
LABORATORY FOR tt•, ~ MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM- 117

SI X LECTURES ON DYNAMI C LOGIC

Vaughan R. Pratt

December 1 979

54 5 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM- 117

Six Lectures on Dynamic Logic

Vaughan R. Pratt

December, 1918

This paper contains the material for six lectures given at the 3rd Adv~nced Course on
Foundations of Computer Science, at the Mathematisch Centrum, Amsterdam, August 21-2S.

This research was supported by the National Science Foundation under NSF grant nos.
MCS16-1846i and MCS18-04338.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LA BORA TORY FOR COMPUTER SCIENCE

MA~SACHUSETTS 02139

Six Lectures on Dynamic Logic

Vaughan R. Pratt

Abstract

The distinction made here between static and dynamfc logic has a very st,nple.
character, yet can play a central and unifying role in logic as a vantage point ·rrom which one
can compare propositional calculus, predicate calculus, intensional logics such as modal
logic and temporal logic, various algorithmic logics (logics of programs), and Q.uine's
notions of transparency and opacity.

Key words

Dynamic logic, logic of programs, semantics ~f programs, predicate calculus, modal logic,
re'f ~rential transp.ar~ricy. · ,. . . · · . · ..

Six Lecture~ on Dynamic Logic

Background

Logic is metamathematics, that is, its objects of study are the unremarked~n and ·
unnamed expressions that are used to make remarks and name objects in ordinary mathematics.
Typical expressions are "O", "3x+2", "x=y+2", "(x+y)(x-y) = x2-y2", "VxJy[p(x,y)vq(y,x)]".
The logician collects a set L of such expressions, calls this set a language, and proceeds to
study its meaning (semantics) and its manipulation (axiomatics).

Meaning is specified with the help of a semantic domain D; D might contain natural
numbers, truth values, functions on the reals, predicates on polynomials, and so on. The
connection between L and D is made with a meaning function or interpretation p:L➔D, assigning
to each expression an object In the semantic domain. .

If every expression in L had an agreec,i-on meaning in the above sense, a single (fixed)
interpretation would suffice. Such a language would consist only of constants (that is to

.say, constant-value expressions), and would contain nothing worthy of the attention of a
logician per se. If on the other hand every expression in L could have an arbitrary meaning,
any element of L➔D could serve as an interpretation, whence L would in effect consist only of
variables and again would not be worth studying. What makes logic interesting is that the
range of possible interpretations lies between these two extremes.

For a furictton from L to D to pass, muster as an interpretation it must :•satisfy a
collection of constraints. For example we might have the following constraints on "·

µ(0)_
µ(x+y)
µ(p/\q)

= the zero (unique additive identity) of D
= µ(x) plus µ(y)
= true if µ(p) = true and µ(q) = true

false otherwise

These constraints have a special form. We shall assume throughout this paper that
every expression is of the form <s,t>, consisting of a symbol s (the operator) together with
an n-tuple t = (t1,••·,tn) of expressions {the arguments). (Ordinary constants have a
zero-tuple of arguments.) The most general form of the above constraints is:

That is, the meaning of the expression <s,t>_ is defined ·recursively as some function F s of
the meanings of the arguments, the function depending on s but not on p. (If we want to
have f(x) in L, meaning that f denotes some function (wh ich one depending· on p) to be applied
to x, we will write the application of f to x explicitly as -r{f,x). The more usual
convention of always app·lying I" to s as well as to the ti's is less appropriate for our .

account of dynamic logic.) Constraints of this form we shalt catt semantic constraints.

2

The domain (in the functional sense) of F s in the above is significant insofar as it .

acts as an additional constraint, namely on the possible values of the ti's. For example, If

there is a constraint for the expression p/\q with . F /\ being conjunction, a function with

domain {true,false}, then even if the expression p (or q) has no explicit constraint of Its
own, its_ possible values in the expression p/\q are confined to the domain of FA, trut and
falu.

The expression x is said to be interpreted when some semantic constraint ,a(x) =
applies to it, and otherwise is uninterpreted. We write Lo for the uninterpreted subset_ of
L. It should be apparent that if all expressions are finite (actually, well-founded is
sufficient) then for eviry element of Lo➔D there is a uniqu.e extension of that element to an
interpretation (i.e. to an element of L➔D satisfying the semantic constraints). Since every
interpretation uniquely determines an element" of Lo➔D, it follows that there is a one-to-one

correspondence between the elements of Lo➔D and the interpretations. For this reason it is
com.mon in logic texts to call instead the elements of Lo➔D the interpretations. Our

reluctance to follow this convention _is due to the fickle nature of Lo, discussed below.

Clearly, what conventionally pass for variables will have to be uninterpreted
e x pressions in this scheme of things. A little loosely perhaps, we will henceforth refer to
any uninterpreted expression as a variable. (A little later we will discuss some consequences
of this somewhat non-standard view of variables.)

Notice that, as defined abov~, a semantic constraint mentions only one interpretation,
the one it is constraining. This is the defining characteristic of a static logic. If one
uses the constraints to evaluate an expression recursively, the interpretation remains
unchanged (static) as the evaluation proceeds; there are no side effects, so to speak. Q.uine
ref.er-s to operator~ defined in this way as being referentially transparent -US];, wh.-t t,J-ae
operator's arguments refer to can be seen from "outside" the expre&Sion; i.e. the operator
does not "block the view," so to speak.

The Limits of Static Logic

Consider the following express.ions.

(1) Vx3y(x =y)
(2) Necessarily x+y=y+x
(3) After setting x to 1, x=l

Each of these, we argue, involves concepts beyond the scope of static logic." The
reason is that there is no function F such that the mean_ing of Vxp can be specified with a
constraint of ~he form µ(Vxp) = F(µ(p)), and similarly for the other constructs.

States

To give an account of these expressions we introduce the notion of state.- One quite
workable arrangement is to define a state to t>e an interpretation. However it will be
slightly more convenient for us (and consistent with ordinary practice in modal logic) to
postulate a · priori, as part of D, a set of sta:tes W = { u, v, w, ... }, along with a function

3

,r:W➔(L➔D) which assigns to each state an interpretation. We shall frequently abbreviate
,r(u)(e) to ut=e (think of I= as ,r on Its side). When e is a formula ut=e will be a truth
value; this special case coincides with the conventional usage of t=. We define ,r:L➔(W➔D) as
w(e)(u) = 1r(u)(e). Notice that ,r need not be an injection (1-1), that is, it is possible ·
to have ul=e = vl=e for all expressions efL and still. not have u=v; such pairs of states are
equivalent but not equal.

Now the meaning of expression (1) above is that no matter what x is changed to y can
then be changed so that x=y. Putting it more precisely, we take ul=Vx]y(x=y) to be trut just
when vt=]y(x=y) is true for every v such that ul=z = vl=z for all variables z other than x. In
turn vt=]y(x=y) is · true just when wt=x=y is true for some w such that vl=z = wl=z for all
variables z other than y.

We can put this a little more succinctly if we let Rx denote the binary relation on

states such that uRxv whenever ut=z = vt=z for all variables z other than x. (Thus Rx is
:tn equivalence relation on W.) Then

ut=Vxp = " vt=p (the conjunction of vt=p for all v s.t. uRxv)
uRxv

Similarly we may take Jxp to be defined thus.

ut=]xp =

The only difference is the use of v in place of /\. Notice that ut=Jxp and ut=,V x,p must be
the same for all u in W, that is, these . are eqlf,ivalent expressions. Just as v is the dual of
/\, so · is 3 x · the' duaJ of Vi;

The advantage of this way of looking at Vx and Jx is that it will also be how we shall
look at concepts like "necessarily" and "after setting x to 1." This treatment of
"necessarily" was first defined carefully by K ripke [25,261 While Kripke (deliberately) did
not propose any particular binary relation, let us consider the relation R such that uR v for
all states u and v, the so-called complete binary relation on states. Then define
"necessarily" as follows, writing "[]" for "necessarily".

ut=[]p = /\ vt=p.
uRv

This says that p is necessarily true just when it is true in all states v, since R is
complete. · It follows that ut=[]p is the same for all u's. This particular interpretation
of "necessarily" is not implausible.

As with Vx, "necessarily" has a dual, "possibly", written "O". We have as before

ut=<>p = v vt=p
uRv

4

We also have the equivalence of <>p with ,[J,p.

Now consider our third example, "after setting x to 1, x=l." Even this formula can be
fitted into the above framework. Let uR v hold just when uRx v (as defined for example (1))
holds and vt=x = ut=l. That is, -x is set to 1, and there are no other effects (on Lo). Then

ut=(after setting x to 1, x=l) = I\ vl=x=l
uRv

Of course the value of this is true, as with the preceding two examples. In this case it
doesn't make any difference whether we write /\ or v, so that "after setting x to l" Is its own
dual.

For notational convenience we aboreviate "set x to 1" as "x:=1", and, in imitation of
the notation for "necessarily", we abbreviate "after x:=1" as "[x:=lJ", which as we remarked ·
is the same· as its dual "(x:=1>."

Form of constraints in DL

We would like to think of the above equations for quantifiers etc. - as semantic
constraints. To do so, however, we must abandon the requirement that a semantic constraint
mention only a single state. In so doing we make the transition from static to dynamic logic. -The general form of a semantic constraint in dynamic logic is

(Recall i(e)(u) = ,r(u)(e)).

Thfs . tS ae:tually the same a$ the ·g~neral form for static logic, ·with . ,r in··. p1ace ·hr
µ.. The difference is that ,r is a dynamic meaning functio~; it yielch the meaning of an
expression as a function of state. In this fra_mework, our original concept of a semantic
constraint in static logic takes the form

ul=<s,t> = Fs(ul=t1, ... ,ul=tn) for all u in W.

We shall henceforth refer to this special form as a static constraint, and the more
general one above as a dynamic constraint. From now on, as a notational matter, we use ut= in
place of the (shortlived!) µ.

The general form permits ul=<s,t> to depend on values of the tj's in other states
than u. It does not however permit it to depend arbitrarily on the t1's themselves, which are
evaluated, even if not in u. In this way, although we cannot substitute equals as we could in
static logic (e.g. ut=(x=y => cp(x)=cp(y)) is no longer always true where cp is an arbitrary
formula - consider x=y ::> [](x=y)=[](y=y)), we can still substitute equivalents. That is, if
,r(a) = ,r(b) then we do know that ul=(cp(a) = cp(b)) is true for all u in W.

(For LISP afficionados: note that the extent -to which dynamic logic is a step up from
static logic is less than the extent to which FEXPR's in LIS-P are a step up from EXPR's. The
additional power of a FEXPR over an EXPR is that the FEXPR can inspect the form of the

s

arguments, for example being able to distinguish p/\q from q/\p, which is beyond the power of
dynamic logic.)

Loose ends

We are now in a posmon to point out a peculiarity of our view of variables. When ·
extra constraints are taken notice of (as might happen in the course of following an argument;
when it becomes apparent that say propositional reasoning alone does not support the
argument), certain expressions that hitherto were treated as variables now become constrained.
A simple ex ample would be the expression 0. As long as O remains uninterpreted it acts as a
variable, and peculiar expressions such as 30(x=O) then have the same meaning as 3y(x::y). As
soon as O is assigned a fixed interpretation, 30(x::0) means something else. According to the
definition of 3y above,]O(x::O) would be equivalent to x=O when O is interpreted.

It is a simple enough matter to include a syntactic condition on 3, :=, and other
variable-manipulating operators, so that only never- to-be-interpreted variables can be so
manipulated. However such a condition would play no significant role in dynamic logic, and
would require us to draw a distinction between the unconstrained expressions and variables.
Thus we omit it from the theory in the interests of minimizing baggage.

For the remainder of this paper we adopt the convention of writing all expressions we
want to be considered uninterpreted using single letters. Thus any occurrence of "x+y" is
understood to be interpreted.

An operator definable in dynamic logic but not · in static logic is said to be
referentially opaque, again following Quine. Actually this is a somewhat more mathematically
precise definition than Quine had to offer.

The examples of dynamic logic we have seen thus far, without getting into any depth,
have already given some idea of the range of domains that can be served by dynamic logic:
quantificational calculus, modal logic, and atgorithmic logic (i.e. logic of programs, x:=1
being a program).

In this connection it may be worth remarking that the semantics of Lucid (1] are
presented wjth emphasis on ,r; in fact there is no global set of states in Lucid semantics,
and instead each variable takes on values in a series of states defined essentially by the
lifetime, or extent, of that variable.

The Kripke Operator

Alt the examples we have seen so far of dynamic logic constraints fit a much narrower
description than the above, namely Kripke's semantics for modal logic. The reason for our
rather general characterization of a dynamic constraint is that later we will want to deal
with certain adverbial constructs that transcend the Kripke formula. . For the time being
however, we will stick with Kripke semantics.

It is natural to introduce the names of binary relations into the language L. We
reserve a,b,c, ..• as variables for this purpose. We call such expressions actions.

via Ra.
that for

6

It is also natural to take ul=a to be { vluR.a v }, the set of states accessible from u
Then ul=[aJp can be defined as (ul=a)l=p, if we adopt the usual convention in logic

a set U<;W, Ut=p means that ul=p for every u in U.

The notation [a]p, though almost universal in the dynamic logic literature, starting
with (39,40], nevertheless obscures what we would Uke to call the Kripke operator. And later
we wi11 want to · combine a's and p's in other ways, giving rise to other operators similar to
the K ripke operator, each needing their own syntax. For these reasons we introduce the Krlpke
operator J, and replace the notation (aJp with aJp. The semantics remains unchanged:

ul=(aJp) = (ul=a)l=p

For the syntax of the language {, => J} we adopt the convention that parentheses may be
omitted from any of the following without changing the parsing. (We make use of this
convention later, as new operators are introduced, to give a succinct account of the syntax of ·
each new operator.)

p=>(q =>r)
(,p)::>q
aJ(bJp)
(aJp)=>q
(p::,q) => r

(so a is right associative)
(so , binds tighter than =>)

'(so J is right associative)
(so aJ behaves like ,)

(so spaces count)

That part of dynamic logic confined to Kripke semantics can draw on a wealth of
knowledge about modal logic. Of particular interest is the tlzeor, of this logic, the set of
valid formulae, that is, formulae p such that ul=p is true for all states u, where ,r satisfies

ul=,p
ul=(p=>q)
ul=(aJp)

- u){p
- ul=p implies ul=q
- (ul=a)l=p

Two questions we shall ask about the set of valid formulae are: how hard is it to
decide validity, and what useful axiomatizations do they have?

In the case when L contains only one action, that action being in Lo, the theory
coincides with the theory of system K of modal logic (that is, just the modal operator []~.
with no restrictions on the binary relation corresponding to []). The complexity of the
theory of K (along with several related systems) was shown by R. Ladner [28) to be log space
complete in polynomial space. That is, first there is a computer program that will determine
of a given formula of length n whether it is valid using O(nd) units of storage for some d.
(This is to say that the theory of K is in polynomial space. Most reasonable notions of
"units of storage" will suffice here.) This by itself is not very exciting, and so second
(which ts what makes the result much more interesting), one cannot do any better. That is,
for any set in polynomial space there is a computer program which could determine whether an
element of length n was in that set in only O(log n) units of space if only it had access to ·
an "oracle" for the theory of K, a program that gives us at no charge answers to questions of
membership in that theory. This is a very strong sense in which validity in K is as hard as
any problem solvable in polynomial space.

7

Ladner's results extend without change to the case when L contains any number of
actions, so long as they all belong to Lo, Shortly we sha1I see what happens when one
introduces semantic constraints on actions.

The following will serve as a complete axiomatization of {, => J}.

K p=>q=>p
S p=>q=>r => p=>q => p => r
N ,p=>,q ::, ,p=>q => p
J aJ(p =>q) ::, aJp ::, aJq

MP . From p, p=>q derive q
JNec From p derive aJp

(Modus Ponens)
(Necessitation)

(The names K and. S come from combinatory logic. N is for Negation. Note the
similarity between S and M; when a is p? (a test, see below), S and M coincide.)

Regular Dynamic Logic

It is not very interesting to consider just a set of unrelated actions with no visible
internal structure. Hence we are inspired to introduce operations on actions. In so doing we
shall be combining Tarski's calculus of binary relations [49] with Kripke's semantics for
modal logic. This combination is without doubt the most interesting facet of that part of
dynamic logic constructed around Kripke semantics. Even more interestingly, when we encounter
analogues of the Kripke operator, the combination will become even more fruitful •

. Propositional Dynami.c logic, P DL

We begin with four operators, ? ; U *, that together with , => J give rise to the
language Propositional Dynamic Logic (PDL).

Tests. Conditionals in a programming language are usually introduced with "if-then-else."
However the rules of reasoning can be simplified by using a "smaller" notion of conditional,
the test, which can be used in conjunction with the next two constructs to synthesize
if-then-else. x>O? is an instance of a test, as is j=Ovp(j)=t(k)?.

A test p? is constructed from a formula p of the logical language. The idea of a test
is that a computation may proceed past a test just when that test evaluates to true in the
current environment, otherwise the computation must block (which for our purposes is ·
equivalent to going into an infinite loop). Formally:

u~p? = {u} if u~p
{} otherwise.

Most of what we say holds even for tests containihg J, permitting for example the
side-effect-free programming construct "if p would be the result of running a then ... "

8

The axiom for tests is

T p? Jq = p::>q

Composition. A familiar concept to programmers is that of executing one program after
another; we may execute first a and then b. In terms of binary relations this means applying
the ·nrst relation to a state to nondeterministically yield another state, and then applying
the second relation to the resulting state. The composition of a and b, written a;b, is the
relation describing the net effect of executing first a and then b. Formally:

ul=(a;b) = (ul=a)l=b

where Ul=b, for U<;W, is the union of the ul=b's for each . u in U.

The following axiom completely captures composition in dynamic logic.

C a;bJp = aJbJp. (Syntax: (a;b)Jp)

Union. Another concept slightly less familiar to programmers is that of having a choice of
which action to carry out. The action aUb offers the choice of actions a or b. Formally:

ul=(aUb) = ul=a U ul=b.

Though U may be less familiar than ; it has a static definition, unlike ; • It is a
nondeterministic concept; the closest deterministic programming concept is that of the
conditional "if p then a else b" where a choice is given between a and b but in the same
breath "the criterion for making the choice, the formula p, is also given. In dynamic logic

· these two con·cepts ·or choice and testing .are. f~cto~ out, to simplify the domain. of discourse·
and its attendant rules of reasoning. We can define "if p then a else b" in regular dynamic
logic as (p ?;a)U(,p ?;b).

The following axiom completely captures union in dynamic logic.

u aUbJp = aJp/\bJp. (Syntax: (aUb)Jp)

From these axioms we may infer that the validity problem for the language {-, => J ; U}
is decidable - in fact in exponential space - simply by using the axioms for ; and U to
eliminate all occurrences of ; and U from the · input to yield a formula at most exponentially
larger.

Iteration . In order ·to get a program to run for a substantial time some way of executing
programs repeatedly is called for. The most elementary form of repetition is iteration, which
in dynamic logic means execution of an action an arbitrary number of times. We write ·a*
(a- star) for the Iteration of a. Formally

I
R

ul=I
ut=a*

= { u} (I is the identity action, needed for the next line)
= ul=O U a U a;a U a;a;a U . • •)

9

The closest deterministic programming construct to this is "while p do a," which
executes the program a a number of times determined by the test p. Again we have reduced
·things to more fundamental concepts just as we did with if-then-else, this time separating
while-do into iteration and testing. We can define "while p do a" as (p?;a)*;,p?.

when we
iteration.
follows.

Refl:
Step:
Ind:

Axioms for iteration are not as easy to come by as for union and composition. In fact
introduce assignment later we will not be able to get a complete axiomatization- of

Without assignment however, we can achieve an axiomatization of iteration as

[a*Jp => P
[a*Jp => [aJ[a*Jp
p /\ [a*J(p=>[a]p) => · [a*Jp.

It is not at all apparent that these axioms generate all the valid formulae of POL.
The fact that_ they do was first announced (minus tests) in the Notices of the AMS by K.
Seger'berg [48]. Later (Jan. 1978) Segerberg found a lacuna in his proof, which he repaired
some months after. Meanwhile R. Parikh [36] and the present author [42], working
semi-indep~ndently, found completeness proofs. Also D. Gabbay (11) gav-e a sketch of a
completeness proof, though much· detail would appear to be necessary to convert this sketch
into a convincing proof.

It is also not at all apparent that the theory of PDL is decidable; this was shown by
M. Fis_cher and R. Ladner [81 The proof uses a modal logic technique called filtration to
show that a satisfiable formula of PDL has a fi.nite model, whence satisfiability and validity
can be determined by a finite search for a model. Normally filtration proofs are
straightforward, but in the case of PDL a minor difficulty arises ~ith ;. Fischer and Ladner

· were · able to show ·that: . the theory oI PDL . is iri. NTIM E(2n) (nond~termihi.stic Turing ·machine
exponential time), but not in DTJME(cn) for some c>l. Given our present ignorance about the
e~tent to which nondeterminism helps in improving running time, this ls about as tight a b6und
as we can hope for.

First Qrder Regular Dynamic Logic

The transition to any first order logic is made when terms are introduced into the
language L. A term ·denotes an arbitrary domain element, not merely a truth value as in the
case of a formula, or a set of states as in the case of an action.

Random Assignment. · A random assignment is an action x:=? where x ls any expression and ";=?"
is the random assignment operator. It is defined by

ul=x:=? = {vluRxv} = {ul=z = vl=z for all variables z other than x}

Note that since random assignments involve the notion of variable, changing the
semantic constraints may affect the meaning of x:=?.

The main role for x:=? is for defining quantifiers. Vx is just x:=?J. The following·
two ax loms for random assignment are, In the absence of other actions, just enough to
completely axiomatize first order predicate calculus.

Al
A2

p => Vxp when. x does not occur free in p
Vxp(x) => p(e) for any expression e

The definition of "occurs free in" is as follows. For e in Lo, x occurs free in e
just when e is x. x occurs free in a;b (aJp) just when x occurs free in a or <x is not bound
in a and x occurs free in b (p}>. x occurs free in any other expression when x occurs free in
one or more of its arguments. {Intuitively, x occurs free in ul=e when there is a chance that
the value of e· might "depend on" the value of x in u.) x is bound in a when a is x:=? or
x:=e; when a is b;c and x is bound in b or c; or when a is bUc and x is bound in b . and c.
(Intuitively, x is bound in a when it is guaranteed that a assigns some value to x.)

In this paper we shall forbid random assignment to action expressions.

Assignment. An assignment is a pair of expressions x:=e. The idea is that an assignment is
the action of changing the state so as to make the value of x in the new state that of e ln
the old. Thus the corresponding binary relation consists of those. pairs u,v such that uRx v
and vt=x = ut=e. (Recall that Rx was the binary relation corresponding to Vx and consisting of'
all pairs u, v such that ut=z = vt=z for all· variables z other than x.) So we have

ut=x:=e = {vluRxv and vl=x = ut=e}

There is no axiom for assignments as. satisfactory as the axioms we have been
encountering fpr other constrm::ts. If p(x) i.s a formula involving so111e "x-e-visible"

. oc~·urre;1ces o·f x (an x-e~visible· occurrence has only· operator~ · "abo~-e"· it in the expression
that are referentially transparent to x and e, i.e. dearly don't change x or e), then the
following axiom is adequate.

Ass: x:=eJp(x) = p(e) (Hoare [20])

As we have thus far only constrained formulae and pr:ograms, the only assignments whose
effects can be felt ·thus far are assignments to formulae and programs. We shall forbid the
latter kind entirely. Grabowski [12) has shown that algorithmic Jogic with this construct has
a decidable validity problem. Extending this result to dynamic logic poses no insurmountable
obstacles.

If we include = in L, with its standard interpretation on whatever domain . takes our
fancy, matters become more complex. It is now possible for information about the values of
non-formulae to propagate up to the formula level; for example, we may now deduce the validity
of x:=yJx=y for variables x and y.

Problem: Determine whether validity is decidable for {, :> J U ; * = }; for {, ::::> J JI ; *· = := }.

Including application, 'Y, (with the condition that -y's first argument be a free
variable, i.e. not one occurring inside an expression which contains assignments to that

11

variable or variable actions) gives us first order predicate calculus with uninterpreted
function · ~ymbols. We define 'Yn (application for n-ary functions) thus.

ut="Yn(f,x1,••·,xn) = (ut=f)(ut=xi, ... ,ut=xn)

It was shown in [40) that the theory of what we may take to be {, ::> J * V :: = 'Y}
was not recursively. enumerable (r.e.), even if attention was restricted to formulae of the
form p=>(x:='Y,(f,x))* Jq where p and q were J-free. In (13) this result was strengthened to
show that that fragment of the theor·y was Il~-complete (cf {46)). A. Meyer has shown that

the whole theory is Ill-complete (again cf [46)). All these results indicate very
definitely that a complete axiomatization of dynamic logic at this level of richness ls out of
the question.

Applications to Program Verification

Program verification is the art of showing that a program meets its specifications
using formal logic. There is no doubt that Hoare's p{a}q construct [20) is of considerable
interest to program verification. Since we can embed p{a}q in dynamic logic, as p=>aJq, it

fottows that at least that fragment of dynamic logic is relevant to program verification.
However, if total correctness is to be established, program verification also needs to deal
with the problem of termination, which is not expressible using the p{a}q construcL Because
of the ability to negate all formulae in dynamic logic, termination can be represented with no
language extensions or informal arguments.

To test the extent to which dynamic logic could help in program verification, the
author, with S. Litvintchouk, implemented a proof checker for dynamic logic proofs [31J. · Thus
(.-r: "1e. 1.ar.gest .program we. have deo,_onstrated. the t9tal-correctness of ,is . the .
Knuth-Morris-Pratt pattern-matching algorithm [221 . .

One interesting aspect of our perspective on DL is the decomposition of quantifiers
such as V x into random assignment and the Kripke operator. A result of thts is that less
code is needed to cope explicitly with quantification, since half of what is know about
quantification is actually general knowledge about arbitrary programs. This general knowledge
is subsumed under axiom M and rule Nee. The axioms specific to quantification itself are then
Al and A2, which are so like the axioms for reasoning about assignment that only a smatt
amount of additional code is needed to deal explicitly with quantifiers.

This situ-ation should be contrasted· with the usual approach to program verification,
which is a two-stage affair in which verification conditions are generated and then sent to a
theorem prover~ Knowledge about programs in general and assignments in particular is kept
in the verification condition generator, completely separate from knowledge about quantifiers,
which is kept in the theorem prover.

Another point is that one does not always want to generate all verification conditions
before starting to work on the sort of logical manipulation done by the theorem prover.
Consider for example the two programs

12

a: while p do b
aa: while p do (b;b)

where p might be "x~eps+y" and b might be (x:=y-delxx; y:=x+delxy). Now it turns out that
rE.'gardless of what p and b are, the termination of aa implies the termination of a, a fact
expressible in DL as ",aaJJalse => ,aJJalse." Yet if this statement, with p and b spelled

. out in full, is given· to a two-stage system (even assuming it could handle things like having
two .J's in the problem), it will think· hard about the assignments in b before getting to the
logic. In a system that works top down (i.e. starting at the "top" of the formula to . be
proved, a characteristic of natural deduction systems for one), the validity of the above
claim can bec9me apparent even. before any assignments are contemplated.

Applications to Natural Language

Consider the following sentences.

(1) Whether you strike a · match or operate a cigarette lighter you get a flame.

This may be formalized as MUCJF,. where M stands for the proposition that you have
struck a match, c . ~hat you have operated a cigarette lighter, and F that you have a flame.

(2) If you strike a match you get a flame, and if you operate a cigarette lighter you get
a flame.

Similarly this amounts to MJF/\CJF. The intuitive equivalence between (1) and .(2) Is
formalized (and therefore subject to automatic verification) by the assertion · MUCJF =
MJF/\CJF.

(3) When you open the door and walk through it you enter the room.

(4) When you open the door then when you walk through ·it. you enter the room.

The equivalence of (3) and (4) is summarized in O;W JE 5 OJW JE. Notice that we do
not get as equivalent

(S) When you walk through the door and open it you enter the room.

or

(6) When you walk through the door, then when you open it you enter: the room.

even though (S) and (6) are equivalent to each other, W;OJE 5 WJOJE. If we were to try to
cap ture the meaning of 3 or 4 using the propositional calculus alone, we might end up with
0/\ W=>E = O=>E=>W, which is certainly valid. Unfortunately 0/\W=>E is equivalent to W/\O=>E,
wh ich reveals the limitation of propositional calculus for reasoning about action i~ this way.

13

(7) If your TV won't work and you kick it it still won't work.

(8) If your TV won't work 'then no matter how many times you kick it it still won't work.

If 1 ts· true in all circumstances then 8 ought also to be true in all circumstances.
This amounts to the soundness of the rule, from W=>KJW derive W=>K*W. This rule can be
derived by starting with W=>KJW, applying Necessitation to get K*(W=>KJW}, then applying
Modus Ponens to it and the induct.ion axiom (reformulated slightly using propositional
reasoning to read K*J(W=>KJW) => W=>K*JW) to get W=>K*JW as desired.

Reasoning About Processes

So far the Kripke operator J has been our only operator relating actions to formulae.
We now introduce some other operators that, like J, find application to both algorithmic logic
and to natural 1a·nguage reasoning. A price we must pay for these operators is the
redefin_ition of the meaning of actions, which as defined s.o far do not contain enough
information.

So far we have taken ut=a to be the set of states that a might halt in when started in
state u. We now take it to be the set of sequences of states that a goes through, starting
from u. We let s,t, ... range over sequences. Sequences can be viewed as functions from an
initial segm~nt of ordinals to states. In the event that a runs forever, the sequence· wi11 be
infinite. If a is blocked by a test that evaluates to false, the Jimbo state Af:.W ls entered.
Sequences always have a final state, called sf, whence infinite sequences need a limit

element, indexed · by the ordinal <Al, which will always be A. A may not appear as a non-final
state of a sequence.

The distinguished· state A has a· special beh~vior as regards formulae; .Al=p fs true
for all formulae. For actions, M=a is {(A)} for all actions. Semantic constraints of the
form ut=e = .. . do not include the case u=A.

We also insist that ul=a never be the empty set, for any acUon a, interpreted or not,
even if this means taking ut=a to be {(u,A)}.

With this notion of an action it becomes possible to define the new operators. But
first we should adjust the definition of J so that it retains its meaning.

uJ::aJp = /\ SfFP
sf:.ul=a·

The next operator is Ill, as in aUJp, pronounced "a maintains p." The idea is that ul=aWp
is true just when vt=p is true in every state v of every sequence of uJ::a. Formally:

u):alllp = /\ /\ vl=p
sfuJ::a vf:.s

14

(We loosely write vh to mean v=si for some element si of s.)

The following completely axiomatizes {, ::> W}, if we take S, K, N and MP.

alll(p=>q} ::> allip ::> aWq
aWp =>p

From p derive alllp

The proof of completeness may be found in · either of [42] or (44].

The third operator is 1, as in a,l.p, pronounced "a promises p." Here ut=aWp ls tnu
just when vl=p is true in some state v of every sequence of ul=a. Formally:

ul=alp = A V vl=p
sEul=a vEs

Notice that in any sequence ending in A, everything is "promised." The idea here ls
that 1f a sequence ends in limbo you aren't supposed to care, just as for J. This is
important for programs where iteration is implemented using * and tests. Careful inspection
of the possible sequences reveals many ending in A that we would not want to compromise the
intuitive notion of "promises" in (:onjunction with while loops.

The following completely axiomatizes {, ::> 1}.

p ::, tlp
From p=>q infer alp => alq

The proof of completeness may be· found in. [441.

Finally we have .f, as in a.f p, pronounced "a preserves p." Here uJ::aJ'p is tnu just'
when if vl=p is true for· any state v in sEul=a then wl=p is t_rue for all states w ln s after v.
Formally:

ul=aSp = A A

where "v~wEs" means that v=si, w=sj, with i~j. The axiomatization is somewhat more

complex; again see [4-4):

p ::, a.f p ::> a.f (p =>q} ::> a.f q

p=q ::> a.f (p=q) ::> a.f p ::> a.f q

p ::> a.f p ::> a.f ,p
a.f p => a.f q => aJ(pAq)
a.f p => a.f q => a.f(pvq)

From p infer a.f p

So far we have considered just the languages {, ::> x} for various operators x.
When these are combined to form {, => J W 1 I} we need some additional axioms.

aWp = p/\aJp
aJ p => alp => aJp
,(aWp /\ al ,p)

15

(suggests taking W as abbreviation only)

(depends on fact that ut=a is never empty)

None of this deals with operations on actions. The definitions of U and * need not
change. We do however require definitions for ? ; and :=. First let us define the operation
; on individual sequences, as

(s;t)i : Si

(s;t)S+i = ti

where si is defined
where S is the length of s and ti is defined. ·

Then the definitions of the action operators are:

ut=I = {(u)}
ut=p? = {(u)} if ul=p

{(u,A)} otherwise
ut=a;b = {s;tlsEul=a, tful=b}
ut=x:=e = {(u,v)luRxv and vl=x = ut=e}

The following axiomatize I in conjunction with these. (With the axiom
aWp - p /\ aJp it becomes unnecessary to give further axioms for UL)

p?Jq
aUbJp = aJp /\ b/\p
a;bJp = aJp /\ aJbJp
a* Jp = a* JaJp

This \eaves op~n the ·problem of axioniatizing· J.. with the actfon opera(ors.· A little
reflection shows that while U and * can be axfomatized (a* lp = p), ; cannot be axiomatized
with a single equivalence in any obvious way. To get around this we introduce a new operator,
JI, as in a.llp,q, which takes two arguments p and q. It is defined thus.

ut=allp,q

This says that for every sequence s in ul=a, either p holds in some state of s or q
holds in the final state of s (includi.ng the case when sr=A, which satisfies both p and q).
This rather odd construct has the properties that ; can be axiomatized with it, and both J and
l. can be treated as abbreviations, thus:

aJp - aJfalse,p
alp - aJp,false.

The following axiomatize 11 in conjunction with J, treating J, W as mere abbreviations.

.111 aJJp,(q=>r} => (allp,q => allp,r)
JJ2 allp,,p

.JJ3 p ::> a.lip' q
JJ4 from p=>q derive allp,r => allq,r

16

JJS aJp => (alp => aJp)
JJ6 ,(aWp /\ al ,p)

.ll7 (aUb).llp,q = a.1Jp,q " b.llp,q
JJB (a;b)Jlp,q = aJlp,(b.JJp,q)
JJ9 a* Jlp,q => pvq
JJlO a* Jlp,q => aJlp,(a* Jlp,q)
JJll a* JJp,(q => allp,q) => (q => a* .llp,q) (Harel induction)
.1J12 p?Jlq,r = qv(p=>r)

Applications of process logic to algorithmic logics

The W operator is perhaps the simplest operator one might wish to apply to a program
that was designed to run forever (e.g. an operating system, or an interactive editor), for .
which the J operator is worthless.

The l operator is relevant to the issues of fairness and starvation, concepts that
arise occasionally in the literature on verification of operating systems. If we view the
scheduler as a nondeterministic program (and even if we assume that_ the operating system is a
deterministic mech'<lnism we cannot really work that determinacy into our proofs in practice),
then we would like to be able to say of the system as a whole, nondeterminism and all, that
there will come a time wh_en a certain state of affairs (e.g. such-and-such a process getting
service) will · hold.

The I operator arises naturally in talking about a system that only manages to keep p
true throughout its execution by assuming it is true to begin with· and depending throughout on
its staying true. This idea is ~m.bcxped in the axiom p /\ aip => aWp. The I operator is used
·implic1t1y·· by ·owtd(f in her thesis · (35].

Applications of process logic tq natural language

We give a further series of examples of natural language formulae embodying arguments
forf'!'lalizable within dynamic logic and using other operators besides the Kripke operator.

<,> While stacking up blocks, if the box becomes empty it will remain empty for the
duration of the stacking process.

(2) Sometime during the stacking of blocks the box is guaranteed to be empty.

(3) When you stack up blocks you end up with the box being empty.

It is apparent that if both 1 and 2 are the case then so is 3, as can be seen from the
valid formula SJE /\ SlE => SJE.

(4) If a defect appears in the wall while laying bricks the defect will stay there for the
rest of the brick laying.

17

(S) After laying any number of bricks, if a defect is found in the wall while laying the
next brlck the defect will stay there for the rest of the laying of that brlck.

With a little thought it can be seen that 4 and S are equivalent, as formalized by
L* ID = L* JLIP.

Pointers to the dynamic logic literature

The earliest formal dynamic logic was Frege's quantificationat calculus [10]. The
idea of viewing quantifiers in terms of a relation Rx, thereby making the connection between
modal logic and the quantificational calculus and so permitting the tatter to viewed as a
dynamic logic, seems not to have · been made until [40]. Modal logic as d iscussed here is due
to Lewis [29]. _The semantics we are using is due principally to Kripke [251, who · also
contributed to issues of decidability in (261 An excellent reference work on modal logic is
[211.

Following Engeler (7) and the Polish school of algorithmic logic [4,471, we shall catt
a dynamic logic whose actions are deterministic programs, described either by flowcharts or
irs and while's, an algorithmic logic. The earliest work on proving programs correct [50,511
amounted to informal algorithmic logics for flowchart programs. In the early sixties J.
McCarthy [32) proposed the use of a static approach to program correctness by programming with
recursively defined functions, thereby avoiding the problem of reason ing about states.

In 1967 Floyd [9] described in detail for the first time an algorithmic logic, built
around flowcharts as with (SO,SlJ. In 1969 Hoare [20) described a more conventional
algorithmic logic oriented towards textual programs using trs and white's. Hoare's logic

. introduced the no~ion of a parti_al ~orrectness _ass~rtion p{a}q _as_ an expression having a
stacus different ·from that of a:n ordinary formula; in pltrticular not :being s'ubject to ·Boolean
operations. Though H~are gave only an informal semantics for p{a}q, it seems beyond debate
that he meant it to have the semantics of l=p=>aJq. In 1970 Salwicki developed a similar
algorithmic logic (and applied Engeler's term algorithmic logic (7) to it). The most striking
difference from Hoare's logic was that all of Salwicki's formulae were subject to Boolean
operations; as such, · Salwicki's logic is the first true algorithmic logic. It may be
characterized as dynamic logic using J, if, while, and having function·al rather than
relational actions, as behoves a deterministic programming language. (Engeler's algorithmic
logic (7) is rather weaker, permitting in effect only false as the second argument to J.)
Salwicki's work prompted a veritable flood of papers from Warsaw on algorithmic logic, mostly
by members of H. Rasiowa's group; a comprehensive survey of work up to 1974, including a
bibliography of some 40 papers on algorithmic logic, may be found in [4].

The idea of modelling programs with binary relations, taking advantage of Tarski's
calculus of U ; * (49), ·goes at least as far b~ck as Eilenberg and Elgot [6]. De Bakker
~2], with de Roever [3), developed the idea considerably further, adding a fixed point
operator to Tarski's calculus to model recursion. Independently of de Bakker, but motivated
by Eilenberg and Elgot, D. Park [19), with P. Hitchcock, also used the fixed point operator in
a relational treatment of flowchart programs.

18

The combination of modal logic_ and Tarski's operators was first developed by the
author [39] In response to a suggestion of R. Moore, a student In the author's program
semantics course. It was brought to the attention of a wider audience in [40] some two and a·
half years later, in a paper that prompted several people, including M. Fischer, D. Harel, R.
Ladner· and A. Meyer, to work on dynamic logic. This gave rise to a paper by Harel, Meyet and
the author [13] .on the complexity of the theory of first-order dynamic logic, along with
a relative-completeness proof of the axiomatization given in (40], and another paper by
Fischer and Ladner [8] on the validity problem for PDL, including not only the result that it
was decidable but giving good bounds on the complexity of the prob!em. A little later, Harel
and the author reported on work on Dijkstra's notion of total correctness ('.'we<;kest
precondition"), propos.ing definitions for the concepts Dijkstra was attem!)ting to define via
axioms, and giving a relatively complete axiom system for Dijkstra's language [14]. ·

At about the same time several people began asking questions about definabi1ity in
dynamic logic. A. Meyer addressed the question of whether DL +, the language defined in [14]
in part to formalize Dijkstra's language, was expressible in regular first-order dynamic
logic. This problem turned out to have a very elusive answer. Meyer was able to show that
DL + was no more expressive than DL provided the programming language permitted array
assignments (331 Later Winklmann [52] was able to obtain the same result without requiring
array assignments, but using J within tests. Eventually he was able to eliminate J from tests
[531 Meanwhile the author showed that POL+ is strictly stronger than POL, complementing
[53].

F. Berman and M. Paterson, in a remarkably delicate argument, showed that POL was
strictly strengthened by the inclusion of tests [SJ. Meyer and Parikh showed that reg1,11ar
fi rst-order DL. with J-free tests was strictly weaker than constructive LC&>l w [34].

b. Harel developed furthE!r · the relative completeness ideas of [l3], .. dr'awing • a
. .

distinction between -relative comp-leteness and arithmetic completeness. Using a result of
Lipton [30], Hare1 showed in essence that arithmetic completeness is all -that one wan·ts.

The question of finding a complete axiomatization for ·PDL was raised in. [8]. There is
an account earlier in this paper of the origins of [48,36,42,11] as answers to this question.

A very thorough and detailed treatment of Harel's many contributions to DL may be
found in h is thesis (18]. In addition Hare! has authore9 a close-to-exhaustive survey of
logics of deterministic prog'rams, using the [a]p/<a>p notation as a lingua franca in order to
make it easier to see the similarities and differences between the various logics.

Motivated by the· concept of a Boolean algebra underlying propositional calculus, Harel
asks the question, what is the appropriate algebra for POL? A partial answer to this may be
found in [l(J.

The author, with S. Litvintchouk, explored the question of how to implement a proof
checker for DL. A proposal for such a system is described in (31]. Some of the techniques
used in the first implementation of the system are alluded to briefly in (41]. The system has
been operational since August 1977, when it was able to check a 20..:.theorem proof of the total
correctness of the Knuth-Morris-Pratt pattern-matching algorithm, taking 45 seconds· to do so.

19

In the, process of making the. system more automatic, some theoretical questions about deciding
validity in POL arose, giving rise to an algorithm described in [42] that is more "practical"
than . the algorithm of [8]. This algorithm has been very recently further improved by Pratt to
require time one exponential in the worst case [431 To within a polynomial, this meets the
lower bound of one exponenti,t.l given in [8). .

In [42) the issue qf discussing programs intended not to halt is raised. Several
constructs are proposed, namely those discussed above in the section on logics of processes.
The author has recently been able to show completeness of various axiom systems for some of
those constructs [44]. The semantics for processes is intimately related to Pnueli's
semantics for temporal logic [38]. Parikh has shown, using Rabin's remarkable decidability
result for the weak second order theory of n successors, that a very much stronger language
has a decidable theory, although unlike the theory of [421, it is not elementary recursive.

This survey, combined with the pointers in [4] and [18], covers the bulk of what is
known about dynamic logic. Missing will be the Polish work from 1914-1918, and most of the
work to .date on classical modal logic, much of which however is subsumed by the recent DL work
(see

1
e.g., the la.st page of [8] to see how one D L resu It can be translated into several modal

logic results). Also missing is .the bulk of a century's work on various quantificational
calculi, for which we can only point the reader at the tremendous volume of logic literature
that has been. accumulatir1g.

Tile Interest in Nondeterministic Programs

The · following is taken from [14), and may be of interest to those wondering why
someone interested in det.erministic algorithmic logic would want to get involved in the
greater generality of dynamic logic and Tarski's relation.al calculus.

First, nondeterministic programs have been proposed as a model of parallel processes.
Such parallelism arises in timeshared computers, where nondeterminism expresses the apparent
capriciousness of the scheduler. It also arises in the management of external physical
devices, · where the nondeterminism captures the unpredictable behavior of physical devices.

Second, nondeterminism is gaining credence as a component of a programming style that
imposes the fewest constraints on the processor executing the program. For example a certain
program may run correctly provided that initially x is even. If the programmer requires the
processor to set x · to an even number of the programmer's choosing, the processor may be unduly
constrained. On a byte oriented machine where integers are represented as four-byte
quantities, setting x ~o a particular number requires four operations, but if the programmer
has merely requested setting it to an arbitrary even number the processor can satisfy the
request with one operation, by setting the low-order byte to, say, zero.

Third, nondeter-minism supplies one methodology for interfacing two procedures that,
though written independently, are intended to cooperate on solving a single problem. The
approach is to make one procedure an "intelligent" interpreter for the other. Wood's
Augmented Transition Networks supply an instance of the style. The user of this system writes
a grammar for a specific natural language which amounts to a nondeterministic program to be
run on Wood's interpreter, which though ignorant of the details of specific languages

20

nevertheless contributes much domain-independent parsing knowledge to the problem of making ·
choices left unspecified by the user's program. This technique ls_ in wide use in other areas. ·
of Artifiial Intelligence,. and supplies a way of viewing such AI programming languages as
QA-3, PLANNER, and a number of more recent languages.

Fourth, from a strictly mathematical viewpoint, there is something dissatisfying about
taking such constructs as if-then-else and while-do a& primitive constructs. If-the-else
involves the two concepts of testing and choosing, and while-do i~volves the two concepts
testing and iterating. A more basic approach is to develop these concepts separ~tely.
However, in isolating the concept of te.sting from the concepts of choosing and iterating, we
have removed the parts of the if-then- else and while-do constructs responsible for their
determinism.

Fifth, from a practical point of view; when reasoning about deterministic programs it
can sometimes be convenient to make what amounts to claims about nondeterministic programs. ·
When we argue that "if x>O then x:=x-1 else x:=x+l" cannot affect y, a part' of our argument
might be that, whether we execute x:=x-1 or x:=x+l, y will not change. The fact that the whole
program is deterministic played no role in this argument, which amounts to the observation
that the nondeterministic program x:=x-lUx:=x+l cannot change y. (aUb is a program calling
for execution of either program a or program b, the choice being made arbitrarily, i.e.
nondeterminis_tically.) By the same token the observation that "while x<O do x:=x+2" leaves
the parity of x unchanged depends principally on the fact that executing x:=x+2 arbitrarily
often, i.e. executing {x:=x+2)*, leaves the parity of x unchanged. Ca* is a program calling
for a number of executions of program a, the choice of number being made
nondeterministically.) This illustrates the appropriateness of applying nondeterministic
reasoning to deterministic programs.

BilJliograpny

[1] Ashcroft, E.A. and w: W. Wadge. Lucid, a Nonprocedural Language with Iteration.
Comm. ACM, 20, 7, 519-526. July 1977.

[2] de Bakker, J. W., and D. Scott. An outline of a theory of programs. Unpublished
manuscript, 1969.-

[3] de Bakk:er, J. W., and W. P. de Roever. A calculus for recursive program schemes. In
Automata, Lang_11-ages and Programming (ed. Nivat), 167-196. North Holland, 1912.

[4] Banachowski, L., A. Kreczmar, G. Mirkowska, H. Rasiowa, A. Salwicld. An Introduction
to Algorithmic Logic; Metamathematical Investigations in the Theory of Programs • In Math.
Found. of Comp. Sc. (eds. Mazurkiewicz and Pawlak), Banach Center Publications, Warsaw. 1911.

[SJ Berman, F. and M. Paterson. Test-Free Propositional D.ynamic Logic is Strictly Weaker
than POL. T. R. 77-10-02, Dept'. of Computer Science, Univ. of Washington, Seattle. Nov.
1977.

21

[6] Eilenberg, S. ·and C. Elgot. Recursiveness. Academic Press, N. Y. 1910.

[1] Engeler, E. Algorithmic properties of structures. Math. Sys. Thy. I, 183-195. 1961.

(8] Fischer, M.J. and R. E. Ladner. Propositional Modal · Logic of Programs. Proc. 9th Ann.
ACM Symp. on Theory of Computing, 286-294, Boulder, Col., May 1911.

[9] Floyd, R. W. Assigning Meanings to Programs. In Mathematical Aspects of Computer
Science (ed. J. T.· Schwartz), 19-32, 1967.

[10] Frege, G. Begriffsschrift. Halle, 1879.

[11] Gabbay, D. Axiomatizations of Logics of Programs. Manuscript, under cover dated Nov.
1971.

Cl2] Grabowski, M. The Set of Tautologies of Zero-order Algorithmic Logic is Decidable.
Bull. Acad. Pol. Sci., Ser. Math. Astr. Phys., 20, 575-582: 1972.

[13] Harel, D., A.R. Meyer and V.R. PratL Computability and Completeness in Logics of
Programs. .Proc. 9th Ann. ACM Symp. on Theory of Computing, 261-268, Boulder, Col., May 1911.

[14] Harel, D. and V. R. Pratt. Nondeterminism in Logics of Programs. Proc. 5th Ann. ACM
Symp. on Principles of . Programming Languages, 203-213, Tucson, Arizona, Jan. 1978.

USJ Harel, D. Arithmetical Completeness in Logics of Programs, Proceedings of the 5th
International Colloq. on Automata, Languages and Programming, Udine, Italy, July, 1918.

U6J. . Harel~)): . : On the Correcthess ·or Regular Dettfrministic Pr~rams; A Unified Survey.
Submitted for publication.

(11] Harel, D. Relational Logic, Internal report, . MIT, 1977.

(18] Har.el, D. Logics of Programs: Axiomatics and Descriptive .Power. Ph.D. thesis, Dept.
of EECS, MIT, May 1978.

[19] · Hitchcock, P. and D. Park. Induction Rules and Termination Proofs. In Automata,
Languages · and • Programming (ed. Ni vat, . M.), IRIA .. North-Holland, 1973.

[20] Hoare, C.A.R. An Axiomatic Basis for Computer Programming. CACM 12, 516-580, 1969.

[21] Hughes, G. E. and M.J. Cresswell. An Introduction to Modal. Logic. London: Methuen and
Cf.l. Ltd. 1972.

[22J Knuth, D.E., J.H. Morris and V.R. Pratt. Fast Pattern Matching in Strings. SIAM).
on Computing, 6, 2, 323-350. June 1977.

[23] Kreczmar, A. The set of all tautologies of algorithmic logic is hyperarlthmetlcal
Bull. Acad. Pol. Sci. , Ser. Sci. Math. Astr. Phys. Vo1. -19. 78i-783. 1971.

22

[24] Kreczmar, A. D~ree of recursive unsolvabllity of algorithmic logic. Bull Acad.
Pot. Set., Ser. Scl. Math. Astr. Phys. Vol. 20. 615-617. 1912.

(25] K ripke, S~ Semantical considerations on Modal Logic. Acta Philosophica · Fenntca,
83-94, 1963.

[26] Kripke, S. A. Semantical analysis of modal logic I: ·normal modal propositional
calculi. Zeitschr. f. -Math. Logik und Grundlagen d. Mathp, 9, 61-:96. 1963.

[27] Kroeger, F. Logical Rules of Natural Reasoning about Programs. In Automata,
Languages and Programming J (ed. Michaelson, S. and R. Milner), 81-98. Edinburgh University_
Press, 1976.

[28] Ladner, R. The Computational Complexity of Provability in Systems of Modal
Propositional Logic. SIAM J. on Computing, 6, 3, 467-480. Sept. 1911.

[29] Lewis, C. I. A Survey of Symbolic Logic. ·Berkeley, 1918.

[30] Lipton, R.J. A Necessary and Sufficient Condition for the Existence of Hoare
Logics. 18th IEEE Symp. on Foundations of Computer Science, Providence, R.1. Oct. 1911.

[31] Litv-intchouk, S.D. and V.R. Pratt. A Proof-checker for Dynamic Logic. Proc. Sth_ Int.
Joint Conf. on AI, 552-558, Boston, Aug. 1911.

[32) McCarthy, J. A Basis for a Mathematical Theory of Computation. In Compuur
Programming and Formal Systems, 33-10 (eds. P. Braffort and D. Hirschberg), North Ho11and,
Amsterdam. 1963.

[33] Meyer, A. R. Equivalence of DL, DL+ and ADL for Regular Programs with Array
Assignments. Unpublished report, MIT. August 1911.

[34) Meyer, A. R. and R. Parikh. Definability in Dynamic Logic. Talk given at ""SF-CBMS · .
Research Conference on the_ Logic of Computer Programming, Troy, N. Y. , May 1918.

[35] Owicki, S. A consistent and complete deductive system for the verification of
parallel progr ams. Proc. 8th Ann. ACM Symp. on Theory of Computing, 13-86. Hershey PA.
May 1976.

[36] Parikh, R. A Completeness Result for PDL. ~'ymposium on Mathematical_ Foundations of
Computer Science, Zakopane, Warsaw, Sept. 1978.

[37) Parikh, R. Second Order Process Logic. 19th IEEE Symposium on Foundations of
C ompu ter Science. Oct. 1918.

[38.J P nueli, A. The Temporal Logic of Programs. 18th IEEE Symposium on Foundations of
Computer Science, 46-51. · Oct. 1971.

23

[39] Pratt, V.R. Semantics of Programming Languages. Lecture notes for 6.892, Fall 1974,
M.1.T.

C4O] Pratt, V.R. Semantical Considerations on Floyd-Hoare Logic. Proc. 17th Ann. IEEE
Symp. on Foundations of Comp. Sci., 109-121. 1976.

[41] Pratt, V. R. Tw_o Easy Theories Whose Combination is Hard. Internal Report, MIT LCS,
Sept. 1977.

[42] Pratt; V.R. A Practical Decision Method for Propositional Dynamic Logic. Proc. 10th
Ann. ACM Symp. on Theory of Computing, San Diego, May 1978.

(43] Pratt, V. R. A Near-Optimal Decision Method for Reasoning about Action. ·
· TM-113, Sept. 1918.

MIT LCS

(44] · Pratt, V. R. Process Logic. Proc. 6th Ann. ACM Symp. on Principles of Programming
Languages, San Antonio, Texas, Jan. 1979.

t4S] Quine, W. V.O. · Word and Object. MIT Press, MA. 1960.

(46) Rogers, H . . Theory of Recursive Functions and Effective ComputabUitJ. McGraw- Hill,
1967.

t .4 7] Salwicki, A. Formalized Algorithmic Languages. Bull. Acad. Pol. Sci., Ser. Scl.
Math. Astr. Phys. Vol. 18. No. S. 1970.

t48] Segerberg, K. A Completeness Theorem in the Modal Logic of Programs. PreUmlnary
.. report Notices. of -t~e AMS, 24, 6,"' A:-SS-2. Oct.· 1977. . .

(49] Tarski, A. On the Calculus of Relations. J. Symbolic Logic, 6, 73-89. 1941.

(SO] Turing, A. Checking a Large Routine. In Rep. Conj. High Speed Automatic
Calculating Machines. Inst. of Comp. Sci. Univ. of Toronto. Ontario, Can. Jan. 1950.

[51] Von Neµmann, J. Collected Works. S. pp. 91-99. Macmillan, New York. 1963.

(S2] Winklmann, K. Equivalence of DL and DL + for regular programs without array
i!Ssignments but with DL-formulas in tests. Manuscript, Lab. for Comp. Sci., M.I. T. 1978.

(S3] Winklmann, K. Equivalence of DL and DL + for regular programs.. Manuscript, Lab. for
Comp. Sci., M.I.T. 1978.

