
MIT / LCS/TM-126

WITH WHAT FREQUENCY

ARE APPARENTLY INTRACTABLE

PROBLEMS DIFFICULT ?

Albert R. Meyer
Michael S. Paterson

February 1979

MIT/LCS/TM-126

WITH WHAT FREQUENCY ARE APPARENTLY INTRACTABLE PROBLEMS DIFFICULT?

A.R. Meyer and M.S. Paterson

February 1979

This report was prepared with the support of the National Science
Foundation Grant No. MCS77-19754 A03.

Cambridge

Massachusetts Institute of Technology

Laboratory for Computer Science

Massachusetts 02139

WITH WHAT FREQUENCY ARE APPARENTLY INTRACTABLE PROBLEMS DIFFICULT?

by
Albert R. Meyer, M.I.T. and

Michael S. Paterson, Univ. of Warwick*

Abstract: An algorithm is almost polynomial-time (apt) iff there is a polynomial p such
that' for all n, the algorithm halts within p(n) steps on all but at most p(n) inputs of size
at most n. It is shown that for NP-complete and polynomial space-complete problems;
as well as certain other apparently intractable problems such as integer factoring, .the
following conditions are equivalent: (1) the problem is solvable by an apt algorithm, (2)
the problem (or its complement) is polynomial-time transformable to a polynomial-sparse
set, (3) the problem is solvable in polynomial time.

Five well-known decision problems which apparently cannot be solved by
polynomial time algorithmsl are:

(i) any polynomial space-complete problem,
(ii) any NP-complete problem,
(iii) graph isomorphism,
(iv) integer factoring,
(v) linear programming (i.e. deciding feasibility of a ·system of

linear inequalities over the rationals).

Can these problems at least be solved by algorithms which are "fast" "nearly all the
time"? In particular, can these problems be solved by algorithms which are a lmo.s t
polynomial time (apt)?

Definition 1. An algorithm is apt iff there is a polynomial p such that for all n, the
algorithm halts within p(n) steps on all but at most p(n) inputs of size at most n.
APT (P, NP, respectively) is the set of problems solvable by apt (polynomial time,
nondeterministic polynomial time, respectively) algorithms.

*This work was supported in part by a National Science Foundation grant no.· MCS77-
19754 A03 and the M.I.T. laboratory for Computer Science.

KEY WORDS: NP-complete, reducible, polynomial- time

2

Recently, P. Berman [2] has elegantly proved the theorem that- there is an NP
complete· problem solvable by an apt algorithm iff P = NP . In other words, if, as is
widely supposed, P ;,! NP, then any algorithm solving an NP-complete problem must,
for infinitely many n, take more than polynomial time on more than polynomially many
inputs of size at most n.

In this note we present a simpler and more general version of Berman's result and
apply this generalization to obtain among other corollaries the following:

Theorem 1. Let L be any of the problems (i) - (v) above. Then L is polynomial- time
transformable (i.e. ~) to a problem in APT iff L is in P.

Before proceeding, we should note that for L equal to any of the familiar
examples of NP-complete or polynomial space-complete problems, it is obvious that
L E APT iff L e P. The reason is that each of these familar examples allows one to
"pad" any given problem instance into exponentially many different trivial variants of
approximately the same size . . For example, given an apt algorithm for recognizing
satisfiable propositional formulas, one could decide in polynomial time whether an
arbitrary formula F was satisfiable as follows: successively run the apt algorithm for a
polynomial number of steps on the formulas F, F /\ x1, F /\ x2, ... , where xi for i ~ 1 is a
variable not appearing in F. After examining at most polynomially many such formulas,
the apt algorithm must produce at least one response, and this response determines
whether F is satisfiable, because F is satisfiable iff F /\ xi is satisfiable.

On the other hand if the only reason for the frequent occurrence of hard instances
of the · satisfiability problem was the existence of the rather trivial kind of padding
indicated above, then the possibility would remain that the satisfiability problem was
polynomial transformable to a problem in APT -- because the padded instances could
be transformed back to underlying "unpadded" instances. Theorem 1 rules out this latter
possibility, unless P = NP. Thus the significant part of Theorem 1 is that it applies to
any problem ~ to the examples (i) - (v). (Actually, it is not obvious that integer
factoring, as formulated below, allows padding, so for L = integer factoring, even the
statement L e P iff L e APT seems interesting.)

Note that every recursive- subset of O* is in APT. An algorithm which rejects
inputs not in O*, and on O* carries out any effective decision procedure for the set, no
matter how inefficient, will be an apt algorithm. Thus Theorem 1 implies

Theorem 2. Let L be any of the examples (i) - (v) above. Then L is polynomial-time
transformable to a subset of O* iff L e P.

P. Berman observed that Theorem 1 implies Theorem 2, thereby settling a question

3

raised by L. Berman and Hartmanis [1]. Actually, P. Berman introduced another technical
condition which is (apparently) slightly weaker than polynomial-time transformability to a
single letter alphabet set.

Definition 2. A language L is (polynomial) sparse iff there is a polynomial p such that
for all n ~ 0 there are at most p(n) words of length at most n in L.

Let -L be the complement of L relative to ?*.

Definition 3. (P. Berman) A language L c :t* is sparse-reducible iff there is a
polynomial-time computable function f:~* ➔ b. * such that f(l) n fhl} = fd and f(l:*) is
sparse.

lemma 1. Each of the following conditions on L implies its successor:

(a) (3 S c O*) [L ~ S],

(b) (3 S E APT) [L ~ SJ,

(c) L is sparse-reducible,

(d) (3 S1, S2 c ~*) [S1 and S2 are sparse sets, L ~ S1, and -l ~ S2],

(e) (3 S .c ~*) [Sis sparse and L ~ S].

That (b) implies (c) was noted by P. Berman [2]. All the implications are easily
proved.

P. Berman used condition (c), as the hypothesis for his result about NP-complete
problems. S. Fortune [3] subsequently observed that Berman's argument using condition

. (c) could also be applied to polynomial space-complete problems.

In addition to generalizing the results to cover all the examples (i) - (v), we
observe that condi tion (d), namely that both L and -L are polynomial-time transformable
to sparse sets, suffices for the general theorem, and that condition (e) suffices for each
of the examples (i) - (v) or else for their complements. (We believe that no two of
conditions (a) - (e) are equivalent, but have not tried to verify this.)

In order to make our theorem easily applicable to (i) - (v) and similar examples, we
introduce a technical definition which generalizes the partial order "is shorter than" on
l:*.

4

Defin·ition 4. Let lxl denote the length of the string x. A partial order < on 2;* is
polynomially well-founded and length-related, OK for short, iff

(a) there is a polynomial p such that every finite <-decreasing chain is shorter
than p of the length of its maximum element, and

(b) x < y implies lxl 5 p(lyl) for some polynomial p, and all x,y e 2;*.

Obviously choosing to define x < y iff lxl < IYI is OK.

Definition 5. A language L cl:* is self-reducible iff there is an oracle Turing machine,
M, and an OK partial order on l:* such that, given an oracle for L, M accepts L in
polynomial time, and moreover, on any input x E t*, M asks its oracle only about
words strictly less than x in the partial order.

For example, the set of satisfiable propositional formulas is self-reducible: reduce
the problem of deciding F to problems of whether either of Ft and Ff are satisfiable,
where Ft (Ff) is the result of setting the first variable in F to true (false) and
simplifying; the OK order in this case is the one based on length.

The following problem, which is easily shown to be ~ to graph isomorphism, is
also self-reducible: given two undirected finite graphs G1, G2 and a partial injection
f:V 1 ... V2, where Vi is the vertex set of Gi, can f be extended to an isomorphism
between G1 and G2? The OK order we use is that (H1, H2, g) < (G1, G2, f) iff G1 = H1,
G2 = H2 and g properly extends f. The problem of whether (G1, G2, f) is
acceptable reduces to at most IV2l "smaller" problems of the form (Gi, G2, g) where g
extends f by one domain element.

Similarly, let INTFAC = { (m, a, b) I 1 < a 5 b 5 m anci m has a prime factor
between a and b}. It is easy to see that INTFAC E P iff there is an integer factoring
algorithm which runs in polynomial time. Reduce the question whether
(m, a, b) E INTFAC to the question whether (m, a, c) E INTFAC or (m, c, b) E INTAC,
where c = r(a+b)/21. The OK partial order is:
(m', a', b') < (m, a, b) iff m = m', a 5 a'~ b' ~ b, and b' - a'~ r(b - a)/21.

The argument for self-reducibility of linear programming is similar. Thus we have:

Lemma 2. Let L be any of the examples (i) - (v) above. Then L is ~ to a problem
which is self-reducible.

Main Theorem 3. If L and -l are polynomial-time transformable to sparse sets, and L
is self-reducible, then L E P.

5

Proof: To decide whether x e L, consider the tree whose root is labelled with x, and
such that every node labelled with any string y has, as its successive sons, nodes
labelled Yl , ... , Yk where (y1, ... , Yk) is the sequence of "smaller" strings about which the

. self-reduction asks its oracle given input y. This tree has only polynomial depth (by
Def. 4a), all labels are of length polynomial in the length of x (by Def. 4b), and the
degree of each node is bounded by a polynomial in the length of its label (by Def. · 5). It
can obviously be generated in order of a depth-first search in time bot,Jnded by a
polynomial times the number o.f nodes.

The number of nodes however may be exponential. We therefore prune the tree
as follows:

Let f be the polynomial time computable function transforming L to a sparse set;
similarly for g and -l. Whenever all the sons of a node, say with label y, have been
searched (and their membership in L consequently has been computed), then complete
the self-reduction on y and let answer(y) be the truth value resulting from the self
reduction. Enter the pair (f(y), answer(y)) into a cumulative "answer list" of such pairs.
Likewise enter (g(y), answer(y)) into a second such answer list. (In particular, some
leaves of the tree correspond to reductions in which the oracle is not interrogated; they
contribute the initial list entries.) When a node, say with label z, is first reached in the
construction of the tree, abort the depth-first search below that node if there is already
an entry for f(z) in the first list or for g(z) in the second list, using the answer in the
entry for f(z) or g(z) as the answer for z.

It follows by definition of polynomial-time transformat;>ility and induction on t~e
number of entries in the answer lists, that the answer for z obtai11ed in this way is
correct. Thus on completion of the construction of the pruned tree, the correct answer
for whether x e L is obtained.

We claim the pruned tree has only polynomially many no(U!s, thereby completing the
proof. To establish this last claim, observe that two internal. nodes of the pruned tree
(i.e. nodes with one or more unpruned sons) can have labels which map to the same
value under f or g only if they are. on the same path from. root to leaf in the tree.
Otherwise the depth-first search below one of them would flave been completed, and
entries made in the answer lists, before the other was first reached; but then the
search at the· node reached second would have been aborted before any sons were
searched, contradicting the assumption that it was an internal node.

Now if we consider the internal nodes labelled with strings in L, we observe that
there are only polynomially many distinct f values among them (since f(L) is sparse· and
lf(y)I is bounded by a polynomial in IYI) and each value occurs at most polynomially many
times (since each path from root to leaf is no longer than a polynomial). So there are

6

only polynomially many internal nodes labelled with words in L. A symmetric argument
applies to internal nodes with labels not in L.

But, since the degree of all nodes is polynomially bounded, a polynomial bound on
the number of internal nodes implies a polynomial bound on the total number of nodes.
□

We remark that the preceding proof that the pruned tree has orily polynomially
many nodes should not be taken as completely obvious. Both f and g values may repeat
many times, and there are potentially exponentially many distinct values.

Corollary 1: If some polynomial space-hard problem is polynomial-time transformable to
a sparse set, then P = Polyspace. ·

Proof: Let Q be the set of closed quantified propositional formulas which are true. It is
known that Q is complete in polynomial space [6, 7]. Moreover, Q is self-reducible since,

VpF(p) e Q iff [F(true) e Q and F(Jalse) e Q],

(F /\ G) e Q iff [F e Q and G e Q),

-,F e Q iff [Fit Q].

Finally, Q ~ -Q since F e -Q iff -, F e Q.

So if L is polynomial space-hard, i.e. Q ~ L, and L ~ to a sparse set, then

(by transitivity of ~) both Q and -Q are transformable to that sparse set. By
Theorem 3, we conclude that Q e P and hence P = Polyspace. □

S. Fortune [3] has observed for co-NP-complete problems, in particular for
propositional tautologies, that the hypothesis that TAUT is polynomial-time transformable
to a sparse set suffices to imply TAUT e P. The reason is that in this case the self-
reduction F e TAUT iff <Ft e TAUT and Ff e TAUT}, is conjunct i ue.2 In particular, if
any node label not in TAUT turns up in the tree constructed in the proof of Theorem 3,
the whole construction can be terminated because the root is not in TAUT.3 Thus only
the set' f(T AUT) need be sparse.

We note that this observation applies equally well to (the complements of)
problems (iii) - (v).

Theorem 4. If L is polynomial-time transformable to a sparse set and is conjunctively
self-reducible, then L e P.

7

Corollary 2: Let L be any of problems (iii) - (v) above. If -L is polynomial-time
transformable to a sparse set, then L e P.

Proof: The complement of L is obviously conjunctively self-reducible using the self
reductions noted above. o

Actually for (v), linear programming, the Duality Theorem implies that the problem of
deciding feasibil ity for a system of inequalities is ~ to the problem of infeasibility, so
the reasoning of Corollary 1 could also have been used in this case.

A natural question left open by the preceding development concerns the class
W-APT of weakly apt algorithms which, for some polynomial p and infinitely many n,
halt within p(n) steps on all but at most p(n) inputs of size at most n.

1. Does Theorem 1 hold with "W-APT" replacing "APT"? We conjecture
that it does.

The following technical problems also remain open:

2. For NP-complete problems, graph isomorphism, and integer
factoring, does being polynomial-time transformable to a sparse
set imply membership in P?

3. Are any two of the conditions given in Lemma 1 equivalent?

4. · 1s every problem which is polynomial-time transformable to a problem in
APT necessarily itself in APT?

Another question which arises is whether the hypothesis of self-reducibility in
Theorem 3 could be replaced by the simpler property of being in NP. This would be a
significant improvement of Theorem 3 even if the sparseness condition (d) of Lemma 1
had to be strengthened to condition (a) or (b), for example. However, either such
strengthening would be tantamount to solving one of the major open problems concerning
nondeterministic computation, because using Theorem 3, the following assertions are
easily shown to be equivalent

(i) there is a subset of O* in NP - P,
(ii) there is a subset of O* which is in NP and is not self-reducible,
(iii) nondeterministic exponentional time recognizability is not equivalent to

deterministic exponential time recognizability.

8

Furthermore, using Theorem 3 and recent results of Landweber et al. [4], the following
assertions are also easily shown to be.equivalent:

(iv) there is a set in (APT n NP) - P,
(v) there is a set in APT n NP which is not self-reducible,
(vi) P ;,! NP.

ACKNOWLEDGEMENTS: We would like to thank Zvi Gali! for calling the work of
P. Berman and S. Fortune to our attention, David Johnson for suggesting the application
of Theorem 3 to linear programming and integer factoring, and Vaughan Pratt and Ronald
Rivest for helpful remarks.

NOTES

1. For definitions of standard concepts such as polynomial-time algorithms, polynomial

time transformability (viz. ~), etc., see any of the references.

2. Schnorr [5] makes interesting independent use of a notion he also calls "self
reducibili~y"; his notion amounts to a special case of conjunctive self-reducibility.
(Schnorr~s version is actually formulated disjunctively because he works with NP rather

than co-NP problems.) The self-reducibility of the graph isomorphism problem was first

observed by Schnorr.

3. The tree generating/pruning procedure may not, of course, immediately detect a label
not in TAUT, so it continues until either a "false" entry is generated in the answer list of
f values, or the polynomial bound on the number of f values is exceeded. Actually either
of these two termination conditions suffices by itself to ensure that the constructed tree
has only polynomially many nodes.

REFERENCES

[1] Berman, L. and Hartmanis, J. On isomorphisms and density of NP- and other
complete sets. SI AM J. Comp. 6, 2 (June, 1977), 305-322.

[2] Berman, P. Relationship between density and deterministic complexity of NP
complete languages. Fifth International Colloquium on Automata, Languages, and

Programming, Udine (July, 1978), Springer Lecture Notes in Comp.Sci., 62, 63-71.

9

[3] Fortune, S. A note on sparse complete sets. Dept. of Computer Science,CornelJ
University, submitted for publication (Oct., 1978), 7pp.

[4] Landweber, L.H., Lipton, R.J. and Robertson, E.l. On the structure of sets in NP and
other complexity classes, Computer Sciences Technical Report 342 (Dec., 1978),
University of Wisconsin-Madison, 38pp.

[5] Schnorr, C.P. Optimal algorithms for self-reducible problems. Third International

Colloquium on Automata, Languages, and Programming, Edinburgh (July, 1976).

[6] Stockmeyer, L.J. and Meyer, A.R. Word problems requiring exponential time:
preliminary report. 6th Annual ACM Symposium on Theory of Computing (1973), 1-9.

[7] Stockmeyer, L.J. The polynomial-time hierarchy. Theoretical Computer Science 3, 1
(Feb., 1977) 1-22.

Cambridge, Mass
February, 1979

