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WITH WHAT FREQUENCY ARE APPARENTLY INTRACTABLE PROBLEMS DIFFICULT? 

by 
Albert R. Meyer, M.I.T. and 

Michael S. Paterson, Univ. of Warwick* 

Abstract: An algorithm is almost polynomial-time (apt) iff there is a polynomial p such 
that' for all n, the algorithm halts within p(n) steps on all but at most p(n) inputs of size 
at most n. It is shown that for NP-complete and polynomial space-complete problems; 
as well as certain other apparently intractable problems such as integer factoring, .the 
following conditions are equivalent: (1) the problem is solvable by an apt algorithm, (2) 
the problem (or its complement) is polynomial-time transformable to a polynomial-sparse 
set, (3) the problem is solvable in polynomial time. 

Five well-known decision problems which apparently cannot be solved by 
polynomial time algorithmsl are: 

(i) any polynomial space-complete problem, 
(ii) any NP-complete problem, 
(iii) graph isomorphism, 
(iv) integer factoring, 
( v) linear programming (i.e. deciding feasibility of a ·system of 

linear inequalities over the rationals). 

Can these problems at least be solved by algorithms which are "fast" "nearly all the 
time"? In particular, can these problems be solved by algorithms which are a lmo.s t 
polynomial time (apt)? 

Definition 1. An algorithm is apt iff there is a polynomial p such that for all n, the 
algorithm halts within p(n) steps on all but at most p(n) inputs of size at most n. 
APT (P, NP, respectively) is the set of problems solvable by apt (polynomial time, 
nondeterministic polynomial time, respectively) algorithms. 

*This work was supported in part by a National Science Foundation grant no.· MCS77-
19754 A03 and the M.I.T. laboratory for Computer Science. 
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Recently, P. Berman [2] has elegantly proved the theorem that- there is an NP
complete· problem solvable by an apt algorithm iff P = NP . In other words, if, as is 
widely supposed, P ;,! NP, then any algorithm solving an NP-complete problem must, 
for infinitely many n, take more than polynomial time on more than polynomially many 
inputs of size at most n. 

In this note we present a simpler and more general version of Berman's result and 
apply this generalization to obtain among other corollaries the following: 

Theorem 1. Let L be any of the problems (i) - (v) above. Then L is polynomial- time 
transformable (i.e. ~) to a problem in APT iff L is in P. 

Before proceeding, we should note that for L equal to any of the familiar 
examples of NP-complete or polynomial space-complete problems, it is obvious that 
L E APT iff L e P. The reason is that each of these familar examples allows one to 
"pad" any given problem instance into exponentially many different trivial variants of 
approximately the same size . . For example, given an apt algorithm for recognizing 
satisfiable propositional formulas, one could decide in polynomial time whether an 
arbitrary formula F was satisfiable as follows: successively run the apt algorithm for a 
polynomial number of steps on the formulas F, F /\ x1, F /\ x2, ... , where xi for i ~ 1 is a 
variable not appearing in F. After examining at most polynomially many such formulas, 
the apt algorithm must produce at least one response, and this response determines 
whether F is satisfiable, because F is satisfiable iff F /\ xi is satisfiable. 

On the other hand if the only reason for the frequent occurrence of hard instances 
of the · satisfiability problem was the existence of the rather trivial kind of padding 
indicated above, then the possibility would remain that the satisfiability problem was 
polynomial transformable to a problem in APT -- because the padded instances could 
be transformed back to underlying "unpadded" instances. Theorem 1 rules out this latter 
possibility, unless P = NP. Thus the significant part of Theorem 1 is that it applies to 
any problem ~ to the examples (i) - (v). (Actually, it is not obvious that integer 
factoring, as formulated below, allows padding, so for L = integer factoring, even the 
statement L e P iff L e APT seems interesting.) 

Note that every recursive- subset of O* is in APT. An algorithm which rejects 
inputs not in O*, and on O* carries out any effective decision procedure for the set, no 
matter how inefficient, will be an apt algorithm. Thus Theorem 1 implies 

Theorem 2. Let L be any of the examples (i) - (v) above. Then L is polynomial-time 
transformable to a subset of O* iff L e P. 

P. Berman observed that Theorem 1 implies Theorem 2, thereby settling a question 
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raised by L. Berman and Hartmanis [1]. Actually, P. Berman introduced another technical 
condition which is (apparently) slightly weaker than polynomial-time transformability to a 
single letter alphabet set. 

Definition 2. A language L is (polynomial) sparse iff there is a polynomial p such that 
for all n ~ 0 there are at most p(n) words of length at most n in L. 

Let -L be the complement of L relative to ?*. 

Definition 3. (P. Berman) A language L c :t* is sparse-reducible iff there is a 
polynomial-time computable function f:~* ➔ b. * such that f(l) n fhl} = fd and f(l:*) is 
sparse. 

lemma 1. Each of the following conditions on L implies its successor: 

(a) (3 S c O*) [L ~ S], 

(b) (3 S E APT) [L ~ SJ, 

(c) L is sparse-reducible, 

(d) (3 S1, S2 c ~*) [S1 and S2 are sparse sets, L ~ S1, and -l ~ S2], 

(e) (3 S .c ~*) [Sis sparse and L ~ S]. 

That (b) implies (c) was noted by P. Berman [2]. All the implications are easily 
proved. 

P. Berman used condition (c), as the hypothesis for his result about NP-complete 
problems. S. Fortune [3] subsequently observed that Berman's argument using condition 

. (c) could also be applied to polynomial space-complete problems. 

In addition to generalizing the results to cover all the examples (i) - (v), we 
observe that condi tion (d), namely that both L and -L are polynomial-time transformable 
to sparse sets, suffices for the general theorem, and that condition (e) suffices for each 
of the examples (i) - (v) or else for their complements. (We believe that no two of 
conditions (a) - (e) are equivalent, but have not tried to verify this.) 

In order to make our theorem easily applicable to (i) - (v) and similar examples, we 
introduce a technical definition which generalizes the partial order "is shorter than" on 
l:*. 
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Defin·ition 4. Let lxl denote the length of the string x. A partial order < on 2;* is 
polynomially well-founded and length-related, OK for short, iff 

(a) there is a polynomial p such that every finite <-decreasing chain is shorter 
than p of the length of its maximum element, and 

(b) x < y implies lxl 5 p(lyl) for some polynomial p, and all x,y e 2;*. 

Obviously choosing to define x < y iff lxl < IYI is OK. 

Definition 5. A language L cl:* is self-reducible iff there is an oracle Turing machine, 
M, and an OK partial order on l:* such that, given an oracle for L, M accepts L in 
polynomial time, and moreover, on any input x E t*, M asks its oracle only about 
words strictly less than x in the partial order. 

For example, the set of satisfiable propositional formulas is self-reducible: reduce 
the problem of deciding F to problems of whether either of Ft and Ff are satisfiable, 
where Ft (Ff) is the result of setting the first variable in F to true ( false) and 
simplifying; the OK order in this case is the one based on length. 

The following problem, which is easily shown to be ~ to graph isomorphism, is 
also self-reducible: given two undirected finite graphs G1, G2 and a partial injection 
f:V 1 ... V2, where Vi is the vertex set of Gi, can f be extended to an isomorphism 
between G1 and G2? The OK order we use is that (H1, H2, g) < (G1, G2, f) iff G1 = H1, 
G2 = H2 and g properly extends f. The problem of whether (G1, G2, f) is 
acceptable reduces to at most IV2l "smaller" problems of the form (Gi, G2, g) where g 
extends f by one domain element. 

Similarly, let INTFAC = { (m, a, b) I 1 < a 5 b 5 m anci m has a prime factor 
between a and b}. It is easy to see that INTFAC E P iff there is an integer factoring 
algorithm which runs in polynomial time. Reduce the question whether 
(m, a, b) E INTFAC to the question whether (m, a, c) E INTFAC or (m, c, b) E INTAC, 
where c = r(a+b)/21. The OK partial order is: 
(m', a', b') < (m, a, b) iff m = m', a 5 a'~ b' ~ b, and b' - a'~ r(b - a)/21. 

The argument for self-reducibility of linear programming is similar. Thus we have: 

Lemma 2. Let L be any of the examples (i) - (v) above. Then L is ~ to a problem 
which is self-reducible. 

Main Theorem 3. If L and -l are polynomial-time transformable to sparse sets, and L 
is self-reducible, then L E P. 
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Proof: To decide whether x e L, consider the tree whose root is labelled with x, and 
such that every node labelled with any string y has, as its successive sons, nodes 
labelled Yl , ... , Yk where (y1, ... , Yk) is the sequence of "smaller" strings about which the 

. self-reduction asks its oracle given input y. This tree has only polynomial depth (by 
Def. 4a), all labels are of length polynomial in the length of x (by Def. 4b), and the 
degree of each node is bounded by a polynomial in the length of its label (by Def. · 5). It 
can obviously be generated in order of a depth-first search in time bot,Jnded by a 
polynomial times the number o.f nodes. 

The number of nodes however may be exponential. We therefore prune the tree 
as follows: 

Let f be the polynomial time computable function transforming L to a sparse set; 
similarly for g and -l. Whenever all the sons of a node, say with label y, have been 
searched (and their membership in L consequently has been computed), then complete 
the self-reduction on y and let answer(y) be the truth value resulting from the self
reduction. Enter the pair (f(y), answer(y)) into a cumulative "answer list" of such pairs. 
Likewise enter (g(y), answer(y)) into a second such answer list. (In particular, some 
leaves of the tree correspond to reductions in which the oracle is not interrogated; they 
contribute the initial list entries.) When a node, say with label z, is first reached in the 
construction of the tree, abort the depth-first search below that node if there is already 
an entry for f(z) in the first list or for g(z) in the second list, using the answer in the 
entry for f(z) or g(z) as the answer for z. 

It follows by definition of polynomial-time transformat;>ility and induction on t~e 
number of entries in the answer lists, that the answer for z obtai11ed in this way is 
correct. Thus on completion of the construction of the pruned tree, the correct answer 
for whether x e L is obtained. 

We claim the pruned tree has only polynomially many no(U!s, thereby completing the 
proof. To establish this last claim, observe that two internal. nodes of the pruned tree 
(i.e. nodes with one or more unpruned sons) can have labels which map to the same 
value under f or g only if they are. on the same path from. root to leaf in the tree. 
Otherwise the depth-first search below one of them would flave been completed, and 
entries made in the answer lists, before the other was first reached; but then the 
search at the· node reached second would have been aborted before any sons were 
searched, contradicting the assumption that it was an internal node. 

Now if we consider the internal nodes labelled with strings in L, we observe that 
there are only polynomially many distinct f values among them (since f(L) is sparse· and 
lf(y)I is bounded by a polynomial in IYI) and each value occurs at most polynomially many 
times (since each path from root to leaf is no longer than a polynomial). So there are 
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only polynomially many internal nodes labelled with words in L. A symmetric argument 
applies to internal nodes with labels not in L. 

But, since the degree of all nodes is polynomially bounded, a polynomial bound on 
the number of internal nodes implies a polynomial bound on the total number of nodes. 
□ 

We remark that the preceding proof that the pruned tree has orily polynomially 
many nodes should not be taken as completely obvious. Both f and g values may repeat 
many times, and there are potentially exponentially many distinct values. 

Corollary 1: If some polynomial space-hard problem is polynomial-time transformable to 
a sparse set, then P = Polyspace. · 

Proof: Let Q be the set of closed quantified propositional formulas which are true. It is 
known that Q is complete in polynomial space [6, 7]. Moreover, Q is self-reducible since, 

VpF(p) e Q iff [F(true) e Q and F(Jalse) e Q], 

(F /\ G) e Q iff [F e Q and G e Q), 

-,F e Q iff [Fit Q]. 

Finally, Q ~ -Q since F e -Q iff -, F e Q. 

So if L is polynomial space-hard, i.e. Q ~ L, and L ~ to a sparse set, then 

(by transitivity of ~) both Q and -Q are transformable to that sparse set. By 
Theorem 3, we conclude that Q e P and hence P = Polyspace. □ 

S. Fortune [3] has observed for co-NP-complete problems, in particular for 
propositional tautologies, that the hypothesis that TAUT is polynomial-time transformable 
to a sparse set suffices to imply TAUT e P. The reason is that in this case the self-
reduction F e TAUT iff <Ft e TAUT and Ff e TAUT}, is conjunct i ue.2 In particular, if 
any node label not in TAUT turns up in the tree constructed in the proof of Theorem 3, 
the whole construction can be terminated because the root is not in TAUT.3 Thus only 
the set' f(T AUT) need be sparse. 

We note that this observation applies equally well to (the complements of) 
problems (iii) - (v). 

Theorem 4. If L is polynomial-time transformable to a sparse set and is conjunctively 
self-reducible, then L e P. 
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Corollary 2: Let L be any of problems (iii) - ( v) above. If -L is polynomial-time 
transformable to a sparse set, then L e P. 

Proof: The complement of L is obviously conjunctively self-reducible using the self
reductions noted above. o 

Actually for (v), linear programming, the Duality Theorem implies that the problem of 
deciding feasibil ity for a system of inequalities is ~ to the problem of infeasibility, so 
the reasoning of Corollary 1 could also have been used in this case. 

A natural question left open by the preceding development concerns the class 
W-APT of weakly apt algorithms which, for some polynomial p and infinitely many n, 
halt within p(n) steps on all but at most p(n) inputs of size at most n. 

1. Does Theorem 1 hold with "W-APT" replacing "APT"? We conjecture 
that it does. 

The following technical problems also remain open: 

2. For NP-complete problems, graph isomorphism, and integer 
factoring, does being polynomial-time transformable to a sparse 
set imply membership in P? 

3. Are any two of the conditions given in Lemma 1 equivalent? 

4. · 1s every problem which is polynomial-time transformable to a problem in 
APT necessarily itself in APT? 

Another question which arises is whether the hypothesis of self-reducibility in 
Theorem 3 could be replaced by the simpler property of being in NP. This would be a 
significant improvement of Theorem 3 even if the sparseness condition (d) of Lemma 1 
had to be strengthened to condition (a) or (b), for example. However, either such 
strengthening would be tantamount to solving one of the major open problems concerning 
nondeterministic computation, because using Theorem 3, the following assertions are 
easily shown to be equivalent 

(i) there is a subset of O* in NP - P, 
(ii) there is a subset of O* which is in NP and is not self-reducible, 
(iii) nondeterministic exponentional time recognizability is not equivalent to 

deterministic exponential time recognizability. 
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Furthermore, using Theorem 3 and recent results of Landweber et al. [4], the following 
assertions are also easily shown to be.equivalent: 

(iv) there is a set in (APT n NP) - P, 
( v) there is a set in APT n NP which is not self-reducible, 
(vi) P ;,! NP. 

ACKNOWLEDGEMENTS: We would like to thank Zvi Gali! for calling the work of 
P. Berman and S. Fortune to our attention, David Johnson for suggesting the application 
of Theorem 3 to linear programming and integer factoring, and Vaughan Pratt and Ronald 
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NOTES 

1. For definitions of standard concepts such as polynomial-time algorithms, polynomial

time transformability (viz. ~), etc., see any of the references. 

2. Schnorr [5] makes interesting independent use of a notion he also calls "self
reducibili~y"; his notion amounts to a special case of conjunctive self-reducibility. 
(Schnorr~s version is actually formulated disjunctively because he works with NP rather 

than co-NP problems.) The self-reducibility of the graph isomorphism problem was first 

observed by Schnorr. 

3. The tree generating/pruning procedure may not, of course, immediately detect a label 
not in TAUT, so it continues until either a "false" entry is generated in the answer list of 
f values, or the polynomial bound on the number of f values is exceeded. Actually either 
of these two termination conditions suffices by itself to ensure that the constructed tree 
has only polynomially many nodes. 
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