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I. Introduction 

CONCURRENT PROGRAMMINcl 

R. E. Bryant 
J. B. Dennis 

Massachusetts Institute of Technology 

Concurrency of activities has long been recognized as an important feature 
in many computer systems. These systems allow concurrent operations for a 
number of reasons of which three are particularly common. First, by executing 
several jobs simultaneously, multiprogramming and time-sharing systems can 
make fulter use of the computing resources. Second, real-time transaction systems. 
such as airline reservation and point-of-sale terminal systems, allow a number of 
users to access a single database concurrently and to obtain responses in 
real-time. Finally, high speed parallel computers such as array processors 
dedicate a number of processors to the execution of a single program to speed up 
completion of a computation. 

In developing the software for some of the early multiprogramming 
systems, programmers soon discovered a need for an abstract and 
machine-independent means of expressing the behavior of systems which involve 
concurrent activities. They found that machine level ptogramming was tedious 
and very difficult to do correctly. When many tasks are to proceed concurrently, 
the problems of allocating system resources, of scheduling the order in which 
tasks are performed, and of preventing concurrent activities from disastrously 
interfering with one another are difficult to deal with without assistance from a 
high level programming language. 

One of the first concepts to emerge in an attempt to satisfy this need for a 
more abstract view of concurrent systems was the process concept. In this view. 
the sequence of actions performed during execution of a sequential program is 
viewed as an abstract entity called a process, and details such as which physical 
processor is used and the time of execution are ignored. For example, in a 
typical multiprogramming system the different user jobs, the interrupt routines, 
and the 1/0 channel program executions may be viewed as separate processes. 
During system operation, the processors and memory may be switched among the 
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2 Bryant and Dennis - Concurrent Programming 

processes, so all processes are carried forward, even though no process retains 
exclusive control of all the resources it needs nor runs in one continuous 
sequence. 

Traditional high level programming languages such as Fortran, Algol, and 
Cobol express computations as independent, noninteracting processes. The 
processes in a concurrent system, however, may interact with each other for 
severa 1 reasons. First, one process may convey data to another. This is called 
communication. Second, processes may interact to ensure a correct sequencing of_ 
events. Process interaction which serves to control the order in which processes 
execute is called synchronization. These synchronization operations may be 
required for several different reasons, of which two are particularly common. 
First, if one process must perform some task before a second can proceed, there is 
a precedence constraint between the two processes. For example, the second 
process may need data which is computed by the first. Conversely, if one process 
produces data to be used by another, then the producer process cannot produce 
more data than the buffer between them can hold until the consumer process has 
used some of the old data. Hence, precedence constraints can exist in both 
directions between producers and consumers of data. Second, processes which 
share common resources such as processors, memory loc~tions, or input/output 
devices require synchronization so the resources will be allocated in a systematic 
way. This allocation may be a simple form of mutual exclusion. in which a 
process retains exclusive control of a resource until the process voluntarily 
releases it, at which time the resource is granted to any process waiting for the 
resource. More complex allocation schemes can involve such features as allowing 
severa I processes to use a resource simultaneously, assigning different priorities to 
processes contending for a resource, or allowing one process to forcibly remove a 
resource from the control of some other process. Traditional programming 
languages are not powerful enough to express these types of interactions. 
Instead, a program must invoke operating system routines to perform the 
necessary communication and synchronization with other processes in the system. 

Besides the inability to express the interactions between processes, 
traditiona I high level languages cannot express nondeterminate computations. 
That is, they can only express computations whose output values depend only on 
the values of inputs. In a nondeterminate computation, on the other hand, 
output values can depend on other factors, such as the times at which events 
occur in the system. For example, suppose agents at two different remote 
terminals of an airline reservation system both request the last seat on the same 
flight. One will be granted this seat and one will not, but which one receives 
which response depends on the relative order in which the requests are received 
and processed. Nondeterminacy is essential in many concurrent systems. 
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The need for high level programming languages which can express the 
ope.ration of a system of concurrent processes has led to the development of 
programming constructs with which one can express these communication and 
synchroniz.ation operations. Some of these approaches, such as semaphores [13] 
and monitors [4,5,20]. suppose systems in which all processes have access to a 
single, shared memory. Others assume that processes communicate by sending 
messages to one another [2,21,24). Languages based on actor semantics [16,17,18] 
carry the message-passing concept even further by considering all primitive 
operations to be carried out by separate, message-passing processes. Other 
approaches to concurrent programming have been developed which, instead of 
viewing a system as a number of communicating, sequential processes, view a 
program as an unordered set of instructions and permit an instruction to be 
executed any time its operands are ready. This form of program execution can 
potentially achieve a higher degree of concurrency than is possible with 
sequential processes. Languages based on this approach are called data flow 
languages [1,10,12,25,30]. 

Several issues must be considered when designing programming languages 
to support concurrent computation. Of primary importance is expressive power. 
The expressive power of a language, in the context of concurrent systems, means 
the forms of concurrent operations, and the types of communication, 
synchroniz.ation, and nondeterminacy which can be expressed in the language. A 
language which lacks expressive power will force the programmer to rely on a 
suitable set of operating system routines to implement desired behaviors. A 
properly designed language, on the other hand, should have sufficient richness to 
express these functions directly. Furthermore, if the language lacks expressive 
power, a programmer may need to resort to awkward or inefficient programming 
techniques to achieve desired results. 

A second issue in the design of a language for concurrent programming is 
the clarity of programs written in the language, that is, how easily the effect of 
executing a program can be understood by looking at the program. A properly 
designed language can provide a programmer with the tools needed to write 
clear and concise programs. To meet this goal, the language must allow 
programs to be written in a modular fashion, so that the sections of the program 
can be viewed independently of one another. This property is critical in 
concurrent system design, since the sections of the programs which are executed 
concurrently can often affect each other in subtle ways, and these effects can 
ultimately lead to deadlocks, haz.ards, or other forms of incorrect behavior. 
Furthermore, these effects may cause problems only under relatively rare 
combinations of circumstances, and as a result the errors may remain undetected 
even after a long period of system operation. Hence, a modular program in 
which it is quite clear how the concurrent activities in the system can affect each 
other would be of great value to the programmer, and to anyone who wishes to 
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modify the program later. A programming language can also help the 
programmer write clear and concise programs by providing high level constructs 
to express the synchronization, communication, and nondeterminacy within the 
system. This will not only make programming less tedious, it will reduce the 
chance of error and make the programs more readable. If concurrent 
programming languages are to describe the operation of large and complex 
systems, it is important for these languages to have a clarifying rather than an 
obscuring effect on the programs. 

Ultimately, one must be concerned with implementation issues. These 
include the ease of implementation of the language -- whether it can be 
implemented on existing computer systems, whether slight modifications to an 
existing system will be sufficient, or whether it will require a whole new approach 
to computer design. A second factor in implementation is its efficiency, that is 
whether concurrency expressed in programs can be exploited without undue 
overhead. This desire for a language which is easy to implement, yet runs 
efficiently, often seems in conflict with the goals of expressive power and clarity 
of programs, and these two goals can themselves conflict with each other. 
Inevitably, trade-offs must be made, and hence the decision of which approach to. 
use depends to a large degree on design priorities. 

In this chapter, the main approaches to constructing concurrent programs 
will be presented and compared. As a basis for comparison, two examples of 
systems incorporating concurrent operations have been chosen, and programs for 
these examples will be presented using the different approaches to concurrent 
programming. Of particular interest are the semantic issues-in language design, 
i.e. how the computation is expressed, rather than the detailed syntax of the 
languages. Hence, in the interest of uniformity, the example programs will be 
written in PASCAL (22), modified to include the necessary constructs. As will be 
seen, the different approaches to concurrent programming differ greatly in their 
expressive power, clarity of expression, and ease and efficiency of implementation. 

2. Example Systems 

Two examples have been chosen as representative of systems for which 
concurrent programming is required. The first is an airline reservation system, 
in which a number of users (agents) can perform transactions interactively with a 
single database. In such a system concurrency in processing transactions is 
required to enable sharing of data, reasonable throughput, and real-time, 
interactive use. The second example is an input/output buffer system in which 
several input devices can read different files and send these files, via a buffer, to 
any of several output devices. By allowing the input and output devices to 
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operate concurrently, this system can utilize hardware resources more effectively 
than would be possible otherwise. 

The examples have been chosen to convey the basic features of concurrent 
systems. They have been simplified considerably to avoid the large amounts of 
detail typically required in real-life systems. For example, neither system has any 
form of error-checking, nor is there any provision for terminating system 
operation. Of course, it is difficult to draw conclusions about the merits of 
programming language features on the basis of such simple examples. In 
considering these programs, one must also consider how difficult it would be to 
add more sophistication to the system designs. 

The database for the airline reservation system contains information about 
the flights for a single airline. Initially, each flight has 100 seats available. The 
system can accept two types of commands. To reserve seats on a flight, an agent 
gives the command {' rc~crvc' , f, n>. If at least n seats are available on flight /, 
the seats will be reserved, and the system will respond with the message { trucl. 

If that many seats are not available, no seats will be reserved, and the system will 
respond with the message {fali;c). To find out how many seats are available on 
flight /, a system user gives the command (' in/ o' , f). The system will respond 
with the number of seats which are available on the flight at the time the 
command is processed. 

The input/output buffer system contains input devices inputl, input2, ... , 
inputj, output devices outputl, outpu.t2, ... , outpu.tk, and a single buffer. During 
operation, the input devices read their respective blocks of data concurr~ntly. 
Once a block has been read in, it is loaded into the buffer, at which time the 
input device can begin reading a new block. The block in the buffer is then 
moved to the local storage of one of the output devices and written out. Each 
output device is capable of writing any of the output blocks; hence a block in the 
buffer can be transferred to the first available output device rather than to a 
particular, predetermined one. The buffer can hold only one block at a time; 
hence the readers must contend with each other for use of the buffer. Similarly, 
each block is to be written out by only one output device; hence the output 
devices must contend for the output blocks. It is assumed that the buffering 
operations (i.e. moving a block from the input device to the buffer and from the 
buffer to the output device) are much faster than the input and output 
operations, so the buffer will not form a bottleneck in the system. 
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3. Processes Executing Within a Global Environment 

The earliest organized approach to concurrent programming was to view a 
system as a number of sequential processes which execute concurrently in a 
common, global environment. This view is a natural abstraction of the operation 
of a multiprogramming system, which typically contains one or more central 
processing units and several input/output processors, all of which can access a 
single, shared memory. The processors communicate with one another by 
reading or writing mutually agreed upon memory locations according to some 
convention. Thus, we can view execution of a set of instructions by a processor 
as an abstract process and the common memory locations as the global 
environment for these processes. Assignment statements with global variables on 
either the left- or the right-hand side express the communication between 
processes. 

Some mechanism is required to synchronize accesses to· the global variables. 
In practice this is done using the program interrupt facility of the hardware. 
Examples of abstract synchronization mechanisms include the semaphores of 
Dijkstra (13) and the monitors of Brinch Hansen (4,5) and Hoare [20). Other 
synchronization mechanisms have been developed (8,28), but none have received 
as much attention as semaphores and monitors. A semaphore is a special type of 
shared variable upon which several primitive synchronization operations can be 
performed. A monitor, on the other hand, is a set of programmer-defined 
procedures which can be called by the processes to gain access to global 
variables. 

3.1. Process Synchronization by Semaphores 

A semaphore S is an integer variable initialized to some value. Associated 
with the semaphore is a queue which holds names of processes. Two operations 
are defined on the semaphore: wail!S) and gignal<S) (Dijkstra called these P and 
V, respectively.) If a process P executes wait(S), then the value of S is 
decremented. If this new value is negative, the name of Pis placed on the queue 
associated with the semaphore, and P is blocked from executing. If, on the other 
hand, S is nonnegative, P is allowed· to continue. If a process P executes 
i-ignal (S), then the value of S is incremented. If the new value of S is less than 
or equal to zero, then the name of one process is removed from the queue, and 
this process is allowed to resume execution. 

Semaphores provide a means to suspend execution of a process until 
certain conditions are satisfied. If processes perform semaphore operations in 
conjunction with their accesses of the global variables, the necessary 
synchronization in the system can be achieved. For example, a semaphore with 
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initial value I can be used to maintain mutual exclusion of processes accessing a 
shared variable. A process which is updating the database in the airline 
reservation system, for instance, must have exclusive control of the database so 
that the database will remain in a consistent state during each transaction. Hence, 
to reserve n seats on flight /, a process would execute the following code segment: 

wait. (muter) ; 
if available [fl ~ n 

I.hen 
begin 

available [fl : = available [fl - n; 
succesa:., I.rue 

end 
else 

success:= fali;c; 
signal (mute~) ; 

In the above program, mutex is a semaphore with initial value 1, and the array 
available is a global variable which represents the shared database. 

If several processes wish to access the database without changing the 
database's state, these accesses can proceed concurrently. Furthermore, if a 
process wants to read only one word in the database, there is no danger of 
finding the database in an inconsistent state, hence this access can proceed even 
while other processes are updating the database. To find out how many seats 
are available on the flight, a process would simply execute the statement 

n: = a,,ailablc [flight]. 
Of course, in a more realistic airline reservation an agent would want to know 
more about a flight than the number of seats available. Hence, processing an 
•info• request would require reading several words of memory. If the database 
is altered in the middle of these reads, the information returned to the agent may 
contain inconsistencies. To program a more sophisticated reservation system, we 
would divide the types of transactions into two classes: those which only read the 
database (the readers), and those which alter the database (the writers.) A 
number of readers can proceed concurrently, but a writer must have exclusive 
control of the database. Programs which solve the readers-writers problem 
(9,17,20) are considerably more complex than our simple example. 
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Semaphores can also be used to control the order in which processes access 
resources. For example, the input and output processes in the input/output 
buffer system would execute codes as follows: 

while true do 
begin 

rea,I !inj, i11fifoj); 
wait (fred; 
buffr.r: = inj; 
,;ignal Uoadr.d) 

end 

Initial values: frea = 1, loadad = 0. 

Outputk 

while true do 
begin 

waitlloaded); 
outk: = buffer; 
signal (free); 
write (ouik, ov.ifilek) 

end 

In the above program, the global variable buffer serves as the buffer between 
the input and output processes. The semaphores free and loaded are used to 
maintain correct sequencing between input and output processes. Furthermore, 
the semaphore frr.r. is used to guarantee that only one input process can load a 
va Jue into the buffer at a time, and the semaphore loaded guarantees that only 
one output process will print a particular buffer value. Thus, the two 
semaphores enforce both precedence constraints and mutual exclusion in the 
system. 

The semaphore construct is sufficient to solve a wide variety of process 
synchronization problems, although sometimes with great difficulty. Two 
concepts which are found in many computer systems, however, are noticeably 
lacking. The first is the concept of the time at which events occur. For example, 
a process cannot pause for a specified amount of time before continuing 
execution. The second is that one process cannot force another process to stop 
execution. These two features were left out intentionally, since the process 
abstraction removes the time at which events actually occur in the system from 
the programmer's control, and a process can be affected by other processes only 
when it makes reference to the global environment. 

One type of system whose operations cannot be fully expressed with a 
semaphore program is a system in which the processes do not execute within a 
single, globa I environment. If the system consists of processors connected together 
by a communication network [27], the processes execute within a number of local 
environments and hence cannot access global variables or semaphores. The 
notion of a global environment does not reflect the architecture of such a system. 
For example, in the airline reservation system, one cannot cause information to 
be transferred between the remote terminals and the central computer except by 
calling on the operating system to perform these operations. 
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The semaphore concept was a major step forward in making programs 
involving process synchronization easier to understand, but it still has several 
flaws as a programming tool. The first is the primitiveness of the semaphore 
operations. Semaphores provide a very simple form of process synchronization. 
It is left to the programmer to develop conventions about how semaphores will 
be used to provide the desired behavior. Complex forms of process 
synchronization, in which different processes have different priorities, such as the 
various solutions to the reader's-writer's problem [9], typically have very obscure 
semaphore programs. Unless the conventions are carefully documented, the 
programs may be difficult to modify at a later date. Moreover, if just one process 
fails to obey the conventions as to how resources are to be accessed, the system 
may deadlock or in some other way behave improperly. 

The second flaw is a total lack of modularity in the programs. Information 
about how a shared resource Is utilized and how the synchronization is provided 
is distributed throughout the programs for the individual processes. For 
example, it is difficult to locate all sources of nondeterminacy in the system. The 
processes in the input/output buffer system would have the same programs if 
there were only one input process and one output process as it does with several 
input and several output processes. In the first case, the system is determinate, 
whereas it is not in the second. This lack of modularity, coupled with the 
primitiveness of semaphore operations, makes it very difficult for someone 
looking at a semaphore program to determine whether a resource is being 
accessed properly. 

Regarding implementation, semaphores and their corresponding 
synchronization operations can be implemented without great difficulty on any 
system whose architecture reflects the idea of a global state, such as a 
multiprogramming system. The THE system of Dijkstra (14) Is an example of a 
simple but elegant operating system which uses semaphores to synchronize 
processes. 

3.2. Process Synchronization by Monitors 

Monitors were developed to allow a more structured format for concurrent 
programs than is possible with semaphores. Unlike semaphore programs, all 
information about a set of shared resources and how they are used is contained 
in a single area of the program: the declaration of a monitor. The declaration of 
a monitor includes a number of procedures which define operations on the 
shared resources. These procedures are available to all processes in the system. 
When a process wishes to access a shared resource, such as a global variable or a 
shared hardware resource, it must do so by executing one of the procedures of 
the corresponding monitor. It should be emphasized that a monitor does not 

- - -- - - - - - -- - -- - - --- - - - -- - - --
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itself cause any action in the system. Instead, it is me.rely a co11ection of 
procedures which can be executed by the processes in the system. This idea of 
limiting the ways in which a shared resource can be accessed to the operations 
performed by a small set of procedures was originally proposed in conjunction 
with conditional critical sections (19,3). 

Monitors a re implemented in such a way that the execution of the 
procedures of a particular monitor are mutually exclusive. Hence, a process 
retains exclusive control of the resources of a monitor while executing one of the 
monitor's procedures, until it surrenders its control. A process can surrender its 
control of the monitor in one of several ways. First, it can complete execution of 
the monitor procedure, at which time some other process can begin execution of 
one of the monitor's procedures. This form of control-passing is sufficient to 
implement mutual exclusion of processes. The airline reservation system, for 
example, utilizes only this form of control-passing. Other forms of 
control-passing are provide by condition variables along with the operations delay 
and continue (Hoare calls these wail and signal). A condition variable has · no 
visible value, although it does have an initially empty queue associated with it. 
When a process executes the statement delay (cond) in the body of a monitor 
procedure, the process' name is placed on the queue for cond, the process is 
blocked from executing further, and control of the monitor is released. When a 
process executes the statement cont.inuc {cond) , this process is temporarily blocked 
(unless the queue for cond is empty), and one of the processes on the queue for 
r:011d is resumed. Once this reawakened process leaves the monitor procedure, 
the process which executed the conlinuc(cond) statement is resumed. 

In the a irline reservation system, accesses to the database would be 
controlled by a monitor databa•c with procedures re•erve and info as fo11ows: 
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monitor database; 
var available: array (1, , limit) of integer; i: integer; 

procedure entry reserve (f, n: integer; sv.cceu: boolean}; 
begin 
if available (/J 2'.: n 

then 
begin 

success:= true; 
available(/) : = available [fl - n; 

end 
else succeu: = false 

end reserve; 

procedure entry info (f, n: integer); 
begin n: = available [/) 
end info; 

begin 
for i 

end. 
1 to limit do auailable Ci) : = 100 

II 

The monitor database controls all accesses to the array availabfo, where 
available [fJ is the number of seats available on flight /. During system 

. operation, some process initializes the monitor by executing the statement init 

database. This causes the body of the monitor program to be executed, setting all 
elements of a1Jailable to 100. Then, to reserve n seats on flight /, a process 
executes the statement 

databa.~e. re.,erve (f, n, succeu), 
and to find out how many seats are available, it executes 

database, info (f, n). 

For the input/output buffer system, the buffer would be controlled by a 
monitor IIO_buffer with procedures deliver and retrieve as follows: 
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monitor IIO_buffcr; 
var buff er: block; inuse: boolean; free, loaded: condition; 

procedure entry dcliver<in: block); 
begin 

if irtusrt then delay {free); 
buffer:= in; 
inusc: = true; 
continue (loaded) 

end delivnr; 

procedure entry retrirtve {our: block); 
begin 

if not inuse then delay {loaded); 
out: = huff <!r; 
inusc: = false; 
continue {free) 

end rctrirtvc; 

begin 
inusc: = false 

end. 

During system operation some process must initialize the monitor by executing 
the statement inil 1/O_buf{cr. This causes the variable inu,e to be set to false. 
Thereafter, the input and output processes execute programs as follows: 

while true do 
begin 

reacl (inj, infilrtj); 
I /O_huf /(,r, dditicr Hnj) 

end 

while true do 
begin 

Output1c. 

IIO_buf{er. retrieve (outk); 
write {outk, outfilek) 

end 

The expressive power of monitors is equivalent to that of semaphores in 
the sense that one can write a program for a monitor semaphore with procedures 
wait and si,r,ial which models the behavior of a semaphore, and conversely one 
can write a semaphore program which models the behavior of a monitor. 
However, if one wishes to follow the convention that a shared resource in the 
system can be accessed only by calling a procedure of the corresponding monitor, 
t.hen all accesses to that resource must be mutually exclusive. For example, in the 
airline reservation system several processes cannot execute the procedure 
dataha.~c. info concurrently. Only by relaxing the restrictions so that the database 
could be accessed directly by the processes could the full concurrency in the 
system be realized. This, however, would compromise the goal of collecting 
together all information about how a resource is utilized into one section of the 

system specification. 
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The monitor construct provides more modularity than semaphores, and 
this yields more understandable programs. The ways in which a resource may 
be accessed are contained in a single section of the system specification, rather 
than in the programs for each process. This modularity also makes the system 
easier to modify. For example, if we wish to modify the input/output buffer 
system so that several blocks could be buffered at once, we need only modify the 
monitor procedures. The change would not affect the process programs. 

The mutual exclusion of procedure calls, while it is a restriction in terms of 
expressive power, helps make monitor procedures easier to write than the 
equiv a lent semaphore programs. Monitor procedures are less susceptible to 
subtle timing errors than they would be if several processes could access the 
resources controlled by the monitor simultaneously. Perhaps a carefully designed 
extension to the monitor formalism could be developed which allows procedure 
calls to proceed concurrently under some circumstances, while retaining the 
modularity and clarity of the monitor concept. 

As with semaphores, monitors can be implemented without major 
difficulties on a multiprogramming system. The Solo operating system of Brinch 
Hansen (6,7) is written mainly in Concurrent Pascal (5), an extended version of 
Pascal which supports monitors. The ability to write an operating system in a 
high level language, including the communication and synchronization between 
processes, is an important advance in concurrent programming. 

4. Processes Communicating by Message Passing 

In one more modular view of concurrent systems each process executes 
within a local environment that cannot be accessed or altered by any other 
process. For two processes to interact with each other, one process must send a 
message to the other, and the receiving process must accept the message. One of 
the first system designs which followed this approach was the Regnecentralen 
RC4000 computer system (2) in which the system contained a single CPU yet 
supported a number of independent message-passing processes. 

To illustrate how message-passing semantics might be supported by a 
programming language, we shall use a language extension in which a message is 
a triple (destination; ~ource, contonu), where destination is the name of the 
receiving process, source is the name of the sending process, and contenu is the 
information which the message is to convey. Messages in this language are of 
type record. Thus, for example, the contents field of a message m is referenced 
by the expression m. contenu. Execution of the command send ( m) by process P, 
where m is of type message, will cause a message (m. destination, P, m. contcnu) 
to be sent to the process m. destination. Each process has a single input queue 
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into which all incoming messages are placed. Execution of the function receive 
will first cause the process to wait until a message is placed in its input queue, if 
one is not already present. Then the first message is removed from the queue 
and returned as the value of the function. 

These two message-passing operations are sufficient to solve the airline 
reservation system problem. Whereas in the global environment approach, the 
database is a global variable accessed by a number of different processes, with 
the message-passing approach we shall define a process iran,ac, which has sole 
access to the database. All transactions are initiated by sending messages to 
tran.~act. The contents fields of these messages can have one of two formats: 

('reserve' , flight, number), 
and 

('info' , flighi} 
The program for the process tran.,act is as follows: 

pr<>e('.l-S traruact; 
var miailahfo: array [1, , limit] or int.cger; 

requ.e.,t, reply: message; f, n: int.cger; 

begin 
r or n = 1 to limit do availabfo {n] : = 100; 
while true do 
begin 

rcqu.e.~t : = receive; 
case requ.e.,t. contents. type or 
' r<J .,r.rvc' : bcgi n 

f: = rcqu.est. contc11u. flight; 
n: = requ.est. contents. number; 
if availabfo [fl ~ n 

end; 

then 
begin 

reply, corttenu: = true;· 
auailablc [fl ·:= available [f] - n; 

end 
else 

reply. contc11u: = false 

• i11f o • : reply. contents:= available {request. contenu. flight] 
end; 
reply. de.,tination: = requ.e11t. sou.rec; 
send (reply) 

enrl 
end. 

Notice that this program does not realize all potential concurrencies in the system. 
The database transactions are processed sequentially, much as they were in the 
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monitor program, because the process 1ran1act has exclusive access to the 
database, and it is a sequential process. 

For the 1/0 buffer example, we shall use a process buffer _control to control 
the buffering between input and output processes. An input process will send a 
message containing the input block to buffer_control which in turn will send this 
block to one of the output processes. Each output process must notify 
buffer _control when it is ready to receive a block, or else bu/ fer _control would 
have no way of knowing what output processes are free. This can be 
accomplished by sending a 'ready' message. Hence, the contenu field of 
messages sent to buff er _control can have one of two formats: 

and 
( ' data' , in block) , 

('ready'). 

Unlike the processes in the airline reservation system, the process buffer _co,urol 
cannot always service its input messages in the order received. For example, it 
may receive several 'ready' messages before receiving any 'data' messages. 
Hence, some means of storing messages in internal queues is required. For this 
reason we will use a data type queue on which the operations enqueue and 
dequeue are defined, as well as the boolean-valued function empty. The program 
for buf /er _control is as follows: 
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procei.s bu/fer _control; 
var dataq, rr.adyq: queue of message; 

inputm, outputm, datam, rcadym: message; 

begin 
while t.rue do 
begin 

i11putm: = receive; 
case inputm. contents. type of 
'data': if emply{readyq) t.hen enqucue(inputm,dataq) 

else 
begin 

readym: = dcqueuc<readyq); 
outputrn. contenu: = inputm. content,. inbloclc; 
outputm. destination: c readym. 1ource; 
send {outpurm) 

end; 
'ready': if cmply{dataq) lhen enqucucfinputm,rcadyq) 

else 
begin 

datam: = dequeue{dataq); 
oulputrn. contents:= datam. conrcnu. inbloclc; 
outputm. delltination: = inputm. ,ourcc; 
send (outputm) 

end 
end 

eml 
encl. 

The input and output processes execute the following codes: 

begin 

Inputj Outputk 

mj. dc,(tinatio11: = 'bu// er _control'; 
mj. r.o,11c,11s. type:"' 'data'; 
while lruc do 
ber,in 

reacl Cinj, infilcj); 
mj. r.011tc11ts. i'nblock: = 
,:;encl lmj) 

encl 
end. 

inj; 

begin 
mk, destination:= • buffer _control'; 
mk. contents. type: a •ready'; 
while true do 
begin 

send {mk); 

outmk: = receive; 
writ.e {outmk, contenu, outfilck) 

end 
end. 

Note that in the above set of programs, there is no means of limiting the 
number of blocks buffered by buffer _control. If the input processes send blocks 
to bnf fer _control at a higher rate than buffer _control sends them to the output 
processes, the number of blocks stored in the queue dataq will grow without limit. 
In order to limit this buffering, additional control messages must be sent between 
the input processes and buffer _comrol. For example, an input process may send 
a message 'rt!ady _to_sm1d' to buffer _control which, when it had sufficient space, 
would reply •send'. Only when an input process receives permission would it 
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send a block. Thus, message-passing can accomplish synchronization as well as 
communication between processes. 

This view of processes as independent entities which can interact only by 
sending messages to one another is certainly more modular than the view of 
processes executing within a global environment. As a result, it is much clearer 
to the programmer exactly how the processes can affect one another. 
Furthermore, this view corresponds more closely to the way in which processes 
are implemented on a distributed computer system. For example, the program 
for the airline reservation system very naturally expresses the way in which such 
systems a re implemented. In a typical system, remote "intelligent" termina Is 
assemble messages requesting operations on the database. These messages are 
then sent to a central computer, which performs the operations and sends back 
reply messages. Control messages such as the ones sent between processes in the 
input/output buffer system correspond closely to the control signalling between 
the components of a distributed system. When the programming language 
reflects the underlying system design, a programmer can understand more fully 
how the program will be executed and hence can design programs which run 
efficiently on the system. Both the modularity and the closeness to the 
implementation make this approach to concurrent programming attractive for 
many important applications 

The message-passing operations described so far are clearly too primitive 
for a high level programming language. Like semaphores, they provide only a 
simple form of process communication and synchronization, leaving the 
programmer to determine what types of processes are required, what types of 
control and data messages must be sent between processes, and at what points in 
the programs the messages should be sent. 

More sophisticated languages have been proposed [21,24) which provide 
the programmer with a higher level view of the cooperation of message-passing 
processes. Whereas the illustrative language used for our examples requires a 
separate program for each process, a program written in either Kahn's [24) or 
i-Ioare's [21) language specifies the operation of a number of processes. A 
program is a set of coroutines, where each activation of a coroutine may be 
executed by a separate process. This approach provides a more concise view of 
the system and also eliminates some of the duplication in effort needed to write 
separate process programs. One can specify a set of similar computations as a 
"coroutine array," in which a set of processes execute the same coroutine program 
with different input parameters. Processes are dynamically created and 
terminated by invoking or completing execution of a coroutine. Kahn's language 
achieves an additional degree of semantic elegance by treating the sequence of 
messages sent from one process to another as a single data object called a strtam. 
He defines primitive operations on streams which are analogous to the 
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commands f;cnd and receive. However, since the sequence of messages sent 
between each pair of processes is a separate stream, a process can decide which 
process to receive its next message from. This enables the programmer to limit 
the sources of nondeterminacy in the system. In fact, programs written in Kahn's 
language are inherently determinate. A process must decide in advance which 
stream to remove the next message from; hence the order in which messages 
arrive at a process has no effect on the outcome of the program. If the language 
were modified so that several processes could enter messages concurrently into a 
single stream, however, nondeterminate computations could be eKpressed. Both 
Hoa re's and Kahn's languages are at very preliminary stages of development and 
implementation. More work will be required before these concepts are fully 
developed and become tools of programming practice. 

Hewitt and Atkinson [17] have proposed a program structure called a 
scrialiu:r to provide a more structured and higher level view of concurrent 
programming in a message-passing environment. The purpose of the serializer. 
construct is to provide the programmer with a general framework for resource 
controllers which is then customized to fit a particular application, much as the 
monitor construct provides a general framework for a resource controller 
operating in a global environment. In addition the serializer design tries to 
correct some of the weaknesses in monitors, such as the complexity of the 
operations delay and continue, and the limited amount of concurrency. The 
behavior of a serializer is defined in terms of the actor model of computation 
[15,16,18), a model in which message-passing is viewed as the fundamental 
operation. In this model every action is performed by an actor, where each actor 
behaves like a message-passing process. That is, it receives input messages, 
performs an operation on the input, generates output messages, and possibly 
changes its internal state. Unlike processes, however, actors can be dynamically 
created and abandoned. With this model a wide variety of activities can be 
expressed, such as concurrent operations, dynamic system creation and 
reconfiguration, and nondeterminacy. Furthermore, the actor model allows 
highly concurrent computations to be expressed more naturally than the 
sequential process model does, because the only sequencing constraints between 
actor activities are those imposed by the messages. This great expressive power 
of the actor model allows a serializer to have a much more sophisticated 
behavior than can be expressed in a· programming language such as PASCAL 
extended with message-passing commands. Furthermore, since the designers of 
the serializer were not constrained by the limited types of behavior exhibited by 
sequentia I, message-passing processes, they could develop a cleaner structure with 
greater potential for concurrency. Serializers as well as the actor model are still 
in an early stage of development. Their influence on .future language design and 
programming practice remains to be seen. 
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Sequential processes that communicate by message passing can be 
implemented without great difficulty. The processes can be carried out by a 
number of independent processors, such as one typically finds in a distributed 
computer system, or even by a more traditional multiprogramming system, such 
as the RC1000 computer system. By extending the RC4000 system with 
semaphore operations, Lauesen [26) was able to develop an operating system 
which is provably free of deadlocks. Few operating systems which use machine 
synchronization instructions can claim this achievement. 

A system consisting of a small number of sequential, message-passing 
processes can achieve only a limited amount of concurrency, as was seen in the 
airline reservation example. Since a resource can be accessed by only one 
process, and this process operates sequentially, concurrent accesses to a single 
resource cannot be expressed. In some cases, a large resource can be partitioned 
into a number of parts, and each part managed by a separate process. For 
example, the information about each flight in the airline reservation system could 
be maintained by a separate process. However, if we want to add new flights to 
the database or remove old ones, some method of dynamically creating and 
abandoning processes is required. When the system is divided into many small 
parts which can be dynamically created and abandoned, it no longer seems 
justified to call these parts processes; rather they are more like actors. Exactly 
where the dividing line between the process model and the actor model lies is a 
matter of debate, as are many other issues in developing highly concurrent 
systems which operate in a message-passing environment. 

5. Data-Driven Program Execution 

The programming languages discussed so far (with the exception of those 
based on actor semantics) have been based on the concept of communicating, 
sequential processes. That is, a system is viewed as a number of processes which 
can proceed concurrently, but within each process only one action is performed at 
a time. Programming languages designed to express the behavior of these 
systems are similar to traditional languages, with constructs added to express 
process communication and synchronization. An alternative to sequential 
processes is to view a program as an unordered set of instructions, each of which 
defines how a set of values is to be computed and what identifier is to be 
associated with each value. Within an environment, an identifier must refer to a 
unique value. Rather than executing in strict sequential order, instructions can 
be executed as soon as their input operands are ready, i.e. as soon as the values 
required to compute the expressions have themselves been computed. This form 
of program execution is said to be data-driven, since the arrival of the operands, 
rather than the indication of a program counter, determines when an instruction 
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will be executed. Languages which express programs for data-driven execution 
are often called data now languages [1,10,12,25,30). 

To express an unambiguous computation, instructions in a data f1ow 
language must be side-effect-free. That is, the effect of executing an instruction 
can only be to compute a set of values for a set of identifiers. It cannot alter the 
definition of any other identifier in the program. Furthermore, the program 
must obey the "single assignment rule", meaning that each identifier is defined 
only once within an environment. Considering the importance of side-effects and 
multiple assignments to variables in traditional programming languages, one 
naturally wonders how a language could eliminate both of these properties and 
yet be able to express useful computations. Data flow languages cari make up for 
these restrictions with recursive procedures and with data streams [23,30). 
Recursion eliminates the need for iteration, a control structure which relies 
heavily on side effects and multiple assignments. Streams allow the programmer 
to view a sequence of elementary data values as a single entity. Thus, by writing 
a procedure that accepts inputs that are data streams, one can express program 
units which perform operations on entire sequences of input values. Procedures 
which have streams as inputs and return streams as results will be called modules 
to differentiate them from procedures which operate on individual data values. 
For the airline reservation system example, we shall define a module tran,act 
with inputs reque.H_$lrcam: stream of mc.c;.c;agc and available: array Cl •• limit] of 

integer, which will compute an output rcply_,1rcam: stream or mCAAagc. That is, 
the module will receive a sequence of requests from the remote terminals and an 
initial state of the data base, and it will produce a sequence of replies. 

To make use of streams, we must define some operations on them. To 
extract the values from a stream , , we define two functions: first. (a) which 
returns the first value in the sequence, and rcsLC&l which returns the stream 
consisting of all elements in ~ except for the first one. To construct a stream, we 
define a function cons where the value of cons Cx, a) is the stream consisting of % 

(which cannot be a stream) followed by the elements of stream ,. Furthermore, 
we must define a rule for procedure invocation in data flow. In the earlier 
definitions for data now lang.uages [IO], a procedure P(x,y,%) cannot be 
invoked until all input arguments x, y, and % are ready. With streams, however, 
this rule is modified somewhat. If, for example, x is a st.ream, then P could be 
invoked as soon as the first element of stream x is ready. Hence the module 
trarmzct can be invoked as soon as the first request has arrived. 

With a few modifications to the PASCAL syntax, we can arrive at a 
language which is suitable for expressing data flow programs. Most importantly, 
to emphasize the idea that an instruction is a definition of how a set of values is 
to be computed, assignment statements 

<id>:= <exp> 
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will be replaced by identifier definitions 
let. <id> = <exp>. 

Furthermore, a side-effect free analogy to "updating" the array available is 
required. We will define the function modify{/J,i,v) which returns an array 
which is identical to /J, except that the ith element is equal to v. Despite the 
syntactic similarities, however, the semantics of the data flow language are 
entirely different from PASCAL. In particular, the order in which statements are 
listed does not dictate the order in which they are executed. 

The program for transact is as follows: 
module traniiact Crequest_stream: st.ream o( mCAAagc; 

available: array [1 •• limit] of integer) ; 

returns reply_stream: st.ream ol mci;.c;age; 

var request, reply: message; f, n: integer; 
newstate: array [l •• limit] ol integer; 

begin 
let. request = first.Creque.o_stream); 
case rr.quest. co11tenu. type o( 
' reserve' : . begin 

' info': 

end; 

Jct. f = rr.quest. co,uenu. flight; 
Jct n = request. conte11u. number; 
if available [fl · <!: n 

then 
begin 

Jct reply. contents ., true; 
let newstatc = 

end 
else 

begin 

modify (available, f, available [fl - n) 

let. reply. contenu = false; 
let new11tate = available 

end 
end; 

j 

begin 
let 
let 
let. 

end 

f = reque11t. co11t1?nts. flight; 
reply. co11te11u = available [fl ; 
ncwstatc ., available 

Jct reply. destination = request.11ource; 
let repl y_1ctream .. 

end. 
cons(reply, tran11act (rcst.(reque,t_,trcam, · new,tate))) 
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The module tran.~act receives its input requests in the form of a single 
stream. This stream is composed of elements produced by a number of separate 
modules that transmit request messages from agent terminals. So far, no means 
for generating such a stream has been discussed. In fact, the data flow language 
which has been presented can express only determinate computations: the result 
of program execution depends only on the values of the inputs, and not on the 
order in which they are received. The airline reservation system, however, 
behaves nondeterminately, and hence some means of expressing nondeterminate 
operations in the language is required. For this purpose, we will define a 
primitive operation merge, where the value of mergchl.12) is a stream 
con ta in ing a II elements of streams s1 and 12, such that the ordering of elements 
from d is preserved, as is the ordering of elements from 12, but the order in 
which an element from s1 and an element from s2 occur is arbitrary. This 
operation is sufficient to express a wide variety of nondeterminate computations. 
For example, suppose the airline reservation system contains three terminal 
modules which produce streams rcqucsul, rcqucsu2, and rcqucsu3. We can write 
the program which computes the three output streams as follows: 

module sy11h?m (rcquc11tl, rcque11t2, rcqucst3: stream or message; 
a11ailablc: array Cl •• limit] or integer) ; 

returns replied, rcplic112 , rcplie113: stream or message; 

begin 
l~l rl = lag (rcquc.~tl , 1); 
let r2 tag(rcqucst2,2); 
let r3 tag(rcqucst3,3); 
let rcquc.us = mergc(rl, mcrgc(r2,r3}}; 
let replic., = tran.~act (rcquc1t11,availablc); 
let rcplie~l,rcplics2,rcplie.,3 = sorl(rcplics) 

end. 

In this program the messages in the three streams of input requests are first 
tagged with the stream number. These three tagged streams are merged together 
into a single stream which serves as the input stream to transact. The output 
stream from trnrt.<act is sorted according to the tag values into three streams of 
replies -- one for each terminal module. 

A data flow program for the input/output buffer system will not be given 
here, because it does not demonstrate any new concepts. 

Data flow languages seem very promising for expressing computations for 
concurrent execution, since the only restrictions on the concurrency are those 
imposed by data dependencies. Although side-effects and identifier redefinition 
are excluded, the combination of recursive procedures and data streams yields a 
surprisingly rich language. Furthermore, the single, nondeterminate operator 
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merge is sufficient to express numerous types of nondeterminate system behavior. 
Not enough experience has been gained, however, to fully evaluate the 
expressive power of the language. Suggestions for extensions have been made 
[I), for example, which allow communication links between modules to be created 
dynamically. Just how necessary such a feature is, and how important other 
features may be, are open questions. 

Data flow languages permit programs to be written which are far more 
modular than is possible with traditional languages. Each module of a program 
can be described fully in terms of its input/output behavior. Due to the absence 
of side-effects, sections of the program can interact only in limited and 
well-defined ways. In fact, each instruction executes in its own local environment: 
it computes a result based only on its operands. This high degree of modularity 
leads to programs which more clearly describe what computations the system is to 
perform. In addition, data flow languages allow the programmer to explicitly 
limit the sources of nondeterminacy in the system. Nondeterminacy can occur 
only where it is explicitly allowed through the use of the merge operator. 
Considering that unwanted nondeterminacy is a major source of errors in 
concurrent systems, a means of controlling it is of great significance. 

The implementation of data flow languages is currently at a rather 
primitive state. Due to the high degree of concurrency and the asynchronous 
nature of instruction execution, these languages may require totally new forms of 
computer architecture. Several designs have been proposed [11,29), but numerous 
problems remain to be solved before practical data flow machines can be realized. 
Hence the state of the art for data flow language design is well ahead of the state 
of the art for architectures which support these languages. 

6. Conclusion 

The three major approaches to concurrent programming discussed here 
differ greatly in their fundamental views of how a computer system operates. 
With the global environment approach, one views a system as a number of 
processes which execute "under one roof" and communicate with one another by 
altering the surrounding environment. With message-passing processes, one 
views a system as a number of processes which execute under their own roofs 
and send telegrams to one another. With data-driven program execution, the 
system is viewed as a network of operators, each of which receives data values, 
_computes new data values, and sends these .output values to the next operator in 
the network. Furthermore, this network dynamically expands as recursive 
procedures are invoked and contracts as they are completed. The three 
approaches differ in the amount of concurrency which they can achieve, the 
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clarity of the programs, and the ease with which they can be implemented given 
the current state of computer system design. 

No system composed of communicating, sequential processes can realize the 
full degree of concurrency latent in high level programs. However, a number of 
processes can often proceed concurrently. With semaphore-based programs, the 
number of active, concurrent processes is limited only by the cleverness of the 
programmer subject to the need to maintain a consistent global state. With 
monitor-based programs, one must choose between completely protecting each 
resource with a monitor and hence precluding concurrent accesses to this 
resource, or allowing processes to access a resource directly, thereby compromising 
the modularity provided by the monitor concept. With message-passing 
processes a resource can be directly accessed by only a single process. Hence, 
unless the resource can be partitioned into a number of parts, each of which is 
managed by a separate process, concurrency in the system is restricted. In 
contrast to programming languages based on sequential processes, data flow 
languages and actor-based systems can express all forms of concurrency allowed 
by the algorithm, al_though no existing machine architectures can fully exploit 
their benefits. 

Evaluating how clearly each approach can express the operations of a 
system is a subjective judgement. However, such features as modularity, limited 
sources of nondeterminacy, and high-level language constructs are clearly 
desirable goals. In terms of modularity, the approaches to concurrent 
programming have been presented in order of increasing modularity. First, a 
semaphore-based language allows little modularity -- the processes can affect each 
other in numerous and often subtle ways. Next, monitors provide more 
modularity by restricting the ways in which each process can access global 
resources. Languages based on message-passing processes carry the modularity 
one step further by eliminating the global environment altogether. Finally, data 
flow languages, by eliminating all side effects, achieve a degree of modularity in 
which each program module can be viewed as defining a function from input 
values to output values. As for limiting the sources of nondeterminacy, only 
Kahn's stream language and data flow languages provide means of stating 
explicitly where nondeterminacy is allowed in the system. Operations on 
semaphores, global variable accesses, monitor procedure calls, and 
message-passing, on the other hand, are all potential sources of nondeterminacy. 
When nondeterminacy is not wanted, the programmer must be careful to use 
these operations in a way which will not allow nondeterminate behavior. 

With the exception of monitors and serializers, high-level language 
support for concurrent programming is largely nonexistent. With both 
semaphore-based systems and message-passing systems, the language constructs 
presented express very elementary forms of process communication and 
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synchronization. The programmer must devise conventions for using these 
constructs to achieve the desired behavior. Data flow languages would also 
benefit from more sophisticated constructs. For example, a construct similar to a 
monitor has been proposed for data flow languages [I] which eliminates the need 
for the programmer to construct a tagged str.eam from several input streams and 
then to sort the output stream into its constituent parts. Designing high level 
programming tools which are sufficiently general and modular yet do not restrict 
the concurrency exploitable in their implementation is one of the most difficult 
challenges to the designer of future high-level languages. 

Given the current state of computer design, one has little choice of which 
programming approach to use if a practical implementation is required. Both 
approaches which assume a global environment fit most naturally on a 
multiprogramming system consisting of processors sharing memory. Such systems 
are common, and as a result a large proportion of the work in concurrent 
programming has been directed toward this global environment approach. 
Message-passing processes, on the other hand, describe most naturally the 
operation of a system of independent processors connected by communication 
channels. Such systems are becoming increasingly common, due largely to a 
desire to distribute the processors geographically, and also to the availability of 
small, low-priced processors. Most programming of these systems is still done at 
the machine language level. No machine-independent languages for 
message-passing processes have come into accepted use. Finally, languages which 
express higher degrees of concurrency than can be achieved by communicating 
sequential processes, such as actor-based and data flow languages, have not yet 
been implemented to take advantage of this greater concurrency. Whereas the 
other approaches could be implemented by modifying existing machine designs, 
these high concurrency languages appear to require totally new approaches to 
computer design if the latent concurrency is to be realized. While the design of 
languages for concurrent programming is an interesting field of study in its own 
right, a language is of little use unless it can be effectively implemented. Hence, 
the design of computer systems to support languages which express high degrees 
of concurrency is also an important field of study. 
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