0, and efe+ 1 =O. From the 

definitions we have 

Using (3) and ef(t,p)~cfi for tEUi-Ui - l produces 

Combining (4) with the fact that It U U µ.(t,p)=f(U.)-f(U. 1) produces 
E C i -1 l l-

The last equality is obtained by rearranging indices. Now, using 

f(U .)>s(t .)=( 11t .)-b(t.)) we have: 
i - l ':/ 'i I 
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To get (6) from (5) note ef/z.efi+l · 

Let X=~= 1J(ti)(efi-efi+l) and Y=~= 1(eft-efi+l )b(t/ Then 

E 0 (A-
1
(p))~X-Y. Note that ef/:.1 for every i. Thus Y<;,~=f(Ti). 

Also, for each k we have: 

, Equation (7) follows from eji2efi+ 1 for every i and f(ti)>f(ti- 1) for 

every i. Using (2), (7), and ( 1) (successively) provides: 

Thus X2ItEL f(t)b(t)/f(B). This together with the bound on Y 
. p 

provides us with 

A special computation is done for E0(L). We claim that 

( 10) £ 0 (L)~ItEL ((f(t)b(t)/f(B))-b(t)). 
1 

This follows from ItEL 
1 
((J(t)b(t)/f(B)-b(t))<;,ItEL fOb(t)/f(B) 

S(maxtEL l(t))ItEL b(t)/j(B) 5,maxtEL f(t)=E0(L). The last equality follows 
1 1 

from Lemma 1. This is the step for which we had to transform the original task. 
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system into µ /. 

Finally, we compute £ 0(LU[ 1({2, ... ,m))). 

£ 0 (LUA -
1
({2, ... ,m}))=(Ip=fo(A- 1(p)))+E0(L) by definition. By (9) and (10), 

E o<LUA-
1 
( { 2, ... ,m}) )z(I p=z It EL p ((f(t)b(t)f f(B ))-b(t)))+(ItEL t ((f(t)b(t)/f(B ))-b(t))). Thus 

( 11) 

By Lemma 4 and equation (11), £0(LUA- 1({2, ... ,m}))~(E(A,L)2 tzf(B))-E(A,L). □ 

Lemma 6. Let A,B,K ,L as above. Then E(A,K-L)+E(A,L)~(t.5-./m +1+(1/2-v'm)V(B). 

Proof. Combining Lemmas 3 and 5 we derive that 

E(B,{ 1, ... ,n} )zE0(LUA- 1( {2, .... m} ))+E(B,K -L)z(E(A,L)2 tzf(B))-E(A,L)+-v'm-E(A,K - L). 

Note that mf(B)zE(B,{ 1, ... ,n} ), since B can do no better than divide the 

workload of all the tasks equally among the m processors. Thus 

mf(B)z(E(A,L)2 l2f(B))-E(A,L)+✓m E(A,K-L). Let a=E(A,K-L)/f(B) and 

b=E(A,L)/f(B). Then, 2mzb2-zb+Za✓m. To prove the lemma, we determine the 

maximum value for (E(A,L)+E(A,K-L))/J(B)=a+b subject to 2mzb2-zb+2a✓m. 

Note that the maximum value of a+b occurs at a=(2m-b2+2b)/2-v'm(for any 

fixed value of b). Now, to maximize b+((Zm-b2+Zb)/2✓m), differentiate with 

respect to b, and set the derivative to 0. Solving 1+(2-2b)/2✓m=O produces 

b=1+✓m. For that value of b, the maximum value for a is (-v'm/2)+(1/2-v'm). 

Thus the maximum value of a+b is 1.5✓m +1+(1/Z✓m) and the lemma is proved. D 
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Theorem 1. Let A be an assignment function for a task system consistent with 

( 1), (2), and (3). Let B be an optimal assignment function. Then 

f(A)/f(B)'!:,2.5✓m+ 1+( 1 /2✓m). 

Proof. Reduce µ to µ' as above, and analyze f(A)/f(B), by analyzing 

the assignment function A together with the starting function s'. Note that by 

Lemma 2 E(A.{z})'!:,✓m f(B). Use f(A)~E(A,{z})+E(A,K -L)+E(A,L) together with 

E(A,{z} )'!:, ✓m J(B) and E(A,K -L)+E(A,L)~( 1.5✓m+1+( 1 /2✓m)lf(B) to get the theorem. D 

4. Achieving the bound to a constant factor 

Consider the following m+ 1 x m task system. For t= 1, ... ,m-2, µ(t, 1 )= 1, 

µ(t,t+2)=E+✓m, and µ(t,p)=oc, for p11,t+2. The value E)O is a parameter which 

will be sent to zero to get as tight a bound as possible. In addition, 

µ(m- 1 ,2)=E and µ(m-1,p )=cc, for pf2; µ(m,3)=m-2-E, µ(m,2)=✓m, and µ(m,p)=«> for p~Z,3; 

µ(m+t, O=✓m, µ(m+1,3)=m, and µ(m+1,p)=oc, for p;t,3. 

An optimal assignment is as follows. For t=t, ... ,m-2, B(t)=t+2, 

requiring time E+✓m. B(m-1 )=B(m)=2, and thus the actual workload of the 

tasks assigned to processor 2 is E+✓ m. Finally, B(m+ 1)= 1, requiring time ✓m. 

An assignment consistent with ( 1), (2), and (3) may proceed as follows. 

First note that no tasks may be assigned to processors 4, ... ,m since no task is 

sufficiently efficient on those processors. A(l)= 1 for t= 1, ... ,m-2 with 

s(t)=t-1. A(m-1)=2 with s(m-1)=0. A(m)=A(m+ 1 )=3 with s(m)=O and s(m+ 1 )=m-2-e. 

It is straightforward to verify that this satisfies (1), (2), and (3). 

Due to the tasks assigned to the third processor, f(A)=2m-2-e. The 

ratio between finishing times is (2m-2-e)/(€+✓m). As e gets smaller the ratio 

approaches 2·./m-(2/✓m). D 
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5. Scheduling with limited information 

In this section we indicate that no algorithm with certain limitations 

can have better worst case behavior which is orders of magnitude better than 

that of Algorithm 1. Specifically, assume that the scheduler knew the matrix 

of efficiencies but not the matrix that specifies the time requirements. Such 

a circumstance is imaginable if the tasks had known characteristics, but the 

actual time required was unknown (for example due to loops of undetermined. 

number of iterations). 

If only the efficiencies are known, any algorithm that develops an 

assignment based only on this information must be at least ✓m times worse than 

optimal in the worst case. This is true even if before assigning a task to 

start at a given time, the scheduler knows the absolute time requirement of all 

tasks finished by that given time (as one might expect that the scheduler would 

at least have access to that information). This indicates that our algorithm 

is within a constant factor of optimal for this type of scheduling. This fact 

is independent of running . iime; no algorithm can do better than vm times worse 

than optimal irrespective of the amount of time it takes. 

Consider the following m x m efficiency matrix. The entries are 

ef(t, 1)= 1, and ef(t ,p )= 1 / ✓m for p> 1. If an algorithm assigns all of the m tasks 

to the first processor then in the worst case, the assignment is vm times worse 

than optimal. This occurs when µ(t, 1) is the same for t= 1, ... ,m. Then 

assigning all tasks to the first processor requires time m, whereas assigning 

the , th task to the , th processor requires time ../m. 

On the other hand, if any of the tasks are not assigned to the first 

processor, the performance ratio is still ../m times worse than optimal in the 

worst case. Assume that the t th task is the first one not assigned to 
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processor 1, and is instead assigned to processor p. Assume that µ(u, l)=e: for 

u# and 1,t(t, 1)= 1. Then an asymptotically optimal assignment has B(t)= 1 and 

B(u)=u for uf.t. This requires time t+e, whereas the heuristic requires at 

least time. ✓mby assigning the tth task to the · 1th processor. Thus the 

heuristic is ✓m times worse than optimal. D 

Note that the processors are "uniform" in this example. That ·1s, 

ej(t,p) depends only on p and is independent of t. For t_his case, an algorithm 

was presented in [7] which is asymptotic to ✓m times worse than optimal in the 

worst case, even if there are precedence constraints. In this environment of 

incomplete information, the heuristic presented in (7] is asymptotically 

optimal. 

Even in this restricted environment, where the matrix µ is not known, 

the above result is not a strong result for the following reason. A very weak 

form of preemption avoids the difficulties illustrated in the example. 

Specifically, if at "run-time", a ti3sk which has been begun on one processor 

may be reassigned to be rerun from the beginning on another, then the above 

task system may be executed relatively efficiently even if the absolute time 

requirements are not known a priori. 

6. Two improved algorithms 

In this section we consider two minor modifications to Algorithm 1 

which provide slightly· better performance bounds: 

Algorithm 2 . 

Step 1. Same as Step 1 in Algorithm 1, except that if ej(t,p)=ej(u,p), then 



t is ordered before u if µ.(t,p)zµ.(u,p). 

Steps 2-4. Same as Algorithm 1. 
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This algorithm satisfies the following stronger form of condition (2). 

_(2") If s(t)>s(u) then either ej(t,A(u))<ej(u,A(u)) or ej(t,A(u))=ej(u,A(u)) 

and µ(t,A(u))sµ.(u,A(u)). 

We obtain a bound on this algorithm of approximately (1+✓2)✓m times 

worse than optimal. 

Using the notation of Section 3, we wish to place a bound on 

(E(A,K-L)+E(A,{z}))!j(B). If K-L is empty then 

E(A,K-L)+E(A,{z))!f(B)=E(A,{z))IJ(B) s✓mby Lemma 2. If K-L is not empty, 

choose teK -L. Then f(B)zµ.(t,B(t))z✓m µ.(t, 1)z✓m µ.(z, 1)2µ.(z,A(z))=E(A,{z} ). Thus 

E(A,{z})/f(B)=1. Furthermore, by Lemma 3, ✓m E(A,K-L)sE(B,K-L). Since 

mf(B)2E(B,K -L) , we conclude E(A,K-L)!J(B)~✓m. Hence in either case 

(E(A,K-L)+E(A ,{z}))!f(B)s✓m +1. 

Applying the inequality E0(LUA- 1({2, ... ,m}))s"if(B) to Lemma 5, we obtai~ 

mf(B)2(E(A,L)2 l2f(B))-E(A ,L). Let x=E(A,L)!f(B). Then mz(x2 tz)-x. Solving 

this for the maximum possible value for x yields x=(t+✓ 2m+1). Thus 

E(A,L)/f(B)st+✓Z-lm+ (1/2-12-lm). Using the above inequalities proves: 

Theorem 2 . Let A be an assignment given by Algorithm 2 and let B be an optimal 

assignment. Then f(A)/f(B)$(1+✓2)✓m +2 + (1/-18-lm). 

Next we present a different modification of Algorithm 1, which has a 

worst case performance ratio of 1.5-/m time worse than optimal. This algorithm 

has running time O(mm+mnlog(n)), and is therefore quite useless if the number 
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of processors is an input to the problem. However, in the situation that the 

scheduler needs to deal with a bounded number of processors, this is still an 

O( n log( n)) algorithm. 

Algorithm 3. 

1. Devise an assignment A 1 and starting function s, using Algorithm 1. 

2. Let u be the task that has latest starting time in s, and let 

U ={tif(t )> s(u) } . 

3 . Determine an optimal assignment for the set U (considered as entire 

task system) by trying all possible assignments. Assign each task in U to the 

processor that it is assigned to in this optimal schedule (the tasks in U are 

assigned to start after the other tasks already assigned to the relevant 

processors). 

First note that IVl~m. This follows from the fact that if t 1,t 
2

EV 

then A 1 (t 1 )tA 1 (t 2 ). For if two tasks are assigned to the same processor, 

the later one must have starting time which is later than s(u). Note that the 

running time of Algorithm 3 is O(mm+mnlog(n)). Step 1 requires time 

O(mnlog(n)). Step 3 requires time O(mm) since each possible assignment 

must be considered. Once these mm schedules have been tried, determining the 

best assignment also requires no more time than O(mm). We proceed as in 

Section 3, letting A be an assignment resulting from Algorithm 3, and letting B 

be an optimal assignment for µ.. 

The sets K and L are defined on the basis of u. At time .s(u), if 

ej(u,p )= 1, then (informally speaking) processor p is still executing tasks that 

have efficiency one. Assume again that p= 1. The set K consists of all tasks 
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assigned to processor one with starting time earlier than s(u). As in Section 

3, L ={teK :ef(t .B(t))'?_ 1/✓m}. The proof that E(A,L)+E(A,K-L)5',( 1.5✓m + 1+(t/2v'm)V(B) 

still applies, even though the sets L and K -L are not the same as those defined 

in Section 3. 

Let I'(U) be the "optimal finishing time" of the set of tasks U when 

considered as a separate task · system (i.e., not as part of µ). Then it follows 

from the design of the algorithm that f(A)~E(A,K-L)+E(A,l)+J-(U). Thus to obtain 

a bound on f(A)lf(B) it suffices to get a bound on J-(U) in terms of f(B). But 

clearly I'(V)$f(B). Using this fact together with Lemma 6 provides: 

Theorem 3. Let A be a schedule obtained with Algorithm 3, and let B 

be an optimal schedule. Then f(A)lf(B)~( 1.5✓m +2+( 1/2,/m)). 

To show that the bounds on Algorithms 2 and 3 are achievable (to within 

a constant factor), consider the m x m task system given by µ(t,1)=1, 

µ(t,t)=e+✓m, and µ(t,p)=«> for pil,t. The heuristics assign all tasks to the 

first processor and perform ✓m times worse than optimal. □ 

The E approximation algorithms of Horowitz and Sahni [ 5, 12] require 

time n2m /E . Even for a relatively small value of m this algorithm 

requires too much time, as n lO or n20 algorithms are actually not 

feasible. Algorithm 3 requires time O(nlog(n)) for any fixed value of m and 

thus for most values of m it is more feasible than the algorithms of [5, 12]. 

7. Improving the constant factor. 

The threshhold of efficiency chosen by Algorithms 1, 2, and 3 is that 

if A(t)=p then ef(t,p)'?_ 1/✓m. While we feel that this is the best threshhold to 
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choose, we can actually obtain a better bound using a different threshhold. 

Consider the heuristic which is identical to Algorithm 1, except that 

it uses a threshhold of 1 /c✓m. Most of the analysis of the algorithm is the 

same with the following easily verifiable changes. (Note that the choice of 

whether tasks go into L or K -L depends on the threshhold of 1/c✓m.) It is 

curious to note that Lemmas 4 and 5 do not depend at all on the threshhold. 

(1) E(A,{z))sc✓mj(B). 

(2) c✓m E(A,K-L)sE(B,K-L) 

(3) In the proof of Lemma 6, when trying to maximize a+b, the relevant 

inequality· that constrains the maximization is as(2m-b2+2b)/2c✓m. This 

occurs at b=1+c·-im. For that value of b, the maximum value of a is 

( ✓m(2-c2)/2c)+( 1 /2c✓m). 

(4) Putting together ( 1) and (3) provides a bound on the algorithm of 

✓m((3c/2)+( 1/c)), neglecting lower order terms. The smallest value of this 

occurs at c =✓ 2/3 , where the bound is ✓ 6m times worse than optimal. This 

is marginally better than the original bound of v 6.25m times worse than 

optimal. D 

Using this technique in conjunction with Algorithm 2 provides slightly 

better results. If K -L is empty then (E(A,{z) )+E(A,K -L))/f(B)scvm and 

E(A,L)/f(B)s✓2✓m. If K-L is nonempty then E(A,A- 1({2, ... ,m)))/f(B)st, and 

E(A,K-L)+E(A,L)s((c/2)+( 1/c))vm. The best value of c to choose is the one that 

minimizes max(c+✓ 2,(c/2)+( 1/c)). Choosing c=2-v2 provides a bound of 2-./m. D 

· Using this technique in conjunction with Algorithm 3 provides 

m _arginally better results. In that case, E(A,{z}) does not effect the bound, 

and E(A,K -L)+E(A,L)s✓m((c/2)+(1/c)) plus lower order terms. For this case, 



24 

choosing c=../2 gives a bound on Algorithm 3 of being at most ./2../m times worse. than 

optimal. □ 

8. Two other heuristics 

The following is "Algorithm D" from [6]. This is the · algorithm that 

was shown to be between 2 and m times worse than optimal in the original paper 

of Ibarra and Kim. and we will show that in the worst case it is at least 

1 +logz<m) times worse than optimal. 

Algorithm D: 

Step 1. sump=O for 1~p~m, S={1, ... ,n}. 

Step 2. If S=0 then end. 

Step 3. Find an index tES such that mt {sump+µ(t,p)}~min {sump+µ(t",p)} 

all t "ES. Let p be such that su.mp+µ(t,p) is minimum. Define A(t)=p. Set 

~~mp=sump+µ (t,p) and S=S-{t}. Go to step 2. 

for 

The basic idea behind "Algorithm D" is the following. After i tasks 

have been scheduled, the scheduler sets up a temporary goal of trying to 

schedule one more task and minimize the total finishing time of the t+t task, 

t ask sys tem. The scheduler chooses the task to use as the i+tst, and which 

processor to assign it to. After iterating this procedure n times, all tasks 

have been assigned. 

· The following is an m x m task system for which algorithm D performs 

poorly. The e ntries are µ.(t ,p)=l if m-t+1 'c_ p and µ(t ,p)=«> if m-t+t<p. An 

optimal schedule has B(t)=m-t+1 with a finishing time of 1. However, the 

following schedule is consistent with Algorithm D. 
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Assume that m is a power of 2. The first m/2 tasks to be assigned are 

tasks 1, .. . ,m/2 with A(t)=t. After these are assigned, the workload assigned 

to each of the first m/2 processors is 1. Next, tasks (m/2)+1, ... ,(3m/4) are 

assigned. Task (m/2)+p is assigned to processor p. Continuing in this manner, 

tasks 1,(m/2)+1,(3m/4)+1, ... are all assigned to processor 1. Thus the total 

workload assigned to processor 1 is l+logz(m). The finishing time of A is 

t+log
2

(m). D 

The exact worst case performance of this algorithm is left as an open 

problem. Note, that while it may be a better algorithm than the algorithms of 

this paper in terms of worst case performance, it has a longer running time. 

Algorithm 1 requires time O(mnlog(n)) whereas "Algorithm D" requires time 

O(mn 2 ). 

We mention one final trivial algorithm which is quite simple, and in 

fact generalizes to the situation where there is a precedence relation. If 

there is a precedence relation between tasks, then the starting time function 

is needed in order to determine the finishing time of an assignment function. 

This is due to the fact that if t<u, the restriction s(u)?j'(t) is imposed. 

Thus different starting functions for the same assignment might have different 

finishing times. In particular, the finishing time is not just the maximum of 

the workloads of each processor. Instead, the finishing time of the task 

system is the maximum finishing time of the individual tasks. Other than that, 

none of the definitions change, and the concepts of optimal schedule and 

performance r atio still apply. 

This naive algorithm is to assign each task to a processor which has 
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efficiency one for the task. Since there is a precedence relation in this 

general case, processors may be temporarily idle and reactivated. However, we 

insist that at no time (before the finishing time) are all processors idle. 

Let A be a schedule consistent with the heuristic and B an optimal 

schedule for such an ordered set of tasks. Clearly j(A)~E0({1, ... ,n}), since 

E(A,{1, ... ,n})=E0({1, ... ,n}), and at least one unit of E(A,{1, ... ,n)) is 

executed per unit time (before the finishing time). However, 

f(B)~E0 ({1, ... ,n})/m. This follows from the fact that B can certainly do no 

better than assign all tasks to their best processor, and furthermore do them m 

at a time. D 

This bound of m times worse than optimal is achievable even without 

any precedence constraint. Consider the m x m task system with µ(t, 1)= 1 (for 

t>t), i,t(t,t)=l+E, and µ(t,p)=«> for pt-1,t. The heuristic assigns all m tasks to 

processor 1 and requires time m. Optimal scheduling assigns task t to 

processor t and requires time l+E. As E goes to 0 , the ratio approaches m. □ 

' This algorithm was worth mentioning only because precedence constraints 

have a tendency to make scheduling heuristics perform quite poorly. For 

example, it can be shown that the natural extension of Algorithm 1 to the case 

that there are precedence constraints provides an algorithm which is as bad as 

m✓m times worse than optimal in the worst case. 

9. Conclusions 

We have presented a number of algorithms with behavior which is O(..Jm) 

times worse than optimal in the worst case. While this is the best possible 

behavior for a limited class of schedules, (as explained in Section 5), there is 

little reason to believe that this cannot be improved when considering a larger 
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class of schedules. Algorithm D of (6] still has not been fully classified, 

and appears to be a promising candidate for better order of magnitude behavior. 

An even more difficult problem seems to be finding an algorithm that 

has better than O(m) behavior in the presence of a precedence constraint. Such 

algorithms have been devised in the situation that the processors are of 

different speeds, but uniformly so (7] (i.e., the efficiency of a processor on 

a task is independent of the task). 
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