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ABSTRACT 

A data flow machine achieves high performance by the concurrent 

exe<:11tion iof machine code consisting of data flow graphs which ,explicitly repr,es.ent 

the doto dependencies among p1rogram ins,truct\ons. This thes·s presents the 

ope ,,1tlonal semantics of ADFL an appUcaUve data flow leingtiage with an Iteration 

construct resembling tail recursion and an error-handling scheme appropri,ate to the 

cone irrency of data flow. The operational semantics O" 9 of ADFL are e:xpress.ed 

by a lwo step process. The translation a1lgor'thm ? maps an AD.fl expression into 1,ts 

grnph implcmenta ron. and ti e semantic function Q maps the graph into its semantic 

chorncterization. Data flow ,[Jraphs ere specifed by use of ,a graph assembly lenguag1e, 

tmtl I h :o::nmiln\ cs of tl,csc graphs ,ar,e derived by use of Kahn's fixpoint theory of 

commun~ca ling processes. 
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1,. Introduction 

Rec~m ly many novel computer architec1ures which achieve high 

performance through the use of concurrency have :been proposed. Most of these 

designs ere simple variations of the von Neumann model of computation where a 

sequential process manipulates a memory. The effective 1:.1 mza ion of these machines 

makes special demands on programmers and their programming languages, such as the 

structuring of data lnto vectors or the partitioning of programs into concurrent 

processes. 111 comparison, the data low model of computation demands only that the 

principles of struct~ .. ed progrnmmlng be foUowed. In this thesis w ,e define a date flow 

progiramming language and formally specify its operational semantics. 

In a data flow machine, an operation (Instruction) Is performed as soon as 

I s operands have been comp 1ted. Data flow machines accept os their machine 

language· en expliclt representation of the dale dependencies of program operations. 

Conventional computer languages destgned o facilltate structured programming are 

easily translate ·nto, data flow llltWhine code. 

1.1 The Data Flow ModDI of Computation 

A data flow program Is represented by a directed data flow graph whose 

nodes are caUed opera!ors. The role of operators in a data flow machine is similar to 

the role instructions In a van Neumann machine. The execution of an instruction 

corresponds to the firing of an operator. Each operator has several labeled input and 

output ports. Whenever an operator flres 1 It ,absorbs values at Its Input ports and 

produces values a its output ports. Operators have f1iring rules which determine when 

they are enabled for firing. These firing rules are based on the presence or absenc:e 
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o·f values on the operator's piorts. Most operators are enabled whenever input values 

are present on all input ports. 

When opera ors are joined to form data flow graphs, the 1lnks of the graph 

are directed from operator output ports to ,op,erator input ports. A I nk t,ransports the 

results produced at an operator out:put po.rt to an operator input port. Thus, lllnks f-orm 

the r,athways upon whi,ch data flows as values are absoil'bed and produced by the 

ririn•~l of operators during the execution of a graph. Unli:nked operator ports within a 

graph ore the ports o,f the graph Hseif. Graphs, ike operators., absorb values at Input 

por s and produce values at output ports. 

The data flow graph for computing the distance function: 

z ~ s qrt((.x 1-x2)2 + (y 1-y2)2), 

is must ated in Figura 1.1. The solid b a.ck dot n the figu,re reprnsents the copy 

operator w hich is us,ed to distribute the results of one output port to several in,put 

ports. Not,e how this ,graph repr,esents operation dependencies and lndependencles 

ancl, conscquentl'y, the concurrency obtainable during t ,he computation of the distance 

fu clion. 

1.2: R,escarch in Data Flow Computation 

There are two prereouis,1es to the practical use of data ftow computation: 

( 1 ). n machine whi1ch executes data flow g,raphs· and (2), 8 progr,a.mming language 

which can be tr.anslateci into data flow gr.aphs. Preum·nary data flow machine designs 

avo ,een made y De1 nis and Misunas [9] and Arvlnd and Gostelow [3]. Within these 

machines, a data flow graph is dislributed over a network of processing elements. 

Theso elements operate concur,rently, constrained on,y by the operational 



dependencies cf the graph. Thus. o very effioh,Hilt utilization of the machine's 

r,esources appears possible. 

Data flow programming languages resemble conventional languages 

testr'c ed to those features whose ease of 'translation does not depend on the state 

of a comp,utat·on being a single. easily manipulated entity. Because the 11state 11 of a 

data flow graph is distributed for concurrency, galo's, expressions with side effects, 

and multiple assignments to, the same variable am difficult to represent. Since these 

"feaitures 11 are oerieraUy avoided in structured programming. their absence from data 

flow languages is little reason for lamentation. 

The ''First 'Version of a Data Flow language,11 by Denn~s (7] was a 

rudimentary ALGOL like langua.ge. Most data flow languages have, been based on the 

principle of single ,assignment~ Variables could be assigned only one va.lue dur.ing a 

program s execut,ion. The languages of Weng [19) and Arvind, Gostetow, and 

Plouffe [5]. in addition to having the expressive power of ALGOL, facilitate the 

programming of network6 of communicating processes, such as co-routines end 

operating sys ems. 

The incorporation of data structure operations into data 11 , ow languages has 

influenced architectural designs. In theory, data flow OIM!'rators using dote structures 

would need to pass copies o entire structures among themselves. Howevert 

Ac1kerman [ 1 ] l,as specified a structure processing facility whic1h a:ITows pointers to 

structures to be passed, but sfll guarantees that no program observable side-effects 

may be caused by a structure operatlo11. The facility is des,gned to process many 

operations concurrently. 



1.3 ADfl - .An .Applicative, Data Flow languag 

ADFL, Applicative Data flow Language, is a simplificat ion of VAL, the 

va luo-orientccl data flow language being developed by Ackerman and Dennis [.2]. A 

BNF specification of the syntax of AOFL follows: 

exp :~= fd I const exp, exp I oper(exp) I tet idlist = exp In e.xp I 
if exp then exp else exp I for idlist = exp do Iteration 

neration ::= ,exp [ Uer exp 11,et ldUst = exp in iteration· I 
if exp then fteraUon else iletation 

,d : .:= 11 programn1ing languag,e idenUfiers 11 

fdllsl ::= id { • id) 

cons( ::= '"programming language constants 11 

opflt : :- 11 progr,eimming anguoge operators" 

The most elementary expressions of ADFL are iden ifiers and constants. 

Tuples of expressions are also expressions. One such expression is 11 x, 6". The 

application of an operator to an expression is an expression. Although~ the BNF 

spec•fica ion only provides for operator appllcatlons in prefx fo m1 such as 1+(x, 6)"'; 

applicalions in infix form., such a.s •• x + 6 11
, are considered acceptable equivalents 

( suqari,ngs) ancl will be used in example ADFL programs. .All operators of ADFL are 

r<Hjuired to be (lete,minate and there:fore chara.cter'zab 1e by mathematical funcf ons. 

We will not attempt o completely specify he class of operators and constants. 1,t Is 

assumed that at east the usual arithmetic and boo eu,n olperators and constant~ a.re 

present. 

Since .ADFL 1is ap,plicat've, it p,rovides for the bi111ding. rather than th,e 

assi~Jnment. o identifiers. EvaluaUon of the b nding expression: 



let y, z = x + 5 , 6 in y - 2 

lmpres the evaluation of 11y z I with y equal to 11 x + 6 11 and z equa to 6. T e result of 

binding is .ocai: the values of y and z outside the binding expression are unchanged. 

ADFL contains a conventional, conditional expression, but has an unusual 

iteration expression. The evaluation of th,e Iteration expression: 

is a,ccompUshed by first binding the Iteration ldentlfier.s 1 the elements of ldflst, to the 

values of exp. Note from the BNF specif cation of ,tera.Uon, that the ,evaluat·on of the 

iteraU,on body w ·11 ultimately result in either an express.ion or the 111apprcation'" of a 

spec.ial operator ter to an expression. Thlis applicat on to iter ts actua ly a tsU 

recurs·ve [ 1 7] ca ll of the iteration body w.th he iteration ident tiers bound to the 

'argl men ts" of i1er. The iteration· is terminated when the eva uatlon of the iteration 

body results in an ordi111ary1 non iter, expression. The value of t ,hls express·on Is 

returned as the value of the iteration expression. The following Iteration expr,esslon 

computes the f actor1al of m 

fo·r i, y = n, 1 

do if i > 1 then iter i - 1 y i else y 

In conventional languag,es execution ex,ceptions such as div de by zero 

errors, ate generally handled by p,rogram nterrupt-S. This so utlon is ·nappropriate for 

data flow s ince there is no control flow to interrupt. In ADFL execution excepttons are 

har1dled by genera ing special error values. f.or example, evaluat on of m•510 11 yie ds 

the special value "'DlvideByZero 11
• We wm not attempt to specify a large cl,ass of enor 

values and the result of opera or application to erro values here. .A detailed 

specification of this method ,of error-handling is given In the documentation of VAL [2]. 

Only one error value, err, will be specifically used in the tormaUsrn contained in this 
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thesis. The result of evaluating condl ional ex,presslons or tteratlon bodres In which 

the predicote is neither true or false is a tupl1e oontalnlng err es each component. 

1 .4 The Semanties of Data flow Pr·ograms 

The operatlorud semantics of e data 1 ow program is a forma slmu,lation of 

he execuUon of the program's data flow graph. The formal modeling of graph 

e·xecu· ion is non-triviat. The 11ste'te 11 of an ex·ecuting graph may be considered ,a 

snt1pshot of the tokens contained on the liinks of the grap,h [7]. The ftll"Jngs or 

operators transform the g1raph through en execution sequence of snapshots. Since 

most adjacent pairs of op,en1tor firin,gs are independent, the r places within an 

execution sequence may be interchanged. Thus, many ,execution sequences may 

represent the 11same'1 computat on. 

Oming a ,graph execuUon1 .an oper,ator receives at e·ach input port a h·lstory, 

po:..sibly empty. of Input value3 and produces at each output port e history of output 

values. An operator is de•termlmUe if, for every tuple of Input histories one for ea1ch 

·nput pon a unique tuple of output histor~es is produced. The mapping from Input 

history tuples to o 1tp I history tuples is the hi.story· funcOon· ,of the determinate 

operntor. The determinacy of on operator cannot depend on the ,reletiv,e timlng of 

values received on different input pot s. Operators with \ime-dependen , behe.vio·r 

have non-determinate race5 at the r input ports .. 

Po Iii [ 1 5] proved that, if all operators of a graph .are determinate, the graph 

itseU is de crminate. Thus, given nputs to a determinate greiph 1 it Is necess ·ry to 

examine on1y one exe,cution sequence to derive the result ,of graph e!xecution. 

Kahn [ 12) further simplifie.d this derivati,on by noting that every ,graph operator. 



- 11 -

through i s h"story function places a relation on tine histories of its input and output 

links and that, consequently, the history functions o,f the ope,rators form a set ,of 

simUtn eous equations over the links o·t the g1raph. Using ScoH's [16] flxpolnt theory, 

Knh was able to distinguish the solution of these equaUons which corresponds to 

grap execution. Because progrs,ms of AOFl are determinate, the operational 

seman ics of AOFL ma.y be stated by specify'ng the translation a&gor thm f om programs 

to graphs and by specifying the· his,tory functions of the op,erntors used in these 

graphs. Kahn s t 1eory may be used to obtain the function Implemented by a deto flow 

graph following operational rules. 

1 .S Synop:sis of Thesis 

This hesis conta,ins a defin tion of the operational semantics ,of ADFL. 

These semantics may be used in formal proofs of propert es of ADF expressions .irmd 

thetr graph mplementations. In Chapter 2 a graph assemb.ly language for specifying 

da to f llow o aphs is introduced, and the algorithm for translating AOFL programs into 

da a flow grnphs ls described. he ranslation algorithm is a function _9 mapping ADFL 

expressions into graphs. In Clrrnpte·r 3, the data flow opefator.s used to implement 

ADFL programs are specified, he semantic function O mapping graphs in o their 

history ft nclion specification of execution ·s de ived by use of Kahn s theory, and the 

operationa.1 sema111tics of an ADFL iteration expression Is derived by pplication of 

() 0 _ry to the expression. Conclusions and suggestions for future research ere 

contained n Chapter 4. 



Figure 1.1. Distance Dat,a Flow Graph 

x1 x2 

sqrt 

z -- sqrt((x1 -x2)2 + (y1-y.2)2) 



2. ~:.7: The Translation ALg,orilhm 

The translation algo i hm is the ucompiler 11 of ADFL. U ts a function ~? which 

rnap,s ADFL expressions ·nta da.h ftow graphs. In this chapter a language for 

conslructing data Uow graphs ·s described and then used to specify the tums1eUon 

process. Since the primary goal of this thes\s is· steti.ng the operational semanUcs of 

ADFL ma.ny ord inary compiler features such as compile-time type checking, ar,e ignored 

here. 

Form a ly, a data ttow operator ts a history function1 from tuples o·f histories 

to tuples. of histories. The complete specification of the semantics of the various data 

flow operators is given in Chapter 3. In this ch.apter, concerned solely with the 

connection of operator ports to form graphs. it suffices to be able to determlne the 

a.bels of ti e ports of each operator. This information is avai able through two 

funcUons. Given ,a data 11ow operator o, IN(o) is the set of labels of the input ports of 

o, OUT(o) ·s the set of labels of the output ports. It w·1 be assumed that the ports of 

data flow operators corresponding to ADFL operators ere abe1ed by consecuUve 

integers. For exampte, m( +) = { 11 2} and OUT(+) = { 1}. The functions #IN. such that 

#IN(o) is he cardinality of IN(o}. and #OUT, defined similarJy will ,at,so be used in graph 

constru o tion. 

A data flow graph has four constituent parts: operators. Input ports, output 

ports, and links. The links of a data fjow ,graph Join the input and ou put ports of its 

operators. Formally, operotor interconnection may be described as a reiation 011 

operator ports. The unlinked operator ports are the ports of the graph Uselt. Graph 

ports. lik ,e operator 1ports are labeled. Therefore, unl"nked ,operator ports must be 

assigned the labels they assume as graph ports. Graph port assignment may be 
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described as o relation on graph ports and op,erator ports. Unfortunate1y, the direct 

description of opera.toll" interconnection and ,graph port assignment by relations Is 

difficult to write and comprehend. For this reason 1 graphs generated by the tra.11slaUon 

process wm be specified by use of a graph aHembly language. 

2. 1 A Graph Assembly Lang,uage, 

nie graph assembly language is based on the structural description 

fanguage of Ellis [1 OJ. It Is no,t a complete data flow programming language. It 

contains only those features need,ed to provide a convenient and adequate 

:spedfica ion of the translation p,rocess. 

There are four components to each graph des.cription of the graph assemb,y 

lan~1uage. l"he first three name the input po:rts 1 output ports 1 and links of the graph. 

Tim fourth specifies the o:peratoirs of the graµh and their interconnection. 

Syntucticul1y. the form of a graph description is: 

inputs : ... 

outputs: •.. 

links: ... 

operators: 

The ellipses in the above form are filled by appropriate ,ists. The inputs and output:s 

lists conta in the labels of the graph input am:I output ports. These are the only lists 

ovailahle outsiclc ·the graph definition. The functions IN and OUT are extended to 

grnphs by def 'ning iN to map, each graph into the set of its input port labels. as given 

by the inputs Ust, and OUT to, map each graph into the set of Its output port labels. 

The Unks and opera·tor~ lists speci.fy ,operator Interconnection and graph 

port assigmuarit. All Hnks of the graphs are labeled and enumetat,ed In the links lists. 
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Operator por s are connected by being assigned to the same· link. These assignments 

are made in t ,e operators lis . One and only one operator output port and at least one 

operator b1put port must be assigned to a link. If mare than one nput port ·s assigned. 

a copy opera :tor ~s used to distribute the out puts. to au the input ports. 1 The 

assignment of an unlinked operator port t,o i ts graph port l1abe\ is also made In the 

The operators of the graph and the assignment of ope a.tor ports to gr,aph 

Unks a ncl ports are given in the opera.tors list. For each Instance of an operator o the 

opera1ors 1st contains the element: 

o i,nputs: ... 

outputs: ... 

The assignment of a ijntph ink or input port a to en operator input. port a Is indicated 

by including 

In the inputs list. The assignment of an operator ou put port a to a g aph link or output 

port a is 'ndicatecl by including 

in the outputs list. The &rrow ➔ always points ·n the direction of data flow. This 

convention allows a graph input port and a graph output port to share the same llabel 

without any ambiguity of assignment occurring. I i,s occasionally ne,cessory or 

convenient ta connec graph ports and Hnks. This is done by nclud~ng an assignment 

as a s ,epara te element of the operators list. ote that by use of the func lons •N and 

OUT. it rs possible to determine if proper assignments are made for all operator ports. 

1. The link of Dennis 7] is the eopy operator tmed for this purpose. 



In F,igure 2 .1 , a graph descrlpt on which generates the distance data f ow 

g aph of Chapter 1 Is g ven. Note, how the connection of the output port of the 

leftmost - operator through a copy operator to both Input ports of the leftmost • 

operator Is spedfled. Fiirst. the connecting link Is labeled tta 1". The lncluslon of the 

assign me ts 11 ➔ a, 1 in the outputs list of the ~ operator and •a 1 ➔ 1 and I a 
1 

..., 2"' In 

the Inputs list of the " operato completes. tbe specification,. 

The ttansl1ation atgorlthm Is defined recursively. the data trow greph of an 

express-Ion ts construct·ed from the graphs of its stlb-express'lo s. Three extensions 

am made to the gr,aph assembly language to al ow recurslve graph detin1t1ons. 

First, it must be possib e to, construct graphs which have smaller grephs as 

their components. This can be done with the present syntax for graph definitions 

because gtephs and operators have the same external Interface. Both reoetve values. 

at labeled Input ,ports and produce values at h1be'led output po1rts. Within a graph 

definition the ports of component subgraphs can be assi9ned to graph links or ports •n 

the same manner ports of component operators are assigned. 

Second, It must be possible to wrlte graph definition scheimas which 

in,corporete subgraphs with vui.ous ,external cherecteristlcs. Jihe labels of the ports of 

a graph or operator ca.n be obt,ained witli the functions IN and OUT. Assignments may 

be made to these ports with range cons-Uuolors. A range constructor of the form: 

(a€ seO item 

specifiies a rs which, for every elefflent ,of set has al'I oceurrenc•e of Item wlth a 

rep aced by that element. Fo example: 

(i ,e: 1 •. 5) I ➔ a 1 

is equivalent tor 
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1 ..,. er , 2 a 2• 3 a 3, 4 ➔ a 11 , 5 ➔ cr 5 

GeneraUy, range cons tr ctors are used to construct ists over rang,es of Integers, or 

s ,ets of inplJt or output port labels. A similpr c;;onstru,otor ts used by Hoare [ 11 ] to 

specify systems of communica ing processes. 

And last, I must be posslbl.e to prevent the appUc8tion of graph definition 

schemas in cer ain anomalous situations. For ex.amp e the ADFl expression: 

if x. y then ... el,se ... 

i,s invalid and ittle is galned by specifying its translation Into a data flow graph. A 

graph definition schema may be restricted by 1he addition of s fifth top-level 

component of the form: 

restriction: predicate 

The schema is appropriate only in situations where the restriction, predlce e i:s true. 

In figure 2 .2, a recursive definJ,tion of a g aph + n for edding ll numbers Is 

given. The graph, an Inverse binary tree of+ operators is recursively generated with 

two + ,,12 su graphs anti one op,er.ator. he n g1raph inp1Jt ports are evenly divided 

between the two + nil. stJbgraphs, The results of t 1ese two subgraphs are summed by 

the + or1erator. The definition is testr,cted to those cases \Vhere n is a power of tv,,,o 

greater than lll'JO. Presumably, +2 is the usual+ operator. 

2..2 The Struc.t,ure of ADFL 1Graphs: 

The remainder of U1is chapter is devoted o a case by case specmcetion of 

the translation function for AIJFL. J maps expressions and :} 1 maps iterat·on bodies 

i o corresponding data flow graphs. The special value ERROR denotes the result of 

the translation of Invalid expressio s or iteration bod·es. 



A graph corresponding to an ordinary expression or iteration body has an 

input mrt for each free ,-:ariable of the expression or iteration body and, if needed, an 

input por trigger for enabling constants. For an expression exp which returns n 

values when evaluated, _1[exp] has n outpu1: ports labeled 1 through n. There are 

two llossible results, of evaluation for an ·ter8tion body, results to be re-iterated or 

results to be returned as the results of the containing iteration expression. The graph 

.:::J,[ueraHon] of an ' teration body Iteration has a set of output ports for each 

possibl ity end an output port iter? whi,ch signals which possibility has occurred. The I 

pmts, 11 through Im, are for values to be iterated, and the R ports, R:1 through Rnt are 

for values to be returned. 

The translation functions _:::'} and :)1 are defined recurslvety on the eleven 

cases of the BNF specification of the syntax of ADFL~ 

exp ::= id I c,onst exp , exp I ope.r(exp) I let ldli~t : exp in exp I 
if exp then exp else exp I for ldtist = exp do iteration 

iteration : : = exp I ,t-er exp I let idllst ~ exp in lleraUon I 
if exp then ne:rat.ion e1se Iteration 

2.3 The TranslaUon of Expressions without Iteration 

The first case ry[idll. Ulus-trateo in Figure 2.3 Is the most slmpi,e. :}[td]] 1-s 

the ~1ra1ilh with tl,e si11~1ie input port i<1, one output port and no operators. The input 

port id is directly connected to he output port. 

The seconri case 1[consi], Ulustrated In figure 2.4, ts ,al1n.ost as simple. 

J1
[const] is the constant operator consr with Its operator ports ass1gned to graph 

p-orls wW1 the same labeli.s. The operato-r consl and; consequently, the graph 

_'?[con.st] ,,rocluce the output value oonst whenever a triigger value is received. 
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The graph .:][exp 1., exp2], defined fn figure 2.6. contains two subgraphs, 

.:J[exp 1] and _=Jlexp2]. Input ports of either subgraph are assigned to grsp,h Input 

ports wl h the same label. The graph output ports ere formed by concatenaUng the 

output ports of the component 5Ubgraphs. 

:J[oper(exp)]]. shown in Figure 2.6, Is formed by connecUng the output 

ports of ... ~[exp] to the Input po ts of oper. If the two sets of ports do not motcht 

==]l[oper(,exp)] ·s ERROR. 

The free variab es of the ,expre·sslon 11 let ldllst - exp1 in exp211 are the 

free variables of ex-p1 pills the free variables of exp2 not appearing In ldllst. The 

graph 9[1et ldlist = exp1 In ex-p2E!, Illustrated In Flgur,e 2.7, l1s c,onstructed by 

connecting the l'th ou put port of 9[exp1] to the Input ,port of _9[exp2] labelled by 

the /Ith identifier of ldUst. nput ports of .9[ex,o2] unlabeled by an Identifier of ldlisr 

and all input ports of _'][e,xp1] are assigned to graph input ports. l'he output ports of 

][exp2]) are assigned to the graph output pons. Sf the !length or lctlist does not 

match the number of ,output ports of J[exp1] or if some Identifier in ldll:sl lis unused 

In _:::}[ex p2], J[let. idlist = exp1 In exp2] is ERROR. 

The g aph descrip on of figure 2.8 of the lmpfementatton of the condltlona1 

e·xpression "if exp then exp2 else exp3" Is one of the more compllcated. Three 

subgraphs, 9[exp1], .:J[exp2]. and :J[expaIII. are ,contained In this graph. Since 

the predicate exp 1 determines which of exp2 and exp3 Is selected for evaluation, the 

enabling of the result expression subgraphs. _'?[exp2] ,and _::_}[exp3], must be 

controlled by the predicate subgraph, :}[exp11]. Thl,s contro Is effected by 

connecting gates control ed by the predicate subgraph to the Input at11d ,output ports ,of 

the result expression subgraphs. 
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Three gates, shown with their firing rules in Figure 2 .9, are used. The 

T gate recelves a contmt value from one input poJit shown entering the ga'le 

horizmttalily and o data value from another input port. The data va,ue Js pass,edl to the 

output ;mrts only if the con rol value is true. If the control value is false. the data 

value is sin1ply absorbed. No output Is produced. By placing e T gate controlled by the 

output of ~:"J[exp1] on each Input path of 9[e,xp2], the evaluaUon of ,exp2 con be 

restricted to when exp'l is rue. 

Tl,e role of the controt value is reversed in the F gate. The datei vailue is 

1:lnsscd if tho control va\ue is fals,e ancl is absorbed if the control value is true. 

F gate's control the enabling of ry[exp3] ifl 1he same manner T gate1s control the 

en ablfng of _ry[ex:,02]. 

Tim output ports of the result expression subgrnplls sr,e merged with 

M gate's. The M gate, receives a control value which determines frnm which of two 

input ports o do to value should be absorbed and produced as an output value. Each 

pair of outpu ports wilh the same label from the result expression subgraphs are 

com1cc ed to a M gate which receives the output of the predicate subgraph as tts 

control value. The receipt of a true. respecth1eh• false, predicate value causes the 

data value from ~CJ[exp2], respectively J'[exp3], to be selected. The output port of 

the M ga1e is assigned to a graph output port of tile shared label. 

When ,evehmfo;m of the predicate yields a value other than true or f ats:ej 

oei n, r of tl1e resul't expressions should be ,evaluated and err should be generated at 

each graril, output port. This errol'-hand1ing strategy is accomplished by requiring, that 

t I e T gate ancl U1e F gate absorb their data value and produce no output value end 

the M gate absorbs no data value and produces an err 1output when a control value 
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other than true or false ls received. 

~'?[if exp 1 th en exp2 else ex,o3] Is ER,ROA if exp1 returns more th1an one 

value or jf exfJ2 and exp3 do not return the same number of va\ues. 

2.4 The Translation of lteraUon Expressions 

The translations of six. of the seven types o,f expressions hos been 

specified. Only tile iteration expression, remains untranslated. Hc,wever, since the 

·teratlon expression contains an iteration body, it is convenient to first specify the 

translation of the four types of iteration bodies. 

Aeca.11 that U1e output port iter? of the data flow graph of an Iteration body 

s ,lgna'ls whether or no output results are to be iterated or returned. the I output ports 

are tor '\lalues to be i ernted, and the R output ports are for values to be returned. 

The function IOUT,. respectively AOUf, is defined to map a graph into the set of abels 

of its 1. respectively R, output ,pons. 

The graph descriptions of the Iteration bodies 11 exp 11 and I lter exp• are 

given i11 Fiuures 2. 0 and 2.1 . The va ues of 11exp11 are to be returned. he values of 

"itet exp11 are to be iterated. Consequently. In _91[e,rp] the iter? output value 11s 

generated with a false constant operator, while in ~ry'~[ ter exp] it is generated with a. 

true uonstant operator. Ne1ther graph n.as a 11 complete 11 set o,f output ports. That is. 

neither contain both I and 1FI output ports. Output port ; of _:)'[exp] is assigned to 

output port Bi of ~9,[exp] or to output port Ii of :}1[iter exp]. 

The iteration body 11let iclllsi := exp in iteration" is implemented in the· same 

manne,r the expression "let H:JUst-= exp1 in exp2° ls implemented. 
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Tile clata flow graph implement.ation of the conditional iteration body 

"if exp then lteratJon1 else iteratlon2'' Is similar to that of the conditional express,ion. 

T gate's and F gate's. controlled by the outputs of the predicate subgraph, .:}[exp)], 

are placed on the inpu paths of the iteration body subgraphs, ~ry 1[ue,ation1] amlt 

_J1[iterntion2]. so that the predicate can e,mable the evaluation of the sele,cted 

iteration body. M gate's control the graph ou put ports. However, there are two 

complications 111 the use of M gate's to merge the ou puts of the iteration body 

subwaphs. Firs , he selected iteration body subgraph wi I produce outputs at either 

its I or its R output ports .. Consequently, the I end R ou put ports must be controHed 

separately. Second, the iteration body subgraphs do not necessarily have both I and R 

output ports. lln Ffgure .2.12, ~71[·t exp hen iteratlonl else iteration2] Is descdbed 

wilh the ossl1mp ion tha.t both iteration body subgraphs have both I and R output ports. 

The modiflcotron required in other situations is given later 'n thrs section. 

An IC gate is used to control the g;raph output ports. The IC gate ha.s three 

input ports. One is connected to the output of the predicate subgraph and the other 

two• are connec ed to the iter? outputs ,of the Iteration body subgraphs. The IC: gate 

.oil o has three out1,ut ports. One is assigned to the graph ner? output port, a second 

i,s lhc I cont ol value for M gate's connected to the g aph I ports, and a third is the R, 

COi rol va UC , 

The C gate has tlie following frlng rule. The output of the predicate 

subqra pl , a c s ~s a control value. It determines from which iteration body subg1raph en 

iter? value should be absorbed. The absorbed iter? value s gnals whether outputs are 

bein< produced at he I or the R outpu ports. This value Is output as the graph •ter? 

outpu value and determines whether the predicate value 51rJould be transmitted as the 
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II or as the R control va ue. 

If the predicat,e value is neaher true or false. a false grap iter? output Is 

generated to terminate the iteration and err values are produ,ced at the graph R 

por s. To accomplish this, err is tnmsmitted as the R control value end false Is 

ransmiUed through the graph iter? port. A formal definl ·on of the IC gate s given in 

Chap er 3. The following table summar zes its firing rules. 

predicate ~? 1[iteratio,n1] _ry1[iteratlon2] graph R 

control iter? ·,ter? ·te,r? con rol contro1I 

true true true true 

true false fralse true 

false true true false 

false false faise false 

error false err 

If botl:1 iteration body subgraphs have I ,output ports, these ports must match 

in number and must be connected through M, gate 1s 1 contrnlled by ·he I control va ue. 

to the · po,r s ot the grapl • If on y one. subgraph has I output ports., lhe M gate's are 

omitted arid the I output ports of that subgraph ere assigned to the I output port.s of 

the graph. If both subg aphs hav·e A outpu ports, these ports are similarly connec ed 

to the, A output por , s of the graph. on y one subgraph has A ou put ports; E 9ate1.s, 

controlled by the R control value, are placed between the subgraph and graph R ports. 

Whenever tl,e E gate rece,[ves a Boolean control va ue, it absorbs e date va ue and 

produces i os output. Whenev,er the E gate recerves any other control value, It 

absorbs no data value and produces err as ou put. 

All graphs clescribe,c u1> to th's point have been acyclic. If values ate 

udropped" in the input perts.. he results will even uolly 11 d op 11 out the output ports. 

The reader sho 1lcl be convinced that these graplls compute ti elr ntended functions. 
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These graphs can also execu e in pipeline fashio11. The computation of 

successive sets of inputs wiB pipeline through the graph and eventua:Uy pf\oduce 

successive sets o•f results . The computation of a later set of inputs always strictly 

follows a computation of an earlier set except when the computations uflize different 

s 1b,~1raphs dming the evaluation of a conditional expression or iteration body. Within 

lhe rmp]urnentation of a conditiona1 expression the M gate 1s merge the output ports of 

such sub~lraphs and, using the pipelined result of predicate evaluations, restore the 

orl~1inal order. With in the implement.atl:on of a conditional tteration body. the two 

COl"llflUletlons are not necessarily 1111erged 1 but the values of the iter7 output port 

reflect he branches pursued by the computations. 

Tile ,Iteration expression 11 for idlis.[ = exp do lleratlon11 is translated, ss 

shown in Fiw1re 2. 13, into a cyclic data ·flow graph containing the lnltlallzatlon 

ex:ptossion subgraph, ~='}[exp], the item ion body subgraph, .:]1[treration]], F,M gate's, 

and f'S gate 1s. A FM gate js a M gate wUh a built in ini1ial control va1ue of false. 

Mtm "absorbing" this initial control value and passing its selected deta value, the 

FM ,g ,ate behaves like· the M gate. Ile FS gate has one control lnpu -, port and one 

data inp 1t port. It, too has the built-in Initial control va ue false. On receipt of a 

f aise contrnl value, \he FS gate absorbs a data input value, stores it in an internal 

reuis ter, iUld passes it through the gate output port. On receipt of a true control 

value. no data value is absorbed, but an output of ·the stored value is produce•d, 

The sets of identifiers in idlisl, output ports oif .ry[ex,o], and I output ports 

of _71[iter.aUon] must an be of equal cardinality, and the identifiers of idflst must an 

be free, ·n the iteration body. Otherwise. J[tor ldtlst;: exp do Iteration] is ERROR. 



The input port of he itera ion body subgraph lebe1ed by the 11th identifier of 

ldllst Is ,connected to an FM gate. The 'nput Dorts of this FM ,gate a e connected to 

the iter? and U Ol tput ports of the ~teration body subgraph and the I output port of the 

initialization exp,ression subgraph s,o that input is first accepted fr<orn the initialization 

subgraph and then is accepted from the it,eration1 subgraph as long as the value true Is 

produced at the iter? port. This corresponds to evaluating, the Iteration body with 

successive iteration body results until an ordinary, iter-less, expression is returned. 

The value of that ordinMy expression leaves the iteration body subgraph through its R 

,output ports. These R output ports a,re a.ssigned to the graph output ports. 

Every evaluation of the i,teretian body requires the values of its f 'ree 

deotif iers. The values of ti e free identifiers no app,earing in idUsl rnust be 

generated for each iteration by FS gate•s. The input ports of the itera·tion body 

.subgraph labeled by these identifiers are oonnected to FS gate's ,controUed by the 

iter? output. lniUally, he FS gate accepts, and $tores, en input from a graph Input 

port. Each ime true Is produced at the i1er? port, the fS gate passes Its retained 

value into the iteratton body. 

D iring · he evaluation of an iteration expression successive itera tlons need 

not proceeJ in iock~step fashion. If tile iter? value Is produced before al the values 

to be re-iterat,ed are produced, separate iterations may pipeline th ough the iteration 

body. 

When the evaluatlon of the iteration expres,sion ts completed, false is 

produced at ti e iter? port, and the FM gate. s and FS gate*s once again have e false 

control value with wl ich to begin another evaluation. In Chapter 3 1 the data flow graph 

translation of the iteration expression is shown to satisfy ts Intended function. 
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All c'tcven ,cases ,exhausted, the s1,e,ciflca, i:on of the transl tion algor thm is 

completed. Every expression or iteration body of AOFL has been Implemented as a 

data now graph with nn input port for ea.ch f,ree var able of the expression or 1lteration 

body and, ,optionally, an input port tri,gger for enabling constants. An informal 

description ot the operational semantics ,of these data flow graphs hes also been 

given. In Chop1er 3, the ,operational semantics ,of data How graphs wi I be formally 

spn,cUiecl. Those semantics in conjunction with the trans,lation a.lgo:rithm :] wm 

constitute the operational semantics of ADFL. 
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F i,gure 2. 1 • Distance Data Flow Graph 

inputs : x 1 , x2. xa x4 

o,utputs: z 

links: a l' o: 2, o:3 a 4, a 5 
operators : 

- inputs : x1 -+ 1, x2 ➔ 2 

outputs: 1 ~ a 
1 

inputs: y1 ➔ 1, y2 ➔ 2 

outpu s : 1 ➔ a-
2 

" inpu s: al ➔ 1, er 1 .., 2 

outputs : 1 a
3 

• i 1n puts : a 2 ➔ 1 . a 
2 
➔ 2 

outputs: 1 ➔ a 
11 

+- inputs: a 
3 
➔ 1 , a

4 
..,. 2 

outputs : 1 .., o:
5 

sqrt inputs: a 5 ➔ 1 

outputs: 1 ➔ 2 

x1 y2 



Figuro 2.2. + 
11 

res·trict~on: n ~ 2 m A n > 2 

inpu'ts: (i e 1 .. n ) i 

outp,uts: 1 

Unks: a 1, a 2 
operators : 

+ n/Z i nputs: H e 1 •• n/2) f ~· I 

output s.: 1 ➔ o- 1 

+ ,,12 inpu s : ( I e: 1 .. n/2) i+n/2 ➔ I 

outputs: 1 -+ a 2 

+- inputs: a 1 -, , cr
2 
➔ 2 

outputs; 1 ➔ 1 

1 .. n/2 

Figure 2.3. _9[1c1D 
inputs; fd 

outputs : 

operators : 

id ➔ 1 

1 

n/2+ 11 •• r, 

r 1 



Figure 2.4. _ry[consr] 

inputs: tr·gger 

outputs: 1 

operat.ots~ 

canst inputs: tr· gger ➔ trigger 

outputs~ 1 ... 1 

Figure 2.5. _ry[exp1 exp2] 

trigger 

1 

inputs: (a ,e IN° _=}[exp i] U IN° :][exp2]) ,a 

outputs: ({ E ·1 •. #OUTt>_ry,[expl] + #OUT0 D[exp2]) I 
operators : 

.1[exp1 inputs: (.a E IN° J'[exp1 ]) a ➔ a, 

outputs: (I E: OUTo .?[exp1 ]) r ➔ I 
.J[exp2 ·nputs : (a£ IN°~ry[exp2]) a ➔ a 

outputs! (i e OUTo.1[exp2]) I ➔ i + #OUT0 S'[exp 1]] 



Fig.ure 2 .6. _ry oper(exp) 

restriction : OU"f11 _][exp] ;;: in(oper) 

inputs: (a e ll:IJc :J expU) a 

outputs : (i e: OUT(oper)) I 

links: (i E ln(oper)) o 1 

•operators: 
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_-=]'[eKp fnputs: (a, e IN°~9[exp]) a ➔ B 
outputs: (i ~ OUT 0 J[exp]) i..,, al 

oper inputs: (IE IN(oper)) o, ➔ I 

outputs~ ( I E OUli(oper)) J ➔ I 

Figure :z.7 . . 7[1et id 1,, ... , ldn = exp1 In exp2] 

restriction: #OUT11J[expl] = n• A {ld1, ... , ldn}-; IN°~[exp2] 

inputs: (a E IN°_=][exp1] U (IN° :J,[exp2] - {id1 1 ••• , idn})) a1 

,outputs: (i E OUT0 .1[exp2]) i 
Unks: (i E 1 .. n) cr. 1 

o,pera.tors : 

_ry[exp1] inputs: (.a e ilN°:} _ expl D) a ➔ a 

o,utputs: (; e i .. n) i ➔ o, 
_][ xp.2] inputs: (a E :J'[exp2] - {ic11, ... , idn)) a· ➔ a,, HE 1 .. n) a 1 -+ ldl 

outputs: (I E OlJT0 _?[exp2]) / ~ i 

.'J[exp1] 

:}[exp2~ 



Figure 2.8 .. =J[if exp1 then exp2 else exp3] 

restriction : OUT0 .1[exp1] = {1} A 01.ffa .?[exp2] = oun,:J[expa] 
i nputs : (a E iNc. _==:][exp1 ] ' U I No _=][exp2] U IN° .:][exp3D) a 

outputs: ( i E OUT0 .'::l[ex p2]) I 

Unks: a, ( it E I NQ .ry[exp2]) 15!. (a E IN° .][exp3]) 8;. 
(I e OUTQ .=J[exp2]) 'YT, {i e OUT0 ][exp3]) 'Y~ 

operators: 

_?[exp 1] inputs: Ca e: I Na :}[exp1 ]l) a ➔ a 

outputs: 1 ➔ a 

(a e:: I No _!:][exp2]) T gate inputs: a ➔ 1. a ➔ 2 
outputs: 1 ➔ fjT 

ii 

(a E IN°_c:][exp3]) F gate inputs: a~ 1. a.,. 2 

outputs: 1 ➔ tl~ 
.? , exp2] Inputs: (a € IN° J[exp2]) tl~ ➔ a 

oLUputs: (i e OUT0 _'][exp2]) I ➔ 'Y; 
~=J[expa.] inputs: (a e Ula _'?[exp3]) c: ➔ a 

outputs: (; e OUT0 DUexp3]) I ➔ "I'~ 

(i ,e OU1i0 ~?[exp2]) M gate i nputs: a ➔ 1, 'YT ➔ 2, ")'~..,, a 
outputs: 1 ➔ I 



Fig,ure Z .• 9. Gates for lmpl,emenUng Conditional Expressions 

true 

false 

true 

fals ,e 

true 

false 



Figure 2:.10. ~ry1[exp] 

inputs: (a e IN° ,ry[exp] U {trigger}) a 

outp,uts: (/ e- OUT0 ~.::J[expD,) Ri, •ter? 

operat·ors: 

fallse inputs: trigger ➔ trigger 

outputs: 1 ➔ ite,r? 
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_-ry[exp] inputs: (a e I No ][exp]) ~ ➔ 
outputs: (I€ OUToJ[exp]) I ➔ RI 

iter? 

Figure 2. 11 . _ry ,[jter exp] 

inputs: (a e IN°_:::](Iexp] U {trigger}) a 

outputs: (; e OUTo .1[expi1
) 1/, iter? 

operators: 

true inpu s: frigger --t trigger 

outputs: 1 ➔ iter? 

_'1/[exp ,Inputs: 1(a e •N° _1[exp]) a ➔ a 
outputs~ (I e OUTo_CJ[exp]) I ➔ ii 

it,er? 

RI 

u 



Fi1gure 2.12. J 1[if exp 1hen iteralfon1 else iteration2] 

restrict·on: OUTo.7[exp] = {1} /\ OUT0 _11[nenition1~:; OUT0 :}1[1teraHon2] 

inputs : (a e: IN° _1[exp]]i U m,N° :=J 1[iteration 1] U I No _91[iteratlon2])i a 

outputs : (a E OU Cl_ry1[uer.aUon1]) a 

links : a, q 1, a'\ (a e m0 _==}i[Hera0on1]) ti!. (a e IN°5',[1.reration2]), 1!3:. 
,( a, E. OUT O ry 1[iteratlon 1 ~) '\' !, (a •£ OUT0 ~91[ltera!lon2]) -v: 

operators: 

:?[exp] inputs: (a e. !N°:} exp]) a 

outputs: 1 ➔ a 

(a e I No_'] 1[Uer,ation 1 ]) T gate in,pu·ts: a ➔ 1, a ➔ 2 

outputs: 1 ➔ ti! 
( a E IN° ~-=] 1[treraUon2]) f ga.te inputs: a ➔ 1 , tt ➔ 2 

outputs: 1 ➔· 8: 
_'ry[ueraU,on1] Inputs: (a E IN°_11[ueration1]) 13! ➔ a 

outputs: (a E OUT0 ~::J,[iteration ]) a~ 'Y! 
.J[iteri!Uon2] inputs: 1(a e IN° _1

1
1 lteraUon.2]) ,9= ➔ a 

oiutputs: (a E OUT0:] 1l[1teration2J) a ➔ -r: 
1IC g.ate inputs: C'I ➔ 1, "Yi,ea ➔ 2, "Y~ler? ➔ 3i 

outputs: 1 _. iter?, 2 ➔ a 1, 3 ➔ O'i'I 

,n; e IOUT0 ~91[llerarion1 ]) M gate inputs: a1 ➔ 1, 'Y1,""' 2, 'Y~1 ➔ 3 
outputs~ 1 ➔· I/ 

(R; E ROUT 0 ~ry1[ireration1 ]) M gate inputs: o:A-+ 1 1 1"~1 ➔ 2, 'Y~, ➔ 3 

,outputs: 1 ➔ Ri 



iter? " Ri 
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Figure 2.13. ~'][tor id1, ... , ldn = exp do Iteration] 

re·striction: n = IIOUT0 ~ry:[exp] = HIOUT0:]'1[iter,ation] A {id1 t ... , ldn} ~ INo :J[exp] 
inputs: (a€ IN°J[exp] U ( N°]1[iletation] - {id1,, ... idn}) a 

outputs: (Ri e: ROUTQ _']1[neration]) I 

Unks~ (; e 1 .. n) er I' (a e IN° .ry 1iileration]) f3 ,.. (i e 1 .. n) 'Y t' 'Y ter' 

operators : 

_'ry[exp] inputs: (a€ IIN°:][exp]) a ➔ a 

outputs: (i e: 1 •• n) I ➔ a.1 
(.i e 1 .. n) FM ,gate inputs: 'Yaer? ... 1, 'Y, -t 2, a1 ➔ 3 

outputs: 1 ➔ B,r,1, 
(a E' (IN° ~ry1[1teraUon] - {ld1, ... , idn}}J FS gate inputs: 'Ylter?' ➔ 1,, a .. 2 

o,utputs: 1 ➔ (j., 

.::J 1[rrerauon] inputs: (a e: IN° .?1,[lteraUon]) /j a ➔ a 

outputs: iter? ➔ 'Y11er?' {I e 1 .. n) Ii ➔ 'Y1, 

(RI E ROUT0 :} [llerarionJ) Al .., I 
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3 . 0~ The Operationai Semantics 

hl this chapter, a function Q· mapping date flow graphs into their operational 

characterizations is given. Operational semantics are defined using Kahn's [ 12] formal 

model of parallel computation. Each data flow operator er graph is charact:erfzed by a 

history ·function mappTng tuples of input hlstories into tupl·es of output histories. The 

history function of a graph is derived using the his ory functions of its operators. Kahn 

orlginally used his theory to characterlze processes written in a.n ALGOl-llke langue.ge 

augmented with g.e1 and put statements for rece~vtng and transmittililg vr.dues on 

queues and o derive the result cf interconnecting such proces.se•s. The contrast 

between Kalmts ,evel of appBcation and ours illustrates the re\ative concurrency 

obtarned wm, data flow and sequential control flow program execution. In Kahn 1 s 

s eq11entia l control flow application1 coincurrency Is Hmited to the simultaneous 

execution of processes consisting of seveud prngrl!lrnming language statements; 

where. In our data flow appl1catio,n1 concurrency occurs at even the most elementary 

level of expression evaluation. 

The first section of thJs chapter describes Kehn 1:s theory as opplied to data 

flow graphs. The formal characterization of operators and graphs, the restrictions 

placed on lhe behavior of operators,, the method for deriving the semantics of greph1s, 

and the closure properties of this characterization of operators end graphs ere given. 

Readers fammar with Kal1n 1s theory 111ay wish to proceed to the second section. The 

second sec ion specifies the semant cs of opera ors used in graph implementa lions of 

ADfl expressions. The third and fina\ section iBustrates the application of th .s theory 

to derive he semantics of an ADfl aeraUon expression. 



3.1 Kahn s Semantics of D·ata Flow Graphs 

Tim operational semantics of a data flow opero1or o is given by a history 

function () o] mapping input history tuples into ootput history tuples. For ea,ch input 

h'story tuple X, representing the history of values received at 1he input po.rts of o. the 

out1>ut history tuple ()[o](X) represents the history of values 1prnduced at the output 

ports of o in response to X. Input history tuple X has as Us component.s a history, a. 

possibly inflnrte sequence of values for each port of o. Formally1 ,nput history tuple X 

is a function which maps each input port label a of o into the input history X(a)t often 

denoted X,, received at that port. Ou put history functions are defined similarly. 

Not all operators may be charact,erized by Kahn 1s history functions. lin 

part·cular. only determinate operntors which for each input history have o,rdy one, 

possible ,output history may be characterized tlmsly. Since only determ·nete operato.rs 

were used 1111 Chapter 2 to ,construct graph implementations of ADFL express ions . the 

history h111ct1on cl,aracterrzation ls adequate for desc ibing tile o,perationa semantics 

of ADF . There are lwo other requirements whrch operators must satisfy in ,order that 

fixpoint mell1ods n,ay be usec to determlne the result of their interconnection. 

1-tow~ver tlicse requirements a.re not restrictions but rather a forma ~tatement of 

some properties of wl1ich history functions of physically realizable data flow operators 

musl sa isfy. 

first, the domain or rnnge of a history function must be a complete partiaHy 

ordered scl with o least element. We review the definition of a complete partial order. 

Def iniUon: A reln'lioo ~ on a set A is a partial order i i; Is: 

( 1 ), reflexive, 'fl x e. ti, x b x, 
(2). antisy,nmetric, 'd x, y EA, x I; y I\ y i;; x ➔ x = y, and 

(3), transit ive. '(J x, y, z e .a x r;: y /\ y !; z ➔ x !; z. 
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Deflnlliom An upper bound of a subset E ,of ~ is 6n element x of ~ at 1,east as great 

as any element of E. f. e. V y EE, y i;;; x. Often 1 this is denoted E.; x. 

lower bounds of E are defined and denoted analogously. 

Definition and Theorem: For every subset f. of A there is at most one element x of A 

that Is both an upper bound of E and a lower bound of the set of Upper bounds of E1 

i. e. E i;;;; x ~ { y l c i;; y}, Should such an element exist it is the least upper bound of E 

and is denoted LJ E. 

The greatest lower bo~md of E. ls defined analogously 1.111d denot,ed n E. 

Definition: Given an increasing sequence x 1 !;;;; x 2 ~ ••• of Jl, U {x 1, x 2., •• • }. if it exists. 

is deno ed U x, and caUed ti e nmir of x,-

Def lnitlon: A par ti al order !;;; on .4 is complete if eve.ry increasing sequence has a Hm1t. 

Let V be the set of e,ementary data flow values such as Integers and 

booleans. T l1is set contains an values hat could be passed between data flow 

operators including error values, and he trigger token. The set of alt histories of data 

f1ow values. that is, the set of all f ini e end countably infinite sequences of data flow 

values, will be denoted VJJ. v.JJ mijy be ordered by the pref Ix ordering: 

Def initlon: Given two sequenc,es x and y of \I" 1 x t; y U x is a pref ;x of y. that Is, 

there exists a seql ence z s. 1ch that K~z = y. 

It Is easy to veriiy Urnt !;;;; is a complete partial order crn vf». The least element of ,,jj) 

is the empty history, E. 

Recall that a history tuple Is a function from e set of Input or output port 

labels to vi) the set of histories. ConsequenUy. the domain or range of a history 

function is the set of all functions from a set .ll of input or output por labels to v(l). 

A 
This set is denoted vW . The complete partial o,der ~ on ~ con be naturally 

,extended to vWA by defining X !;;;; Y, for history tuples X and Y of LP'A, if every 

component of X ls less than the corresponding component of Y, that Is, if fer all a In A1 
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Xa ~ Y .1· AgQin, it can be easily verified tlu1t i;;;: 1s a complete partial order on lf-llA. The 

A 
least element of ~ s EA, the empty history tuple which has the empty hlstory es 

e,ach of its components. 

The second requirement of fixpoint theory Is that hls,tory functions be 

conli nuous. A function F is continuous if, for every inc,reasing sequence x 1 ~ x z !;;; •••• 

F(U x 
1

) = U F(x 11 ). A continuous function is also monotonic, that Is, x !;; y lmpHes 

F(}o:') £: fly). Monotonicity and continuay reflect phystcal properties of operator 

imr,temenla tions. 

Monotonicity imp,lies that the more input an operator receives, the more 

output it will produce. This requirement reflects severa1I emplementation considerations. 

first. an operator ca,nnot 11 withdrnw" output values. Second, and perhaps most 

i,mrorlant. an operntor may process i s Input values as they are received without the 

possihility 1,a l output produced in response to initial Input wm violate the u1time. te 

oulp11t. If operators were not allowed thl,s freedom and had to receive their entire 

input before producing any output. the potenUat concurrency of data flow 

implementations would be greatly reduced. Third, an operator cannot sense whether or 

not it will receive any more tnput. II'\ particular, monotonicity does not allow 'the 

speclfic.:i tion of an operator which produces the single' output value true Jf its receives 

an er11HJty input history and false otherwise. 

Continuity impl'es that no o,perator can produce output after receiving an 

infinite amount of input. An oper,ator•s response to an infinite input history must be the 

1. This is quite different from the empty stream operator of Weng, [19] which 
produces true if ·ts first input token is the end of stream token. 
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limit of its responses to finite pref xes of that history. 

Now we shall describe the derivation of the history function characteri~ation 

of a data flow graph from the history functions of its operators. The syn ax ,of graph 

descript ons used in Chaa>ter 2 was chosen to eniphasi:ze that each graph operotor • 

p,aces a relation on the histories of he ,graph links ,and ports to Which It is connected. 

This relation is, of course, tl1e operator1s, history function. When the histories of the 

graph input ports are fixed by a graph input history tuple, the operator history 

functions form a set of stmultilneous equa tl.ons having as their variables the labe1s of 

the links and OlJlput ports of lhe graph. 

The result of executing a graph G with input history t 1uple X may be deri,v ,ed 

by use of a. history function F G,X constructed by combining the hist,ory functions of G 1 s 

op,eralors. 

Definition: Given a graph G with llinks and output ports lobe'led by elements of .ll ond 
A A 

w'th an input history tuple X. let Fc,x be the hls\ory function from lfll to lr"'l' with the 

a 1th component of FG,,:CZ) determined as follows. There is, within G, one op,era or 

output port assicinecl lo a. Tl1e a'th compon,ent of FG x<Z) Is the history of that 
• 

opera tor cmt11ut port wlmn the operator is applied to ·the input history luple consistent 

with the assignment of its input ports to graph ports and links and with the assignment. 

by history tu1>les X and Z, of hl,stories to graph ports aRd links. 

Theorem: c G ,X f s co11tinuous. 

Proor: Follows from the continuity of tile h1stoiry functions of the op,er.ators of G. 

The result of executing G with input history tuple X l.s some history tuple Z such that 

F G x(Z) = Z. On1y these tuples are consistent with the o,p,erator history functions. 
' 

Bec1;H1se F G x is continuous, Scott 1s [ 16] least fixpoint operator V may be 
' 

used to determine the least fixpoint of the equation F6 xCZ) == Z. Th,e definiUon ot Y 
I 



Definition nnd Tfleorom: Given a continuous function F mapping a complete partially 

ordere,1 set wi lh least element .l into itself, the least solution to the equation: 

F{x) = X 

e>dsls nml is denoted Y(F). FurU ermore, letting Fn denote the function formed by 
composin{l F with itself n times: 

Y(FJ = U F'UJ 

Proof: To r>rave 1hat V(Fl tS a frxed poi111t 1 first proV'e that F'U},;; F'"'1(1.). To p.rove 

that Y(F) is tlie least fixed po]nt, first note that if f(x) = x then F1(.L} ~ x imp~ies 

F 1"" 1(l) ~ F(x) = x. 

Knh,1 stotes that V(F6,x) is lhe history tuple of the links and output ports of G resulting1 

from Um P.xeci1tio11 of G with input X. Since EA represents the history tuple that has 

11passed 11 U1rough the links and output ports at tie beginning of execution and since 

the passi 1n of FG', .,(EA) implies the eventual passing of Fr-+ 1 (1:/l) the choice of ,. G tX · • 

LI F ~.x-'F4
), or V( F G,x)1

1 as lhe es ult seems intuitively correct. 

The l1istory function (J[G], of G is defined so that Q[G](X) is V( F' G,X} 

re-stricted to tho labels of the output ports of G. a is eastly shown that ,Q[GD ls a 

con inuous history func:Lion. Furthermore, Q[G] Is o complete sema:ntic spedficotion 

of G in the sc1~se that, if U is a graph contalnlng an operator g with the same history 

funcUon as G, tile {irapll H[g/G] obtained from H by substituting G for each occurrence 

o G has the same f1istory fllrlction as H. Consequently, in deriving the history function 

of a cirnph, sub~1ropi1s and operators may be trea ed anke. Subgraphs do not have to 

be expPnclocl ;n o their operator implementations. 

In the last section of this chapter, 1he least tixpoint derivaUon ol a data 

flow r1rnph wiU be qiven. Aeaders desiring more com1Plete proofs of the theorems 

stntod in U1 is sectiori should consult he work of Kahn [ 12] and Scott [ 16]. 



3 .. 2 The Semantic Specification ,of the Da:ta Flow Operators 

Al ADFL operators and constants have an nterptetat on. The interpretatton. 

J[oper], of an opera.tor oper is a function from vm to vn.. J[o·per] is the usual 

arithmetic or Boolean funct,ion associated with ,oper. for example: 

J[+]I(x. y) = X + y 

J[/\](x, y) = X {\ y 

J[oper] is essuimedl to map 11inappropriate 11 input tuples • . su,ch as those c,ontalnlng 

values of an unexpected ype, Into some ppropr ate tup~e of ,output values .. 

The history function. Q[oper ]. of the data flow operator op.er ma.ps 

m-tuples of i put histories into n-tuples of outpu histories. The data flow opeu11t0r 

receives a sequence of Input m-tupies and computes the sequence of n•tuptes 

resulting from the application of J[oper] o each fnput m-tuple. Furthermore 1 the 

firing rule of the data flow operator is strict. The operaitOf wm no,t fire without ,u 

complete tuple of inputs. 

0 '[oper ](X) ::. E'\ if 3 i 3 X1 = E 

Q[oper](x•X) = J[oper](:x)•Q[oper](X) If x E vm 

Because Q[oper] must be continuous it .suffices to define Q[oper] only on finite 

input istory tup es. 

The nterpretat,ion. J[consl], of a ADF constant consl Is en element of V. 

The history func ion, O[const], of the data flow constant operator const maps \I» Into 

\fJl. Data flow graphs ere constructed so tha constant operators receive only trigger 

Input values. An output of value J[consr] s produced f ,or every trlg,ger ilnput 

received. 

O[const](E) = E 

Q ,[const](tr1lgger•X) = J[c-onst]·O[consr](X) 
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Recall the firing rules of the data flow gote operators. The gate operators 

are not s rict. They absorb values from selected input ports. The h story function of 

th,e T gate, respectively F gate, ma,ps '-1"2 
,into vW. When a truet respectively· false. 

control value is received, the data value is absorbed and passed through the output 

port. Wilen any other control value is received, the data value is absorbed and no 

oulput is produced. 

() T gate](E., Y) = E 

()[T gate](x•X, e) = e 
()[T gate](true•X, y•Y) = y-()[T gate](X, Y) 

()[T gate](x·X, y-Y) = O[T gate](x~ Y), if x ~ true 

()[F gate](C. Y) = IE 
()[F gate](x•X, E) = E 
()[F g.ate](false~X, y•Y) = y•Q[T gate](X, Y) 

()[,F gate](x•X, y•Y) = O[T gate](X, Y), if x ~ false 

The his oiry function 0[M ,gate] m.aps "i/»
3 

into ,/,iJ_ The control value 

selects which clata value is ,passed o the output port. If a non-Boolean control Vllllue 

j,s received, no data value 1s absorbed and err is output. The FM gate· Is a M gate with 

a built- n initial fatse control value. 

M gate](E, Y, Z} = E 

M gate](true•X, E, Z) = E 

M gate]( rue•X, y-Y, Z) = y•Q[M gate](X, Y. Z) 

()[M gate](false•X, Y, f) = £ 

() M gate (false•X, Y, z·Z) = z•Q[M gate](X, Y, Z) 

()[M gate]{x·X, Y, Z); err•O[M, gate](X, Y,. Z). if x r/. {true, false) 

()[FM gate](X, Y, E) = fi 
()[FM gate](X, Y, z·Z) = z•Q[FM gate](X, Y, Z) 

The history function Q[FS gate] maps ..JA2 
Into 'r/Jl. When a false control 

value is received, tl1e ,FS gate passes i1ts data value and sets an internal register to 
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tha.t value. When a true control value Is received he FS g te absorbs no data value 

but ou pu s he value contained in its register. The FS gate, has en n·t1al bu ilt~ln false 

control value. The control value of the FS gate is the iter·? value of an iteration body 

and c,onseciuenlly, mllst b-e eithe true or false, 

(J[Fs gate](X, E) = 
()[Fs gate](X, y-Y) = y•Sy(X Y) 

Sl(f, Y) = E 

Sz(true•X, Y) = z•Sz(X, Y) 

S.z(fa se•X, E) = E 

S (false X, y•Y) = y•S.,.(X, Y) 

Compare the history function specification of the IC gate \\Yith the table 

specification of its firing rules given on page 23. 

()[ C gate](e, Y, Z):; (e, E, E) 

0 '[ 'C gate](true•X,, E, Z) = (e, E E) 

() IC gate](true•X, rue•Y, Z) - (true, true, E)•O IC ,gate](X, Y, Z) 

() IC ga e](true•X, false•Y, Z) = (false, e, true)•Q[1c gate](X, Y, Z) 

() IC gate](f alse•X, Y, E:) - (E, E E:) 

()[IC g1ate](fa se•X, Y true•Z) = (true, fah;e, O Q[a,c g.ateD(X, Y, Z') 

()[1c gate](false•X. Y, false•Z) : (f,alse, E, false)1•0[ C gate](X, Y, Z) 

0[1c gate](x•X, Y, Z) = (false, E, errl·0[1c gate](X, Y, Z), if x Ii {true. false} 

The E gate, the only rema ning g te, passes its data value when it receives 

a Boolean ron rol value, and absorbs no data value and produces en· when 1 rece ves 

a 001 -Boolean control value. 

() E gate](E, Y)1 = E 

() E gate]{x-•X, E:) = E, f x e {true, false} 

()[E gate](x·X, y•Y) = y-{)[E gate](X, Yl if x ,e {t,rue, fabe) 

,Q[E g te (x·X, Y) = Q[E gate (X Y), if x t {true, f atse} 

The hTstory function specificauons of the data flow operators of Chapter 2 

Comrie ed. the operational semantics Qe ] '[exp] of an AOFL expression exp mey be 
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oht ahmcl by using the translation algor thm to ,construct the data flow graph .:}[exp] 

and using ho operator history fu11ction speclficatio:ns and K.ahn 1s fixpo·nt theory to 

cle-rive ()0 .7[exp]. Tl is me hod of deriving opera ional semantics is illustrated In the 

followin~1 section. 

3 .3, OperaUonai Semantics for an ADFL Expression 

In tl1is section the operotlonal semantics of the iteration express,ion 

11 let id1, ... , i'dn = exp in iteration" Is derived assuming the operational characteristics 

of lls component initialization ,expression and •teratton body. For convenience,, let Gt 

Gini( ,, c1nd Giler, denote tile data flow graphs of, r,espectlvely 1 the iteratlon expression~ 

the in1itiahzation ex,nession, and 1:fle "terat,ion body. RecaH from Chapter 2 the 

opeuuors list of the gr~ph description of G. 

Ginir inputs: (a E Ginlt) a ➔ a 

cutputs: (I E 1 .. n) I ➔ a, 
(i e 1 .. n) FM gate inputs: "r,ter? ➔ 1, 71 _. 2 a1 ➔ 3 

outputs. 1 ➔ 6 fdl 

(a €: m(Giler) - {id1, ... , idn}) FS gate inputs: 'Ylter? ➔ , a ➔ 2 

outputs: 1 ➔ {j a 

Gieer inputs: (a E IN,(Giter)) {j a ➔ a 

outputs: iter? ➔ 1'11M'' U e 1 .. n) U ➔ 'Y1, (RI E ROUT(Giter)) Ri ➔ I 

We assume the history functions Q[Gtnlt'l and Q[Giter] have been derived. 

recursively, using fixpoint theory. 

() G](X} is found by deriving the l,east fixed poJnt of F 6 x · In Section 3.1, 
' 

A A 
FG was ,( efined as a history 1 unc ion from vW to, v'Jl where A contains the, ab els of .,x 

the ,links oml output ports of G. Froim the graph descr ptton we see that ti contains: 

,(j E 1 .. n) et,. (a e IN(GHer)) (3,. 'Yltcr?' {i e: 1 .. 11) "I,, (Ri e ROUT(G.iter)) I 

A 
Given z of vW , let ZG ,denote, in a slight abuse of notation, the tuple mapping 

ll!!r 
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IN(Girer) into V, and let XGlnl de110 e the tuple 1111app ng IN(Gin/0 Into V1 such th,at! 

ZGlter(a) : Z{(3 a) 

XG,nlt{a) = X(a) 

ZGlte-r ,s defined to reflect he assignment of Input port a of Giter to link (j a of G; and 

XGinlt' the assi~1nment of ~np I port a of Gln,t to npu, port a of ,G. FG
1
x(Z) Is the 

A 
e ,ement of LP" such that: 

FG,X(Z)(o) = {)[G/nft](XGlnll)(i), if I e 1 .. fl 

FG,xCZH/31c1,> = 0[F ga e](Z('Y 11 e,r'?), Z('Y1), Z(a1))t if I€ 1 •. n 

F
61

xCZ)(8 ) = () FS gate](Z{'Y 11@r') X(a)), if a, € IN(Glter) - {ld1, ... , ldn} 

F G,xCZ)('Ylter ) = {)[Giter ](Z0 ,~r)(ite·r?) 

r:G,x(Z)('Y1) = ()l[Girer](Z131 er)(li). if i ,e .. n 

F G,x(Z)(i) = (}[Giter ](ZGller)( RI). i R, E ROUT(Glter) 

Suppose all inpu his ory c,omponents of X contain a single value. That is, 

suppose X represents a single set of Input values to G. Further suppose that G, given 

input X, i erates m+1 times before producing its ou put tuple. Let v0 be the n-tuple 

produced by he initial zation expression subgraph, Ginit, and inif ally bound to the 

iteration va iabl,es, id , .... idn. et I/ 1, ... 1/m be the n-tuples produced by the f-rst m 

iterations of the iteration subgraph, ,Giter. an let W be the ultimate, non iter, ou put 

tuple produced on the fin.al Iteration. The formal rela ion between these tuples and the 

history fun ,~ ions ()[Ginit] and O Giter] follows. 

Sh ce VO is produced by Ginit 

V0 = 0 _Gfnit](XGlnrtl 

On the J'th iteration, the input tuple VJ· is received at input ports of Giler labeled by 

the iteration variables. Other input ports r,eceive values contained In the graph input 

tuple·, X. Let VX1_ represent his input tuple. 
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VXr 1(idi) .:= VJ_ 1(1), if i e 1 •• n 

vx)_ 1(a) = X(a), mt a e IN(Giter) - {ld1, ... , idn} 

/1.t the enn of the }'lh iteration of GUer, for j not g1reater than m. the tuple v
1 

ls 

produced on the I ou11,ut ports of Glter1 true, on the lter? output p,ort; end no v ,a;lues, 

on u,,e H output. ports. Consequently: 

()[Giler (VX
0

• ••• •I/Xj_ 1)(iter?) = truei 

()[Gfler ](VX0 • •• . •VX
1

_ Wil = V0(i)• ... •Vp), •f IE 1 .. n 

()[Giter ](VX0 • ... •I/Xj_ 1)(RI) = E, If IRi e ROUT(Gller) 

Where truel is the sequence o,f / true values. At the end of the last, m+1 1st, iteration 

of Giter; the tuple W is produced on the R out.put ports of Glter· false, on the lter7 

output por ; nod no values, on the t output ports. ConsequenUy; 

() [Gi rer ],( LI X O• ••. •VX m)(1iter?) = truem•false 

() Gltar ]{I/X0• .•. •VXm)UJ) = Vii)• ... ·V m(i), If I£ .. n 

() Gil er J(,VX O • .. . ·VX m){1R/) = W(i). if Ri E ROUT(Gller) 

Using this history function specification of Giler and Ginlt, the ,eader may 

verify thal for tlrle least fixed point Y(F G,x>, or LI Fb,ifA) ot F G,X is the uph! mapping 

A, the lobels of the links and ou put ports of G, into V such tha1: 

Y(F6 .x)(CJ1) = V0(i). if f E: 1 .. n 

Y(F G,X )(Jj {d f ) = V oCn· ... • V m(i), if ; e 1 .. n 

Y(F G, Y. )((1_.> ;;; X(ar H, 1f a e: SN(GUer) - {id1, ... , idn} 

Y(F G. I' )('l' ll<'r~ ) ;; truem•talse 

'V(FG x)(1:'1) = V;Cih .. •Vm(i), if i E 1 .. n 

V(FG,x)(i) = W(i), if Ri e: ROUT(Glter) 

Cons,cquent ly, ()[G](X) is W, V(F c; x) restrLcted to the output port labels of G. As 
t 

expP.cted, W is l11 e 011\put tuple produced by the final iteration. Note that false was 

produced DS tho iter? value on the flnal Iteration, tnus resetting the FM gate and 

,FS gate's for a new set of lnpu s. This example derivation demonstrates how the data 

flow graph fmplementatlan of the lterntion expression satisfies Its lnte11ded function. 



The oper,ational semantics or any ADFL expression mu.y be derived s imUar1y. 

Firsti the exp ession is translated into, a data flow graph. The operationa1 semantics of 

the expression is he history function of its graph. The history function of the graph Is 

obta:ned by ecursively using Kah11 1s theory fo obtain the h'story functions of the 

subgraphs corresponding to the syntact'c components of the expression. Tlile basis ,of 

t 1e recursion is the history function characterizations of the elementa,ry data flow 

operators. 



4. Conclusions and Suggesti,ons for Future Research 

The operational semantics of ADFL, an spplicatlve data flow tangua,ge w•th 

an iteration construct resembling tan recurs·on, have been expressed as a two .step 

p,rncess. In U10 first stef), the application of the translation algorithm .ry to an ADFL 

expression yields its data flow graph ,mplementation. In the sec,011d step. the 

application of the semantic function O to the graph yields Its semantic 

chnrn cterization. The graph i.s an explicit representation of the concurrency poss1bie' 

in eva iua\ion of tl1e expression. n is an interconnection of data flow operators. 

corresponding to AOFL operators, which communlcate values to each other through 

input a-l'ld output ports. In conventional sequential contra\ flow evalU!:ition, operators 

am performed in a pre-,ordainred sequ,ential order. h1 darta flow evaluation, operators 

are performed as soon as the ir arguments are evaUable. 

The translation algor thm 9 Js recursive. The graph of an expression Is 

canst ucted from subgraphs f mplement1ng ts syntac:tirc subcomponents. The graph has 

an input p·ort for each free variable of the expression and an output port for each 

value returned by the expression. Dat,a flow graphs are specified wttn a graph 

as~cmbly la n~1uage weB-suited for describing :} , 

When expr,esslons are evaluated under sequential control flow. execution 

exceptions ore often handled by interrupts. However, In ADFL an error-handllng 

schamo more ,appropriate to both the concurrency of data flow and the 

volon-orien ;,ition of the h.ilnguaye is used. Special errm values are returned when 

e:x.ceptloris occur. Conditional and iteration expressions are mptemented with specie1 

gates designec to be consistent witll this error-handling philosophy. 
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111 the second step in obtaining the oper,ationel semanUcs of an ADFL 

e x pression, u,e application of tile semantic function O· to the graph of the expression 

yields its semantic chara,cterbation. The result of executing a graph Is t;,haracterlzed 

by o history functiolil mapplng a tuple of input histories into a unique tuple of output 

histories. 'The history function of a g.raph is derived by use of Kahnts ·fixpaint theory of 

communicating i11tercormec:ting processes. Here 1 the processes a.re the da1a Uow 

opera tors. Tlius, the op er at tonal semantics of an ADFL express.ion Is obtained by 

appBcation of ()a _9. Q~ _? map,s an AOF,t expression through its data flow graph 

implemen ation to its history function characterization. 

There are three avenues for extending this research. fi,st, the language 

"118.Y b 1e extended. Second, he operational characterization of data flow graphs may 

be modified to more closely correspond to execution on specific data flow machines. 

And third, on altemative semantic characterization ot data f l,ow languages m.ay be 

given and proven consistent wi1th this· operational chan.cteri:zation. 

The most obvious language ex ension is ,he oddiU011 of procedures. 

Proce<lures may be implemented ot the data flow graph level with en app~y Dperation 

wl1tch receives a data flow graph on one input port and values to which the graph Is to 

be applied on its rema ining input ports. Since Kahn"s theory can be extended to 

include recurstve graphs, it is easy to characterize the operational semantics of such a 

data flow language. 

Another language ex.tension }s the Incorporation of the determinate stream 

operators of Weng [ 19]. A stream is a 11st whose elements are generated over time. 

Stream operators process these lists one element et a time. ConsequenUy, the 

concuirrency of data flow program execution is Increased by allowing e duta fl ow 



operator to process elements of an input stream ·value whtle elements of' en output 

stream value ,sre being generated. !Determinate stream operators are naturally 

chatactetized by history functions. and, thus, Kahn1s t·xpolnt theory may be used to 

define the operational semantics ,of 8 language wrth determinate stream ope·rators. 

A non-determinate stream operato'li1 merge, ha,s bee111 used by Arvi,nd, 

Gostelow. and Pfouffe [ 4] and Dennis ( 8] in data flow lmplementatlons of real•tlme 

systems such as resource allocators and air ine reservation systems. The merge 

operator accepts two input streams and merges them into one output sbeam. The 

output stream may be one of several interieavings of the input streams. It is difficult 

to extend Kahn 1s fixpoint theory to non determinate computation. e,-ock and 

Ackerman 1[6] have shown that arbitrary noR-determlnate data flow graphs cannot be 

operationally character1ized by the natural extension of h story functlons 1 a mapping 

from tuples of inplrt hrstorles to s.ets of tuples of output historJes, while Kos nskl [ 13] 

has described an operational semanrtlcs of non~de.t,ermtnate data f tow graphs in which 

each data flow value is 11tagged 11 with the non-determinate 11 choie,es" lead ng to Its 

geoeration. Koslnsk!ls theory seems unnecessarily complicated since non-determinate 

computations may be simulated without tagging va ues. Consequently a simpt.er 

characterrzatim1 of non-determinate data flow computation ma:y exist. An alternative 

area of research i$ finding a non~determinate data flow language which restricts t'he 

use of merge operators 30 that grophs have a simple operationat characterization. 

The second avenue of extending this research Is the operational 

characterization of data now computation on specif c machines. Kahnts theory 

assumes that the links •of data ·now graphs are unbounded FfFO queues; however. 111 

the date flow machine design of Dennts and Mlsunas [9], the links are one-place 



buffers. if operators are allowed to 11 write over 1 buffered values, graph computation ,Is 

non-determinate. Presently, Montz [14] is invest gating the t1se of acknowledge 

s~goa,s ·to control operator firings. In this scheme, whenever an output and input 

operator are connected by a Ink;, a second acknowledge link: rs placed, in the opposite 

direction, between the operators. The output operator wm not place a value on tha 

data link until it has received an acknowledg,e value and the Input operator generates 

an a.ck now edge value whenev,er it removes e data value. SemanticaUy, graphs 

constructed with this acknowledge protocol may be considered to coots n links 

impiemented by unbounded FIFO queues; elthough,, in actual executlon, only one piece 

of the queues will ever be used. 

The third avenue is proving that the operational senumttcs of' ADFL are 

consistent with a more abs,tract semantic characteriz61ticm. The denotetionel 

semantics [i SJ of a language are given by defining a d"rect mapping of syntactic 

components to suitable abstract objects. For ,example, procedures may be mapped 

into functions without regard to details of lrnplementotiofl or execut1on. Scott 1s [16] 

theory provides he theoretical basis for defining iterative computatlon and fo 

construe ing abstract objects to syntatic c,omponents. 8'nce ADfl ts epp~ic:ative, the 

sole effect of evaluation is to return a tuple of values dependent solely on the values 

bound to the free identifiers of the evaluated expressinn. ConsequenUy, inly 

expression of ADFL may be denototlonaHy characterized by a function mapping each 

environment, associatton of den ifiers and values, into the tuple of values returned 

w\ en the expression is evaluated within that envirnnlililent. The denota-ronal semantics 

of ADFl have a simple, elegant statement. Further research of tll~s outhor will prove 

tha · he operational and denotational seman lcs of ADFL are consistent. 
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