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Abstract 

The distinction made here between static and dynamfc logic has a very st,nple. 
character, yet can play a central and unifying role in logic as a vantage point ·rrom which one 
can compare propositional calculus, predicate calculus, intensional logics such as modal 
logic and temporal logic, various algorithmic logics (logics of programs), and Q.uine's 
notions of transparency and opacity. 
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Six Lecture~ on Dynamic Logic 

Background 

Logic is metamathematics, that is, its objects of study are the unremarked~n and · 
unnamed expressions that are used to make remarks and name objects in ordinary mathematics. 
Typical expressions are "O", "3x+2", "x=y+2", "(x+y)(x-y) = x2-y2", "VxJy[p(x,y)vq(y,x)]". 
The logician collects a set L of such expressions, calls this set a language, and proceeds to 
study its meaning (semantics) and its manipulation (axiomatics). 

Meaning is specified with the help of a semantic domain D; D might contain natural 
numbers, truth values, functions on the reals, predicates on polynomials, and so on. The 
connection between L and D is made with a meaning function or interpretation p:L➔D, assigning 
to each expression an object In the semantic domain. . 

If every expression in L had an agreec,i-on meaning in the above sense, a single (fixed) 
interpretation would suffice. Such a language would consist only of constants (that is to 

.say, constant-value expressions), and would contain nothing worthy of the attention of a 
logician per se. If on the other hand every expression in L could have an arbitrary meaning, 
any element of L➔D could serve as an interpretation, whence L would in effect consist only of 
variables and again would not be worth studying. What makes logic interesting is that the 
range of possible interpretations lies between these two extremes. 

For a furictton from L to D to pass, muster as an interpretation it must :•satisfy a 
collection of constraints. For example we might have the following constraints on "· 

µ(0)_ 
µ(x+y) 
µ(p/\q) 

= the zero (unique additive identity) of D 
= µ(x) plus µ(y) 
= true if µ(p) = true and µ(q) = true 

false otherwise 

These constraints have a special form. We shall assume throughout this paper that 
every expression is of the form <s,t>, consisting of a symbol s (the operator) together with 
an n-tuple t = (t1,••·,tn) of expressions {the arguments). (Ordinary constants have a 
zero-tuple of arguments. ) The most general form of the above constraints is: 

That is, the meaning of the expression <s,t>_ is defined ·recursively as some function F s of 
the meanings of the arguments, the function depending on s but not on p. (If we want to 
have f(x) in L, meaning that f denotes some function (wh ich one depending· on p) to be applied 
to x, we will write the application of f to x explicitly as -r{f,x). The more usual 
convention of always app·lying I" to s as well as to the ti's is less appropriate for our . 

account of dynamic logic.) Constraints of this form we shalt catt semantic constraints. 
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The domain (in the functional sense) of F s in the above is significant insofar as it . 

acts as an additional constraint, namely on the possible values of the ti's. For example, If 

there is a constraint for the expression p/\q with . F /\ being conjunction, a function with 

domain {true,false}, then even if the expression p (or q) has no explicit constraint of Its 
own, its_ possible values in the expression p/\q are confined to the domain of FA, trut and 
falu. 

The expression x is said to be interpreted when some semantic constraint ,a(x) = 
applies to it, and otherwise is uninterpreted. We write Lo for the uninterpreted subset_ of 
L. It should be apparent that if all expressions are finite (actually, well-founded is 
sufficient) then for eviry element of Lo➔D there is a uniqu.e extension of that element to an 
interpretation (i.e. to an element of L➔D satisfying the semantic constraints). Since every 
interpretation uniquely determines an element" of Lo➔D, it follows that there is a one-to-one 

correspondence between the elements of Lo➔D and the interpretations. For this reason it is 
com.mon in logic texts to call instead the elements of Lo➔D the interpretations. Our 

reluctance to follow this convention _is due to the fickle nature of Lo, discussed below. 

Clearly, what conventionally pass for variables will have to be uninterpreted 
e x pressions in this scheme of things. A little loosely perhaps, we will henceforth refer to 
any uninterpreted expression as a variable. (A little later we will discuss some consequences 
of this somewhat non-standard view of variables.) 

Notice that, as defined abov~, a semantic constraint mentions only one interpretation, 
the one it is constraining. This is the defining characteristic of a static logic. If one 
uses the constraints to evaluate an expression recursively, the interpretation remains 
unchanged (static) as the evaluation proceeds; there are no side effects, so to speak. Q.uine 
ref.er-s to operator~ defined in this way as being referentially transparent -US];, wh.-t t,J-ae 
operator's arguments refer to can be seen from "outside" the expre&Sion; i.e. the operator 
does not "block the view," so to speak. 

The Limits of Static Logic 

Consider the following express.ions. 

(1) Vx3y(x =y) 
(2) Necessarily x+y=y+x 
(3) After setting x to 1, x=l 

Each of these, we argue, involves concepts beyond the scope of static logic." The 
reason is that there is no function F such that the mean_ing of Vxp can be specified with a 
constraint of ~he form µ(Vxp) = F(µ(p)), and similarly for the other constructs. 

States 

To give an account of these expressions we introduce the notion of state.- One quite 
workable arrangement is to define a state to t>e an interpretation. However it will be 
slightly more convenient for us (and consistent with ordinary practice in modal logic) to 
postulate a · priori, as part of D, a set of sta:tes W = { u, v, w, ... }, along with a function 
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,r:W➔(L➔D) which assigns to each state an interpretation. We shall frequently abbreviate 
,r(u)(e) to ut=e (think of I= as ,r on Its side). When e is a formula ut=e will be a truth 
value; this special case coincides with the conventional usage of t=. We define ,r:L➔(W➔D) as 
w(e)(u) = 1r(u)(e). Notice that ,r need not be an injection (1-1), that is, it is possible · 
to have ul=e = vl=e for all expressions efL and still. not have u=v; such pairs of states are 
equivalent but not equal. 

Now the meaning of expression (1) above is that no matter what x is changed to y can 
then be changed so that x=y. Putting it more precisely, we take ul=Vx]y(x=y) to be trut just 
when vt=]y(x=y) is true for every v such that ul=z = vl=z for all variables z other than x. In 
turn vt=]y(x=y) is · true just when wt=x=y is true for some w such that vl=z = wl=z for all 
variables z other than y. 

We can put this a little more succinctly if we let Rx denote the binary relation on 

states such that uRxv whenever ut=z = vt=z for all variables z other than x. (Thus Rx is 
:tn equivalence relation on W.) Then 

ut=Vxp = " vt=p (the conjunction of vt=p for all v s.t. uRxv) 
uRxv 

Similarly we may take Jxp to be defined thus. 

ut=]xp = 

The only difference is the use of v in place of /\. Notice that ut=Jxp and ut=,V x,p must be 
the same for all u in W, that is, these . are eqlf,ivalent expressions. Just as v is the dual of 
/\, so · is 3 x · the' duaJ of Vi; 

The advantage of this way of looking at Vx and Jx is that it will also be how we shall 
look at concepts like "necessarily" and "after setting x to 1." This treatment of 
"necessarily" was first defined carefully by K ripke [25,261 While Kripke (deliberately) did 
not propose any particular binary relation, let us consider the relation R such that uR v for 
all states u and v, the so-called complete binary relation on states. Then define 
"necessarily" as follows, writing "[]" for "necessarily". 

ut=[]p = /\ vt=p. 
uRv 

This says that p is necessarily true just when it is true in all states v, since R is 
complete. · It follows that ut=[]p is the same for all u's. This particular interpretation 
of "necessarily" is not implausible. 

As with Vx, "necessarily" has a dual, "possibly", written "O". We have as before 

ut=<>p = v vt=p 
uRv 
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We also have the equivalence of <>p with ,[J,p. 

Now consider our third example, "after setting x to 1, x=l." Even this formula can be 
fitted into the above framework. Let uR v hold just when uRx v (as defined for example (1)) 
holds and vt=x = ut=l. That is, -x is set to 1, and there are no other effects (on Lo). Then 

ut=(after setting x to 1, x=l) = I\ vl=x=l 
uRv 

Of course the value of this is true, as with the preceding two examples. In this case it 
doesn't make any difference whether we write /\ or v, so that "after setting x to l" Is its own 
dual. 

For notational convenience we aboreviate "set x to 1" as "x:=1", and, in imitation of 
the notation for "necessarily", we abbreviate "after x:=1" as "[x:=lJ", which as we remarked · 
is the same· as its dual "(x:=1>." 

Form of constraints in DL 

We would like to think of the above equations for quantifiers etc. - as semantic 
constraints. To do so, however, we must abandon the requirement that a semantic constraint 
mention only a single state. In so doing we make the transition from static to dynamic logic. -The general form of a semantic constraint in dynamic logic is 

(Recall i(e)(u) = ,r(u)(e)). 

Thfs . tS ae:tually the same a$ the ·g~neral form for static logic, ·with . ,r in··. p1ace ·hr 
µ.. The difference is that ,r is a dynamic meaning functio~; it yielch the meaning of an 
expression as a function of state. In this fra_mework, our original concept of a semantic 
constraint in static logic takes the form 

ul=<s,t> = Fs(ul=t1, ... ,ul=tn) for all u in W. 

We shall henceforth refer to this special form as a static constraint, and the more 
general one above as a dynamic constraint. From now on, as a notational matter, we use ut= in 
place of the (shortlived!) µ. 

The general form permits ul=<s,t> to depend on values of the tj's in other states 
than u. It does not however permit it to depend arbitrarily on the t1's themselves, which are 
evaluated, even if not in u. In this way, although we cannot substitute equals as we could in 
static logic (e.g. ut=(x=y => cp(x)=cp(y)) is no longer always true where cp is an arbitrary 
formula - consider x=y ::> [](x=y)=[](y=y)), we can still substitute equivalents. That is, if 
,r(a) = ,r(b) then we do know that ul=(cp(a) = cp(b)) is true for all u in W. 

(For LISP afficionados: note that the extent -to which dynamic logic is a step up from 
static logic is less than the extent to which FEXPR's in LIS-P are a step up from EXPR's. The 
additional power of a FEXPR over an EXPR is that the FEXPR can inspect the form of the 
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arguments, for example being able to distinguish p/\q from q/\p, which is beyond the power of 
dynamic logic.) 

Loose ends 

We are now in a posmon to point out a peculiarity of our view of variables. When · 
extra constraints are taken notice of (as might happen in the course of following an argument; 
when it becomes apparent that say propositional reasoning alone does not support the 
argument), certain expressions that hitherto were treated as variables now become constrained. 
A simple ex ample would be the expression 0. As long as O remains uninterpreted it acts as a 
variable, and peculiar expressions such as 30(x=O) then have the same meaning as 3y(x::y). As 
soon as O is assigned a fixed interpretation, 30(x::0) means something else. According to the 
definition of 3y above, ]O(x::O) would be equivalent to x=O when O is interpreted. 

It is a simple enough matter to include a syntactic condition on 3, :=, and other 
variable-manipulating operators, so that only never- to-be-interpreted variables can be so 
manipulated. However such a condition would play no significant role in dynamic logic, and 
would require us to draw a distinction between the unconstrained expressions and variables. 
Thus we omit it from the theory in the interests of minimizing baggage. 

For the remainder of this paper we adopt the convention of writing all expressions we 
want to be considered uninterpreted using single letters. Thus any occurrence of "x+y" is 
understood to be interpreted. 

An operator definable in dynamic logic but not · in static logic is said to be 
referentially opaque, again following Quine. Actually this is a somewhat more mathematically 
precise definition than Quine had to offer. 

The examples of dynamic logic we have seen thus far, without getting into any depth, 
have already given some idea of the range of domains that can be served by dynamic logic: 
quantificational calculus, modal logic, and atgorithmic logic (i.e. logic of programs, x:=1 
being a program). 

In this connection it may be worth remarking that the semantics of Lucid (1] are 
presented wjth emphasis on ,r; in fact there is no global set of states in Lucid semantics, 
and instead each variable takes on values in a series of states defined essentially by the 
lifetime, or extent, of that variable. 

The Kripke Operator 

Alt the examples we have seen so far of dynamic logic constraints fit a much narrower 
description than the above, namely Kripke's semantics for modal logic. The reason for our 
rather general characterization of a dynamic constraint is that later we will want to deal 
with certain adverbial constructs that transcend the Kripke formula. . For the time being 
however, we will stick with Kripke semantics. 

It is natural to introduce the names of binary relations into the language L. We 
reserve a,b,c, ..• as variables for this purpose. We call such expressions actions. 
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It is also natural to take ul=a to be { vluR.a v }, the set of states accessible from u 
Then ul=[aJp can be defined as (ul=a)l=p, if we adopt the usual convention in logic 

a set U<;W, Ut=p means that ul=p for every u in U. 

The notation [a]p, though almost universal in the dynamic logic literature, starting 
with (39,40], nevertheless obscures what we would Uke to call the Kripke operator. And later 
we wi11 want to · combine a's and p's in other ways, giving rise to other operators similar to 
the K ripke operator, each needing their own syntax. For these reasons we introduce the Krlpke 
operator J, and replace the notation (aJp with aJp. The semantics remains unchanged: 

ul=(aJp) = (ul=a)l=p 

For the syntax of the language {, => J} we adopt the convention that parentheses may be 
omitted from any of the following without changing the parsing. (We make use of this 
convention later, as new operators are introduced, to give a succinct account of the syntax of · 
each new operator.) 

p=>(q =>r) 
(,p)::>q 
aJ(bJp) 
(aJp)=>q 
(p::,q) => r 

(so a is right associative) 
(so , binds tighter than =>) 

'(so J is right associative) 
(so aJ behaves like ,) 

(so spaces count) 

That part of dynamic logic confined to Kripke semantics can draw on a wealth of 
knowledge about modal logic. Of particular interest is the tlzeor, of this logic, the set of 
valid formulae, that is, formulae p such that ul=p is true for all states u, where ,r satisfies 

ul=,p 
ul=(p=>q) 
ul=(aJp) 

- u){p 
- ul=p implies ul=q 
- (ul=a)l=p 

Two questions we shall ask about the set of valid formulae are: how hard is it to 
decide validity, and what useful axiomatizations do they have? 

In the case when L contains only one action, that action being in Lo, the theory 
coincides with the theory of system K of modal logic (that is, just the modal operator []~. 
with no restrictions on the binary relation corresponding to []). The complexity of the 
theory of K (along with several related systems) was shown by R. Ladner [28) to be log space 
complete in polynomial space. That is, first there is a computer program that will determine 
of a given formula of length n whether it is valid using O(nd) units of storage for some d. 
(This is to say that the theory of K is in polynomial space. Most reasonable notions of 
"units of storage" will suffice here.) This by itself is not very exciting, and so second 
( which ts what makes the result much more interesting), one cannot do any better. That is, 
for any set in polynomial space there is a computer program which could determine whether an 
element of length n was in that set in only O(log n) units of space if only it had access to · 
an "oracle" for the theory of K, a program that gives us at no charge answers to questions of 
membership in that theory. This is a very strong sense in which validity in K is as hard as 
any problem solvable in polynomial space. 
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Ladner's results extend without change to the case when L contains any number of 
actions, so long as they all belong to Lo, Shortly we sha1I see what happens when one 
introduces semantic constraints on actions. 

The following will serve as a complete axiomatization of {, => J}. 

K p=>q=>p 
S p=>q=>r => p=>q => p => r 
N ,p=>,q ::, ,p=>q => p 
J aJ( p =>q) ::, aJp ::, aJq 

MP . From p, p=>q derive q 
JNec From p derive aJp 

(Modus Ponens) 
(Necessitation) 

(The names K and. S come from combinatory logic. N is for Negation. Note the 
similarity between S and M; when a is p? (a test, see below), S and M coincide.) 

Regular Dynamic Logic 

It is not very interesting to consider just a set of unrelated actions with no visible 
internal structure. Hence we are inspired to introduce operations on actions. In so doing we 
shall be combining Tarski's calculus of binary relations [49] with Kripke's semantics for 
modal logic. This combination is without doubt the most interesting facet of that part of 
dynamic logic constructed around Kripke semantics. Even more interestingly, when we encounter 
analogues of the Kripke operator, the combination will become even more fruitful • 

. Propositional Dynami.c logic, P DL 

We begin with four operators, ? ; U *, that together with , => J give rise to the 
language Propositional Dynamic Logic (PDL). 

Tests. Conditionals in a programming language are usually introduced with "if-then-else." 
However the rules of reasoning can be simplified by using a "smaller" notion of conditional, 
the test, which can be used in conjunction with the next two constructs to synthesize 
if-then-else. x>O? is an instance of a test, as is j=Ovp(j)=t(k)?. 

A test p? is constructed from a formula p of the logical language. The idea of a test 
is that a computation may proceed past a test just when that test evaluates to true in the 
current environment, otherwise the computation must block (which for our purposes is · 
equivalent to going into an infinite loop). Formally: 

u~p? = {u} if u~p 
{} otherwise. 

Most of what we say holds even for tests containihg J, permitting for example the 
side-effect-free programming construct "if p would be the result of running a then ... " 
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The axiom for tests is 

T p? Jq = p::>q 

Composition. A familiar concept to programmers is that of executing one program after 
another; we may execute first a and then b. In terms of binary relations this means applying 
the ·nrst relation to a state to nondeterministically yield another state, and then applying 
the second relation to the resulting state. The composition of a and b, written a;b, is the 
relation describing the net effect of executing first a and then b. Formally: 

ul=(a;b) = (ul=a)l=b 

where Ul=b, for U<;W, is the union of the ul=b's for each . u in U. 

The following axiom completely captures composition in dynamic logic. 

C a;bJp = aJbJp. (Syntax: (a;b)Jp) 

Union. Another concept slightly less familiar to programmers is that of having a choice of 
which action to carry out. The action aUb offers the choice of actions a or b. Formally: 

ul=(aUb) = ul=a U ul=b. 

Though U may be less familiar than ; it has a static definition, unlike ; • It is a 
nondeterministic concept; the closest deterministic programming concept is that of the 
conditional "if p then a else b" where a choice is given between a and b but in the same 
breath "the criterion for making the choice, the formula p, is also given. In dynamic logic 

· these two con·cepts ·or choice and testing .are. f~cto~ out, to simplify the domain. of discourse· 
and its attendant rules of reasoning. We can define "if p then a else b" in regular dynamic 
logic as (p ?;a)U( ,p ?;b). 

The following axiom completely captures union in dynamic logic. 

u aUbJp = aJp/\bJp. (Syntax: (aUb)Jp) 

From these axioms we may infer that the validity problem for the language {-, => J ; U} 
is decidable - in fact in exponential space - simply by using the axioms for ; and U to 
eliminate all occurrences of ; and U from the · input to yield a formula at most exponentially 
larger. 

Iteration . In order ·to get a program to run for a substantial time some way of executing 
programs repeatedly is called for. The most elementary form of repetition is iteration, which 
in dynamic logic means execution of an action an arbitrary number of times. We write ·a* 
(a- star) for the Iteration of a. Formally 

I 
R 

ul=I 
ut=a* 

= { u} (I is the identity action, needed for the next line) 
= ul=O U a U a;a U a;a;a U . • • ) 
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The closest deterministic programming construct to this is "while p do a," which 
executes the program a a number of times determined by the test p. Again we have reduced 
·things to more fundamental concepts just as we did with if-then-else, this time separating 
while-do into iteration and testing. We can define "while p do a" as (p?;a)*;,p?. 

when we 
iteration. 
follows. 

Refl: 
Step: 
Ind: 

Axioms for iteration are not as easy to come by as for union and composition. In fact 
introduce assignment later we will not be able to get a complete axiomatization- of 

Without assignment however, we can achieve an axiomatization of iteration as 

[a*Jp => P 
[a*Jp => [aJ[a*Jp 
p /\ [a*J(p=>[a]p) => · [a*Jp. 

It is not at all apparent that these axioms generate all the valid formulae of POL. 
The fact that_ they do was first announced (minus tests) in the Notices of the AMS by K. 
Seger'berg [48]. Later (Jan. 1978) Segerberg found a lacuna in his proof, which he repaired 
some months after. Meanwhile R. Parikh [36] and the present author [42], working 
semi-indep~ndently, found completeness proofs. Also D. Gabbay (11) gav-e a sketch of a 
completeness proof, though much· detail would appear to be necessary to convert this sketch 
into a convincing proof. 

It is also not at all apparent that the theory of PDL is decidable; this was shown by 
M. Fis_cher and R. Ladner [81 The proof uses a modal logic technique called filtration to 
show that a satisfiable formula of PDL has a fi.nite model, whence satisfiability and validity 
can be determined by a finite search for a model. Normally filtration proofs are 
straightforward, but in the case of PDL a minor difficulty arises ~ith ;. Fischer and Ladner 

· were · able to show ·that: . the theory oI PDL . is iri. NTIM E(2n) (nond~termihi.stic Turing ·machine 
exponential time), but not in DTJME(cn) for some c>l. Given our present ignorance about the 
e~tent to which nondeterminism helps in improving running time, this ls about as tight a b6und 
as we can hope for. 

First Qrder Regular Dynamic Logic 

The transition to any first order logic is made when terms are introduced into the 
language L. A term ·denotes an arbitrary domain element, not merely a truth value as in the 
case of a formula, or a set of states as in the case of an action. 

Random Assignment. · A random assignment is an action x:=? where x ls any expression and ";=?" 
is the random assignment operator. It is defined by 

ul=x:=? = {vluRxv} = {ul=z = vl=z for all variables z other than x} 

Note that since random assignments involve the notion of variable, changing the 
semantic constraints may affect the meaning of x:=?. 



The main role for x:=? is for defining quantifiers. Vx is just x:=?J. The following· 
two ax loms for random assignment are, In the absence of other actions, just enough to 
completely axiomatize first order predicate calculus. 

Al 
A2 

p => Vxp when. x does not occur free in p 
Vxp(x) => p(e) for any expression e 

The definition of "occurs free in" is as follows. For e in Lo, x occurs free in e 
just when e is x. x occurs free in a;b (aJp) just when x occurs free in a or <x is not bound 
in a and x occurs free in b (p}>. x occurs free in any other expression when x occurs free in 
one or more of its arguments. {Intuitively, x occurs free in ul=e when there is a chance that 
the value of e· might "depend on" the value of x in u.) x is bound in a when a is x:=? or 
x:=e; when a is b;c and x is bound in b or c; or when a is bUc and x is bound in b . and c. 
(Intuitively, x is bound in a when it is guaranteed that a assigns some value to x.) 

In this paper we shall forbid random assignment to action expressions. 

Assignment. An assignment is a pair of expressions x:=e. The idea is that an assignment is 
the action of changing the state so as to make the value of x in the new state that of e ln 
the old. Thus the corresponding binary relation consists of those. pairs u,v such that uRx v 
and vt=x = ut=e. (Recall that Rx was the binary relation corresponding to Vx and consisting of' 
all pairs u, v such that ut=z = vt=z for all· variables z other than x.) So we have 

ut=x:=e = {vluRxv and vl=x = ut=e} 

There is no axiom for assignments as. satisfactory as the axioms we have been 
encountering fpr other constrm::ts. If p(x) i.s a formula involving so111e "x-e-visible" 

. oc~·urre;1ces o·f x (an x-e~visible· occurrence has only· operator~ · "abo~-e"· it in the expression 
that are referentially transparent to x and e, i.e. dearly don't change x or e), then the 
following axiom is adequate. 

Ass: x:=eJp(x) = p(e) (Hoare [20]) 

As we have thus far only constrained formulae and pr:ograms, the only assignments whose 
effects can be felt ·thus far are assignments to formulae and programs. We shall forbid the 
latter kind entirely. Grabowski [12) has shown that algorithmic Jogic with this construct has 
a decidable validity problem. Extending this result to dynamic logic poses no insurmountable 
obstacles. 

If we include = in L, with its standard interpretation on whatever domain . takes our 
fancy, matters become more complex. It is now possible for information about the values of 
non-formulae to propagate up to the formula level; for example, we may now deduce the validity 
of x:=yJx=y for variables x and y. 

Problem: Determine whether validity is decidable for {, :> J U ; * = }; for {, ::::> J JI ; *· = := }. 

Including application, 'Y, (with the condition that -y's first argument be a free 
variable, i.e. not one occurring inside an expression which contains assignments to that 
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variable or variable actions) gives us first order predicate calculus with uninterpreted 
function · ~ymbols. We define 'Yn (application for n-ary functions) thus. 

ut="Yn(f,x1,••·,xn) = (ut=f)(ut=xi, ... ,ut=xn) 

It was shown in [40) that the theory of what we may take to be {, ::> J * V :: = 'Y} 
was not recursively. enumerable (r.e.), even if attention was restricted to formulae of the 
form p=>(x:='Y,(f,x))* Jq where p and q were J-free. In (13) this result was strengthened to 
show that that fragment of the theor·y was Il~-complete (cf {46)). A. Meyer has shown that 

the whole theory is Ill-complete (again cf [46)). All these results indicate very 
definitely that a complete axiomatization of dynamic logic at this level of richness ls out of 
the question. 

Applications to Program Verification 

Program verification is the art of showing that a program meets its specifications 
using formal logic. There is no doubt that Hoare's p{a}q construct [20) is of considerable 
interest to program verification. Since we can embed p{a}q in dynamic logic, as p=>aJq, it 

fottows that at least that fragment of dynamic logic is relevant to program verification. 
However, if total correctness is to be established, program verification also needs to deal 
with the problem of termination, which is not expressible using the p{a}q construcL Because 
of the ability to negate all formulae in dynamic logic, termination can be represented with no 
language extensions or informal arguments. 

To test the extent to which dynamic logic could help in program verification, the 
author, with S. Litvintchouk, implemented a proof checker for dynamic logic proofs [31J. · Thus 
(.-r: "1e. 1.ar.gest .program we. have deo,_onstrated. the t9tal-correctness of ,is . the . 
Knuth-Morris-Pratt pattern-matching algorithm [221 . . 

One interesting aspect of our perspective on DL is the decomposition of quantifiers 
such as V x into random assignment and the Kripke operator. A result of thts is that less 
code is needed to cope explicitly with quantification, since half of what is know about 
quantification is actually general knowledge about arbitrary programs. This general knowledge 
is subsumed under axiom M and rule Nee. The axioms specific to quantification itself are then 
Al and A2, which are so like the axioms for reasoning about assignment that only a smatt 
amount of additional code is needed to deal explicitly with quantifiers. 

This situ-ation should be contrasted· with the usual approach to program verification, 
which is a two-stage affair in which verification conditions are generated and then sent to a 
theorem prover~ Knowledge about programs in general and assignments in particular is kept 
in the verification condition generator, completely separate from knowledge about quantifiers, 
which is kept in the theorem prover. 

Another point is that one does not always want to generate all verification conditions 
before starting to work on the sort of logical manipulation done by the theorem prover. 
Consider for example the two programs 
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a: while p do b 
aa: while p do (b;b) 

where p might be "x~eps+y" and b might be (x:=y-delxx; y:=x+delxy). Now it turns out that 
rE.'gardless of what p and b are, the termination of aa implies the termination of a, a fact 
expressible in DL as ",aaJJalse => ,aJJalse." Yet if this statement, with p and b spelled 

. out in full, is given· to a two-stage system (even assuming it could handle things like having 
two .J's in the problem), it will think· hard about the assignments in b before getting to the 
logic. In a system that works top down (i.e. starting at the "top" of the formula to . be 
proved, a characteristic of natural deduction systems for one), the validity of the above 
claim can bec9me apparent even. before any assignments are contemplated. 

Applications to Natural Language 

Consider the following sentences. 

(1) Whether you strike a · match or operate a cigarette lighter you get a flame. 

This may be formalized as MUCJF,. where M stands for the proposition that you have 
struck a match, c . ~hat you have operated a cigarette lighter, and F that you have a flame. 

(2) If you strike a match you get a flame, and if you operate a cigarette lighter you get 
a flame. 

Similarly this amounts to MJF/\CJF. The intuitive equivalence between (1) and .(2) Is 
formalized (and therefore subject to automatic verification) by the assertion · MUCJF = 
MJF/\CJF. 

(3) When you open the door and walk through it you enter the room. 

(4) When you open the door then when you walk through ·it. you enter the room. 

The equivalence of (3) and (4) is summarized in O;W JE 5 OJW JE. Notice that we do 
not get as equivalent 

(S) When you walk through the door and open it you enter the room. 

or 

(6) When you walk through the door, then when you open it you enter: the room. 

even though (S) and (6) are equivalent to each other, W;OJE 5 WJOJE. If we were to try to 
cap ture the meaning of 3 or 4 using the propositional calculus alone, we might end up with 
0/\ W=>E = O=>E=>W, which is certainly valid. Unfortunately 0/\W=>E is equivalent to W/\O=>E, 
wh ich reveals the limitation of propositional calculus for reasoning about action i~ this way. 
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(7) If your TV won't work and you kick it it still won't work. 

(8) If your TV won't work 'then no matter how many times you kick it it still won't work. 

If 1 ts· true in all circumstances then 8 ought also to be true in all circumstances. 
This amounts to the soundness of the rule, from W=>KJW derive W=>K*W. This rule can be 
derived by starting with W=>KJW, applying Necessitation to get K*(W=>KJW}, then applying 
Modus Ponens to it and the induct.ion axiom (reformulated slightly using propositional 
reasoning to read K*J(W=>KJW) => W=>K*JW) to get W=>K*JW as desired. 

Reasoning About Processes 

So far the Kripke operator J has been our only operator relating actions to formulae. 
We now introduce some other operators that, like J, find application to both algorithmic logic 
and to natural 1a·nguage reasoning. A price we must pay for these operators is the 
redefin_ition of the meaning of actions, which as defined s.o far do not contain enough 
information. 

So far we have taken ut=a to be the set of states that a might halt in when started in 
state u. We now take it to be the set of sequences of states that a goes through, starting 
from u. We let s,t, ... range over sequences. Sequences can be viewed as functions from an 
initial segm~nt of ordinals to states. In the event that a runs forever, the sequence· wi11 be 
infinite. If a is blocked by a test that evaluates to false, the Jimbo state Af:.W ls entered. 
Sequences always have a final state, called sf, whence infinite sequences need a limit 

element, indexed · by the ordinal <Al, which will always be A. A may not appear as a non-final 
state of a sequence. 

The distinguished· state A has a· special beh~vior as regards formulae; .Al=p fs true 
for all formulae. For actions, M=a is {(A)} for all actions. Semantic constraints of the 
form ut=e = .. . do not include the case u=A. 

We also insist that ul=a never be the empty set, for any acUon a, interpreted or not, 
even if this means taking ut=a to be {(u,A)}. 

With this notion of an action it becomes possible to define the new operators. But 
first we should adjust the definition of J so that it retains its meaning. 

uJ::aJp = /\ SfFP 
sf:.ul=a· 

The next operator is Ill, as in aUJp, pronounced "a maintains p." The idea is that ul=aWp 
is true just when vt=p is true in every state v of every sequence of uJ::a. Formally: 

u):alllp = /\ /\ vl=p 
sfuJ::a vf:.s 
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(We loosely write vh to mean v=si for some element si of s.) 

The following completely axiomatizes {, ::> W}, if we take S, K, N and MP. 

alll(p=>q} ::> allip ::> aWq 
aWp =>p 

From p derive alllp 

The proof of completeness may be found in · either of [42] or (44]. 

The third operator is 1, as in a,l.p, pronounced "a promises p." Here ut=aWp ls tnu 
just when vl=p is true in some state v of every sequence of ul=a. Formally: 

ul=alp = A V vl=p 
sEul=a vEs 

Notice that in any sequence ending in A, everything is "promised." The idea here ls 
that 1f a sequence ends in limbo you aren't supposed to care, just as for J. This is 
important for programs where iteration is implemented using * and tests. Careful inspection 
of the possible sequences reveals many ending in A that we would not want to compromise the 
intuitive notion of "promises" in (:onjunction with while loops. 

The following completely axiomatizes {, ::> 1}. 

p ::, tlp 
From p=>q infer alp => alq 

The proof of completeness may be· found in. [441. 

Finally we have .f, as in a.f p, pronounced "a preserves p." Here uJ::aJ'p is tnu just' 
when if vl=p is true for· any state v in sEul=a then wl=p is t_rue for all states w ln s after v. 
Formally: 

ul=aSp = A A 

where "v~wEs" means that v=si, w=sj, with i~j. The axiomatization is somewhat more 

complex; again see [4-4): 

p ::, a.f p ::> a.f ( p =>q} ::> a.f q 

p=q ::> a.f (p=q) ::> a.f p ::> a.f q 

p ::> a.f p ::> a.f ,p 
a.f p => a.f q => aJ(pAq) 
a.f p => a.f q => a.f(pvq) 

From p infer a.f p 

So far we have considered just the languages {, ::> x} for various operators x. 
When these are combined to form {, => J W 1 I} we need some additional axioms. 



aWp = p/\aJp 
aJ p => alp => aJp 
,(aWp /\ al ,p) 
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(suggests taking W as abbreviation only) 

(depends on fact that ut=a is never empty) 

None of this deals with operations on actions. The definitions of U and * need not 
change. We do however require definitions for ? ; and :=. First let us define the operation 
; on individual sequences, as 

(s;t)i : Si 

(s;t)S+i = ti 

where si is defined 
where S is the length of s and ti is defined. · 

Then the definitions of the action operators are: 

ut=I = {(u)} 
ut=p? = {(u)} if ul=p 

{(u,A)} otherwise 
ut=a;b = {s;tlsEul=a, tful=b} 
ut=x:=e = {(u,v)luRxv and vl=x = ut=e} 

The following axiomatize I in conjunction with these. (With the axiom 
aWp - p /\ aJp it becomes unnecessary to give further axioms for UL) 

p?Jq 
aUbJp = aJp /\ b/\p 
a;bJp = aJp /\ aJbJp 
a* Jp = a* JaJp 

This \eaves op~n the ·problem of axioniatizing· J.. with the actfon opera(ors.· A little 
reflection shows that while U and * can be axfomatized (a* lp = p), ; cannot be axiomatized 
with a single equivalence in any obvious way. To get around this we introduce a new operator, 
JI, as in a.llp,q, which takes two arguments p and q. It is defined thus. 

ut=allp,q 

This says that for every sequence s in ul=a, either p holds in some state of s or q 
holds in the final state of s (includi.ng the case when sr=A, which satisfies both p and q). 
This rather odd construct has the properties that ; can be axiomatized with it, and both J and 
l. can be treated as abbreviations, thus: 

aJp - aJfalse,p 
alp - aJp,false. 

The following axiomatize 11 in conjunction with J, treating J, W as mere abbreviations. 

.111 aJJp,(q=>r} => (allp,q => allp,r) 
JJ2 allp,,p 

.JJ3 p ::> a.lip' q 
JJ4 from p=>q derive allp,r => allq,r 
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JJS aJp => (alp => aJp) 
JJ6 ,(aWp /\ al ,p) 

.ll7 (aUb).llp,q = a.1Jp,q " b.llp,q 
JJB (a;b)Jlp,q = aJlp,(b.JJp,q) 
JJ9 a* Jlp,q => pvq 
JJlO a* Jlp,q => aJlp,(a* Jlp,q) 
JJll a* JJp,(q => allp,q) => (q => a* .llp,q) (Harel induction) 
.1J12 p?Jlq,r = qv(p=>r) 

Applications of process logic to algorithmic logics 

The W operator is perhaps the simplest operator one might wish to apply to a program 
that was designed to run forever (e.g. an operating system, or an interactive editor), for . 
which the J operator is worthless. 

The l operator is relevant to the issues of fairness and starvation, concepts that 
arise occasionally in the literature on verification of operating systems. If we view the 
scheduler as a nondeterministic program (and even if we assume that_ the operating system is a 
deterministic mech'<lnism we cannot really work that determinacy into our proofs in practice), 
then we would like to be able to say of the system as a whole, nondeterminism and all, that 
there will come a time wh_en a certain state of affairs (e.g. such-and-such a process getting 
service) will · hold. 

The I operator arises naturally in talking about a system that only manages to keep p 
true throughout its execution by assuming it is true to begin with· and depending throughout on 
its staying true. This idea is ~m.bcxped in the axiom p /\ aip => aWp. The I operator is used 
·implic1t1y·· by ·owtd(f in her thesis · (35]. 

Applications of process logic tq natural language 

We give a further series of examples of natural language formulae embodying arguments 
forf'!'lalizable within dynamic logic and using other operators besides the Kripke operator. 

<,> While stacking up blocks, if the box becomes empty it will remain empty for the 
duration of the stacking process. 

(2) Sometime during the stacking of blocks the box is guaranteed to be empty. 

(3) When you stack up blocks you end up with the box being empty. 

It is apparent that if both 1 and 2 are the case then so is 3, as can be seen from the 
valid formula SJE /\ SlE => SJE. 

(4) If a defect appears in the wall while laying bricks the defect will stay there for the 
rest of the brick laying. 
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(S) After laying any number of bricks, if a defect is found in the wall while laying the 
next brlck the defect will stay there for the rest of the laying of that brlck. 

With a little thought it can be seen that 4 and S are equivalent, as formalized by 
L* ID = L* JLIP. 

Pointers to the dynamic logic literature 

The earliest formal dynamic logic was Frege's quantificationat calculus [10]. The 
idea of viewing quantifiers in terms of a relation Rx, thereby making the connection between 
modal logic and the quantificational calculus and so permitting the tatter to viewed as a 
dynamic logic, seems not to have · been made until [40]. Modal logic as d iscussed here is due 
to Lewis [29]. _The semantics we are using is due principally to Kripke [251, who · also 
contributed to issues of decidability in (261 An excellent reference work on modal logic is 
[211. 

Following Engeler (7) and the Polish school of algorithmic logic [4,471, we shall catt 
a dynamic logic whose actions are deterministic programs, described either by flowcharts or 
irs and while's, an algorithmic logic. The earliest work on proving programs correct [50,511 
amounted to informal algorithmic logics for flowchart programs. In the early sixties J. 
McCarthy [32) proposed the use of a static approach to program correctness by programming with 
recursively defined functions, thereby avoiding the problem of reason ing about states. 

In 1967 Floyd [9] described in detail for the first time an algorithmic logic, built 
around flowcharts as with (SO,SlJ. In 1969 Hoare [20) described a more conventional 
algorithmic logic oriented towards textual programs using trs and white's. Hoare's logic 

. introduced the no~ion of a parti_al ~orrectness _ass~rtion p{a}q _as_ an expression having a 
stacus different ·from that of a:n ordinary formula; in pltrticular not :being s'ubject to ·Boolean 
operations. Though H~are gave only an informal semantics for p{a}q, it seems beyond debate 
that he meant it to have the semantics of l=p=>aJq. In 1970 Salwicki developed a similar 
algorithmic logic (and applied Engeler's term algorithmic logic (7) to it). The most striking 
difference from Hoare's logic was that all of Salwicki's formulae were subject to Boolean 
operations; as such, · Salwicki's logic is the first true algorithmic logic. It may be 
characterized as dynamic logic using J, if, while, and having function·al rather than 
relational actions, as behoves a deterministic programming language. (Engeler's algorithmic 
logic (7) is rather weaker, permitting in effect only false as the second argument to J.) 
Salwicki's work prompted a veritable flood of papers from Warsaw on algorithmic logic, mostly 
by members of H. Rasiowa's group; a comprehensive survey of work up to 1974, including a 
bibliography of some 40 papers on algorithmic logic, may be found in [4]. 

The idea of modelling programs with binary relations, taking advantage of Tarski's 
calculus of U ; * (49), ·goes at least as far b~ck as Eilenberg and Elgot [6]. De Bakker 
~2], with de Roever [3), developed the idea considerably further, adding a fixed point 
operator to Tarski's calculus to model recursion. Independently of de Bakker, but motivated 
by Eilenberg and Elgot, D. Park [19), with P. Hitchcock, also used the fixed point operator in 
a relational treatment of flowchart programs. 
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The combination of modal logic_ and Tarski's operators was first developed by the 
author [39] In response to a suggestion of R. Moore, a student In the author's program 
semantics course. It was brought to the attention of a wider audience in [40] some two and a· 
half years later, in a paper that prompted several people, including M. Fischer, D. Harel, R. 
Ladner· and A. Meyer, to work on dynamic logic. This gave rise to a paper by Harel, Meyet and 
the author [13] .on the complexity of the theory of first-order dynamic logic, along with 
a relative-completeness proof of the axiomatization given in (40], and another paper by 
Fischer and Ladner [8] on the validity problem for PDL, including not only the result that it 
was decidable but giving good bounds on the complexity of the prob!em. A little later, Harel 
and the author reported on work on Dijkstra's notion of total correctness ('.'we<;kest 
precondition"), propos.ing definitions for the concepts Dijkstra was attem!)ting to define via 
axioms, and giving a relatively complete axiom system for Dijkstra's language [14]. · 

At about the same time several people began asking questions about definabi1ity in 
dynamic logic. A. Meyer addressed the question of whether DL +, the language defined in [14] 
in part to formalize Dijkstra's language, was expressible in regular first-order dynamic 
logic. This problem turned out to have a very elusive answer. Meyer was able to show that 
DL + was no more expressive than DL provided the programming language permitted array 
assignments (331 Later Winklmann [52] was able to obtain the same result without requiring 
array assignments, but using J within tests. Eventually he was able to eliminate J from tests 
[531 Meanwhile the author showed that POL+ is strictly stronger than POL, complementing 
[53]. 

F. Berman and M. Paterson, in a remarkably delicate argument, showed that POL was 
strictly strengthened by the inclusion of tests [SJ. Meyer and Parikh showed that reg1,11ar 
fi rst-order DL. with J-free tests was strictly weaker than constructive LC&>l w [34]. 

b. Harel developed furthE!r · the relative completeness ideas of [l3], .. dr'awing • a 
. . 

distinction between -relative comp-leteness and arithmetic completeness. Using a result of 
Lipton [30], Hare1 showed in essence that arithmetic completeness is all -that one wan·ts. 

The question of finding a complete axiomatization for ·PDL was raised in. [8]. There is 
an account earlier in this paper of the origins of [48,36,42,11] as answers to this question. 

A very thorough and detailed treatment of Harel's many contributions to DL may be 
found in h is thesis (18]. In addition Hare! has authore9 a close-to-exhaustive survey of 
logics of deterministic prog'rams, using the [a]p/<a>p notation as a lingua franca in order to 
make it easier to see the similarities and differences between the various logics. 

Motivated by the· concept of a Boolean algebra underlying propositional calculus, Harel 
asks the question, what is the appropriate algebra for POL? A partial answer to this may be 
found in [l(J. 

The author, with S. Litvintchouk, explored the question of how to implement a proof 
checker for DL. A proposal for such a system is described in (31]. Some of the techniques 
used in the first implementation of the system are alluded to briefly in (41]. The system has 
been operational since August 1977, when it was able to check a 20..:.theorem proof of the total 
correctness of the Knuth-Morris-Pratt pattern-matching algorithm, taking 45 seconds· to do so. 
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In the, process of making the. system more automatic, some theoretical questions about deciding 
validity in POL arose, giving rise to an algorithm described in [42] that is more "practical" 
than . the algorithm of [8]. This algorithm has been very recently further improved by Pratt to 
require time one exponential in the worst case [431 To within a polynomial, this meets the 
lower bound of one exponenti,t.l given in [8). . 

In [42) the issue qf discussing programs intended not to halt is raised. Several 
constructs are proposed, namely those discussed above in the section on logics of processes. 
The author has recently been able to show completeness of various axiom systems for some of 
those constructs [44]. The semantics for processes is intimately related to Pnueli's 
semantics for temporal logic [38]. Parikh has shown, using Rabin's remarkable decidability 
result for the weak second order theory of n successors, that a very much stronger language 
has a decidable theory, although unlike the theory of [421, it is not elementary recursive. 

This survey, combined with the pointers in [4] and [18], covers the bulk of what is 
known about dynamic logic. Missing will be the Polish work from 1914-1918, and most of the 
work to .date on classical modal logic, much of which however is subsumed by the recent DL work 
(see

1 
e.g., the la.st page of [8] to see how one D L resu It can be translated into several modal 

logic results). Also missing is .the bulk of a century's work on various quantificational 
calculi, for which we can only point the reader at the tremendous volume of logic literature 
that has been. accumulatir1g. 

Tile Interest in Nondeterministic Programs 

The · following is taken from [14), and may be of interest to those wondering why 
someone interested in det.erministic algorithmic logic would want to get involved in the 
greater generality of dynamic logic and Tarski's relation.al calculus. 

First, nondeterministic programs have been proposed as a model of parallel processes. 
Such parallelism arises in timeshared computers, where nondeterminism expresses the apparent 
capriciousness of the scheduler. It also arises in the management of external physical 
devices, · where the nondeterminism captures the unpredictable behavior of physical devices. 

Second, nondeterminism is gaining credence as a component of a programming style that 
imposes the fewest constraints on the processor executing the program. For example a certain 
program may run correctly provided that initially x is even. If the programmer requires the 
processor to set x · to an even number of the programmer's choosing, the processor may be unduly 
constrained. On a byte oriented machine where integers are represented as four-byte 
quantities, setting x ~o a particular number requires four operations, but if the programmer 
has merely requested setting it to an arbitrary even number the processor can satisfy the 
request with one operation, by setting the low-order byte to, say, zero. 

Third, nondeter-minism supplies one methodology for interfacing two procedures that, 
though written independently, are intended to cooperate on solving a single problem. The 
approach is to make one procedure an "intelligent" interpreter for the other. Wood's 
Augmented Transition Networks supply an instance of the style. The user of this system writes 
a grammar for a specific natural language which amounts to a nondeterministic program to be 
run on Wood's interpreter, which though ignorant of the details of specific languages 
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nevertheless contributes much domain-independent parsing knowledge to the problem of making · 
choices left unspecified by the user's program. This technique ls_ in wide use in other areas. · 
of Artifiial Intelligence,. and supplies a way of viewing such AI programming languages as 
QA-3, PLANNER, and a number of more recent languages. 

Fourth, from a strictly mathematical viewpoint, there is something dissatisfying about 
taking such constructs as if-then-else and while-do a& primitive constructs. If-the-else 
involves the two concepts of testing and choosing, and while-do i~volves the two concepts 
testing and iterating. A more basic approach is to develop these concepts separ~tely. 
However, in isolating the concept of te.sting from the concepts of choosing and iterating, we 
have removed the parts of the if-then- else and while-do constructs responsible for their 
determinism. 

Fifth, from a practical point of view; when reasoning about deterministic programs it 
can sometimes be convenient to make what amounts to claims about nondeterministic programs. · 
When we argue that "if x>O then x:=x-1 else x:=x+l" cannot affect y, a part' of our argument 
might be that, whether we execute x:=x-1 or x:=x+l, y will not change. The fact that the whole 
program is deterministic played no role in this argument, which amounts to the observation 
that the nondeterministic program x:=x-lUx:=x+l cannot change y. (aUb is a program calling 
for execution of either program a or program b, the choice being made arbitrarily, i.e. 
nondeterminis_tically.) By the same token the observation that "while x<O do x:=x+2" leaves 
the parity of x unchanged depends principally on the fact that executing x:=x+2 arbitrarily 
often, i.e. executing {x:=x+2)*, leaves the parity of x unchanged. Ca* is a program calling 
for a number of executions of program a, the choice of number being made 
nondeterministically.) This illustrates the appropriateness of applying nondeterministic 
reasoning to deterministic programs. 
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