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ABSTRACT 

We offer an improved presentation of Aanderaa' s constructive proof 

of the Rabin-Hartmanis- Stearns conjecture: 

.For all 1<~2, there exists a language Lk such that Lk can be 

recognized by a k-worktape real time Turing machine but cannot be 

recognized by any (k- 1) - worktape real time Turing machine. 
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INTRODUCTION 

All Turing machine models recognize precisely the same class of 

languages. Intuition tells us however, that a well - equipped model, 

(e.g., a Turing machine with worktapes which have multiple heads) 

should have capabilities lacked by a less - equipped model, (e.g., a 

Turing machine with worktapes which have only one worktape head). 

One way to measure such capabilities is by comparing the time it 

takes each machine model to recognize the same language. This thesis 

studies the effect of having extra worktapes in the computational 

process. It addresses such questions as: 

i) Does having more work tapes make a machine model more efficient? 

ii) If so, how many extra work tapes are needed to achieve a given 

gain in speed? 

h·e shal 1 answer the first question affirmatively. Moreover, we wi 11 

prove that only one extra worktape need be added to make the Turing 

machine model faster and hence conclude: 

For al 1 k~2, the class of k- worktape Turing machines are more 

efficient than the class of (k-1) - worktape Turing machines. 

Our proof will consist in specifying a language Lk and a k- worktape 

Turing machine 9Jl such that fill can recognize Lk faster than any Turing 

machine with (k-1)-worktapes. 
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HISTORY OF THE PROBLEM 

In 1960, Rabin (10) showed that the 2-worktape Turing machine model 

was more efficient than the 1- worktape model. His proof consisted in 

specifying a language L2 and showing that it may be recognized faster 

by a 2-worktape Turing machine fill than by any 1-worktape Turing 

machine. L2 was specified as follows: 

Rabin showed that IDl may recognize whether an input was an element 

of L2 in time equal to the amount of time it took to read the input, 

i.e., in "real time". (Given an input, IDl need only store U on one 

worktape and Von the second worktape. After scanning#, IDl would then 

be able to simultaneously check whether uR or vR followed.) It was 

then shown that no 1-worktape Turing machine could recognize L
2 

as 

fast. Intuitively, no 1-worktape Turing machine could operate as fast 

as Wl and still be able to achieve a configuration after scanning # 

that would allow it to check simultaneously whether uR or vR followed. 

In 1965, Hartmanis and Stearns (6) conjectured a generalization of 

Rabin's result. This conjecture was finally proven by Aanderaa [1] 

fourteen years after the initial result. 

Although Aanderaa's proof was impressive in its result, we found it 

difficult to read. The ideas and insight which led to the proof did 

not seem readily apparent. We offer what we believe are simplified 

proofs of several of the technical results as well as an improved 

exposition. 
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PRELIMINARY DEFINITIONS 

We assume the reader is familiar with the multitape Turing machine 

model. (See [2, 7J.) We may characterize a multi tape Turing machine 

computation as follows: 

Initially, the input word appears with endmarkers on the input tape. 

The input head is scanning the left endmarker while all the worktapes 

are blank. The input word is accepted if and only if the multitape 

Turing machine started in a designated initial state, makes a sequence 

of moves at the end of which it enters an accepting state. The 

language accepted is the set of input words so accepted. 

We shal 1 find it convenient to number the squares of the work tapes 

and the input tape. A tape may be numbered by assigning consecutive 

integers to the squares such that zero denotes the square initially 

scanned by the tape head, while positive and negative integers 

correspond to those squares to the right and left, respectively, of the 

square denoted by zero. 

For the following definitions, we fix a multitape Turing machine~, 

with input alphabet r, worktape alphabet i, set Q of internal states 

and k work tapes indexed 1 through k. It wi 11 be convenient to refer to 

the input tape as the oth worl<tape. An integer j such that o=:;j::;k will 

be called a tape index of 9R. 

Let wer• denote an input word. The length of W shall be denoted by 

L (W). We may therefore denote W as w1w2 ••••••• wL(W) where w;er for 
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lsisLC\·;). The time of the computation of ID1 on W shall be denoted by 

Tml (W). 

For the rest of this section we let SEIN such that 0sssTID} (W). (We 

shal 1 use s to refer to a step, i.e., an instantaneous description 

(i. ct.) in the computation of ID1 on W.) 

DEFINITION 1 

Let j be a tape index of IDL POSN (j, W, s) is defined to be the number 

of the worktape square which is scanned by the j th tape head 

immediately after steps (i.e., the square scanned in the s th i.d. 

where the initial i. d. is counted as the zero th) in the computation of 

9Jl on W. 

DEFINITION 2 

Let j be a tape index of fill. Let ze7I.. CONT(j, z, W, s) is defined to be 

the contents of the z th square of the j th work tape immediately after 

step s in the computation of fill on W. 

DEFINITION 3 

STATE (W, s) is defined to be the internal state of IDl immediately 

after step s in the computation of fill on W. 

\"°e shall let ID(W,s) denote the i.d. immediately after the s th step 

in the computation of 911 on W. We can easily specify IDCW, s) in terms 

of the previous definitions. 
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DEFINITION 4 

The instantaneous description ID (W, s) of ID2 on input W immediately 

after steps is specified as follows: 

q=STATE(W, s), 

pj=POSN(j,W,s) for 0~j~k, 

u:CONT(0,p0,W,s), and 

for l~j :s;k, <\: 7l➔? such that ~/z) =CONT (j, z, W, s) for ze7l.. We remark 

that for almost all ze7l, ~j(z) is equal to the blank symbol. 

The reader may consult [2, 7] for an explanation of how a Turing 

machine computation may be formalized as a sequence of instantaneous 

descriptions and how the time of such a computation may be defined as 

the index o f the last instantaneous description in this seq~ence. 

DEFINITION 5 
,,.... 

Consider t he computations of 912 on inputs W and W • Let s, 'selN be such 
,,.... 

that o::;s~T~m(W) and 0~s~T931(W). Let nelN and let j>0 be a tape index 
,,.... 

of fill. h'e say that ID (W, s ) and ID (W, s) are n- equivalent on worktape 

j if the following conditions hold: 

,,.... 

i l STATE CW, s) =STATE (W, s), 
,,.... 

ii) POSN (j, W, s) =POSN (j, W, s), and 

iii) (v'm(-n~m~n)) 
,,.... ,,.... 

[CONT(j,POSN(j,W,s)+m,W,s)=CONT(j,POSN(j,W,'s)+m,W,s)J. 
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That is, immediately after step s in the computation of fill on W and 
A 

immediately after steps in the computation. of IDl on W we have that: 

i ) the internal states are equal, 

ii) the j th worktape head is scanning the same tape square, and 

iii ) the information accessible to the j th worktape head in the next 

n steps is equivalent. 

A 

We say that ID (W, s) and ID (W, s) are n-equivalent if ID (W, s) and 
A 

IDc~,s) are n-equivalent on all worktapes. 

We now offer a formalism by which specific parts of an input word 

may be identified. 

DEFINITION c, 

Let 1, melN such that 0~l~m. An interval I is defined to be the set of 

natural numbers {nll~n~m}, which we also denote as [l,mJ. 

For convenience, we shall define MIN(!) to equal 1 and MAX(I) to equal 

m. T h e 1 e n g t h o f i n t e r v a l I , I I I , i s d e f i n e d t o e q u a 1 

MAX (1) - MIN CI)+ 1. For completeness, we. shall specify an empty interval 

equal to <P such that l<Pl=0 and MAX(cp) and MIN(cp) are undefined. 

DEFINITION 7 

Let I a nd J be intervals. 

i) If MIN (J) =MAX (I)+ 1 then I and J are said to be adjacent. In this 

case, I UJ is equal to the interval, [MIN(I),MAX(J)J. 
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ii) J is said to be a subinterval of I if Jcl. 

DEFINITION 8 

i) The interval I is said to be an input interval of W=w1 ••••• wL(W) if 

1$MIN(I) and MAX(I)SL(W). 

ii) Let I be an input interval of W. W at I (written W@I) is defined 

to be the word wMIN( n· ..... wMAX( I)' We note that W@♦ =>. (where >. denotes 

the empty string.) 

~e conclude this section by presenting an information-theoretic 

concept by which we may characterize the retrieval of stored 

information. Consider the computation of ID2 on input W. Stored 

information will be retrieved precisely when some worktape head 

revisits a tape square. We shall refer to such a happening as an 

overlap event. Formally, we define an overlap event as follows: 

DEFINITION 9 

Let s, tEIN such that 0$s<tsT9Jl (W). Le.t j be a tape index of IDl. Let 

<TE~ur and let zE7l. The 5-tuple (s, t, j, z,cr) is said to be an overlap 

event in the computation of ID2 on W if the following conditions hold: 

i) POSN(j,W,s)=z and POSN(j,W,s+l);tz, 

ii) CONT(j,z,W,s+l)=cr, and 

iii) (min xls<xsT~JJl(W)) [POSN(j,W,x) =Z] =t. 
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Informally, the overlap event (s, t, j, z,<T) occurs if: immediately 

after step s, the z th square of the /h worktape is being scanned. At 

the next step, the tape head moves off this square leaving symbol IT 

written. Step t is the first subsequent step where the z th square on 

the j th worktape is revisited. 

hie call <T the overlap value and (j,z) the overlap location 

associated with the overlap event (s,t,j,z,<1). Finally, tis called 

the step at which the overlap event occurred. 

We shal 1 denote the set of overlap events in the computation of IDl on W 

by OVERLAP (W) • 
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REAL TIME LANGUAGE RECOGNITION 

DEFINITION 10 

9R is said to be a real time Turing Machine if it scans a new input 

symbol during each step of its operation. (fill must halt once the right 

endmarker is scanned on its input tape.) A language is said to be 

recognized in real time if it is recognizable by a real time Turing 

machine. 

For the rest of this section we shall assume that fill is a fixed 

k-worktape real time Turing machine with input alphabet r. Let W be an 

input word to fill such that L(W)>l. 

We make the following trivial observations: 

i) The head on the input tape of 9R must be one-way. Thus, no 

overlap events can occur on the input tape. 

ii) T9n(W)=L(W)+l. 

iii) (\fsl0~s~Tfill(W)) [POSN(0,W,s)=s). Thus if I is an input 

interval of W, the set of indices of steps where 9R is scanning some 

part of W@I equals I. 

We remind the reader that the definitions presented in the previous 

section apply to all mutitape Turing machine models. The following 

definitions become relevant under the real time constraint. 

DEFINITION 11 

Let I be an input interval of W. Let j be a tape index of IDl. 
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DSPM (j, W, I) is defined to be the displacement incurred by the j th 

tape head while IDl was processing W@I. Formally, DSPM (j, W, I) is 

defined to equal IPOSN(j,W,MIN(I))-POSN(j,W,MAX(I)+l)I. Notice for 

example, that DSPM(0,W,1)=111. 

We now formalize our notion of the information retrieval 

activity of 9Jl. 

DEFINITION 12 

Let I, J be adjacent input intervals of W. We define the adjacent 

overlap events of W during I and J to be the set 

{ (s, t, j, z,<T)EOVERLAP(W) IMINO)sssMAX(I) <tsMAX(J) }. 

We shall denote this set as ADJ - OVERLAP(W, I,J). Notice that 

ADJ-OVERLAP(W, I,J) consists of those overlap events where information 

was first stored while 9Jl was processing W@I and then retrieved while 

fill was processing W@J. 

DEFINITION 13 

Let I be an input interval of W such that I I I >1. We define the 

DIVIDING POINT of W during I (denoted by DP(W, I)) to be the least 

na t u r a 1 n u m b e r 1 ( M I N ( I ) S 1 < M A X ( I ) ) , s u c h t h a t 

IADJ-OVERLAP(W, [MIN(I),11, [1_+1,MAX(I)]) I is maximized . For 

convenience, we shall denote the set ADJ-OVERLAP (W, [MIN (I), DP (W, I) J, 

[DP (\v', I) + 1, MAX (I))) as SP-OVERLAP (W, I). 

In the argument to follow, ISP-OVERLAP(W,I) I will serve to capture 

our notion of the information retrieval activity of ID2 while it 
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pro c e s s e s \H I . It is for this reason that we shall refer to the 

elements of SP-OVERLAP(~!) as special overlap events. 

LEMMA 1 

Let I be an input interval of W. Then 

i) !OVERLAP CW) l~kL(W), and 

ii) ISP-OVERLAP(W, I) l~kl I I, 

Proof: 

i) For any given worktape and step of IDl, at most one overlap event can 

occur. Since there are at most L(W) steps for which an overlap event 

can occur we have that IOVERLAP(W) l~kL(W). 

ii) For any given work tape of Wl, there are at most I I I steps for which 

an overlap ~vent can occur while the input head is scanning some part 

of W@I. This implies that ISP-OVERLAP(W, I) l~klll.D 

We next demonstrate that for any set scr" for sufficiently large 

NEI~, while fill is processing the words ·of S there must exist some large 

subinterval I of [1, NJ for which: 

mean tSP-OVERLAP(W, I) I is a small fraction of III. ,,·es 

That is, on the average 9Jl will exhibit relatively small information 

retrieval activity while processing the words_ of Sat I. We shall argue 

that if mea n tSP- OVERLAP(W, I) I was a large fraction of III for all 
WES 
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large subintervals I of [1,NJ, then mean IOVERLAP(W) I would be greater 
. WeS 

than kN and th~s contradict lemma 1. 

Let N=pn 2
(n-l) for some integer pzl and some integer n>l. Let WerN. 

We define a set 3 of input intervals of Was follows: 

for O;S;i;S;2 (n-1 ) and O;S;j< N/(pn;), we define I .. =[jpn1+1, (j+l)pn.1). 
1 J . 

3 is then defined to be the set of input intervals 

{I 1jl O;S;i;S;2(n- 1) and O;S;j<N/(pn1)}. 

For convenience; we define for O;S;i;S;2(n-1) the set 3i of input 

intervals at level i to be {I 1je31 O~j<N/(pn1)}. 

We observe the following: 

i) Level i is a partition of (1, NJ into N/ (pn1
) intervals, each of 

size pn\ 

ii) Each interval at level i+l consists of n consecutive intervals 

at level i, viz., Ii+l,j is the disjoint union of I 1m such that 

nj;5;m<n (j+l). 

iii ) Any two input intervals are either disjoint or one must contain 

the other. 

To aid the reader, we offer an example which illustrates the set ~ of 

input intervals. 
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Let n=3. Then for WErN, where N=81p, we may specify the set ~ of 

input intervals of Was follows: 

4 
~= U ~; where: 

i =O 

~ 1 = {I 10' I 11, •••• ' 1126} = { [ 1, 3p]' [3p+ 1, 6p]' •••• , [78p+ 1, NJ}, 

~ 2 ={1 20, I 2p••··, I 28}={[1,9pJ, [9p+l,18pJ, •••• , [72p+l,NJ}, 

~\=0 30,1 3pl 32}={[1,27pJ, [27p+l,54p), [54p+l,NJ}, and 

Notice that level i consists of 81/31 distinct input intervals, each of 

size p31. 

THEOREM 1 

Let 9.Jl be a k-worktape real time Turing machine with input alphabet r. 
Let N=pn 2

(n-l) for some integer p~l and some integer n>l. Suppose scr". 
Then for some i (n-l~i~2 (n-1)), there exists an interval IE~i such 

that 

mean ISP-OVERLAP(W, I) IS3klll/Cn-1J. 
WES 

Proof: 

Let WES. he proceed by first proving the following lemma. 
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L ISP-OVERLAP(W, l) 1~3kN. 
le~ 

Let §={IE~I (VJe~) [IJl>IIl ⇒DP(W,J)tlJ}, i.e., le§ only if I does not 

contain the di Viding point of any input interval at a greater level. 

Lemma 2 shall follow immediately from claim 1 and claim 2. 

CLAIM 1 

L ISP-OVERLAP(W, l) l~kN. 
A 

I e ~ 

Proof: 

Let l,Je~ such that l?!J. We shall show that SP-OVERLAP(W, I)n 

SP-OVERLAP (W, J) =4> from which we may conclude 

L iSP- OVERLAP(W, I) l~IOVERLAP(W) I 
A 

le~ 
$ kN (by lemma 1.) 

case 1 

Suppose lnJ=(/>. Clearly then, SP-OVERLAP(W,DnSP-OVERLAPCW,J)=4>. 

case 2 

Suppose I5;J. Since Ie1, DP(W,J)¢I. Thus either 

Ic[MIN(J),DP(W,J)l or I~[DP-(W,J)+l,MAX(J)]. Suppose the first 

alternative holds. But then the special overlap events of Wat I occur 

before step DP(W,J), while the special overlap events of Wat J occur 

after step DP(W,J). Hence, SP-OVERLAP(W, I)nSP- OVERLAP(W,J)=q>. The 

second alternative may be dealt with similarly. 
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CLAIM 2 

L 1SP-OVERLAP(w, I) 1~2kN. 
"' 

IE(~ - ~) 

Proof: 

Let i be such that 0~i <2 (n-1). The maximum number of input intervals 

at level i such that each contains the dividing point of an interval at 

a greater level is bounded, a fortiori, by the total number of 

intervals at a greater level than level i. 

l~;n ~-~) 1 ~ L 
j > i 

Thus, 

= L N/ (pnj) 
i<j~2 (n - 1) 

= (N/p) ((1/n;)-(1/n2(n•l)))/(n-1) 

< (N/p) (1/n ;) / (n- 1) 

= 1~\l/(n- 1). 

By lemma 1, we have therefore that 

= kN/ (n- 1). 

Thus, by summing over levels 0 through 2 (n- 1) - 1 we have that 

L I SP-OVERLAP (W, I) I ~2kN. 
"' 

IE(~-~) 

Lemma 2 follows immediately from claim 1 and claim 2.0 
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Lemma 2 trivially implies that 

(it,) mean [ L I SP-OVERLAP (W, I) I J S3kN. 
WES I E ~ . 

We now proceed to prove theorem 1. 

Suppose to the contrary that for every IE~; such that (n-1SiS2(n-1)), 

mean I SP-OVERLAP (W, I) I> 3k I I I I (n-1). 
WES 

Then mean [ L ISP-OVERLAP(W, I) ll 
\YES IE~ 

L mean 
h'ES 

(n-1) Si S2 (n-1) 

= L 

L . I SP-OVERLAP (W, I ij) I) 
OSjS(N/ (pn 1))-l 

(n-1) Si S2 (n-1) 
L . [mean I SP-OVERLAP (W, I ij) I J 

, WES OSjS (NI (pn ) )-1 

> 3k/ (n-1) L 
(n-1) Si S2 (n-1) 

= 3k/ (n-1) L N 
(n-1) Si S2 (n-1) 

> 3kN 

which contradicts (*). □ 
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THE L/\NGU/\GE Lk 

In this section, we specify the language L1c for kz2 which can be 

recognized by a k-worktape real time Turing machine but cannot be 

recognized as fast by any (k-1) -worktape Turing machine. Lk may be 

derived as follows: 

Let 6 be a machine with k pushdown stacks; we use ie {1, •••• , k} to 

index the stacks. There are three canonical operations which S may 

perform: 

1) push symbol ex onto stack i, 

2) , push symbol fJ onto stack i, and 

3) pop stack i. 

Such actions may be encoded by supplying specific inputs to 6. We 

shall let: 

{a . ll<i <k} denote operation 1), , - -

{b I l < i <k} denote operation 2), and , - -

{c I l < i <k } denote operation 3). , - -

Thus for example, the input a 1c 3b2c1 would cause 6 to push a onto 

stack 1, pop stack 3, push fJ onto stack 2, and finally pop stack 1. If 

stack i is empty when c; is scanned, then by convention the encoded 

action is ignored. 

Let {a;ll~i~k}U{b;ll~i~k)U{c;ll~i~k} be denoted by rk. ~e define 

Lk to be those words \'-.'Er~ such that the last operation encoded by 

W does NOT involve popping symbol ex from some stack. 
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Obviously, Lk is accepted by a k-worktape real time Turing machine 

9.Jl, which simulates the behavior of S by simulating a different stack 

on each worktape. The input alphabet of IDl is rk while the worktape 

alphabet is {~, a, fJ} where ~ denotes the blank symbol. When IDl scans a 1 

or b;, it writes a or f3 re spec ti vely on the i th work tape and then 

shifts the i th tape head one square to the right. When c 1 is scanned, 

9R writes~ on the i th worktape (thus simulating a pop) and then shifts 

the i th tape head one square to the left. When the right endmarker is 

scanned, if no worktape head is scanning a, the input word is 

accepted. 

Lk may be termed an information retrieval language. As long as 

the input symbols that 9R scans are a; orb; it will store information. 

When fill scans c 1 it will retrieve information. 

DEFINITION 14 

Let i e {1, •.•• , k} and 1 et wer~. PROJ (W, i) is defined to be that word 

which is obtained from W be deleting every aj,bj,cj in W such that j-1, 

i.e., the project ion of W on the i th index. 

For example, PROJ (c 2a 1 b2
a 2a 3c4, 2) =c

2
b

2
a 2• We note that I PROJ (W, i) I 

equals the number of symbols in W with index i. 

We now define a set ScLk with the following properties: 

i) Let WeS and let 19<j~k. Then the number of symbols with index 

i in \\" is s ignificantly less than the number of symbols with index j. 

ii) Al 1 words of S encode actions which reference the stacks in the 

same orde r. 
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For integer m> 1, let m denote f mi= (mk+1-m) / (m-1) and let PSTRING 
i = 1 

(pattern-s tring) denote ft afe<aillSiSk}m. Thus we have that: 
1= 1 

i) ('cii I lSiSk) [I PROJ (PSTRING, i) I =mil, and 

ii) (Vi, j I lSi<jSk) [IPROJ(PSTRING, j) l=rnj-ilPROJ(PSTRING, i) IJ. 

Therefore by choosing m appropriately large, we may cause the relative 

frequencies of symbols occurring in PSTRING with a specific index to 

vary as g rea tl y as desired. 

Let ~=qm for some integer q>O and let SEED denote the string 

(PSTRING)qe{aillSiSk}N. All the words of S shall be derived from 

SEED. 

\ve define Sc({ail1SiSk}Li{bil1SiSk})N by the condition that WeS if 

and only if W is obtainable from· SEED by replacing arbitrarily 

selected occurrences of ai by bi for lSiSk, Formally, we may specify S 

as follows: 

Let h: r: ➔r: be a homomorphism defined for 'YEr k as: 

h (-y) =a; if 'Y=bi for lSiSk, 

h ('Y) ='Y otherwise. 

Then we define S to be h-1 (SEED). We offer the following remarks: 

i) ScLk. 

ii) 1S1=2N. 
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iii) For a given N, PSTRING completely specifies the indices of all 

the symbols of any word in S. 

iv) Let X, YeS such that X-¢Y, Then there exists n, 15nsN, such that 

X@[n,n) and Y@[n,n) are differ~nt symbol~ with the same stack index i. 

Thus by the definition of Lk, there exists a string Ver: for which 

XVeLk if and only if YV~Lk. Specifically, we can choose V=< where r= 

I PROJ (SEED @ [n, NJ, i) I. 

Suppose W is a (k - 1) - worktape Turing machine which can simulate the 

behavior of S in real time. Consider how 91 might behave on XV such 

that XeS and Ver:. We would expect 91 to use a single worktape 1 to 

simulate, at least in part, the operation of two stacks indexed i, j 

(i < j) of E. By the construction of S, 91 must store considerably more 

information obtained from processing input symbols with index j, (which 

we shall refer to as "j-information") than from processing input 

symbols with index i, i.e. , "i-information". 

Suppose in order to store new j - information, tape head 1 incurs 

significant displacement away from old i-information. After processing 

X, W must be able to retrieve old _i-information fast in case V 

necessitates the retrieval of i - informa tion. · Since 9l operates in real 

time, tape head 1 would not have enough time to traverse the new 

j-information in order to retrieve the old i-information. Hence in 

order to operate properl)' , tape head 1 must "carry along" old 

i - informa tion as it stores new j - information. But this can only be 

achi e ved if tape head 1 can sustain substantial i nformation retrieval 

activit y. 

In the next section we shall invoke Theorem 1 and show there is an 
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input interval of the words in S for which the information retrieval 

activity is small enough to prevent 92 from proper operation. This 

shal 1 imply that no (k -1 ) -worktape Turing machine can recognize Lk in 

real time. 
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A Proof of the Rabin-Hartmanis-Stearns Conjecture 

Let Lk be defined as in the previqus section for fixed k~2. We now 

proceed to prove by contradiction tbat there exists no (k-1) - worktape 

Turing machine which can recognize Lk in real time. 

Assume that W is a (k - 1)-worktape Turing machine with input 

alphabet rk, worktape alphabet I, and set O of internal states which 

recognizes Lk in real time. 

Let melN be such that m>rnax[4(logl01+log(2k) ) ,32k21ogl:l;IJ. 

As in the previous section, we let n\d~f l: m;= (mk+1-m) / (m-1). 
;: 1 

such that n >12k(k-l)n\+1 and let N=kJDn2(n-l), 

Let nelN be 

By the methods outlined previously, we may construct a set Ser: 
such that Selk. The reader should consult the previous section for 

the special properties of S. 

By Theorem 1, there must exist some subinterval I of [1, t\J with the 

following properties: 

i) N11 2 <1ll~N, 

ii> Ill is a multiple of klll, and 

iii) mean I SP-OVERLAP (W, I) I $3 (k-1) I I I / (n-1) 
\ve:S 

< lll/(4kn\) (by our choice of n.) 

(* all logs are to the base 2.) 
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Since 92 has only (k-1) worktapes, we expect W to use a single 

worktape 1 to store, at least in part, the information obtained from 

pro c e s s i n g i n put s y m b o 1 s w i th i n de x i and_ index j , for so 11) e i , j 

(l~i<j~k). We shall refer to the information that is stored as a 

result of proces sing input symbols with index i and index j as 

"i-information" and "j-information", respectively. As implied by 

the discussion at the end of the previous section, we expect that 91 

can only process correctly words of the form X@[1,MAX(l)JV for XeS and 

ver:, if the computation proceeds with substantial information 

retrieval activity while X@[l,MAX(I)J is processed. 

Let so d~f {\vES I I SP-OVERLAP (W, I) I> I I I/ (kn\)}. 

LEMMA 3 ----

Proof: 

Suppose to the contrary that 1S0 1z1S1/4. Then 

mean ISP-OVERLAP(W,IJ lz1S0 1111/(ISlki) 
WES 

zlll/(4kn\) 

which contradicts property iii) of subinterval I.D 

Since 92 may incur moderate information retrieval activity while 

processing the words of S0 at I, we expect that W might be able to 

process correctly words of the form, X@[1,MAX(l)JV for XeS0 and Ver:. 

On the other hand, we shall argue that 92 cannot process properly al 1 

the words of the form X@[1,MAX(I)]V if XE(S-S0). Intuitively, since 



29 

W must incur little information retrieval activity while processing X 

at I, it will not be able to store the i-information and j-information 

on worktape l in such a manner that would allow it to process correctly 

any suffix V in real time. This will imply that 91 cannot process 

correctly all the words of (S-S0 ) and therefore contradict the 

assumption that 91 can recognize L" in real time. 

We proceed by formalizing our intuition. Let XE (S-S0). We suppose 

that W can only "store properly" either i-information or j-information 

(but not both!) on work tape 1 while it processes X@I. (By store 

properly, we mean, storing the information in such a way that would 

al low W to retrieve any part of it fast enough so that it may process 

any suffix in real time.) Since 91 incurs little information retrieval 

activity while processing X@I, tape head 1 cannot revisit too many 

tape squares while 91 stores information on worktape 1. Therefore, we 

ex p e c t 92 t o u s e some s c heme for s to r i n g i n f o rm a t i on o n t he 1 th 

worktape which approaches that of transcribing information onto 

cons ecutive tape squares such that the tape head is always close to the 

most rec en t information that is stored. Thus while processing X@I, if 

W predominantly uses worktape 1 to store properly i-information, we 

expect OSPM Cl, X, I) to be a large fraction o~ I PROJ (X@I, i) I which is 

the amount of i-information needed to be stored in order to process 

correctly X~I. Otherwise,· we expect OSPM(l,X,I) to be a large 

fraction of IPROJ(X@l,j)I. 

In order to discover what information has been stored properly, we 

shall view the computation of 91 on X@I in k stages, indexed 1 through 

L For i such that l~i~k, we shall use stages i, i+l, •••• , k to 

determin e whether 91 has stored properly i-information on any worktape 



30 

j (l~j~k-1). We shall show that for some _i, no worktape j will store 

properly the i-information during stages i,i+l, .... ,k. 

We divide I into k consecutive equal sized subintervals lp••··,Ik, 

namely, 

k 
Thus I= U I.. Stage i shall correspond to the computation of 92 on 

i = l 
1 

X@I,. Thus, stage i consists of the set of indices of steps equal to 

I;. 

LEMMA 4 

Let XES and let h,iE{l, .... ,k}. Then 

PROOF: 

By the construction of Sit suffices to show that the lemma holds for 

X=SEEO. 

I PROJ (SEED@Ih, i) I = I PROJ ( (PSTRING) 111/(k.:;,), i) I 

- IPROJ(PSTRING, i) I 111/(km) 

= m; I I I / (km) • D 

To aid the reader, we present the function NUM: {1, •••• , k} ➔llll where ,, 

NUM (i) d~rm; I I I/ (km). 

Thus, NUM(i) equals the number of s.ymbols with index i in X at any 

subinterval Ih (l~h~k) of I. 
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Suppcise Xe{S-S0). We note that i-information will not be stored 

properly on worktape j if either: 

i) worktape j predominantly stores '!-information for some i<i, or 

ii) worktape j predominantly stores '!-information for some 'bi. 

We expect the first alternative to hold if 

DSPM (j, X, I;)< {4k/m) NUM (i). 

That is, during stage i, if tape head j does not incur displacement 

greater than a small fraction of the displacement we expect necessary 

for the proper storage of i - information, we expect that m is primarily 

storing t-information for some 'i<i on worktape j. 

We expect the second alternative to hold if 

DSPM(j,X, U l
1
)>kNUM(i). . 

i < 1 

That is, during stages i+l, .... ,k, if tape head j incurs displacement 

significantly greater than the displacement we expect necessary for the 

proper storage of i-information, we expect that 92 is primarily storing 

i-information for some 'i>i on worktape j. 

This leads us to conjecture that i-information will not be stored 

properly during the computation of 92 on X@I if 

(Vjllsjsk-1) [DSPM(j,X,1,.)<(4k/m)NUM(i) or DSPM(j,X, U l 1)>kNUMCi)]. 
i( 1 

For convenience, we shall define for 15i5k, 

y; d~f { 4k/m) NUM (i), and 

z d~fkNUM(i). , 
For 1$i$k, 

S/~r(Xe(S-S0) I (Vjl1$j51<- 1) [DSPM(j,X,l;l<Y; or DSPM(j,X,;~/ 1)>Z;]}. 
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In particular, we note that XeSk only if DSPM(j,X,lk)<Yk for all j 

Intuitively, we expect that XeS; only if 91 does not store properly 

i-information while processing X@l. 

Suppose Xe(S-S0). Since there is little information retrieval 

activity whi 1 e 92 processes X@I, we expect for some i, that 92 does not 

store properly i-inforrnation while processing X@I, i.e., we expect 

that XeS . for some i. We now confirm our expectations by proving the 
l 

following two lemmas. 

LEMMA s 

Let XeS and let J, L be input intervals of X such that JcL. Let j be a 

tape index of 92. Suppose that DSPM(j,X,J)zy and DSPM(j,X,L)~z for 

y, zelN such that yz2z. Then 

ISP-OVERLAP(X,L) lz(y/2) - (z+l). 

PROOF: 

Since DSPM (j, X, J) '2.Y we have that either: 

i) IPOSN(j,X,MAX(J)+l)-POSN(j,X,MIN(L)) lzy/2, or 

ii) IPOSN(j,X,MIN(J))-POSN(j,X,MIN(L)) lzy/2. 

Suppose the first alternative holds. Since DSPM(j,X,L)~z, the tape 

square denoted by POSN (j, X, MAX (L)) must be within (z+l) tape squares 

of the square denoted by POSN (j, X, MIN (L)). Therefore after step 

MAX(j)+l, tape head j must revisit at least (y/2)-(z+l) tape squares 
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which implies that ISP-0VERLAP(X,L)l~(y/2)-(z+l). 

alternative may be dealt with similarly. □ 

The second 

\ve note that an improved lower bound of (y- (z+l)) /2 may be 

established by a more complicated proof. The weaker bound shal 1 

suffice for our purposes. We also remark that lemma 5 is a direct 

consequence of the linear structure of the worktapes of W. 

LEMMA 6 

k 
= us .. 

i = 1 1 

PROOF: 
k 

Clearly it suffices to show that (S-S0) ~ _U S1• Let Xe (S-S
0

) and 
, = 1 

suppose to the contrary that XtS; for all i (l~i ~k). Then by the 

definition of S; for i>O, we have that 

(Vi I l~i~k) (3j I l~j~k-1) [DSPM (j, X, I;) ~Y; and DSPM (j, X, ;~/
1

) ~z;J. 

But then for some 19 1 <i 2~k, there exists J for which: 

DSPM(J,X,I . )~y. and DSPM('.),X, U l
1
)~z

1
, and 

1
1 

1
1 ;

1
<1 1 

DSPM (J, X, I . ) '?_y. and DSPM (J, X, U 1
1

) ~z .• 
1

2 
1
2 i2<1 1 2 

By lemma S, the second and third of these bounds on DSPM imply that 

ISP-OVERLAP(X, U 1
1
) 1'?.CY; /2)-(Z; +1) 

i 1<1 2 1 

= (2k/m)NUM(i
2
)-kNUM(i

1
)-1 

~ 2kNUM (i 1) -kNUM (i 
1

) -1 

> NUMO) 

> 111 / (km) • 

But this implies that XeS0 and thus contradicts our choice of X. □ 
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We call attention to the fact that lemma 6 is the only part of the 

proof which relies directly on 9l having only (k- 1) - worktapes. 

k 
We have shown therefore that S= US .. We shall eventually prove 

i = 0 1 

k 
that :2; IS . l<ISl/2 which along with lemma 3 shall contradict the 

i = l 1 

assumption that 9l can recognize Lk in real time. 

DEFINITION 15 

Let X, YeS and let ie{l, .... , k). X=;Y if and only if 

(Vne[l, NJ) [X@[n,nJ=Y@[n,nJ or (neii and {X@[n,n),Y@[n,n)}={a;,b
1
})J. 

Thus X=,Y if and only if X and Y are identical except for possible 

differences involving symbols with index i in X@I 1 and Y@l;. Clearly 

then, =i is an equivalence relation on S. 

h'e define E~ to be the equivalence class of X with respect to =1, 

that is, 

Suppose X=iY for some ie{l, ...• , k} such that X;t.Y. By the definition 

of Lk there exists ver: such that X@[l,MAX(I)JVeLk if and only if 

Y0 [1, MAX (I) J V~Lk. Since X and Y are identical except for differences 

at Ii involving symbols with index i, we expect that 9l could 

distinguish between X@[l,MAX(l)JV and Y@[l,MAX(l)JV cnly if it stored 

properly the i - information obtained during stage i of the computations. 

Thus in order for 9l to operate properly, we expect that very few words 

of E~ are also contained in Si. We now show that this is indeed the 
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case. 

LEMMA 7 

Let XeS and 1 et ie {1, •••• , k}. Then 

1E~nsi1 < IE~l/(2k). 

PROOF: 

Let X, YeS; for i >0, be distinct and suppose X=; Y. Let Ver:. We shall 
A A 

denote X@[l,MAXCIJJ by X and Y@[l,MAX(I)J by Y. 

A A 

Consider the computations of 91 on XV and YV. We shall show that if 

the i.d. 's immediately after step MAX(I
1
)+1, i.e., immediately after 

stage i, are very equivalent then the subsequent i.d. 's immediately 

after step MAXCI)+l, i.e., immediately after stage k, become even more 

equivalent. If the equivalence after stage k has become too great, we 

shal 1 show that 91 could not process correctly a suffix V which 
A A 

distinguishes between X and Y. This shall imply that 1E~ns
1

1 is 

bounded by some number of non-equivalent i.d. 's that 9l can achieve 

immediately after stage i. We proceed by first presenting claim 1 and 

claim 2. 

CLAIM 1 

Suppose 
A 

ID (XV, MAX (I . ) +1) , 
A 

and ID(YV,MAXCI;)+l) are 
A A 

(Y,+111/(km))-equivalent. Then ID(XV,MAX{I)+l) and ID(YV,MAX(I)+l) 

are <Y;+z;+lll/(km))-equivalent. 
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PROOF: 

"' "' Consider the computations of 91 on XV and YV. Since the input tape is 

one - way and X,=;Y, the subsequent computations after stage i can differ 

only if some tape head scans different i - information which was first 

stored while W processed the inputs during stage i. Let j >0 be a tape 

index of 91. We shall proceed by showing that worktape j must satisfy 

one of the following conditions: 

i) The information stored on worktape j during s tage i is identical 

for each computation, i.e., 

"' "' (Vzdl) [CONT (j, z, XV, MAX (I;) +1) =CONT (j, z, YV, MAX <I;) +1) J. 

ii) The information scanned on worktape j during stages i+l, ... ,k, 

is identical for each computation. In addition, immediately after 

stage k of each computation, tape head. j is displaced at least 

(y .+z.+I1I/(km)) tape squares away from any possibly different , , 

i - i n f o r ma t i on. 

Claim 1 will follow immediately from case 1 and case 2. We note that 
A A 

DSPM(j,XV,I;) necessarily equals OSPM(j,YV,I;) and that the 

displacement is in the same direction . . 

case 1 

"' Suppos e DSPM (j, XV, I;) <Y;· We proceed by showing that worktape j 

must sati s f y condition 1. (Intuitively, this case implies that during 

stage i, worktape j was used predominantly for storing i-information 

for some 
,.., . 
1 < 1. Because of the substantial equivalence immediately 

after stage i, we shall be able to argue that no different 
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i - information could have been stored on worktape j during stage i.) 

Suppose to the contrary that different i - information was stored on 

worktape j during stage i, that is, 
A A 

C3ze7l) [CONT (j, z_, XV, MAX <I;> +1) ¢CONT (j, z, YV, MAX <I;> +1) J. 
A A 

Since ID (XV, MAX (Ii) +1) and ID (Y V, MAX (Ii)+ 1) are 
A 

<Y;+IIl/(knl))-equivalent on worktape j and DSPM(j,XV,l;)<Y;, this 
A 

implies without loss of generality that ISP- OVERLAP(XV,I;) l>lll/(k1n). 

But then ISP-OVERLAP(X,l)>IIl/(ki) which contradicts XES; for 1>0. 

case 2 
A 

Suppose DSPM(j,XV,Ii)~Y;• We note that i<k for this case to apply. 

(Intuitively, this case implies that during stage i, worktape j was 

used predominahtl y for storing !-information for some A • 
1 > 1. However, 

it is quite possible that different i-information was also stored. 

Because of the substantial equivalence immediately after stage i, and 

because 92 must store additional ! - information during stages i+l, ••• , k, 

we shall be able to argue that worktape j must satisfy condition 2.) 

Suppose to the contrary that during stages i+l, ••• ,k, worktape j 

scanned different information. Clearly then, this information was 

first stored while 92 was processing the inputs during stage i. But 
A A 

since ID(XV,MAX(Ii)+l) and ID(YV,MAX(Ii)+l) are 

(Y;+lll/(km))-equivalent, worktape j can only scan different 

information during stages i+l, ••• ,k, if without loss of generality 
A k 

ISP-OVE _RLAP (XV, 
1

~ / 1 ) I> <Y;+ I I I/ (km')), which implies that 

I SP-OVERLAP (X, I) I> I I I/ (k~) which contradicts XEl
1 

for i >0. 
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A 

Since X, YES;, case 2 implies that DSPM(j,XV, U I 1)>Z. and 
; < 1 , 

A 

OS PM ( j , Y V, U I 
1

) > z . 
; < 1 1 

The displacement incurred during stages 

i+l, ..• ,k, of the computations must be in the same direction as the 

displacement incurred during stage i. (Otherwise, there would be too 
A 

ma n y s p e c i a 1 o v e r l a p even t s. ) But since ID (XV, MAX (I;)+ 1) and 
A 

ID(YV,MI\X(I;)+l) are <Y;+IIl/(km))-equivalent, immediately after stage 

k, tape head j must be at least Y;+z;+IIl/(k1n)) tape squares away from 

any possibly different i - information. 

CLAIM 2 

IE~nS;I is bounded by the number of non-(Y;+IIl/(knl)) - equivalent 

i. d. 's ·that 9l can achieve immediately after stage i, that is, 

immediately after step MAXCI;)+l. 

PROOf: 

Immediately after stage k, i.e., immediately after step MAX(I)+l, at 

most (k-i+l)NUM(i) pop operations are needed to retrieve the different 
A A 

i-information that 9l stored while processing X and Y during stage 1. 

Thus for some r$Ck- i+l)NUM(i), we have that 

A A 

C•) xc:eLk if and only if Y<~Lk. 

A A 

Suppose that ID (X c r, MAX (I.) +1) 
1 , and ID(Yc;,MAX{I;)+l) are 

(y 1 + I I I / (km) ) - equiv al en t. Then by claim 1, we have that 
A 

IO ( X c / , M A X ( I ) + 1 ) a n d 
. A 

I D ( Y r 
C ; , MAX(I)+l) a r e 

(y ;+Z;+ I I I/ (km)) -equivalent. But since 
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r~ (k-i+l) NUM (i) 

we have that 

A A 

Xc~eLk if and only if Yc~eLk 

which contradicts (•). Claim 2 immediately follows. 

We now proceed to prove lemma 7. Claim 2 implies that 

We shall prove that IE~nS;l<IE~l/(2k) by showing that 

log I Cl I+ (k-1) ( 2 (y 1 + I I I/ (kn\))+ 1) 1 og I I I+ (k-1) log (2 I I 
1 

I+ 1) + 1 og (2k) <log IE~ I 

= NUM (i) •. 

1) logl0I+log(2k)<m/4 (by our choice of m) 

< NUM Ci) /4. 

2) (k-1) (2 (Y 1+ 111 / (kn\)) +1) log II I <4kY;log I~ I 

= 16k2logIIINUM(i)/m 

< NUM(i)/2 (by our choice of m.) 

3) (k-l)log(2II 1 I+1)<kloglll 

< m;lll/(4k'in) (since logtll/lll<m;/(4k21n) by our choice of n) 

= NUM(i)/4. 
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Lemma 7 follows from 1), 2), and 3).0 

LEMMA 8 
k 
I I S . I < I S I / 2. 

i = l 1 

PROOF: 

Let iE{l, ...• , k}. Since {E~IXeS} partitions S, we have that: 

I S. I = I U (Exns.) I 
1 

XES 
1 1 

< 1/ (2k) I U E~ I (by 1 emma 7) 
XE S 

= 1S1/(2k). 

Lemma 8 follows immediately. □ 

Lemma 6 implies that: 
k 

IS I = I S0 I+ I IS. I 
i= 1 

1 

< ISl/4+1S1/2 (by lemma 3 and lemma 8) 

< I SI 

which is a contradiction. Hence we conclude that 1n cannot recognize 

Lk in real time. 
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