
LABORATORY FOR •· . '.· 1 STITlTE OF - l't·' NIA SACH SETTS

COMP TER SCIE CE - ·. - TECH. OLOGY

l!T/LCS /'IM-120

OPEW\TIONAL SEMANTICS OF A. DATA FU:m ~

Jarvis D. Brock

Decanter 1978

TECH. OLOGY SQU RE, '1BRIDG , MASS. HUSETT 0.:.139

MIT/ LCS/TM.- 120

OPERATIONAL SEMANTICS OF A DATA FLOW IANGUAGE

by

Jarvis Dean Brock

December 1978

@Massachusetts Ins ti tu 1!:e of Technology

Th.is report was prepared wi.th the support of the Nati.on.a 1 Science Foundation
under C·Ontr.act DCR75- 04060; the Advanced Research Projects Agency of the
Department of Defense under contract 00014~75-C-O66 , monitored by the
Office of Naval Resea:rc i and a National Science Found.a t:ion gra:iuate
fellow.ship.

Massachuse 1t ts Institute of '!echno logy

Laboratory for Computer Science

cambridge, Masaachuse tts

02139

2 -

OPERATIONAL SEMANTICS OF A DATA f'LDW LANGUAGE

by

Jarv\:s Dean Brock

Submitted to the Department of Ele-ctri,cal Engineering and Computer Science

on Octoher 2 1 1978, in partial fulfiillment of the requirements

for the degr,ee of Master ,of Science·

ABSTRACT

A data flow machine achieves high performance by the concurrent

exe<:11tion iof machine code consisting of data flow graphs which ,explicitly repr,es.ent

the doto dependencies among p1rogram ins,truct\ons. This thes·s presents the

ope ,,1tlonal semantics of ADFL an appUcaUve data flow leingtiage with an Iteration

construct resembling tail recursion and an error-handling scheme appropri,ate to the

cone irrency of data flow. The operational semantics O" 9 of ADFL are e:xpress.ed

by a lwo step process. The translation a1lgor'thm ? maps an AD.fl expression into 1,ts

grnph implcmenta ron. and ti e semantic function Q maps the graph into its semantic

chorncterization. Data flow ,[Jraphs ere specifed by use of ,a graph assembly lenguag1e,

tmtl I h :o::nmiln\ cs of tl,csc graphs ,ar,e derived by use of Kahn's fixpoint theory of

commun~ca ling processes.

Th sis Sup,ervisor: Jack B. Dennis

T'Ue: Profos or of Computer Science and E,11gineerin9

Key Words: fixpoint semantics; ope~ational se1Ntntics;
data flow programming language ;, a.pp lica t:ive programming language

-3-

ACKNOWLEDG,MENTS

11 would Hke to thank Jack Dennis for ntroduclng me to semantics and data

f ow and for encouraging my research In the Intersection of these areas. I hove

learned much from my association with his research group,, the, Computaitlon Structures

G,roup of the Laborortory for Computer Science, end have ,enjoyed the friendship of Its

membe:rs. I would like to acknowledge Lynn Montz for reedtng a draft of thts thests and

Alan, Snyder foii' maintaining the R text justifier used to gene.rate this document.

The Laboratory for Computer Scte n ce provided fe cHIUes for tine preparation

of this thesis. and the Nat :ona Science Founda Ion provided financlal support through

their fellowship program.

Finally I wish t ,o express my gratitude to my wlte Ruth for providing

encouragement in my work and love and cheer In my home.

- 4 -

Table of Contents

1 .. , lntroduc·tion ..• i iliiiii •• 'l!'l!'l!'l!·•······· ... • .. ····~·-•oiii•""'·••'•• ,, •• ,................... • 5

1 .. 1 The Data Flow Model of Computation H 5
1 .Z Resea'rch in Data Flow Co:mputation u ■ ,s
1.3 ADFL - An App:licativo Data fl,ow Language 8
1.4 The Semantics of Data Flow Pro,g,ram · •••• ... •••• • 10
1 .5 Synop.sis of Thesis , ., . i!.oiii 'I! ■••······· ······•···• , , 1 1
Fig1ures .,,,..1111••·"···• .. • ■ ••·i,··.,• • ·•···••·••11••· .. ········••1•1••· ,"' ., 12

2.7: The Transla.tion A!lgorithm +•i••· .. ••• .. _ , .. , 13

2.1 A Graph Assen1bly Language ••••• • 1, 4
2.2 The Structure o·f ADFL Graphs , u.............. ... 1 7
2.3 ·rhe Translat,ion of Expressi.ons without Iteration 18,
2.4 The Translation of Iteration Expres ions •••• • 21

Figures illlli lli:ll ■ a.... .. +-.-il!!l!l!l!l!!P§I•'••························ ., 1 - . ,. 27

3. ()1
: The O,per,ational Semant·ics illill lU •• ,. • ,ill,, 1 .. , •••• - ,. , 37

3,. 1 Kahn" s Semantics of Da·ta Flo,w Graphs • 38
3.2 The S,emantic S,pec:ification of the Data Flow Operators 43
3.3 Operational. S ·mantics for an ADFL Expres ion •• • 46

4. Concl,usions and Suggesti,ons for Futur,a Research ······· ··••un ■--■nH 50

Bibliogr,a.phy ,..,. .•••••••• iii , _.. 11•11••·· -.. ··•·········•• ■ ••·····ill·· .,.,. • ,.,., ••••••••••••• 54

1,. Introduction

Rec~m ly many novel computer architec1ures which achieve high

performance through the use of concurrency have :been proposed. Most of these

designs ere simple variations of the von Neumann model of computation where a

sequential process manipulates a memory. The effective 1:.1 mza ion of these machines

makes special demands on programmers and their programming languages, such as the

structuring of data lnto vectors or the partitioning of programs into concurrent

processes. 111 comparison, the data low model of computation demands only that the

principles of struct~ .. ed progrnmmlng be foUowed. In this thesis w ,e define a date flow

progiramming language and formally specify its operational semantics.

In a data flow machine, an operation (Instruction) Is performed as soon as

I s operands have been comp 1ted. Data flow machines accept os their machine

language· en expliclt representation of the dale dependencies of program operations.

Conventional computer languages destgned o facilltate structured programming are

easily translate ·nto, data flow llltWhine code.

1.1 The Data Flow ModDI of Computation

A data flow program Is represented by a directed data flow graph whose

nodes are caUed opera!ors. The role of operators in a data flow machine is similar to

the role instructions In a van Neumann machine. The execution of an instruction

corresponds to the firing of an operator. Each operator has several labeled input and

output ports. Whenever an operator flres 1 It ,absorbs values at Its Input ports and

produces values a its output ports. Operators have f1iring rules which determine when

they are enabled for firing. These firing rules are based on the presence or absenc:e

-6-

o·f values on the operator's piorts. Most operators are enabled whenever input values

are present on all input ports.

When opera ors are joined to form data flow graphs, the 1lnks of the graph

are directed from operator output ports to ,op,erator input ports. A I nk t,ransports the

results produced at an operator out:put po.rt to an operator input port. Thus, lllnks f-orm

the r,athways upon whi,ch data flows as values are absoil'bed and produced by the

ririn•~l of operators during the execution of a graph. Unli:nked operator ports within a

graph ore the ports o,f the graph Hseif. Graphs, ike operators., absorb values at Input

por s and produce values at output ports.

The data flow graph for computing the distance function:

z ~ s qrt((.x 1-x2)2 + (y 1-y2)2),

is must ated in Figura 1.1. The solid b a.ck dot n the figu,re reprnsents the copy

operator w hich is us,ed to distribute the results of one output port to several in,put

ports. Not,e how this ,graph repr,esents operation dependencies and lndependencles

ancl, conscquentl'y, the concurrency obtainable during t ,he computation of the distance

fu clion.

1.2: R,escarch in Data Flow Computation

There are two prereouis,1es to the practical use of data ftow computation:

(1). n machine whi1ch executes data flow g,raphs· and (2), 8 progr,a.mming language

which can be tr.anslateci into data flow gr.aphs. Preum·nary data flow machine designs

avo ,een made y De1 nis and Misunas [9] and Arvlnd and Gostelow [3]. Within these

machines, a data flow graph is dislributed over a network of processing elements.

Theso elements operate concur,rently, constrained on,y by the operational

dependencies cf the graph. Thus. o very effioh,Hilt utilization of the machine's

r,esources appears possible.

Data flow programming languages resemble conventional languages

testr'c ed to those features whose ease of 'translation does not depend on the state

of a comp,utat·on being a single. easily manipulated entity. Because the 11state 11 of a

data flow graph is distributed for concurrency, galo's, expressions with side effects,

and multiple assignments to, the same variable am difficult to represent. Since these

"feaitures 11 are oerieraUy avoided in structured programming. their absence from data

flow languages is little reason for lamentation.

The ''First 'Version of a Data Flow language,11 by Denn~s (7] was a

rudimentary ALGOL like langua.ge. Most data flow languages have, been based on the

principle of single ,assignment~ Variables could be assigned only one va.lue dur.ing a

program s execut,ion. The languages of Weng [19) and Arvind, Gostetow, and

Plouffe [5]. in addition to having the expressive power of ALGOL, facilitate the

programming of network6 of communicating processes, such as co-routines end

operating sys ems.

The incorporation of data structure operations into data 11 , ow languages has

influenced architectural designs. In theory, data flow OIM!'rators using dote structures

would need to pass copies o entire structures among themselves. Howevert

Ac1kerman [1] l,as specified a structure processing facility whic1h a:ITows pointers to

structures to be passed, but sfll guarantees that no program observable side-effects

may be caused by a structure operatlo11. The facility is des,gned to process many

operations concurrently.

1.3 ADfl - .An .Applicative, Data Flow languag

ADFL, Applicative Data flow Language, is a simplificat ion of VAL, the

va luo-orientccl data flow language being developed by Ackerman and Dennis [.2]. A

BNF specification of the syntax of AOFL follows:

exp :~= fd I const exp, exp I oper(exp) I tet idlist = exp In e.xp I
if exp then exp else exp I for idlist = exp do Iteration

neration ::= ,exp [Uer exp 11,et ldUst = exp in iteration· I
if exp then fteraUon else iletation

,d : .:= 11 programn1ing languag,e idenUfiers 11

fdllsl ::= id { • id)

cons(::= '"programming language constants 11

opflt : :- 11 progr,eimming anguoge operators"

The most elementary expressions of ADFL are iden ifiers and constants.

Tuples of expressions are also expressions. One such expression is 11 x, 6". The

application of an operator to an expression is an expression. Although~ the BNF

spec•fica ion only provides for operator appllcatlons in prefx fo m1 such as 1+(x, 6)"';

applicalions in infix form., such a.s •• x + 6 11
, are considered acceptable equivalents

(suqari,ngs) ancl will be used in example ADFL programs. .All operators of ADFL are

r<Hjuired to be (lete,minate and there:fore chara.cter'zab 1e by mathematical funcf ons.

We will not attempt o completely specify he class of operators and constants. 1,t Is

assumed that at east the usual arithmetic and boo eu,n olperators and constant~ a.re

present.

Since .ADFL 1is ap,plicat've, it p,rovides for the bi111ding. rather than th,e

assi~Jnment. o identifiers. EvaluaUon of the b nding expression:

let y, z = x + 5 , 6 in y - 2

lmpres the evaluation of 11y z I with y equal to 11 x + 6 11 and z equa to 6. T e result of

binding is .ocai: the values of y and z outside the binding expression are unchanged.

ADFL contains a conventional, conditional expression, but has an unusual

iteration expression. The evaluation of th,e Iteration expression:

is a,ccompUshed by first binding the Iteration ldentlfier.s 1 the elements of ldflst, to the

values of exp. Note from the BNF specif cation of ,tera.Uon, that the ,evaluat·on of the

iteraU,on body w ·11 ultimately result in either an express.ion or the 111apprcation'" of a

spec.ial operator ter to an expression. Thlis applicat on to iter ts actua ly a tsU

recurs·ve [1 7] ca ll of the iteration body w.th he iteration ident tiers bound to the

'argl men ts" of i1er. The iteration· is terminated when the eva uatlon of the iteration

body results in an ordi111ary1 non iter, expression. The value of t ,hls express·on Is

returned as the value of the iteration expression. The following Iteration expr,esslon

computes the f actor1al of m

fo·r i, y = n, 1

do if i > 1 then iter i - 1 y i else y

In conventional languag,es execution ex,ceptions such as div de by zero

errors, ate generally handled by p,rogram nterrupt-S. This so utlon is ·nappropriate for

data flow s ince there is no control flow to interrupt. In ADFL execution excepttons are

har1dled by genera ing special error values. f.or example, evaluat on of m•510 11 yie ds

the special value "'DlvideByZero 11
• We wm not attempt to specify a large cl,ass of enor

values and the result of opera or application to erro values here. .A detailed

specification of this method ,of error-handling is given In the documentation of VAL [2].

Only one error value, err, will be specifically used in the tormaUsrn contained in this

- 10 -

thesis. The result of evaluating condl ional ex,presslons or tteratlon bodres In which

the predicote is neither true or false is a tupl1e oontalnlng err es each component.

1 .4 The Semanties of Data flow Pr·ograms

The operatlorud semantics of e data 1 ow program is a forma slmu,lation of

he execuUon of the program's data flow graph. The formal modeling of graph

e·xecu· ion is non-triviat. The 11ste'te 11 of an ex·ecuting graph may be considered ,a

snt1pshot of the tokens contained on the liinks of the grap,h [7]. The ftll"Jngs or

operators transform the g1raph through en execution sequence of snapshots. Since

most adjacent pairs of op,en1tor firin,gs are independent, the r places within an

execution sequence may be interchanged. Thus, many ,execution sequences may

represent the 11same'1 computat on.

Oming a ,graph execuUon1 .an oper,ator receives at e·ach input port a h·lstory,

po:..sibly empty. of Input value3 and produces at each output port e history of output

values. An operator is de•termlmUe if, for every tuple of Input histories one for ea1ch

·nput pon a unique tuple of output histor~es is produced. The mapping from Input

history tuples to o 1tp I history tuples is the hi.story· funcOon· ,of the determinate

operntor. The determinacy of on operator cannot depend on the ,reletiv,e timlng of

values received on different input pot s. Operators with \ime-dependen , behe.vio·r

have non-determinate race5 at the r input ports ..

Po Iii [1 5] proved that, if all operators of a graph .are determinate, the graph

itseU is de crminate. Thus, given nputs to a determinate greiph 1 it Is necess ·ry to

examine on1y one exe,cution sequence to derive the result ,of graph e!xecution.

Kahn [12) further simplifie.d this derivati,on by noting that every ,graph operator.

- 11 -

through i s h"story function places a relation on tine histories of its input and output

links and that, consequently, the history functions o,f the ope,rators form a set ,of

simUtn eous equations over the links o·t the g1raph. Using ScoH's [16] flxpolnt theory,

Knh was able to distinguish the solution of these equaUons which corresponds to

grap execution. Because progrs,ms of AOFl are determinate, the operational

seman ics of AOFL ma.y be stated by specify'ng the translation a&gor thm f om programs

to graphs and by specifying the· his,tory functions of the op,erntors used in these

graphs. Kahn s t 1eory may be used to obtain the function Implemented by a deto flow

graph following operational rules.

1 .S Synop:sis of Thesis

This hesis conta,ins a defin tion of the operational semantics ,of ADFL.

These semantics may be used in formal proofs of propert es of ADF expressions .irmd

thetr graph mplementations. In Chapter 2 a graph assemb.ly language for specifying

da to f llow o aphs is introduced, and the algorithm for translating AOFL programs into

da a flow grnphs ls described. he ranslation algorithm is a function _9 mapping ADFL

expressions into graphs. In Clrrnpte·r 3, the data flow opefator.s used to implement

ADFL programs are specified, he semantic function O mapping graphs in o their

history ft nclion specification of execution ·s de ived by use of Kahn s theory, and the

operationa.1 sema111tics of an ADFL iteration expression Is derived by pplication of

() 0 _ry to the expression. Conclusions and suggestions for future research ere

contained n Chapter 4.

Figure 1.1. Distance Dat,a Flow Graph

x1 x2

sqrt

z -- sqrt((x1 -x2)2 + (y1-y.2)2)

2. ~:.7: The Translation ALg,orilhm

The translation algo i hm is the ucompiler 11 of ADFL. U ts a function ~? which

rnap,s ADFL expressions ·nta da.h ftow graphs. In this chapter a language for

conslructing data Uow graphs ·s described and then used to specify the tums1eUon

process. Since the primary goal of this thes\s is· steti.ng the operational semanUcs of

ADFL ma.ny ord inary compiler features such as compile-time type checking, ar,e ignored

here.

Form a ly, a data ttow operator ts a history function1 from tuples o·f histories

to tuples. of histories. The complete specification of the semantics of the various data

flow operators is given in Chapter 3. In this ch.apter, concerned solely with the

connection of operator ports to form graphs. it suffices to be able to determlne the

a.bels of ti e ports of each operator. This information is avai able through two

funcUons. Given ,a data 11ow operator o, IN(o) is the set of labels of the input ports of

o, OUT(o) ·s the set of labels of the output ports. It w·1 be assumed that the ports of

data flow operators corresponding to ADFL operators ere abe1ed by consecuUve

integers. For exampte, m(+) = { 11 2} and OUT(+) = { 1}. The functions #IN. such that

#IN(o) is he cardinality of IN(o}. and #OUT, defined similarJy will ,at,so be used in graph

constru o tion.

A data flow graph has four constituent parts: operators. Input ports, output

ports, and links. The links of a data fjow ,graph Join the input and ou put ports of its

operators. Formally, operotor interconnection may be described as a reiation 011

operator ports. The unlinked operator ports are the ports of the graph Uselt. Graph

ports. lik ,e operator 1ports are labeled. Therefore, unl"nked ,operator ports must be

assigned the labels they assume as graph ports. Graph port assignment may be

- 14 -

described as o relation on graph ports and op,erator ports. Unfortunate1y, the direct

description of opera.toll" interconnection and ,graph port assignment by relations Is

difficult to write and comprehend. For this reason 1 graphs generated by the tra.11slaUon

process wm be specified by use of a graph aHembly language.

2. 1 A Graph Assembly Lang,uage,

nie graph assembly language is based on the structural description

fanguage of Ellis [1 OJ. It Is no,t a complete data flow programming language. It

contains only those features need,ed to provide a convenient and adequate

:spedfica ion of the translation p,rocess.

There are four components to each graph des.cription of the graph assemb,y

lan~1uage. l"he first three name the input po:rts 1 output ports 1 and links of the graph.

Tim fourth specifies the o:peratoirs of the graµh and their interconnection.

Syntucticul1y. the form of a graph description is:

inputs : ...

outputs: •..

links: ...

operators:

The ellipses in the above form are filled by appropriate ,ists. The inputs and output:s

lists conta in the labels of the graph input am:I output ports. These are the only lists

ovailahle outsiclc ·the graph definition. The functions IN and OUT are extended to

grnphs by def 'ning iN to map, each graph into the set of its input port labels. as given

by the inputs Ust, and OUT to, map each graph into the set of Its output port labels.

The Unks and opera·tor~ lists speci.fy ,operator Interconnection and graph

port assigmuarit. All Hnks of the graphs are labeled and enumetat,ed In the links lists.

~ 15 -

Operator por s are connected by being assigned to the same· link. These assignments

are made in t ,e operators lis . One and only one operator output port and at least one

operator b1put port must be assigned to a link. If mare than one nput port ·s assigned.

a copy opera :tor ~s used to distribute the out puts. to au the input ports. 1 The

assignment of an unlinked operator port t,o i ts graph port l1abe\ is also made In the

The operators of the graph and the assignment of ope a.tor ports to gr,aph

Unks a ncl ports are given in the opera.tors list. For each Instance of an operator o the

opera1ors 1st contains the element:

o i,nputs: ...

outputs: ...

The assignment of a ijntph ink or input port a to en operator input. port a Is indicated

by including

In the inputs list. The assignment of an operator ou put port a to a g aph link or output

port a is 'ndicatecl by including

in the outputs list. The &rrow ➔ always points ·n the direction of data flow. This

convention allows a graph input port and a graph output port to share the same llabel

without any ambiguity of assignment occurring. I i,s occasionally ne,cessory or

convenient ta connec graph ports and Hnks. This is done by nclud~ng an assignment

as a s ,epara te element of the operators list. ote that by use of the func lons •N and

OUT. it rs possible to determine if proper assignments are made for all operator ports.

1. The link of Dennis 7] is the eopy operator tmed for this purpose.

In F,igure 2 .1 , a graph descrlpt on which generates the distance data f ow

g aph of Chapter 1 Is g ven. Note, how the connection of the output port of the

leftmost - operator through a copy operator to both Input ports of the leftmost •

operator Is spedfled. Fiirst. the connecting link Is labeled tta 1". The lncluslon of the

assign me ts 11 ➔ a, 1 in the outputs list of the ~ operator and •a 1 ➔ 1 and I a
1

..., 2"' In

the Inputs list of the " operato completes. tbe specification,.

The ttansl1ation atgorlthm Is defined recursively. the data trow greph of an

express-Ion ts construct·ed from the graphs of its stlb-express'lo s. Three extensions

am made to the gr,aph assembly language to al ow recurslve graph detin1t1ons.

First, it must be possib e to, construct graphs which have smaller grephs as

their components. This can be done with the present syntax for graph definitions

because gtephs and operators have the same external Interface. Both reoetve values.

at labeled Input ,ports and produce values at h1be'led output po1rts. Within a graph

definition the ports of component subgraphs can be assi9ned to graph links or ports •n

the same manner ports of component operators are assigned.

Second, It must be possible to wrlte graph definition scheimas which

in,corporete subgraphs with vui.ous ,external cherecteristlcs. Jihe labels of the ports of

a graph or operator ca.n be obt,ained witli the functions IN and OUT. Assignments may

be made to these ports with range cons-Uuolors. A range constructor of the form:

(a€ seO item

specifiies a rs which, for every elefflent ,of set has al'I oceurrenc•e of Item wlth a

rep aced by that element. Fo example:

(i ,e: 1 •. 5) I ➔ a 1

is equivalent tor

- 17 -

1 ..,. er , 2 a 2• 3 a 3, 4 ➔ a 11 , 5 ➔ cr 5

GeneraUy, range cons tr ctors are used to construct ists over rang,es of Integers, or

s ,ets of inplJt or output port labels. A similpr c;;onstru,otor ts used by Hoare [11] to

specify systems of communica ing processes.

And last, I must be posslbl.e to prevent the appUc8tion of graph definition

schemas in cer ain anomalous situations. For ex.amp e the ADFl expression:

if x. y then ... el,se ...

i,s invalid and ittle is galned by specifying its translation Into a data flow graph. A

graph definition schema may be restricted by 1he addition of s fifth top-level

component of the form:

restriction: predicate

The schema is appropriate only in situations where the restriction, predlce e i:s true.

In figure 2 .2, a recursive definJ,tion of a g aph + n for edding ll numbers Is

given. The graph, an Inverse binary tree of+ operators is recursively generated with

two + ,,12 su graphs anti one op,er.ator. he n g1raph inp1Jt ports are evenly divided

between the two + nil. stJbgraphs, The results of t 1ese two subgraphs are summed by

the + or1erator. The definition is testr,cted to those cases \Vhere n is a power of tv,,,o

greater than lll'JO. Presumably, +2 is the usual+ operator.

2..2 The Struc.t,ure of ADFL 1Graphs:

The remainder of U1is chapter is devoted o a case by case specmcetion of

the translation function for AIJFL. J maps expressions and :} 1 maps iterat·on bodies

i o corresponding data flow graphs. The special value ERROR denotes the result of

the translation of Invalid expressio s or iteration bod·es.

A graph corresponding to an ordinary expression or iteration body has an

input mrt for each free ,-:ariable of the expression or iteration body and, if needed, an

input por trigger for enabling constants. For an expression exp which returns n

values when evaluated, _1[exp] has n outpu1: ports labeled 1 through n. There are

two llossible results, of evaluation for an ·ter8tion body, results to be re-iterated or

results to be returned as the results of the containing iteration expression. The graph

.:::J,[ueraHon] of an ' teration body Iteration has a set of output ports for each

possibl ity end an output port iter? whi,ch signals which possibility has occurred. The I

pmts, 11 through Im, are for values to be iterated, and the R ports, R:1 through Rnt are

for values to be returned.

The translation functions _:::'} and :)1 are defined recurslvety on the eleven

cases of the BNF specification of the syntax of ADFL~

exp ::= id I c,onst exp , exp I ope.r(exp) I let ldli~t : exp in exp I
if exp then exp else exp I for ldtist = exp do iteration

iteration : : = exp I ,t-er exp I let idllst ~ exp in lleraUon I
if exp then ne:rat.ion e1se Iteration

2.3 The TranslaUon of Expressions without Iteration

The first case ry[idll. Ulus-trateo in Figure 2.3 Is the most slmpi,e. :}[td]] 1-s

the ~1ra1ilh with tl,e si11~1ie input port i<1, one output port and no operators. The input

port id is directly connected to he output port.

The seconri case 1[consi], Ulustrated In figure 2.4, ts ,al1n.ost as simple.

J1
[const] is the constant operator consr with Its operator ports ass1gned to graph

p-orls wW1 the same labeli.s. The operato-r consl and; consequently, the graph

_'?[con.st] ,,rocluce the output value oonst whenever a triigger value is received.

- 19 -

The graph .:][exp 1., exp2], defined fn figure 2.6. contains two subgraphs,

.:J[exp 1] and _=Jlexp2]. Input ports of either subgraph are assigned to grsp,h Input

ports wl h the same label. The graph output ports ere formed by concatenaUng the

output ports of the component 5Ubgraphs.

:J[oper(exp)]]. shown in Figure 2.6, Is formed by connecUng the output

ports of ... ~[exp] to the Input po ts of oper. If the two sets of ports do not motcht

==]l[oper(,exp)] ·s ERROR.

The free variab es of the ,expre·sslon 11 let ldllst - exp1 in exp211 are the

free variables of ex-p1 pills the free variables of exp2 not appearing In ldllst. The

graph 9[1et ldlist = exp1 In ex-p2E!, Illustrated In Flgur,e 2.7, l1s c,onstructed by

connecting the l'th ou put port of 9[exp1] to the Input ,port of _9[exp2] labelled by

the /Ith identifier of ldUst. nput ports of .9[ex,o2] unlabeled by an Identifier of ldlisr

and all input ports of _'][e,xp1] are assigned to graph input ports. l'he output ports of

][exp2]) are assigned to the graph output pons. Sf the !length or lctlist does not

match the number of ,output ports of J[exp1] or if some Identifier in ldll:sl lis unused

In _:::}[ex p2], J[let. idlist = exp1 In exp2] is ERROR.

The g aph descrip on of figure 2.8 of the lmpfementatton of the condltlona1

e·xpression "if exp then exp2 else exp3" Is one of the more compllcated. Three

subgraphs, 9[exp1], .:J[exp2]. and :J[expaIII. are ,contained In this graph. Since

the predicate exp 1 determines which of exp2 and exp3 Is selected for evaluation, the

enabling of the result expression subgraphs. _'?[exp2] ,and _::_}[exp3], must be

controlled by the predicate subgraph, :}[exp11]. Thl,s contro Is effected by

connecting gates control ed by the predicate subgraph to the Input at11d ,output ports ,of

the result expression subgraphs.

- 20 -

Three gates, shown with their firing rules in Figure 2 .9, are used. The

T gate recelves a contmt value from one input poJit shown entering the ga'le

horizmttalily and o data value from another input port. The data va,ue Js pass,edl to the

output ;mrts only if the con rol value is true. If the control value is false. the data

value is sin1ply absorbed. No output Is produced. By placing e T gate controlled by the

output of ~:"J[exp1] on each Input path of 9[e,xp2], the evaluaUon of ,exp2 con be

restricted to when exp'l is rue.

Tl,e role of the controt value is reversed in the F gate. The datei vailue is

1:lnsscd if tho control va\ue is fals,e ancl is absorbed if the control value is true.

F gate's control the enabling of ry[exp3] ifl 1he same manner T gate1s control the

en ablfng of _ry[ex:,02].

Tim output ports of the result expression subgrnplls sr,e merged with

M gate's. The M gate, receives a control value which determines frnm which of two

input ports o do to value should be absorbed and produced as an output value. Each

pair of outpu ports wilh the same label from the result expression subgraphs are

com1cc ed to a M gate which receives the output of the predicate subgraph as tts

control value. The receipt of a true. respecth1eh• false, predicate value causes the

data value from ~CJ[exp2], respectively J'[exp3], to be selected. The output port of

the M ga1e is assigned to a graph output port of tile shared label.

When ,evehmfo;m of the predicate yields a value other than true or f ats:ej

oei n, r of tl1e resul't expressions should be ,evaluated and err should be generated at

each graril, output port. This errol'-hand1ing strategy is accomplished by requiring, that

t I e T gate ancl U1e F gate absorb their data value and produce no output value end

the M gate absorbs no data value and produces an err 1output when a control value

- 21 ~

other than true or false ls received.

~'?[if exp 1 th en exp2 else ex,o3] Is ER,ROA if exp1 returns more th1an one

value or jf exfJ2 and exp3 do not return the same number of va\ues.

2.4 The Translation of lteraUon Expressions

The translations of six. of the seven types o,f expressions hos been

specified. Only tile iteration expression, remains untranslated. Hc,wever, since the

·teratlon expression contains an iteration body, it is convenient to first specify the

translation of the four types of iteration bodies.

Aeca.11 that U1e output port iter? of the data flow graph of an Iteration body

s ,lgna'ls whether or no output results are to be iterated or returned. the I output ports

are tor '\lalues to be i ernted, and the R output ports are for values to be returned.

The function IOUT,. respectively AOUf, is defined to map a graph into the set of abels

of its 1. respectively R, output ,pons.

The graph descriptions of the Iteration bodies 11 exp 11 and I lter exp• are

given i11 Fiuures 2. 0 and 2.1 . The va ues of 11exp11 are to be returned. he values of

"itet exp11 are to be iterated. Consequently. In _91[e,rp] the iter? output value 11s

generated with a false constant operator, while in ~ry'~[ter exp] it is generated with a.

true uonstant operator. Ne1ther graph n.as a 11 complete 11 set o,f output ports. That is.

neither contain both I and 1FI output ports. Output port ; of _:)'[exp] is assigned to

output port Bi of ~9,[exp] or to output port Ii of :}1[iter exp].

The iteration body 11let iclllsi := exp in iteration" is implemented in the· same

manne,r the expression "let H:JUst-= exp1 in exp2° ls implemented.

- 22 -

Tile clata flow graph implement.ation of the conditional iteration body

"if exp then lteratJon1 else iteratlon2'' Is similar to that of the conditional express,ion.

T gate's and F gate's. controlled by the outputs of the predicate subgraph, .:}[exp)],

are placed on the inpu paths of the iteration body subgraphs, ~ry 1[ue,ation1] amlt

_J1[iterntion2]. so that the predicate can e,mable the evaluation of the sele,cted

iteration body. M gate's control the graph ou put ports. However, there are two

complications 111 the use of M gate's to merge the ou puts of the iteration body

subwaphs. Firs , he selected iteration body subgraph wi I produce outputs at either

its I or its R output ports .. Consequently, the I end R ou put ports must be controHed

separately. Second, the iteration body subgraphs do not necessarily have both I and R

output ports. lln Ffgure .2.12, ~71[·t exp hen iteratlonl else iteration2] Is descdbed

wilh the ossl1mp ion tha.t both iteration body subgraphs have both I and R output ports.

The modiflcotron required in other situations is given later 'n thrs section.

An IC gate is used to control the g;raph output ports. The IC gate ha.s three

input ports. One is connected to the output of the predicate subgraph and the other

two• are connec ed to the iter? outputs ,of the Iteration body subgraphs. The IC: gate

.oil o has three out1,ut ports. One is assigned to the graph ner? output port, a second

i,s lhc I cont ol value for M gate's connected to the g aph I ports, and a third is the R,

COi rol va UC ,

The C gate has tlie following frlng rule. The output of the predicate

subqra pl , a c s ~s a control value. It determines from which iteration body subg1raph en

iter? value should be absorbed. The absorbed iter? value s gnals whether outputs are

bein< produced at he I or the R outpu ports. This value Is output as the graph •ter?

outpu value and determines whether the predicate value 51rJould be transmitted as the

23 -

II or as the R control va ue.

If the predicat,e value is neaher true or false. a false grap iter? output Is

generated to terminate the iteration and err values are produ,ced at the graph R

por s. To accomplish this, err is tnmsmitted as the R control value end false Is

ransmiUed through the graph iter? port. A formal definl ·on of the IC gate s given in

Chap er 3. The following table summar zes its firing rules.

predicate ~? 1[iteratio,n1] _ry1[iteratlon2] graph R

control iter? ·,ter? ·te,r? con rol contro1I

true true true true

true false fralse true

false true true false

false false faise false

error false err

If botl:1 iteration body subgraphs have I ,output ports, these ports must match

in number and must be connected through M, gate 1s 1 contrnlled by ·he I control va ue.

to the · po,r s ot the grapl • If on y one. subgraph has I output ports., lhe M gate's are

omitted arid the I output ports of that subgraph ere assigned to the I output port.s of

the graph. If both subg aphs hav·e A outpu ports, these ports are similarly connec ed

to the, A output por , s of the graph. on y one subgraph has A ou put ports; E 9ate1.s,

controlled by the R control value, are placed between the subgraph and graph R ports.

Whenever tl,e E gate rece,[ves a Boolean control va ue, it absorbs e date va ue and

produces i os output. Whenev,er the E gate recerves any other control value, It

absorbs no data value and produces err as ou put.

All graphs clescribe,c u1> to th's point have been acyclic. If values ate

udropped" in the input perts.. he results will even uolly 11 d op 11 out the output ports.

The reader sho 1lcl be convinced that these graplls compute ti elr ntended functions.

2.4 -

These graphs can also execu e in pipeline fashio11. The computation of

successive sets of inputs wiB pipeline through the graph and eventua:Uy pf\oduce

successive sets o•f results . The computation of a later set of inputs always strictly

follows a computation of an earlier set except when the computations uflize different

s 1b,~1raphs dming the evaluation of a conditional expression or iteration body. Within

lhe rmp]urnentation of a conditiona1 expression the M gate 1s merge the output ports of

such sub~lraphs and, using the pipelined result of predicate evaluations, restore the

orl~1inal order. With in the implement.atl:on of a conditional tteration body. the two

COl"llflUletlons are not necessarily 1111erged 1 but the values of the iter7 output port

reflect he branches pursued by the computations.

Tile ,Iteration expression 11 for idlis.[= exp do lleratlon11 is translated, ss

shown in Fiw1re 2. 13, into a cyclic data ·flow graph containing the lnltlallzatlon

ex:ptossion subgraph, ~='}[exp], the item ion body subgraph, .:]1[treration]], F,M gate's,

and f'S gate 1s. A FM gate js a M gate wUh a built in ini1ial control va1ue of false.

Mtm "absorbing" this initial control value and passing its selected deta value, the

FM ,g ,ate behaves like· the M gate. Ile FS gate has one control lnpu -, port and one

data inp 1t port. It, too has the built-in Initial control va ue false. On receipt of a

f aise contrnl value, \he FS gate absorbs a data input value, stores it in an internal

reuis ter, iUld passes it through the gate output port. On receipt of a true control

value. no data value is absorbed, but an output of ·the stored value is produce•d,

The sets of identifiers in idlisl, output ports oif .ry[ex,o], and I output ports

of _71[iter.aUon] must an be of equal cardinality, and the identifiers of idflst must an

be free, ·n the iteration body. Otherwise. J[tor ldtlst;: exp do Iteration] is ERROR.

The input port of he itera ion body subgraph lebe1ed by the 11th identifier of

ldllst Is ,connected to an FM gate. The 'nput Dorts of this FM ,gate a e connected to

the iter? and U Ol tput ports of the ~teration body subgraph and the I output port of the

initialization exp,ression subgraph s,o that input is first accepted fr<orn the initialization

subgraph and then is accepted from the it,eration1 subgraph as long as the value true Is

produced at the iter? port. This corresponds to evaluating, the Iteration body with

successive iteration body results until an ordinary, iter-less, expression is returned.

The value of that ordinMy expression leaves the iteration body subgraph through its R

,output ports. These R output ports a,re a.ssigned to the graph output ports.

Every evaluation of the i,teretian body requires the values of its f 'ree

deotif iers. The values of ti e free identifiers no app,earing in idUsl rnust be

generated for each iteration by FS gate•s. The input ports of the itera·tion body

.subgraph labeled by these identifiers are oonnected to FS gate's ,controUed by the

iter? output. lniUally, he FS gate accepts, and $tores, en input from a graph Input

port. Each ime true Is produced at the i1er? port, the fS gate passes Its retained

value into the iteratton body.

D iring · he evaluation of an iteration expression successive itera tlons need

not proceeJ in iock~step fashion. If tile iter? value Is produced before al the values

to be re-iterat,ed are produced, separate iterations may pipeline th ough the iteration

body.

When the evaluatlon of the iteration expres,sion ts completed, false is

produced at ti e iter? port, and the FM gate. s and FS gate*s once again have e false

control value with wl ich to begin another evaluation. In Chapter 3 1 the data flow graph

translation of the iteration expression is shown to satisfy ts Intended function.

26 -

All c'tcven ,cases ,exhausted, the s1,e,ciflca, i:on of the transl tion algor thm is

completed. Every expression or iteration body of AOFL has been Implemented as a

data now graph with nn input port for ea.ch f,ree var able of the expression or 1lteration

body and, ,optionally, an input port tri,gger for enabling constants. An informal

description ot the operational semantics ,of these data flow graphs hes also been

given. In Chop1er 3, the ,operational semantics ,of data How graphs wi I be formally

spn,cUiecl. Those semantics in conjunction with the trans,lation a.lgo:rithm :] wm

constitute the operational semantics of ADFL.

- 27 -

F i,gure 2. 1 • Distance Data Flow Graph

inputs : x 1 , x2. xa x4

o,utputs: z

links: a l' o: 2, o:3 a 4, a 5
operators :

- inputs : x1 -+ 1, x2 ➔ 2

outputs: 1 ~ a
1

inputs: y1 ➔ 1, y2 ➔ 2

outpu s : 1 ➔ a-
2

" inpu s: al ➔ 1, er 1 .., 2

outputs : 1 a
3

• i 1n puts : a 2 ➔ 1 . a
2
➔ 2

outputs: 1 ➔ a
11

+- inputs: a
3
➔ 1 , a

4
..,. 2

outputs : 1 .., o:
5

sqrt inputs: a 5 ➔ 1

outputs: 1 ➔ 2

x1 y2

Figuro 2.2. +
11

res·trict~on: n ~ 2 m A n > 2

inpu'ts: (i e 1 .. n) i

outp,uts: 1

Unks: a 1, a 2
operators :

+ n/Z i nputs: H e 1 •• n/2) f ~· I

output s.: 1 ➔ o- 1

+ ,,12 inpu s : (I e: 1 .. n/2) i+n/2 ➔ I

outputs: 1 -+ a 2

+- inputs: a 1 -, , cr
2
➔ 2

outputs; 1 ➔ 1

1 .. n/2

Figure 2.3. _9[1c1D
inputs; fd

outputs :

operators :

id ➔ 1

1

n/2+ 11 •• r,

r 1

Figure 2.4. _ry[consr]

inputs: tr·gger

outputs: 1

operat.ots~

canst inputs: tr· gger ➔ trigger

outputs~ 1 ... 1

Figure 2.5. _ry[exp1 exp2]

trigger

1

inputs: (a ,e IN° _=}[exp i] U IN° :][exp2]) ,a

outputs: ({ E ·1 •. #OUTt>_ry,[expl] + #OUT0 D[exp2]) I
operators :

.1[exp1 inputs: (.a E IN° J'[exp1]) a ➔ a,

outputs: (I E: OUTo .?[exp1]) r ➔ I
.J[exp2 ·nputs : (a£ IN°~ry[exp2]) a ➔ a

outputs! (i e OUTo.1[exp2]) I ➔ i + #OUT0 S'[exp 1]]

Fig.ure 2 .6. _ry oper(exp)

restriction : OU"f11 _][exp] ;;: in(oper)

inputs: (a e ll:IJc :J expU) a

outputs : (i e: OUT(oper)) I

links: (i E ln(oper)) o 1

•operators:

- 30 -

_-=]'[eKp fnputs: (a, e IN°~9[exp]) a ➔ B
outputs: (i ~ OUT 0 J[exp]) i..,, al

oper inputs: (IE IN(oper)) o, ➔ I

outputs~ (I E OUli(oper)) J ➔ I

Figure :z.7 . . 7[1et id 1,, ... , ldn = exp1 In exp2]

restriction: #OUT11J[expl] = n• A {ld1, ... , ldn}-; IN°~[exp2]

inputs: (a E IN°_=][exp1] U (IN° :J,[exp2] - {id1 1 ••• , idn})) a1

,outputs: (i E OUT0 .1[exp2]) i
Unks: (i E 1 .. n) cr. 1

o,pera.tors :

_ry[exp1] inputs: (.a e ilN°:} _ expl D) a ➔ a

o,utputs: (; e i .. n) i ➔ o,
_][xp.2] inputs: (a E :J'[exp2] - {ic11, ... , idn)) a· ➔ a,, HE 1 .. n) a 1 -+ ldl

outputs: (I E OlJT0 _?[exp2]) / ~ i

.'J[exp1]

:}[exp2~

Figure 2.8 .. =J[if exp1 then exp2 else exp3]

restriction : OUT0 .1[exp1] = {1} A 01.ffa .?[exp2] = oun,:J[expa]
i nputs : (a E iNc. _==:][exp1] ' U I No _=][exp2] U IN° .:][exp3D) a

outputs: (i E OUT0 .'::l[ex p2]) I

Unks: a, (it E I NQ .ry[exp2]) 15!. (a E IN° .][exp3]) 8;.
(I e OUTQ .=J[exp2]) 'YT, {i e OUT0][exp3]) 'Y~

operators:

_?[exp 1] inputs: Ca e: I Na :}[exp1]l) a ➔ a

outputs: 1 ➔ a

(a e:: I No _!:][exp2]) T gate inputs: a ➔ 1. a ➔ 2
outputs: 1 ➔ fjT

ii

(a E IN°_c:][exp3]) F gate inputs: a~ 1. a.,. 2

outputs: 1 ➔ tl~
.? , exp2] Inputs: (a € IN° J[exp2]) tl~ ➔ a

oLUputs: (i e OUT0 _'][exp2]) I ➔ 'Y;
~=J[expa.] inputs: (a e Ula _'?[exp3]) c: ➔ a

outputs: (; e OUT0 DUexp3]) I ➔ "I'~

(i ,e OU1i0 ~?[exp2]) M gate i nputs: a ➔ 1, 'YT ➔ 2, ")'~..,, a
outputs: 1 ➔ I

Fig,ure Z .• 9. Gates for lmpl,emenUng Conditional Expressions

true

false

true

fals ,e

true

false

Figure 2:.10. ~ry1[exp]

inputs: (a e IN° ,ry[exp] U {trigger}) a

outp,uts: (/ e- OUT0 ~.::J[expD,) Ri, •ter?

operat·ors:

fallse inputs: trigger ➔ trigger

outputs: 1 ➔ ite,r?

- 33 -

_-ry[exp] inputs: (a e I No][exp]) ~ ➔
outputs: (I€ OUToJ[exp]) I ➔ RI

iter?

Figure 2. 11 . _ry ,[jter exp]

inputs: (a e IN°_:::](Iexp] U {trigger}) a

outputs: (; e OUTo .1[expi1
) 1/, iter?

operators:

true inpu s: frigger --t trigger

outputs: 1 ➔ iter?

_'1/[exp ,Inputs: 1(a e •N° _1[exp]) a ➔ a
outputs~ (I e OUTo_CJ[exp]) I ➔ ii

it,er?

RI

u

Fi1gure 2.12. J 1[if exp 1hen iteralfon1 else iteration2]

restrict·on: OUTo.7[exp] = {1} /\ OUT0 _11[nenition1~:; OUT0 :}1[1teraHon2]

inputs : (a e: IN° _1[exp]]i U m,N° :=J 1[iteration 1] U I No _91[iteratlon2])i a

outputs : (a E OU Cl_ry1[uer.aUon1]) a

links : a, q 1, a'\ (a e m0 _==}i[Hera0on1]) ti!. (a e IN°5',[1.reration2]), 1!3:.
,(a, E. OUT O ry 1[iteratlon 1 ~) '\' !, (a •£ OUT0 ~91[ltera!lon2]) -v:

operators:

:?[exp] inputs: (a e. !N°:} exp]) a

outputs: 1 ➔ a

(a e I No_'] 1[Uer,ation 1]) T gate in,pu·ts: a ➔ 1, a ➔ 2

outputs: 1 ➔ ti!
(a E IN° ~-=] 1[treraUon2]) f ga.te inputs: a ➔ 1 , tt ➔ 2

outputs: 1 ➔· 8:
_'ry[ueraU,on1] Inputs: (a E IN°_11[ueration1]) 13! ➔ a

outputs: (a E OUT0 ~::J,[iteration]) a~ 'Y!
.J[iteri!Uon2] inputs: 1(a e IN° _1

1
1 lteraUon.2]) ,9= ➔ a

oiutputs: (a E OUT0:] 1l[1teration2J) a ➔ -r:
1IC g.ate inputs: C'I ➔ 1, "Yi,ea ➔ 2, "Y~ler? ➔ 3i

outputs: 1 _. iter?, 2 ➔ a 1, 3 ➔ O'i'I

,n; e IOUT0 ~91[llerarion1]) M gate inputs: a1 ➔ 1, 'Y1,""' 2, 'Y~1 ➔ 3
outputs~ 1 ➔· I/

(R; E ROUT 0 ~ry1[ireration1]) M gate inputs: o:A-+ 1 1 1"~1 ➔ 2, 'Y~, ➔ 3

,outputs: 1 ➔ Ri

iter? " Ri

- 36 •

Figure 2.13. ~'][tor id1, ... , ldn = exp do Iteration]

re·striction: n = IIOUT0 ~ry:[exp] = HIOUT0:]'1[iter,ation] A {id1 t ... , ldn} ~ INo :J[exp]
inputs: (a€ IN°J[exp] U (N°]1[iletation] - {id1,, ... idn}) a

outputs: (Ri e: ROUTQ _']1[neration]) I

Unks~ (; e 1 .. n) er I' (a e IN° .ry 1iileration]) f3 ,.. (i e 1 .. n) 'Y t' 'Y ter'

operators :

_'ry[exp] inputs: (a€ IIN°:][exp]) a ➔ a

outputs: (i e: 1 •• n) I ➔ a.1
(.i e 1 .. n) FM ,gate inputs: 'Yaer? ... 1, 'Y, -t 2, a1 ➔ 3

outputs: 1 ➔ B,r,1,
(a E' (IN° ~ry1[1teraUon] - {ld1, ... , idn}}J FS gate inputs: 'Ylter?' ➔ 1,, a .. 2

o,utputs: 1 ➔ (j.,

.::J 1[rrerauon] inputs: (a e: IN° .?1,[lteraUon]) /j a ➔ a

outputs: iter? ➔ 'Y11er?' {I e 1 .. n) Ii ➔ 'Y1,

(RI E ROUT0 :} [llerarionJ) Al .., I

- 31 -

3 . 0~ The Operationai Semantics

hl this chapter, a function Q· mapping date flow graphs into their operational

characterizations is given. Operational semantics are defined using Kahn's [12] formal

model of parallel computation. Each data flow operator er graph is charact:erfzed by a

history ·function mappTng tuples of input hlstories into tupl·es of output histories. The

history function of a graph is derived using the his ory functions of its operators. Kahn

orlginally used his theory to characterlze processes written in a.n ALGOl-llke langue.ge

augmented with g.e1 and put statements for rece~vtng and transmittililg vr.dues on

queues and o derive the result cf interconnecting such proces.se•s. The contrast

between Kalmts ,evel of appBcation and ours illustrates the re\ative concurrency

obtarned wm, data flow and sequential control flow program execution. In Kahn 1 s

s eq11entia l control flow application1 coincurrency Is Hmited to the simultaneous

execution of processes consisting of seveud prngrl!lrnming language statements;

where. In our data flow appl1catio,n1 concurrency occurs at even the most elementary

level of expression evaluation.

The first section of thJs chapter describes Kehn 1:s theory as opplied to data

flow graphs. The formal characterization of operators and graphs, the restrictions

placed on lhe behavior of operators,, the method for deriving the semantics of greph1s,

and the closure properties of this characterization of operators end graphs ere given.

Readers fammar with Kal1n 1s theory 111ay wish to proceed to the second section. The

second sec ion specifies the semant cs of opera ors used in graph implementa lions of

ADfl expressions. The third and fina\ section iBustrates the application of th .s theory

to derive he semantics of an ADfl aeraUon expression.

3.1 Kahn s Semantics of D·ata Flow Graphs

Tim operational semantics of a data flow opero1or o is given by a history

function () o] mapping input history tuples into ootput history tuples. For ea,ch input

h'story tuple X, representing the history of values received at 1he input po.rts of o. the

out1>ut history tuple ()[o](X) represents the history of values 1prnduced at the output

ports of o in response to X. Input history tuple X has as Us component.s a history, a.

possibly inflnrte sequence of values for each port of o. Formally1 ,nput history tuple X

is a function which maps each input port label a of o into the input history X(a)t often

denoted X,, received at that port. Ou put history functions are defined similarly.

Not all operators may be charact,erized by Kahn 1s history functions. lin

part·cular. only determinate operntors which for each input history have o,rdy one,

possible ,output history may be characterized tlmsly. Since only determ·nete operato.rs

were used 1111 Chapter 2 to ,construct graph implementations of ADFL express ions . the

history h111ct1on cl,aracterrzation ls adequate for desc ibing tile o,perationa semantics

of ADF . There are lwo other requirements whrch operators must satisfy in ,order that

fixpoint mell1ods n,ay be usec to determlne the result of their interconnection.

1-tow~ver tlicse requirements a.re not restrictions but rather a forma ~tatement of

some properties of wl1ich history functions of physically realizable data flow operators

musl sa isfy.

first, the domain or rnnge of a history function must be a complete partiaHy

ordered scl with o least element. We review the definition of a complete partial order.

Def iniUon: A reln'lioo ~ on a set A is a partial order i i; Is:

(1), reflexive, 'fl x e. ti, x b x,
(2). antisy,nmetric, 'd x, y EA, x I; y I\ y i;; x ➔ x = y, and

(3), transit ive. '(J x, y, z e .a x r;: y /\ y !; z ➔ x !; z.

39 -

Deflnlliom An upper bound of a subset E ,of ~ is 6n element x of ~ at 1,east as great

as any element of E. f. e. V y EE, y i;;; x. Often 1 this is denoted E.; x.

lower bounds of E are defined and denoted analogously.

Definition and Theorem: For every subset f. of A there is at most one element x of A

that Is both an upper bound of E and a lower bound of the set of Upper bounds of E1

i. e. E i;;;; x ~ { y l c i;; y}, Should such an element exist it is the least upper bound of E

and is denoted LJ E.

The greatest lower bo~md of E. ls defined analogously 1.111d denot,ed n E.

Definition: Given an increasing sequence x 1 !;;;; x 2 ~ ••• of Jl, U {x 1, x 2., •• • }. if it exists.

is deno ed U x, and caUed ti e nmir of x,-

Def lnitlon: A par ti al order !;;; on .4 is complete if eve.ry increasing sequence has a Hm1t.

Let V be the set of e,ementary data flow values such as Integers and

booleans. T l1is set contains an values hat could be passed between data flow

operators including error values, and he trigger token. The set of alt histories of data

f1ow values. that is, the set of all f ini e end countably infinite sequences of data flow

values, will be denoted VJJ. v.JJ mijy be ordered by the pref Ix ordering:

Def initlon: Given two sequenc,es x and y of \I" 1 x t; y U x is a pref ;x of y. that Is,

there exists a seql ence z s. 1ch that K~z = y.

It Is easy to veriiy Urnt !;;;; is a complete partial order crn vf». The least element of ,,jj)

is the empty history, E.

Recall that a history tuple Is a function from e set of Input or output port

labels to vi) the set of histories. ConsequenUy. the domain or range of a history

function is the set of all functions from a set .ll of input or output por labels to v(l).

A
This set is denoted vW . The complete partial o,der ~ on ~ con be naturally

,extended to vWA by defining X !;;;; Y, for history tuples X and Y of LP'A, if every

component of X ls less than the corresponding component of Y, that Is, if fer all a In A1

- 40 -

Xa ~ Y .1· AgQin, it can be easily verified tlu1t i;;;: 1s a complete partial order on lf-llA. The

A
least element of ~ s EA, the empty history tuple which has the empty hlstory es

e,ach of its components.

The second requirement of fixpoint theory Is that hls,tory functions be

conli nuous. A function F is continuous if, for every inc,reasing sequence x 1 ~ x z !;;; ••••

F(U x
1

) = U F(x 11). A continuous function is also monotonic, that Is, x !;; y lmpHes

F(}o:') £: fly). Monotonicity and continuay reflect phystcal properties of operator

imr,temenla tions.

Monotonicity imp,lies that the more input an operator receives, the more

output it will produce. This requirement reflects severa1I emplementation considerations.

first. an operator ca,nnot 11 withdrnw" output values. Second, and perhaps most

i,mrorlant. an operntor may process i s Input values as they are received without the

possihility 1,a l output produced in response to initial Input wm violate the u1time. te

oulp11t. If operators were not allowed thl,s freedom and had to receive their entire

input before producing any output. the potenUat concurrency of data flow

implementations would be greatly reduced. Third, an operator cannot sense whether or

not it will receive any more tnput. II'\ particular, monotonicity does not allow 'the

speclfic.:i tion of an operator which produces the single' output value true Jf its receives

an er11HJty input history and false otherwise.

Continuity impl'es that no o,perator can produce output after receiving an

infinite amount of input. An oper,ator•s response to an infinite input history must be the

1. This is quite different from the empty stream operator of Weng, [19] which
produces true if ·ts first input token is the end of stream token.

- 41 -

limit of its responses to finite pref xes of that history.

Now we shall describe the derivation of the history function characteri~ation

of a data flow graph from the history functions of its operators. The syn ax ,of graph

descript ons used in Chaa>ter 2 was chosen to eniphasi:ze that each graph operotor •

p,aces a relation on the histories of he ,graph links ,and ports to Which It is connected.

This relation is, of course, tl1e operator1s, history function. When the histories of the

graph input ports are fixed by a graph input history tuple, the operator history

functions form a set of stmultilneous equa tl.ons having as their variables the labe1s of

the links and OlJlput ports of lhe graph.

The result of executing a graph G with input history t 1uple X may be deri,v ,ed

by use of a. history function F G,X constructed by combining the hist,ory functions of G 1 s

op,eralors.

Definition: Given a graph G with llinks and output ports lobe'led by elements of .ll ond
A A

w'th an input history tuple X. let Fc,x be the hls\ory function from lfll to lr"'l' with the

a 1th component of FG,,:CZ) determined as follows. There is, within G, one op,era or

output port assicinecl lo a. Tl1e a'th compon,ent of FG x<Z) Is the history of that
•

opera tor cmt11ut port wlmn the operator is applied to ·the input history luple consistent

with the assignment of its input ports to graph ports and links and with the assignment.

by history tu1>les X and Z, of hl,stories to graph ports aRd links.

Theorem: c G ,X f s co11tinuous.

Proor: Follows from the continuity of tile h1stoiry functions of the op,er.ators of G.

The result of executing G with input history tuple X l.s some history tuple Z such that

F G x(Z) = Z. On1y these tuples are consistent with the o,p,erator history functions.
'

Bec1;H1se F G x is continuous, Scott 1s [16] least fixpoint operator V may be
'

used to determine the least fixpoint of the equation F6 xCZ) == Z. Th,e definiUon ot Y
I

Definition nnd Tfleorom: Given a continuous function F mapping a complete partially

ordere,1 set wi lh least element .l into itself, the least solution to the equation:

F{x) = X

e>dsls nml is denoted Y(F). FurU ermore, letting Fn denote the function formed by
composin{l F with itself n times:

Y(FJ = U F'UJ

Proof: To r>rave 1hat V(Fl tS a frxed poi111t 1 first proV'e that F'U},;; F'"'1(1.). To p.rove

that Y(F) is tlie least fixed po]nt, first note that if f(x) = x then F1(.L} ~ x imp~ies

F 1"" 1(l) ~ F(x) = x.

Knh,1 stotes that V(F6,x) is lhe history tuple of the links and output ports of G resulting1

from Um P.xeci1tio11 of G with input X. Since EA represents the history tuple that has

11passed 11 U1rough the links and output ports at tie beginning of execution and since

the passi 1n of FG', .,(EA) implies the eventual passing of Fr-+ 1 (1:/l) the choice of ,. G tX · •

LI F ~.x-'F4
), or V(F G,x)1

1 as lhe es ult seems intuitively correct.

The l1istory function (J[G], of G is defined so that Q[G](X) is V(F' G,X}

re-stricted to tho labels of the output ports of G. a is eastly shown that ,Q[GD ls a

con inuous history func:Lion. Furthermore, Q[G] Is o complete sema:ntic spedficotion

of G in the sc1~se that, if U is a graph contalnlng an operator g with the same history

funcUon as G, tile {irapll H[g/G] obtained from H by substituting G for each occurrence

o G has the same f1istory fllrlction as H. Consequently, in deriving the history function

of a cirnph, sub~1ropi1s and operators may be trea ed anke. Subgraphs do not have to

be expPnclocl ;n o their operator implementations.

In the last section of this chapter, 1he least tixpoint derivaUon ol a data

flow r1rnph wiU be qiven. Aeaders desiring more com1Plete proofs of the theorems

stntod in U1 is sectiori should consult he work of Kahn [12] and Scott [16].

3 .. 2 The Semantic Specification ,of the Da:ta Flow Operators

Al ADFL operators and constants have an nterptetat on. The interpretatton.

J[oper], of an opera.tor oper is a function from vm to vn.. J[o·per] is the usual

arithmetic or Boolean funct,ion associated with ,oper. for example:

J[+]I(x. y) = X + y

J[/\](x, y) = X {\ y

J[oper] is essuimedl to map 11inappropriate 11 input tuples • . su,ch as those c,ontalnlng

values of an unexpected ype, Into some ppropr ate tup~e of ,output values ..

The history function. Q[oper]. of the data flow operator op.er ma.ps

m-tuples of i put histories into n-tuples of outpu histories. The data flow opeu11t0r

receives a sequence of Input m-tupies and computes the sequence of n•tuptes

resulting from the application of J[oper] o each fnput m-tuple. Furthermore 1 the

firing rule of the data flow operator is strict. The operaitOf wm no,t fire without ,u

complete tuple of inputs.

0 '[oper](X) ::. E'\ if 3 i 3 X1 = E

Q[oper](x•X) = J[oper](:x)•Q[oper](X) If x E vm

Because Q[oper] must be continuous it .suffices to define Q[oper] only on finite

input istory tup es.

The nterpretat,ion. J[consl], of a ADF constant consl Is en element of V.

The history func ion, O[const], of the data flow constant operator const maps \I» Into

\fJl. Data flow graphs ere constructed so tha constant operators receive only trigger

Input values. An output of value J[consr] s produced f ,or every trlg,ger ilnput

received.

O[const](E) = E

Q ,[const](tr1lgger•X) = J[c-onst]·O[consr](X)

- 44 -

Recall the firing rules of the data flow gote operators. The gate operators

are not s rict. They absorb values from selected input ports. The h story function of

th,e T gate, respectively F gate, ma,ps '-1"2
,into vW. When a truet respectively· false.

control value is received, the data value is absorbed and passed through the output

port. Wilen any other control value is received, the data value is absorbed and no

oulput is produced.

() T gate](E., Y) = E

()[T gate](x•X, e) = e
()[T gate](true•X, y•Y) = y-()[T gate](X, Y)

()[T gate](x·X, y-Y) = O[T gate](x~ Y), if x ~ true

()[F gate](C. Y) = IE
()[F gate](x•X, E) = E
()[F g.ate](false~X, y•Y) = y•Q[T gate](X, Y)

()[,F gate](x•X, y•Y) = O[T gate](X, Y), if x ~ false

The his oiry function 0[M ,gate] m.aps "i/»
3

into ,/,iJ_ The control value

selects which clata value is ,passed o the output port. If a non-Boolean control Vllllue

j,s received, no data value 1s absorbed and err is output. The FM gate· Is a M gate with

a built- n initial fatse control value.

M gate](E, Y, Z} = E

M gate](true•X, E, Z) = E

M gate](rue•X, y-Y, Z) = y•Q[M gate](X, Y. Z)

()[M gate](false•X, Y, f) = £

() M gate (false•X, Y, z·Z) = z•Q[M gate](X, Y, Z)

()[M gate]{x·X, Y, Z); err•O[M, gate](X, Y,. Z). if x r/. {true, false)

()[FM gate](X, Y, E) = fi
()[FM gate](X, Y, z·Z) = z•Q[FM gate](X, Y, Z)

The history function Q[FS gate] maps ..JA2
Into 'r/Jl. When a false control

value is received, tl1e ,FS gate passes i1ts data value and sets an internal register to

- 45 -

tha.t value. When a true control value Is received he FS g te absorbs no data value

but ou pu s he value contained in its register. The FS gate, has en n·t1al bu ilt~ln false

control value. The control value of the FS gate is the iter·? value of an iteration body

and c,onseciuenlly, mllst b-e eithe true or false,

(J[Fs gate](X, E) =
()[Fs gate](X, y-Y) = y•Sy(X Y)

Sl(f, Y) = E

Sz(true•X, Y) = z•Sz(X, Y)

S.z(fa se•X, E) = E

S (false X, y•Y) = y•S.,.(X, Y)

Compare the history function specification of the IC gate \\Yith the table

specification of its firing rules given on page 23.

()[C gate](e, Y, Z):; (e, E, E)

0 '['C gate](true•X,, E, Z) = (e, E E)

() IC gate](true•X, rue•Y, Z) - (true, true, E)•O IC ,gate](X, Y, Z)

() IC ga e](true•X, false•Y, Z) = (false, e, true)•Q[1c gate](X, Y, Z)

() IC gate](f alse•X, Y, E:) - (E, E E:)

()[IC g1ate](fa se•X, Y true•Z) = (true, fah;e, O Q[a,c g.ateD(X, Y, Z')

()[1c gate](false•X. Y, false•Z) : (f,alse, E, false)1•0[C gate](X, Y, Z)

0[1c gate](x•X, Y, Z) = (false, E, errl·0[1c gate](X, Y, Z), if x Ii {true. false}

The E gate, the only rema ning g te, passes its data value when it receives

a Boolean ron rol value, and absorbs no data value and produces en· when 1 rece ves

a 001 -Boolean control value.

() E gate](E, Y)1 = E

() E gate]{x-•X, E:) = E, f x e {true, false}

()[E gate](x·X, y•Y) = y-{)[E gate](X, Yl if x ,e {t,rue, fabe)

,Q[E g te (x·X, Y) = Q[E gate (X Y), if x t {true, f atse}

The hTstory function specificauons of the data flow operators of Chapter 2

Comrie ed. the operational semantics Qe] '[exp] of an AOFL expression exp mey be

- 46 -

oht ahmcl by using the translation algor thm to ,construct the data flow graph .:}[exp]

and using ho operator history fu11ction speclficatio:ns and K.ahn 1s fixpo·nt theory to

cle-rive ()0 .7[exp]. Tl is me hod of deriving opera ional semantics is illustrated In the

followin~1 section.

3 .3, OperaUonai Semantics for an ADFL Expression

In tl1is section the operotlonal semantics of the iteration express,ion

11 let id1, ... , i'dn = exp in iteration" Is derived assuming the operational characteristics

of lls component initialization ,expression and •teratton body. For convenience,, let Gt

Gini(,, c1nd Giler, denote tile data flow graphs of, r,espectlvely 1 the iteratlon expression~

the in1itiahzation ex,nession, and 1:fle "terat,ion body. RecaH from Chapter 2 the

opeuuors list of the gr~ph description of G.

Ginir inputs: (a E Ginlt) a ➔ a

cutputs: (I E 1 .. n) I ➔ a,
(i e 1 .. n) FM gate inputs: "r,ter? ➔ 1, 71 _. 2 a1 ➔ 3

outputs. 1 ➔ 6 fdl

(a €: m(Giler) - {id1, ... , idn}) FS gate inputs: 'Ylter? ➔ , a ➔ 2

outputs: 1 ➔ {j a

Gieer inputs: (a E IN,(Giter)) {j a ➔ a

outputs: iter? ➔ 1'11M'' U e 1 .. n) U ➔ 'Y1, (RI E ROUT(Giter)) Ri ➔ I

We assume the history functions Q[Gtnlt'l and Q[Giter] have been derived.

recursively, using fixpoint theory.

() G](X} is found by deriving the l,east fixed poJnt of F 6 x · In Section 3.1,
'

A A
FG was ,(efined as a history 1 unc ion from vW to, v'Jl where A contains the, ab els of .,x

the ,links oml output ports of G. Froim the graph descr ptton we see that ti contains:

,(j E 1 .. n) et,. (a e IN(GHer)) (3,. 'Yltcr?' {i e: 1 .. 11) "I,, (Ri e ROUT(G.iter)) I

A
Given z of vW , let ZG ,denote, in a slight abuse of notation, the tuple mapping

ll!!r

- 47 •

IN(Girer) into V, and let XGlnl de110 e the tuple 1111app ng IN(Gin/0 Into V1 such th,at!

ZGlter(a) : Z{(3 a)

XG,nlt{a) = X(a)

ZGlte-r ,s defined to reflect he assignment of Input port a of Giter to link (j a of G; and

XGinlt' the assi~1nment of ~np I port a of Gln,t to npu, port a of ,G. FG
1
x(Z) Is the

A
e ,ement of LP" such that:

FG,X(Z)(o) = {)[G/nft](XGlnll)(i), if I e 1 .. fl

FG,xCZH/31c1,> = 0[F ga e](Z('Y 11 e,r'?), Z('Y1), Z(a1))t if I€ 1 •. n

F
61

xCZ)(8) = () FS gate](Z{'Y 11@r') X(a)), if a, € IN(Glter) - {ld1, ... , ldn}

F G,xCZ)('Ylter) = {)[Giter](Z0 ,~r)(ite·r?)

r:G,x(Z)('Y1) = ()l[Girer](Z131 er)(li). if i ,e .. n

F G,x(Z)(i) = (}[Giter](ZGller)(RI). i R, E ROUT(Glter)

Suppose all inpu his ory c,omponents of X contain a single value. That is,

suppose X represents a single set of Input values to G. Further suppose that G, given

input X, i erates m+1 times before producing its ou put tuple. Let v0 be the n-tuple

produced by he initial zation expression subgraph, Ginit, and inif ally bound to the

iteration va iabl,es, id , idn. et I/ 1, ... 1/m be the n-tuples produced by the f-rst m

iterations of the iteration subgraph, ,Giter. an let W be the ultimate, non iter, ou put

tuple produced on the fin.al Iteration. The formal rela ion between these tuples and the

history fun ,~ ions ()[Ginit] and O Giter] follows.

Sh ce VO is produced by Ginit

V0 = 0 _Gfnit](XGlnrtl

On the J'th iteration, the input tuple VJ· is received at input ports of Giler labeled by

the iteration variables. Other input ports r,eceive values contained In the graph input

tuple·, X. Let VX1_ represent his input tuple.

- 48 -

VXr 1(idi) .:= VJ_ 1(1), if i e 1 •• n

vx)_ 1(a) = X(a), mt a e IN(Giter) - {ld1, ... , idn}

/1.t the enn of the }'lh iteration of GUer, for j not g1reater than m. the tuple v
1

ls

produced on the I ou11,ut ports of Glter1 true, on the lter? output p,ort; end no v ,a;lues,

on u,,e H output. ports. Consequently:

()[Giler (VX
0

• ••• •I/Xj_ 1)(iter?) = truei

()[Gfler](VX0 • •• . •VX
1

_ Wil = V0(i)• ... •Vp), •f IE 1 .. n

()[Giter](VX0 • ... •I/Xj_ 1)(RI) = E, If IRi e ROUT(Gller)

Where truel is the sequence o,f / true values. At the end of the last, m+1 1st, iteration

of Giter; the tuple W is produced on the R out.put ports of Glter· false, on the lter7

output por ; nod no values, on the t output ports. ConsequenUy;

() [Gi rer],(LI X O• ••. •VX m)(1iter?) = truem•false

() Gltar]{I/X0• .•. •VXm)UJ) = Vii)• ... ·V m(i), If I£ .. n

() Gil er J(,VX O • .. . ·VX m){1R/) = W(i). if Ri E ROUT(Gller)

Using this history function specification of Giler and Ginlt, the ,eader may

verify thal for tlrle least fixed point Y(F G,x>, or LI Fb,ifA) ot F G,X is the uph! mapping

A, the lobels of the links and ou put ports of G, into V such tha1:

Y(F6 .x)(CJ1) = V0(i). if f E: 1 .. n

Y(F G,X)(Jj {d f) = V oCn· ... • V m(i), if ; e 1 .. n

Y(F G, Y.)((1_.> ;;; X(ar H, 1f a e: SN(GUer) - {id1, ... , idn}

Y(F G. I')('l' ll<'r~) ;; truem•talse

'V(FG x)(1:'1) = V;Cih .. •Vm(i), if i E 1 .. n

V(FG,x)(i) = W(i), if Ri e: ROUT(Glter)

Cons,cquent ly, ()[G](X) is W, V(F c; x) restrLcted to the output port labels of G. As
t

expP.cted, W is l11 e 011\put tuple produced by the final iteration. Note that false was

produced DS tho iter? value on the flnal Iteration, tnus resetting the FM gate and

,FS gate's for a new set of lnpu s. This example derivation demonstrates how the data

flow graph fmplementatlan of the lterntion expression satisfies Its lnte11ded function.

The oper,ational semantics or any ADFL expression mu.y be derived s imUar1y.

Firsti the exp ession is translated into, a data flow graph. The operationa1 semantics of

the expression is he history function of its graph. The history function of the graph Is

obta:ned by ecursively using Kah11 1s theory fo obtain the h'story functions of the

subgraphs corresponding to the syntact'c components of the expression. Tlile basis ,of

t 1e recursion is the history function characterizations of the elementa,ry data flow

operators.

4. Conclusions and Suggesti,ons for Future Research

The operational semantics of ADFL, an spplicatlve data flow tangua,ge w•th

an iteration construct resembling tan recurs·on, have been expressed as a two .step

p,rncess. In U10 first stef), the application of the translation algorithm .ry to an ADFL

expression yields its data flow graph ,mplementation. In the sec,011d step. the

application of the semantic function O to the graph yields Its semantic

chnrn cterization. The graph i.s an explicit representation of the concurrency poss1bie'

in eva iua\ion of tl1e expression. n is an interconnection of data flow operators.

corresponding to AOFL operators, which communlcate values to each other through

input a-l'ld output ports. In conventional sequential contra\ flow evalU!:ition, operators

am performed in a pre-,ordainred sequ,ential order. h1 darta flow evaluation, operators

are performed as soon as the ir arguments are evaUable.

The translation algor thm 9 Js recursive. The graph of an expression Is

canst ucted from subgraphs f mplement1ng ts syntac:tirc subcomponents. The graph has

an input p·ort for each free variable of the expression and an output port for each

value returned by the expression. Dat,a flow graphs are specified wttn a graph

as~cmbly la n~1uage weB-suited for describing :} ,

When expr,esslons are evaluated under sequential control flow. execution

exceptions ore often handled by interrupts. However, In ADFL an error-handllng

schamo more ,appropriate to both the concurrency of data flow and the

volon-orien ;,ition of the h.ilnguaye is used. Special errm values are returned when

e:x.ceptloris occur. Conditional and iteration expressions are mptemented with specie1

gates designec to be consistent witll this error-handling philosophy.

- 51 -

111 the second step in obtaining the oper,ationel semanUcs of an ADFL

e x pression, u,e application of tile semantic function O· to the graph of the expression

yields its semantic chara,cterbation. The result of executing a graph Is t;,haracterlzed

by o history functiolil mapplng a tuple of input histories into a unique tuple of output

histories. 'The history function of a g.raph is derived by use of Kahnts ·fixpaint theory of

communicating i11tercormec:ting processes. Here 1 the processes a.re the da1a Uow

opera tors. Tlius, the op er at tonal semantics of an ADFL express.ion Is obtained by

appBcation of ()a _9. Q~ _? map,s an AOF,t expression through its data flow graph

implemen ation to its history function characterization.

There are three avenues for extending this research. fi,st, the language

"118.Y b 1e extended. Second, he operational characterization of data flow graphs may

be modified to more closely correspond to execution on specific data flow machines.

And third, on altemative semantic characterization ot data f l,ow languages m.ay be

given and proven consistent wi1th this· operational chan.cteri:zation.

The most obvious language ex ension is ,he oddiU011 of procedures.

Proce<lures may be implemented ot the data flow graph level with en app~y Dperation

wl1tch receives a data flow graph on one input port and values to which the graph Is to

be applied on its rema ining input ports. Since Kahn"s theory can be extended to

include recurstve graphs, it is easy to characterize the operational semantics of such a

data flow language.

Another language ex.tension }s the Incorporation of the determinate stream

operators of Weng [19]. A stream is a 11st whose elements are generated over time.

Stream operators process these lists one element et a time. ConsequenUy, the

concuirrency of data flow program execution is Increased by allowing e duta fl ow

operator to process elements of an input stream ·value whtle elements of' en output

stream value ,sre being generated. !Determinate stream operators are naturally

chatactetized by history functions. and, thus, Kahn1s t·xpolnt theory may be used to

define the operational semantics ,of 8 language wrth determinate stream ope·rators.

A non-determinate stream operato'li1 merge, ha,s bee111 used by Arvi,nd,

Gostelow. and Pfouffe [4] and Dennis (8] in data flow lmplementatlons of real•tlme

systems such as resource allocators and air ine reservation systems. The merge

operator accepts two input streams and merges them into one output sbeam. The

output stream may be one of several interieavings of the input streams. It is difficult

to extend Kahn 1s fixpoint theory to non determinate computation. e,-ock and

Ackerman 1[6] have shown that arbitrary noR-determlnate data flow graphs cannot be

operationally character1ized by the natural extension of h story functlons 1 a mapping

from tuples of inplrt hrstorles to s.ets of tuples of output historJes, while Kos nskl [13]

has described an operational semanrtlcs of non~de.t,ermtnate data f tow graphs in which

each data flow value is 11tagged 11 with the non-determinate 11 choie,es" lead ng to Its

geoeration. Koslnsk!ls theory seems unnecessarily complicated since non-determinate

computations may be simulated without tagging va ues. Consequently a simpt.er

characterrzatim1 of non-determinate data flow computation ma:y exist. An alternative

area of research i$ finding a non~determinate data flow language which restricts t'he

use of merge operators 30 that grophs have a simple operationat characterization.

The second avenue of extending this research Is the operational

characterization of data now computation on specif c machines. Kahnts theory

assumes that the links •of data ·now graphs are unbounded FfFO queues; however. 111

the date flow machine design of Dennts and Mlsunas [9], the links are one-place

buffers. if operators are allowed to 11 write over 1 buffered values, graph computation ,Is

non-determinate. Presently, Montz [14] is invest gating the t1se of acknowledge

s~goa,s ·to control operator firings. In this scheme, whenever an output and input

operator are connected by a Ink;, a second acknowledge link: rs placed, in the opposite

direction, between the operators. The output operator wm not place a value on tha

data link until it has received an acknowledg,e value and the Input operator generates

an a.ck now edge value whenev,er it removes e data value. SemanticaUy, graphs

constructed with this acknowledge protocol may be considered to coots n links

impiemented by unbounded FIFO queues; elthough,, in actual executlon, only one piece

of the queues will ever be used.

The third avenue is proving that the operational senumttcs of' ADFL are

consistent with a more abs,tract semantic characteriz61ticm. The denotetionel

semantics [i SJ of a language are given by defining a d"rect mapping of syntactic

components to suitable abstract objects. For ,example, procedures may be mapped

into functions without regard to details of lrnplementotiofl or execut1on. Scott 1s [16]

theory provides he theoretical basis for defining iterative computatlon and fo

construe ing abstract objects to syntatic c,omponents. 8'nce ADfl ts epp~ic:ative, the

sole effect of evaluation is to return a tuple of values dependent solely on the values

bound to the free identifiers of the evaluated expressinn. ConsequenUy, inly

expression of ADFL may be denototlonaHy characterized by a function mapping each

environment, associatton of den ifiers and values, into the tuple of values returned

w\ en the expression is evaluated within that envirnnlililent. The denota-ronal semantics

of ADFl have a simple, elegant statement. Further research of tll~s outhor will prove

tha · he operational and denotational seman lcs of ADFL are consistent.

Bibliography

[1] Ackerman, W. B., A Scructure Memory ror Data Flow Computers, Laboratory for

Computer Science (TR-186), MIT, Cambridge, Massachusetts, August 1977'.

[2] Ackerman, W. 8., and J.B. Dennis, 11 VAl -- A Vatue~Oriented .AlgoTllthmic

language:

aboratory

PreUmimuy Reference Manual'', Computation Structures Group.

for Computer Sclence, MIT, Cambirldge Massachusetts,

In Preparation.

[3] Arviml, and K. P. Gostelow "A Computer Capable of Exchanging Processors for

Time". JnlotmilUon Processing 77: Proceedings of JFIP Congress 77

(B. Gilctuist, Ed.), August 1977, 849*853.

[4] ArvinHI, K. P. Gostelow. and W. Plouffe "Indeterminacy, Moni ors and Dataflow",
Proceedings of the s, xth .LICM Symposfum on Operating Systems Prine I pies,

Operc1Ung Systems Re11iew 11 , 5(November 19'77),, 159-1 169.

[5] _A1tvind, K. P. Gostelow, and W. Plouffe, The (Preliminary) Id Report: An

llsy-m::hronous Programming l.an,g.uage and Computing Machine, Department of

lnforrna tlcm and Computer Science (TR 114), University of Calttomla - irvin,e,,

I rvlne, California, May 1978.

[6] Brock, J. □.. and W. B. Ackerman, 11 An Anomaly in the Specifications of

Nondeterminate Packet Systems 1
' 1 Computation Structures Group (Note· aa~ 1) 1

Lobon:1 tory for Computer Science, MIT, Cambridge. Massachusetts1

January 1978.

[7] Dennis, J. B., uflrst Version of a Data flow Procedure Lan9u,age 11
1 Programming

Symposium; Proceedings, Cofleque sur la ProgrammaUon (B. Robinet, Ed.)

Lecture Notes in Computer Science 19't 362-376.

[8) De1rnis J, a., 0 A Language Design for Structured Concuril"em::y11
, .Proceedings ot a

DoD Sponsored Workshop (J. H. Williams. and D. A. f ,isher, Eds.), lecture Notes In

Comp11tcr Science 54, October 19 76.

[9] Dem,is, J. B., and D. P. Mlsunas. 11 A Preliminary Architecture for a Basic

Data-Flow Processorr\ The Second Annual SymposiUrn on Computer Architecture~

Conference Proceedings, January 19,75, 126~182.

- 65-

[1 OJ Ellis, o,_ J, Formal Specifications for Packet Communication Systems, laboratory

for Computer Science (TA-189), MIT, Cembr,ldge. Massac,husetts.

November 1977.

[11] Hoare, C. A. R., H,Communicating Sequentia Processes 11
, CornmunlcaUons. of U1a

tlCM 2 , 8(August 1978), 666~677.

[1 2] Kahn, G., "The Semantics of a Simp-le Language for Parallel Programming••

lnformafion P'tocessing 74: Proceedings of the fFIP Congress 74, August 1974,

471-475.

[13] Kosrnsk, P. A., ''A Stndghtforwa d DenotaUonal Semantics for Non-Determinate

Data flow Programs;\ Conference Record' of the fifth AG:M Symposium on,

Principles of Programming languages, Janua y 1978, 214~221.

[14] Montz, L, Safety and Optimization Tran~formations for Data flow Programs, S. M.

Thesis in preparation; Department of Electrical Engineering and Computer

Sci.ence, MIT, Carob.ridge, Massachusetts expected January 19 79.

[15] Patil, S. s., 11 Ciosure Propetties, of Interconnections of Determtna te Systems 11
, ,

Record of the Project MliC C,onference on Concurrent Systems and Paralle,

Compuuillon, 19701 107-116.

[16] Scott, D. s.. ''Data Types as La tlces 11
, SIAM Journal of Comput.lng 6.

3(September 1976), 522-587.

[17) Steele. G. l., RABB!r: A Compiler for SCHfME (A Study in Compiler

Optimization), Artiflcia llntelligence laboratory (AI-TR-474), MIT. Combr;ldge.

Massachusetts, 1978.

[1 8] Tennent, R. D.. 0 The Denotational Semantics of Programming Languages• ~

Communicarions of the J'ICM 19, 8(August 1976)~ 437-453.

[19] Weng l<.-s., Stream-Orientecl Compuldtion fn Recursf11e Dara Flow Schemas,

Labora ory for Computer Science {TM-68), MIT, Cambridge. M11ssachusetts

October 197 5.

