
MIT/LCS/'IM- 113

A NFAR--OPI'IMAL METHOD FOR REASONING

ABXlT ACTION

Vaughan R. Pratt

September 1978

A Near-optimal Method for Reasoning about Action

Vaughan R. Pratt

August, 1978

This research was supported by the National Science Foundation under NSF grant nos.
MCS76-18461 and MCS78-04338.

This paper is a revision of "A Practical Decision Method for Propositional Dynamic Logic,"
presented at the 10th Annual ACM Symposium on Theory of Computing, San Diego, May 1918.
The revision incorporates a substantially more efficient method. The material on process
logic and axiom systems in the symposium paper has been omitted and will appear elsewhere.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

A Near-optimal Method for Reasoning about Action

Vaughan R. Pratt

Abstract

We give an algorithm for "before-after" reasoning about action. The algorithm decides
satisfiability and validity of formulae of propositional dynamic logic, a recently developed
logic of change of state that subsumes the zero-order component of most other action-oriented
logics. The algorithm requires time at most proportional to an exponentially growing function
of the length (number of occurrences of variables and connectives) of the input. Fischer and
Ladner have shown that that every algorithm for this problem must take exponential time,
making this algorithm optimal to within a polynomial. No decision method for any other logic
is known to be optimal to within less than an exponential. The typical time for our algorithm
makes it a heuristically efficient algorithm of considerable practical interest. Application
areas include program verification, program synthesis, and discourse analysis. The algorithm
is based on the method of semantic tableaux, appropriately generalized to dynamic logic. A
novel treatment of Hintikka sets via theory algebras supplies the theoretical basis for our
treatment of tableaux.

Key words

Dynamic logic, program verification, decision method, exponential time, alternating Turing
machine, tableau method, truth set, Hintikka set.

· A Near- optimal Method for Reasoning about Action

Vaughan R. Pratt

1. INTRODUCTION

Dynamic Logic

Almost all existing logics of imperative programs contain implicitly or explicitly the
construct "after(a,p)" which asserts that after program a halts, p holds. They also almost
all cater for programming constructs to do with assignment, testing, sequencing, choice and
iteration, and logical constructs to do with truth functions and quantification. Dynamic
logic [36) consists of (i) a language in which such constructs appear explicitly, and (ii) a
formal semantics for that language.

Propositional dynamic logic (PDL) was defined by Fischer and Ladner [12) as the natural
restriction of first-order dynamic logic to the term-free case (therefore no assignments,
quantifiers or non-zeroary predicates). This restriction is of interest in that it gives a
convenient way of studying the term-independent part of reasoning with formulae and programs.
Propositional variables (as with any variables) can be viewed as expressions whose internal
structure is of no concern in the reasoning at hand. Thus the techniques we develop here
apply to more general reasoning about action in the same way that propositional calculus
techniques apply to more general static reasoning about specific domains.

The language of PDL is a set ·of expressions divided into formulae and programs.
Letting a,b,c, ... range over programs and p,q,r, ... over formulae, we may enumerate the
expressions of POL as follows.

The set 4> of formulae:
Atomic formulae: P, Q, R,
Composite formulae: "'P, <a>p

The set l; of programs:
Atomic programs: A, B, C,
Composite• programs: aUb, a;b, a* , p?

P,Q,R, . . . are the usual propositional or formula variables, ranging over truth values,
and ,.,, is logical negation. (We obtain all other logical connectives as abbreviations,
starting with p/\q for <p?>q.) <a>p is our notation for "a can ensure p." To be more precise,
<a>p is true of state u just when p is true of one of the states a can terminate in when
started in u. (The need to deal with more than one state in such a definition is what makes

2

this a dynamic logic, as opposed to say the more static propositional calculus, where "'P is
true of u just when p is not true of the same state u.)

A, B,C, ... are program variables, analogous to formula variables. They may range over
nondeterministic actions in general. aUb is the choice of a or b. a;b is the sequence a
followed by b. a* is the iteration of a an indefinite but finite number of times. p? is the
test of p, a program whose execution is permitted just when p holds. These concepts are made
more precise by the semantics given in Section 2.

Typical assertions possible in dynamic logic are <aUb>p (one of a or b can ensure p,
equivalent to <a>pvp), <a*>p (a can eventually ensure p), <a>p (a can ensure that b can
ensure that p, equivalent to <a;b>p), and ,.,.,(a)p (p is guaranteed to be false after executing a,
i.e. a cannot attain any state satisfying p).

Definability. Dynamic logic subsumes a number of other logics by offering definitions for
their constructs, and we shall take advantage of this throughout the paper. Using this
ability we treat pAq as an abbreviation for (p?)q, F as an abbreviation for PA---P, T as ..,F, p=>q
as --(pA--q), and similarly for v and =. Definable programming concepts include if p then a
else b, as (p?;a)U(~p?;b), and while p do a, as (p?;a)*;,.,.,p?. We define [a]p as ---<a>---p; [a] is
the dual of <a> in the same sense that Vx is the dual of 3x. Definable program correctness
constructs include Hoare's [20] partial correctness construct p{a}q, definable as p=>[aJq, and
Basu and Yeh's [2] total correctness construct p[a]q for deterministic programs, as p=>(a)q.

Dijkstra's total correctness construct wp(a,p) for nondeterministic programs is
definable as [a]pA<a>T A...,ooa where ooa asserts that a has a diverging computation. For
deterministic programs ooa is definable in DL as [a]F but for the more general case of
nondeterministic programs ooa is not definable in propositional DL. However Meyer and
Winklmann [29,44] have shown_ that it is definable in first-order DL.

Theorems. Some formulae are always true, or valid. They include pv---p; <aUb)p=<a>pvp as
we saw above along with <a;b>p=<aXb>p; [aJ(p=>q)/\[a]p ::> [a]q (a sort of "delayed Modus
Ponens"); <a>(pvq) = <a>pv<a>q; <a>pA<a>q ::> <a>(p/\q) (but not the converse); <a*>p =
pv<a><a*>p (decomposition of a* into zero and non-zero number of iterations); <(a;b)*;a>p =
<a;(b;a)*>p; and pA[a*J(p=>[aJp) => [a*Jp (analogous to mathematical induction). One would
expect such obviously valid formulae to be among the theorems of any practical axiom system
for DL, and to be efficiently identifiable as valid by any practical decision method for

validity.

Rules. We may also observe that if p and p=>q are valid then so is q (corresponding to the
rule of Modus Ponens), and if p is valid then so is [a]p for any a (the rule of Necessitation
from modal logic). Any rule whose conclusion is valid when its premises are valid is called
sound. Other rules include: from p=>p' and p'{a}q infer p{a}q; from p{a}q' and q'=>q infer
p{a}q; from p{a}q and q{b}r infer p{a;b}r; from p/\r{b}q and p/\..,r{b}q infer
p{if r then a else b}q; and from p/\q{a}p infer p{while q do a}pA---q (Hoare's rules [20)). One
would expect such obviously sound rules to be derivable in any practical axiom system for DL.

Example. The following gives a simple example of the sort of problem PDL is useful for.
Consider the two programs "while P do (A;A)" and "while P do A". (We assume that testing P

3

has no side- effects, that is, does not cause a change of state.) It is the case that if the
first program can reach a final state when started in a given state, so can the second. This
is true even if A is nondeterministic. (When A is deterministic, "can reach a final state"
means "is guaranteed to halt," or "terminates.") For if not, then P must hold after every
execution of A, whence it holds after every execution of A;A.

This valid statement about the relationship between the termination of the respective
programs can be easily stated in PDL, as <while P do (A;A)>T :::> <while P do A>T, or
..... «(P?;A;A)*;~P?>~<P?>~P?>~<(P?;A)*;...,P?>~<P?) p if we were to expand out all our
abbreviations (which we obviously wouldn't want to have to do in actual applications).

Outline

The main contribution of this paper is a deterministic exponential time algorithm for
deciding satisfiability in PD L.

Fischer and Ladner [12,13] showed how a nondeterministic Turing machine could accept
satisfiable PDL formulae of length n within a number of steps proportional to en for some c
(a nondeterministic exponential upper bound), and proved that there did not exist a
deterministic Turing machine that could always decide whether an arbitrary PDL formula of
length n was satisfiable in fewer than dn steps for some d>l (a deterministic exponential
lower bound). The upper bound was obtained by using the equivalent for POL of the method of
truth tables, which enumerates all possible models of a given size and evaluates the formula
in each. With our present knowledge about nondeterministic computation the best deterministic

upper bound derivable from their result is 2cn for some c. The lower bound was obtained

by reducing the acceptance problem for linear-space- bounded alternating Turing machines to the
decision problem for POL satisfiability.

Using the equivalent for PDL of the method of tableaux we give a deterministic
exponential upper bound, meeting the lower bound to within a polynomial and giving a method
not much worse than any of the thus- far- analyzed methods for satisfiability in ordinary
propositional calculus. Our method could be viewed as showing how to reduce the satisfiability
problem for POL to the acceptance problem for linear-space-bounded alternating Turing
machines. We shall not however so view it, since the algorithm is just as easy to describe
without using alternating machines. The reader familiar with alternation will see the
connection without any difficulty.

The significance of our result will be felt first in the area of automatic program
verification, where the primary objective is to minimize the amount of detail the programmer
must supply in a proof of correctness of a program that is to be certified mechanically. In
fact our motivation for studying this problem was to find and apply such an algorithm to the
program verification system we have been constructing at MIT during the past two years. Our
experience was that the amount of detail required from the user in the area characterizable as
the propositional dynamic logic component of the system was the greatest bottleneck in
user productivity. Observing the work being done with other verification systems, particularly
those of Wegbreit and of Oppen, convinced us that our problems were common to most and
probably all program verification systems. The role of dynamic logic in this was to simplify
the problem domain, making it easier for us to formulate and solve this particular problem.

4

We hope that at some time the need for logics of action will be felt by the
computational lignuistics community, at which time our algorithm will find application there
also.

The result is of theoretical interest because of the scarcity of naturally occurring
problems with such tight non- linear bounds. In fact the only other such known problem is that
of testing for circularity in Knuth- type attribute grammars, which was shown by Jazayeri,
Ogden, and Rounds [22] to have a deterministic time lower bound of en/log n for some c>l
and a deterministic time upper bound of dn for some d for grammars of length n bits. Even
this gap, small as it is, is larger than any polynomial.

Our result is of further theoretical interest in that, like the Jazayeri et al result,
the tight bounds can be proved easily via a correspondence with a family of automata that
characterize deterministic exponential time. There are at present two such families: Cook's
family of linear-space auxiliary push-down automata [7], and the Chandra-Kozen-Stockmeyer
family of linear-space alternating Turing machines [5,241 The Jazayeri et al result uses a
correspondence with the former, our PDL result with the latter. Actually it is the lower
bound that needs to make the connection explicitly, as is done in [12].

The result will be of interest to those concerned with automatic theorem proving
because it offers an example of a logic in which the tableau method is provably superior to
the method of truth tables, by an exponential. In contrast the tableau method for the
propositional calculus tends to perform much better than the method of truth tables in
practice, but there is no analysis of the two algorithms that definitively supports this
observation.

Our decision method can be viewed as symbolic execution, an approach to
verification that has attracted interest in some circles in the past few years [31,43).
connection will become apparent when the nonstandard semantics is encountered.

program
The

Our application to PDL of the Hintikka set approach [19,41,42) may be of interest to
theoretical logicians, as may be our notion of theory algebra within which we embed our
treatment of H intikka sets. The applicability of the Hintikka set approach to binary
relations is not immediately obvious until it is seen.

The theory underlying our algorithm also contains most of the material for a proof of
completeness of the Segerberg axioms for PDL [40]. Such a proof, using a Gentzen type
axiomatization as an obvious intermediate step, was sketched in [37]. (The observant reader
of [37] may have noticed two errors in our axiomatization: the two P's in the first rule
should be lower case, and, as pointed out to us by M. Valiev, the first premise of our
induction rule should read r➔p,~, not r➔p,) This application of the theory has been
removed from this paper and will appear later as a separate paper. The existence of other
proofs of the completeness result, particularly [32], which appears to be the first
satisfactory such proof, has lessened for us the urgency of publication of yet another proof.
(There also exists a sketch for a proof by D. Gabbay [151) Furthermore, complexity results
and completeness proofs tend to appeal to different audiences; this paper accordingly has
focused on complexity to the exclusion of axiomatizations.

s

Much of our theory is also applicable to our newly developed logic of processes, which
also appeared in [311 In the interests of factoring out our substantive novel contributions
the process logic material, like the axiom system, has been transferred to a separate paper.

2. SEMANTICS

This section develops some basic facts and techniques relevant to satisfiability and
validity in PDL. Our treatment has a debt to Smullyan's study [41], although our algebraic
approach to H intikka sets will differ somewhat from Smullyan's approach.

States, Facts, Transitions, Statements, Theories

States play a dual role in dynamic logic - formulae take on truth values in states,
and programs travel from state to state. Given a set W of states, we take Wx~ to be the set
of all possible facts (u,p), written ul=p, and WxT.xW the set of all possible transitions
(u,a, v), written u<a>v. Although the complement ---a of program a is not in PDL, we will
permit u(,,.,a)v as a possible transition. The literal facts are ul=P,ul="'P,ul=Q,ul="'Q, ... , the
literal transitions u<A>v,u<---A>v,uv,u(... B)v, ... , for all u,v€W.

A PDL statement is a fact or transition. Thus in this paper we draw a distinction
between the statement ul=p and the formula p. (The pun may be of some mnemonic value.) We let
s, t,... range over statements.

A PDL theory is a set of statements. The theory defines what W is for that theory,
namely those states that appear in some statement of the theory. (In modal logic practice, as
in [12], W is given explicitly. If we were to follow this practice we would define a theory
to be a pair (W,S) where S is a set of statements, or a triple (W,1r,p) where 1r is a set of
facts and p a set of transitions, the triple being in effect the structures of [12].) We let
x, y, z, . . . range over theories.

The role of a PDL theory x is to assign meanings to formulae and programs. If ul=p f x
we consider formu la p to be true, or to hold, in state u. If u<a>v € x we consider it
possible for program a to go from state u to state v. The presence of statements s and ~s in
a theory is an inconsistency. The absence of s and "'s is considered merely a lack of
information about the truth values of s and "'s, either due to insufficient computation (as
when both u<a>v and vt=p are present but ul=<a>p is not) or to genuine ignorance (as when both
u<A>v and u(,,.,A>v are absent and only literal statements are present).

A PDL theory x may be envisaged as a graph each of whose vertices u~W is labelled with
formulae p, namely those such that ul=p € x, and each of whose edges from u to v is labelled
with programs a, namely those such that u<a>v ~ x. Alternatively a separate labelled edge may
be drawn for each transition. See [12] for some examples of theories presented in this way.

Semantics

We give the standard semantics of PDL in a form somewhat different from that in [12).
To illustrate the form we first give the semantics of the propositional calculus with
connectives "' and /\.

6

p,q .. p/\q
"'P I- ,_,(p/\q)
"'q I- ,_,{p/\q)

This table specifies a relation from theories to formulae: I- is the least relation
satisfying the above and also satisfying the conditions that if yl-s and yc;;x then xt-s, and if s
is literal then sl-s. Strictly speaking we should write {p,q}l-p/\q and {s}t-s, but we shall make
a habit of dropping set braces in this context.

The intuitive meaning of xt-s is that if all statements of x are true then s ought also
to be true. In add it ion there ought to be some sense in which the truth of s follows "by
calculation" from a subset of the elements of x. The requirement that sl-s for literals is to
reduce the extent to which we need to treat literals as a special case.

The intuitive meaning notwithstanding, we shall be quite strict about I- being the
least relation satisfying the given conditions. Thus we have sl-s only when s is literal,
and we never have sl-(s/\s)/\(s/\s)). The reason for this strictness is that we want to work with
I- in a quite mechanical and non-semantical way.

We say xl-s minimally when xl-s and if yl-s and yc;;x then y=x. Thus if xl-p/\q
minimally then x is p,q, while if xl-pvq minimally then x is p or q. If s is literal then
sl-s minimally. In defining I- by tabulating instances of xl-s, we tabulate just the minimal
instances, omitting sl-s for literal s.

The semantic-s of "' cannot be given explicitly under such a scheme. Instead we give it
implicitly, albeit wastefully, by tabulating xl-s and xl-"'s separately for each statement s. In
addition we assume that "'"'P and p are the same statement, or if you prefer, that """"P is not an
allowed statement and p and "'P are mutual negations.

We shall make a practice of using such abbreviations as "'PV""Q for ,_,{p/\q), so that the
above table would read p,ql-p/\q, pl-pvq, ql-pVq, recalling that "'"'p=p.

Standard P DL Semantics

This example and accompanying remarks should now make it possible to grasp the content
of the following semantics for PDL. In this semantics W is an arbitrary set about which we
will have more to say shortly. We abbreviate ul=-..<a>p to ul=[aJ,_,p.

<a> u<a>v,vl=p I- ul=<a>p

<?> ul=p I- u<p?>u

<U> u(a)v I- u<aUb>v

<U> uv I- u(aUb)v

<;> u<a>v, vw I- u<a;b>w

<*> uo<a>u l,· .. ,uk-1 <a>uk I- uo<a*>uk k~O

[a] {u(.va)v or vl=plvfW} I- ul=[a]p

[?) UF"'P I- u(..,(p?)>u

[?) I- u(..,(p ?)>v (v#u)

[UJ
[;]

(*]

u<..,a>v,u(..,b>v I­
{ u<...,a>v or v<..,b>wlvf W} 1-
{ w<...,a>w'l(w, w')fC} I-

7

u<..,(aUb)>v
u(... (a;b)>v
u(... (a*)>v for any cut- set C of Kw separating u, v.

(A cut- set of a directed graph separating vertices u, v is a minimal set of edges whose
removal from the graph would eliminate all paths from u to v. Kw is the complete

graph WxW on vertex set W.)

Duality

In addition to the binary relation I- on theories we shall find it convenient to treat
,.., (conjugate) as a unary function on theories which replaces the statements of a theory by
their logical negations, cancelling double negations. (The squarepotent nature of negation is
the one semantical fact not embedded in I- but rather in the underlying algebra.) Conjugation
satisfies ...,..,x:x, ... (xUy):..,xU..,y, (x'): (..,x)', and x=,.,x ➔ Jy=x- y (no statement is its own

negation}.

We call I- dual when "'Yl-"'s iff Vxl-s(xny;i!ip). The semantics for /\ is dual. To see
this, consider first the literal P. Then if xl-P and "'Yl-""P, P must be common to x and y. Now
consider the non literal s = p/\q. Then x must be p,q and "'Y must be p or q, so x, y are not
disjoint. Moreover, if x has some element in common with p,q then x must contain one of p or
q so "'xl-,.,(p/\q). The case s = ,.,(p/\q) is just the dual of this argument. Similarly it can be
shown, at greater length, that the PDL semantics is dual. (We1 could have given just the first
half of the POL semantics together with the condition that I- be dual, but checking that this
yields the same semantics is awkward.)

Models

The following four properties (grouped as two mutually converse pairs, one pair for
each of "' and 1-) formalize the intended interpretations of ,., and I- in the sense that the ideal
theory ought to satisfy all four of these properties.

x consistent:
x complete:

x Hintikka:
x closed:

sEx ➔ xl-s
xl-s ➔ sEx

A model (of a statement s) is a consistent complete closed Hintikka theory (containing
s). We call s satisfiable when there exists a model of s. In the case of POL we call p
satisfiable when ul=p is satisfiable for some u.

Testing Satisfiability

We test satisfiability by explicitly constructing a model. We shall approach such a
construction cautiously, disposing of the four properties for model- hood one at a time in the
order closed, complete, Hintikka, consistent. The first of these is easily disposed of.

8

Lemma 2.1. When I- is dual, if x is consistent, complete and Hintikka then x is closed.

Proof. Otherwise for some s, xl-sfx'c;;;; ... x (x complete), so sc;;;;x, whence xl-,..s (x Hintikka), so
xn~x#cp (I- dual), so x is not consistent. 11

Complctencss

The next step in constructing models is to dispose of completeness. We show how,
given some consistent Hintikka theory x, we can form a complete consistent Hintikka theory by
iterating the process of adding to x all s such that xl-s. If we write xi- for {slxt-s}, the
construction is to form xUxl-Uxl-1-U ... , as justified by the following.

Lemma 2.2. If x is Hintikka then xc;;;;(xl-).

Proof. Immediate. D

Lemma 2.3. If x is Hintikka so is xi-.

Proof. s € xi- means xl-s, so xi- I- s by Lemma 2.2. I

Lemma 2.4. When I- is dual, if x is consistent so is xh

Proof. If s, ... s € xi- then xl-s and xl-... s, so by duality xn xl"cp, contradicting
consistency. a

To take care of completeness we need a further constraint on h We call I- inductive
when there exists a function h (the height function) mapping statements to natural numbers
such that '

(i) when s is liter a I, h(s)=h_(... s)=0;
(ii) whe·n s is non-literal and xl-s minimally, h(s)=h(...,s)>h(t) for all th.

Taking h(P) = h(... p) = 0 for each variable P and h(p/\q) = h(.... (pAq)) = l+max(h(p),h(q))
in the /\ ex ample shows that our propositional calculus semantics is inductive. In PDL we
abbreviate h(u<a>v) to h(a) and h(ul=<a>p) to h(<a>p), and take h(A} = h(...,A} = h(P} = h(.... p) =
0, h{p?) = l+h(p), h(aUb) = h(a;b) = l+max(h(a),h(b)), h(a*) = l+h(a}, and h(<a>p} =
l+max(h(a),h(p)). Inspection of the POL semantics shows that it too is inductive.

When such an h exists we define Xn to be {sfxlh(s)~n}, and say that x is n-complete
when (x')n c;;;; (... x)n.

Lemma 2.5. Given n~0 and I- dual and inductive, if x is n-complete then xi- is n+l-complete.

Proof. We show ((xl-)')n+l c;;;; (... (xl-Hn+l· Let s € ((xl-)')n+l· If s is literal then

s f (x')o c;;; (... x)o whence xl----s so s f (... (xH)n+l· Otherwise since x)/s we have zn(x'}nilcp

for all zh by inductive condition (ii), so by duality ,.,,(x')nl-,..s. But (x')n c;;; (.... x)n ~ ""'x,

so ~(x')0 c;;; x, so xl-..,s, whence s € (... (xl-»n+l· I

9

Lemma 2.6. When I- is dual and inductive, if x is consistent, 0-complete and Hintikka then xJ-*
is consistent, complete and Hintikka.

Proof. Combine lemmas 2.3-2.5. I

Given a consistent Hintikka theory x, it may be made 0-complete without compromising
its being consistent or Hintikka merely by adding one of s or "'s for each literal s not
already in xU x.

Non- standard PDL semantics

Our next goal is the Hintikka property. A direct assault has eluded us, and we sha11
approach the construction indirectly via a "semantics" for PDL that is less plausible as a
definition but more convenient computationally. (In the case of propositional calculus such a
step is not necessary - the standard semantics leads directly to the usual tableau method.)

With the non-standard semantics comes a third type of statement, the link s:>t where s
and t are facts. Links are used in connection with facts of the form ul=<a>p. They supply
a mechanism for retaining the finite character of *, via the condition O>+ below. A chain is
a finite set of links so=>s1,s1=>s2,••·,sk-l=>sk. We write s=>*t <;; x to indicate that x
contains a chain starting with s and ending with t. · As for any relation we write s:>s':>s" for
s:>s' ,s':h" and s:>*s':>*s" <;; x fOr s:>*s'Us':>*s" <;; x.

Non- standard PDL Semantics

<=>>+ ul=<a>p:>*vl=p I-+ ul=<a>p

<A>+ u<A>v,vl=p I-+ ul=<A>phl=p
<?>+ ul=p,ul=q I-+ ul=<p ?>q :>ul=q
<U>+ ul=<a>p I-+ ul=<aUb>p=>ul=<a>p
<U>+ ul=p I-+ ul=<aUb)p=>ul=<b)p
<;>+ ul=<a>p I-+ . ul=<a;b>p=>ul=<aXb>p
<*>+ ul=p I-+ ul=<a*>p=>ul=p
<*> + ul=<a><a*>p I-+ ul=<a*>p:>ul=<a><a*>p

[Al+ {u(.... A)v or vl=plv€W} I-+ ul=[A]p
[?]+ ul=q I-+ ut=[p?Jq
[?]+ ul="'P I-+ ul=[p?Jq
[Ul+ ul=[a]p,ul=[b]p I-+ ul=[aUbJp
[;l+ ul=[a)[b]p I-+ uJ=[a;b]p
[*l+ ul=p, ul=[a][a*Jp I-+ ul=[a*Jp

10

We define +-Hintikka to mean Hintikka with respect to the nonstandard semantics.

The conditions that spoil inductiveness are [*]+ and <*>+. We could easily make

I-+ dual by adding further constraints, but it will turn out that we do not need duality for

I-+,

We now wish to show that, for the purposes of defining satisfiability of a POL
formula, this semantics. is equivalent to the standard semantics. Our strategy will be as
follows. Let h be the height function for the standard semantics (with the convention that
h(u<a>v), h(s~t) (. n for any non literal a and any n including (&) so that we can write x{a)
for the non-literal-transition- free link-free part of x), and let Xn be defined with respect

to this h. Taking x as xoU(V-(xoU---xo)), we shall prove that if x is consistent and

+-Hintikka, then xCa> ~ xi-*. By observing that x is consistent, 0-complete and Hintikka

we infer that if ul=p f x then xi-* is a model of ul=p, whence p is satisfiable. We also prove
the converse: if ul=p has a model it occurs in some consistent +- Hintikka theory. This gives
us a useful test for satisfiability: see whether ul=p belongs to some consistent +-Hintikka
theory.

The double induction of the proof of the main theorem has a sufficiently delicate
"inner induction" that we isolate it as two lemmas. For each of these lemmas we assume (as
part of the "outer" induction hypothesis) that x is +-Hintikka and that n is a positive
integer such that for 0~m~n, Xm ~ £1-m, and xl-m is consistent, m-complete and Hintikka.

Lemma 2.7. If ul=[c]p f x and h(c)~n, then for all vf W either u(NC}v f xi-" or vl=p f x.

Proof We use induction on h(c).

ul=[A]p f x. By [AJ+, u(..,,,A>v or vl=p f x for all vfW. Since h(..,A) = 0, u<..,,,A>v f

xo~x~x1-n or vl=p f X for all vfW.

ul=[p?]q f x. By [?), for all v-/u u(.... (p?)>v f xi- ~ xl-0 • For v=u, WP have by [?]+ u)=~p

or ul=q f x. If the latter we are done. Otherwise, since h(.... p)~n-1, ul="'P f Xn-1 ~

x1-n- l, so by <?> u<---(p ?)>u f x1-n.

ut=[aUb]p f x. By [UJ+ ul=[a]p,ul=[b]p f x. So by induction, for all vfW u<..,,,a>v f x1-n- l

or vl=p f x, and for all vfW u(..,b>v f x1-n-l or vl=p f x. Thus for all vfW u<..,,,a>v,u<~b>v f

x1-n-l or vl=p f x. So by [UJ, for all vfW u<..,,,(aUb)>v f xi-" or vl=p.

ul=[a;b]p f x. By [;J+ ul=[a][b]p f x, so by induction u(..,a)v f xi-n-1 or vt=[b]p f x for all

V' and so again by induction u<---a>v f x1-n- l or v(..,b)w f x1-n-l or wl=p f X for all V, w.
But then u<---(a;b})w f xi-" or wl=p f x for all w.

ul=[a*Jp f x: Suppose that for some vfW, u< (a*)>v f xi-" and vl=p .; x. Since
h(u<..,a*>v) ~ n and xi-" is n-complete, u<a*>v f xi-", i.e. (x1-n-l)1-u<a*>v. Since x1-n-l

is Hintikka, uo<a>u1,•• ·,uk-l<a>uk f x1-n-l for some uo,••·,uk, k~0, where uo=u and
uk=v, by <*>. Now by [*Jp, uol=p,uol=[aJ[a*Jp f x. So by induction either uo<..,a>u1 f

x1-n- l or u1l=P f x. The former is ruled out by the presence in x1-n- l of uo<a>u1 and

11

the consistency of xi--n-1. We may continue in this way to show u2l=p, ••• ,ukl=P E x by
induction on k, contradicting vl=p ; x since v=uk. I

Lemma 2.8. For all formulae of the form Lp = <c1><c2> ... <eg>p, g~O, if ul=<c>Lp~*wl=p E x
and h(c)~n, there exists vEW such that ul=<c>Lp:>*vl=Lp:>*wl=p E x and u<c>v E xi-".

Proof. We use induction on h(c), assuming ul=<c>Lp:>*wl=p E x.

c=A. Then ut=<A>Lp:>vt=Lp:>*wl=p E x and u(A)v E x, by <A). Since h(A) = 0, u<A>v E XO

c;;; x1-n.

c=p?. Then ut=<p?>Lp:>ul=Lp:>*wl=p E x, and ul=p E x, by <?>. So ul=p E Xn- 1 c;; x1-n- l by

induction, whence u<p?>u E xl--n by <?>.

c=aUb. Then without loss of generality ul=<aUb)Lp:>ul=<a>Lp:>*vl=Lp:>*wl=p E x and u<a>v E
x1-n-l, . by <U> and induction. So u<aUb>v E xl-n by <U>.

c=a;b. Then ul=<a;b>Lp:>ul=<a>Lp:>*vl=Lp:>*v'l=Lp:>*wl=p E x and u<a>v, vv' E x.,_n-1,
by <;> and induction (twice). So u<a;b>v' E xl-n by <;>.

c=a*. Then, taking uo=u, uol=<a*>Lp:>uol=<a><a*>Lp:>*u1l=<a*>Lp:>u1l=<aXa*>Lp:>*u21= ••••

=>uml=<a*>Lp:)uml=Lp:)*wl=p E x and uo<a>u1,u1<a>u2,••·,um- l<a>um E x1-n- l, by <*> and

induction (m~0 times). Since ut=<c>Lp:>*wl=p is finite, m must be too. Hence uo<a*>um E x .. n
by <*>. g

Theorem 2.?. Let x be consistent and +-Hintikka. Then x(a) can be extended to a POL model

Proof. We first show by induction that for all n~0, xn<;;xJ-n,

Certainly xo<;;xJ-0, by construction of x. Now suppose that the inductive claim holds

for n, and that sExn+l· If s is ul=[c]p with h(...,c),h(p) ~ n then by lemma 2. 7 u<---c>v E x .. n

or vl=p E x for a II vE W, and vl=p E x 11 <;; xl--n by induction. So by [a], ul=[c]p E x1-n+ 1. If
s is ul=<c>p with h(c),h(p)~n then by <:>>, for some wEW ul=<a>p:>*wl=p. So by lemma 2.8 (taking g
= 0) there exists v such that ul=<c>p:>*vl=p E x and u<c>v E xi--". So by <:>>, s:>vl=p for some
sE-1>, so by the appropriate <>+ condition vl=p E Xn <;; xl-n, Hence ul=(c)p E xi,.n+l. This

establishes that Xn+l <;;xl-n+l.

It follows that xw <;; xi-*. Since x is consistent (since x is), 0- complete
(by construction), and Hintikka, xi-* is a model by Lemma 2.6. I

Theorem 2.10. If x is a PDL model then x can be extended to a consistent +-Hintikka theory
merely by adding links.

Proof. The reader may verify that the []+ conditions are all met by any POL model x. The
links to be added to x to meet the <>+ conditions are ul=<A>p:>vl=p whenever

u<A>v, vl=p,ul=<A>p E x, ul=<p?>:>ul=q whenever ul=p,ul=q,ul=<p?>q E x, and similarly for the links
named in the other <>+ conditions. These additions satisfy <A>+ through <*>+ by
construction. The reader may verify that the additions also satisfy <:>>+ automatically. I

12

It follows that ul=p is satisfiable if and only if ul=p f x for some consistent
+-Hintikka theory x. Henceforth we shall work only with t-+ semantics, permitting us to drop
the + without confusion.

3. TABLEAUX

So far we have disposed of the properties of being closed and complete, leaving the
properties of being consistent and Hintikka. We now show how to use the classical method of
tableaux [4,16,41,42], via the non-standard semantics, to test for satisfiability of PDL
formulae. The tableau method has two parts: tableau construction, which takes care of the
Hintikka property, and tableau testing, which takes care of consistency. We begin with
easy-to-grasp but not very effective constructions and tests, and gradually bring them up to
speed to yield the final algorithm.

A tableau for r is a rooted unordered tree whose vertices are labelled with theories,
the root being labelled with wl=r for an arbitrarily chosen state w. We use the terms
"parent," "chi Id," "sibling," for the obvious relationships among vertices, using "descendant"
for the reflexive transitive closure of the "child" relation.

The tableau exhibits an exhaustive search for a consistent Hintikka theory as follows.
Each path in the tableau is labelled with a sequence of theories xo~x 1 ~x2~··· such that for

each consecutive pair xi,xi+l in the sequence, there is some non-literal sfy, the chosen
non-literal of xi, such that xjl's and xi+l = xiUz where zt-s minimally. For every path,

and every xi on that path, and every statement sfxi, there exists x j on that path with

i~j and x ts, the w-property.

The one non-constructive aspect of this search is the choice of W in condition [A]+.

We deal with [A]+ constructively by taking W at each vertex to be whatever states are

mentioned in theories along the path from the root to this vertex. This means that any given
ul=[A]p may need to be chosen infinitely often along any given path, to take into account the
infinitely many states that may appear along the path. However this does riot invalidate the
properties we want tableaux to have.

To see that such a tableau can exist for any r we may give an explicit construction.
(A different construction will be made possible by theorem 3.3, but since that theorem has
very narrow applicability while these preliminary ideas are very general, this construction is
worth mentioning.) At each vertex of the tree under construction, partition the theory
labelling that vertex into a queue (a totally ordered set) and a grave (an unordered set). At
the root, if wl=r is non-literal the queue contains just wl=r and the grave is empty, otherwise
wl=r appears only in the grave. At vertex V the chosen non-literal s of y is always the first
element on the queue part of y. For each of the finitely many finite z such that zt-s
minimally, construct a child of V whose theory is yUz, whose queue is that of y less s and
with z (in any order) on the end, and whose grave is that of y plus s. If s is of the form
ul=<a>p then z may contain new states, in which case all statements of the form ut=(A]p must be
removed from the grave and put on the end of the queue following z.

By this construction the queue and grave of every vertex will be finite, which in turn
guarantees that the constructed tableau has the <->-property.

13

Lemma 3.1. The union of theories along any path is a Hintikka theory.

Proof. By the w-property, every possible counter-example to the Hintikka property is taken
care of along a path, even for ul=[A]p. r.1

We have taken care of the Hintikka property, leaving only the consistency property to
be tested.

A Test for Satisfiability

We call a test of satisfiability of statements sound when it never claims that a
satisfiable statement is unsatisfiable, and complete when it never claims that an
unsatisfiable statement is satisfiable. These terms are motivated by the application of a
satisfiability tester to validity checking, where their meaning coincides with normal usage.

Our basic test is. that r is satisfiable if and only if the union of the theories along
some path of a tableau for r is consistent. Completeness follows from the fact that if such a
consistent theory is found, it must also be Hintikka and contain r, whence r is satisfiable.
Conversely suppose the root theory ul=r = xo is satisfiable. We proceed by induction. We have
xoc;;;y for some consistent Hintikka theory y. Now suppose xic;;;;y. Let xi+l=n{zlz~s and

xic;;;;zc;;;;y} where s is the chosen non-literal of xi. Then Xi+l must be one of x/s

children, being minimal satisfying Xi+lh, xic;;;;xi+l• It follows by induction that there

is a path the union of whose theories is a subset of y. This subset must be consistent since
y is. So the test is sound.

Inspecting all paths is less convenient than inspecting all vertices, or even all
vertices standing in the descendant relation to one another. Define the predicate bad on
vertices to be the least predicate such that bad(V) holds when:

(i) V's label is inconsistent.

(ii) All V's children are bad, unless V has no children.

The least predicate satisfying these conditions may be formed as the intersection of
all predicates satisfying them; the intersection can readily be seen to satisfy the conditions.

Lemma 3.2. Given any tableau for r, r is satisfiable if and only if the root is not bad.

Proof. (If.) If the root is not bad there must be an infinite path of good vertices from the
root, the union of whose theories must then be consistent.

(Only if.) If r is satisfiable then there is a consistent Hintikka theory y such that
wl=r f y. The tableau is constructed in such a way that if the theory labelling V is a subset
of y (as is the case for V being the root) then so is some child of V. Hence there must exist
an infinite path the union of whose theories is a subset of y, and hence consistent since y
is. a

14

The marking procedure

We would like to identify the bad vertices by a process that takes c.> stages to mark
the bad vertices. In stage O it marks the vertices whose theories are inconsistent. In stage
i+l it marks those vertices all of whose children if any have been marked at earlier stages
(not marking if there are no childreh) and all vertices labelled with a theory containing
ul=<a>p with no descendant labelled with a theory in which ul=<a>p closes. Then the root is bad
if and only if it is marked by this procedure. (We defer proof of correctness of the marking
procedure until we have the tableau in its final form.) This is our basic marking procedure,
almost in its final form despite the fact that a quite different kind of tableau will be used
ultimately.

In the case of propositional calculus, at this point in the development there are ho
further obstacles to constructing a tableau in a number of steps of computation (of some
reasonable machine) bounded by an exponentially growing function of the length of the formula
under test. In the case of non-standard PDL semantics the effectiveness situation is
complicated by condition <:)>+, which on the face of things call for
infinitely many children when the selected s is ul=<a>p.

Dealing with chains

We mod ify the rule (:)) used in constructing tableaux to:

ul=<a)p:)t ~ ul=<a>p.

That is, ul=<a>p now calls only for the first step of a derivation of a, not the whole
derivation. With this modification we lose the completeness property of tableaux that every
path yields a theory that is Hintikka with respect to the unmodified conditions. On the other
hand we do retain the soundness property that for every Hintikka y such that xoc;;y some path
yields a subset of y. T h is is because of the "self-propagating" nature of intermediate
links of a chain ul=<a>p:)s1,srh2,••·,sk-l~vl=p. E-very si except possibly the

final vl=p is of the form u'l=<a')p' , and hence there must be some path which eventually
accumulates all the links of such a chain, by inspection of the semantics.

We restore completeness as follows. Define ul=(a)p to complete in x when ul=<a>p~*vl=p ~
x for some v. Define x to be chain-complete when for every ul=<a>p c;; x, ul=<a>p completes in x.
Modify the path- oriented test to consider only paths the union of whose labels is
chain-complete. The modified test can now be seen to be sound and complete, as the tableau
overlooks no .possible way of completing a chain.

The corresponding modification to our vertex-oriented test is to add a third condition
in the definition of bad.

(iii) ul=<a>p is in the theory labelling V but every descendant of V in whose theory ut=<a>p
completes is bad.

We leave it to the reader to verify that this third condition restores Lemma 3.2
when (:f > replaces <~>.

15

Despite our simplification of <~> to <~'> there still remains the non-constructive
aspect of the choices for v when <~'> is being applied to ul=<A>p to yield ul=<A>p=hJ=p. We
deal with this by observing that renaming some state throughout a theory cannot make an
inconsistent theory consistent, although it may make a consistent theory inconsistent (e.g.
if v is renamed to u when the theory contains ul=p and vl=---p). This then permits us to satisfy

<=f> for ul=<A>p with exactly one descendant, in which the new theory is the old together with
uJ=<A>p=hl=p for some v not appearing higher in the tree. Clearly this smaller tableau does not
compromise the completeness of the test. To see that soundness is preserved we modify the
original soundness proof so that for any consistent y containing xo there exists a path

yielding a theory z which can be made a subset z' of y by renaming states, as the reader may

verify by induction. Now if z is inconsistent so is z', whence so is y, a contradiction. So
if xo is satisfiable some path yields a consistent Hintikka theory. This disposes entirely

of difficulties associated with <f>.

Finiteness

We have now accomplished as much as is possible without the following theorem, which
we need to make our tableau construction into an algorithm that always terminates, and to make
our marking procedure both effective and terminating.

Theorem J.J. If r is of length n, l{pl3p(ul=p appears in a tableau for r)}I ~ n.

This is essentially lemma 3.2 of [12], to which we refer the reader for a proof.

This leads us to the observation that, for any u, at most n distinct statements uJ=p can
appear in a tableau for a formula r of length n. A second observation is that any statement
vJ=p '# wl=r in the tableau can be attributed to one of only three sources: ul=<A>p=hl=p, ut=[A]p, or
some statement naming no state other than v. We shall arrange things so that these three
sources are processed in three batches in the order given. In this way all statements of the
form ul=p and ul=p~t will be formed while processing these three batches. Furthermore,
processing of ul=<p~vl=p and ul=[A]p will be left until the end of the third batch, as they
belong to the first and second batches respectively of other states. We postpone a more
specific account to after the next step.

Lean Tableaux

Our next objective is to reduce the theories in the tableau to the point where the
only statements in a theory are of the form ul=p and ul= p~t, for fixed u; we call such a theory a
theory of u.

To achieve this requires not merely reducing the theories but also splitting a simple
vertex into as many vertices as are required for each to carry a theory of a single state and
still have the new tableau retain the information in the old tableau.

We make these vague notions more precise by introducing the concept of a full theory,
which is one that is "as Hintikka as a theory of a state can be." More formally, a theory x

of state u is full when xl-s for all sEx except those of the form ul=<A>p~vl=p and ul=[A]p, and
otherwise is partial. A full (partial) vertex is one so labelled.

16

We introduce a new kind of tableau, the lean tableau, in which xic;;xi+l is no
longer guaranteed for consecutive theories along a path. Lean tableaux enjoy the following
properties.

(i) The root as before is labelled with ut=r, u arbitrary.

(ii) For each vertex V labelled with a partial theory x there exists some sEx not of the
form ut=<A>p~vt=q or ut=[A]p such that the descendants of V are each labelled with some minimal
theory z such that zl-s and xc;;z, and every such minimai theory labels some descendant.

(iii) For each vertex V labelled with a full theory x each statement ul=<A>p=ht=p E x
corresponds to a descendant of V whose theory is {vl=p}U{vl=qlut=[A]q E x}.

Note that Jean tableaux contain no transitions. Moreover, a partial vertex has either
one or two children while a full vertex may have up to n children where n is the length of r.

We now describe a test for satisfiability in terms of lean tableaux. The test is just
a straightforward modification of the one we used on ordinary tableaux. A fat path in a lean
tableau is a maximal set of paths such that any two paths have a common initial segment
terminating in a full vertex. Thus for any full vertex appearing in a fat path, all the
children of that vertex also appear in the path, while for any partial vertex appearing,
exactly one child also appears. The point of fat paths is that they correspond to ordinary
paths in ordinary tableaux.

Lemma J.4. In a lean tableau, if the union of the labels of a fat path is chain-complete it
is a Hintikka theory.

Proof. The construction of lean tableaux is such that only nonstandard conditions [A], O>
and <A> might be violated. <~> is taken care of explicitly by requiring chain-completeness.
Now for each ul=<A>p~vl=p in the union add u<A>v. This suffices for condition <A> as property
(iii) of lean tableaux supplies vl=p. Finally, for each pair of states u, v appearing in the
union such that u<A>v is not in the theory add u(..,A)v. Then for every ul=[A]p and for every v
appearing in the theory, one of u(..,A>v or vl=p is also in the theory, by property (iii) of lean
tableaux. D

Lemma J.5. For every Hintikka theory y containing r, any lean tableau for r contains a fat
path the union of whose labels is a chain-complete subset of y to within renaming of states.

Proof. The construction of such a path parallels the construction in the ordinary tableau
case, except that (i) instead of a sequence of vertices being developed, each labelled with a
subset of y to within renaming, we have an advancing frontier of vertices, and (ii) the
induction hypothesis must be that the union of the labels of all vertices seen thus far is a
subset of y to within renaming (since we no longer have xic;;xi+ 1 all along a path,

even if xi is taken to be the union of the frontier's labels at the Hh step). I

17

We immediately infer:

Corollary 3.6. Given a lean tableau for r, r is satisfiable if and only if the union of the
labels of some fat path is consistent and chain-complete.

The Lean Procedure

This path oriented test can be translated into a vertex oriented test as for ordinary
tableaux, the lean procedure. The procedure is to mark all the inconsistent vertices at stage
0, then at stage i+l mark all full vertices with a child marked at stage i, all partial
vertices with all children marked at stage i or before, and every vertex containing some
ul=<a>p not linked by a chain of * statements at vertices (anywhere in the tableau) unmarked at
stage i leading to vl=p in an unmarked vertex.

Lemma 3.7. The lean procedure leaves the root of a tableau for r unmarked if and only if r is
satisfiable.

Proof. Suppose r is satisfiable. Then the union of some fat path is a consistent
chain-complete theory. Now consider the first stage in the marking process at which a vertex
on that path was marked. If it was marked on account of inconsistency then the union cannot
be inconsistent. If it was marked as a full vertex with marked child then this cannot the
first stage at which a vertex on this path was marked. If it was marked as a partial vertex
with only marked children then again this cannot be the first stage. (Note that in a lean
tableau . every partial vertex has at least one child.) If it was marked for not being linked
to vl=p via unmarked vertices then we use the fact that in the union of the labels of a fat
path all statements of the form ul=p and ul=p*t label vertices of a single ordinary path within
that fat path and going from a child of a full vertex to another full vertex. Hence all
constituents of a chain starting ut=<a>p* ... that are in the theory of u can be found in the
full vertex at the end of a path containing the occurrence of ul=<a>p responsible for the
marking. This chain must continue in exactly one of the children of this full vertex, and so
on until completion. The whole chain (to be precise, an occurrence of every link of the
chain) then appears entirely within the given fat path, whence if there is a link of the chain
in the fat path no occurrence of which is at an umarked vertex, again we cannot be at the
first stage when this fat path was marked. Hence at no stage can any vertex of this fat path,
including the root, be marked.

Conversely, suppose the root is not marked at stage i for any finite i. Construct a
fat path as follows. Initialize the set S of vertices to contain just the root. Proceeding
by stages, at each stage, add to S all the children of each full vertex in S, and an unmarked
child of each partial vertex in S not already having a child in S. Whenever a vertex labelled
with ul=<a>p is added to S, add to S some full vertex below that vertex that contains as much
of the promised chain for al=<a>p as appears in the theory of u (this full vertex must exist),
along with all vertices between the two vertices, then follow the chain into the next state
and continue adding states until the end of the chain is reached, a finite process. (As we
have described it, an entire chain is added as part of a single stage.) By the marking
process it should be evident that every vertex in S remains unmarked. Hence at the end the
theory labelling that path must be consistent (since inconsistent formulae must belong to the
theory of the same state and hence appear together in the full vertex of the part of the path

18

going through that full state) and chain-complete (by the construction). Hence r must be
satisfiable. B

We define two vertices to be equivalent when their theories are the same to within
renaming of st;ites, ;ind two trees to be equivalent when their roots are equivalent and to
every subtree of one root corresponds an equivalent subtree of the other. Since each theory
can have at most n formulae to within renaming, there can be at most 2n mutually inequivalent
vertices. We also observe that if equivalent vertices always have the same set of labels on
their children (easily arranged by having a method of choosing s that depends only on the
particular partial theory being extended) then two trees with equivalent roots are equivalent.

Inspection of the marking algorithm reveals that equivalent t rees will be marked
identically, whence equivalent vertices will all be marked simultaneously. Hence the marking
cannot proceed for more than 2n stages without reaching some stage at wh ich nothing new is
marked, after which nothing new is ever marked.

This suggests that we filter the tableau (the term used by modal logicians for the
process med in the proof in [12] of the finite model theorem). That is, we identify

equivalent vertices to yield a directed graph, instead of a tree, having at most 2n vertices.
Such a graph can be effectively constructed by a machine.

To construct the graph using a random-access machine it suffices to construct a lean
tableau, represented using bit vectors of length n to encode each theory, and to keep an eye
out f_or repeated states. Since our algorithm is going to use exponential storage anyway, one
may as well set aside an array of 2n locations indexed by the bit vector representation of
theories to represent which theories (modulo state names) have been encountered and where they
are in storage. A II this can be done in time proportional to 2n times some small polynomial
in n.

The marking procedure applied to this filtered tableau will at stage i mark exactly
those vertices th at are the images of vertices in the unfiltered tableau marked at stage i.
Hence the root of the filtered graph will be marked if and only if the root of the unfiltered
graph was marked by the procedure.

While the m;irking time is not linear in the number of vertices in the graph, it is
clearly proportional to a small polynomial in the number of vertices, establishing our upper
bound of c11 for some c. The non-linearity is due entirely to checking for chains. A crude
method of checking would be to compute the transitive closure of the chain relation on the
n2n facts appe;iring in the graph after each stage of checking, which would lead to c=16 if a
cubic-time transitive-closure algorithm were used. This can be reduced to c=8 by taking
advantage of the fact that only two links can have the same first statement, whence their are
only 2n211 links. Further reduction should be possible. As a practical matter, one can
expect the number of vertices in the graph to be quite small typically (e.g. in a program
verification context), whence the important issue is whether one can reduce the marking time to
say the square or better of the number of vertices, an issue we do not go into here.

The marking procedure as described requires the marking to be done in stages, with all
marks made in stage i+l depending only on marks made at or before stage i. This is a little

19

inconvenient to program, and the simpler procedure of having each mark depend on all marks
made up till now, including those made at the current stage, will also work. This can be seen
to be true by carrying out the proof of correctness of the unfiltered marking procedure
modified so that at each stage only one equivalence class of vertices is marked. The
procedure stilt halts in finitely many steps since there are only finitely many equivalence

classes.

4. MISCELLANEOUS REMARKS

DL and Algorithmic Logic

We developed dynamic logic in 1974 while teaching a course on Floyd-Hoare axiomatics
[34], feeling a need for a treatment of the subject in the style to which mathematicians are
accustomed, and described it at an ACM symposium in 1976 [36]. (The name "dynamic" was first
used in [17].) Unknown to us at the time, the Polish logician Salwicki had already given an
admirable treatment of the subject in 1970 [39] for the case of deterministic programs,
calling his treatment algorithmic logic. Our discovery of Salwicki's work lessened
considerably our estimation of the extent of the contribution made by the development of
dynamic logic. However, the dynamic logic treatment differs from the algorithmic logic
treatment in three important respects, each of which we feel makes dynamic logic the better o{
the two treatments.

First, algorithmic logic confines itself specifically to deterministic programs, while
dynamic logic deals with nondeterministic programs, thereby subsuming algorithmic logic. The
syntax and semantics of algorithmic logic would take considerable restructuring to extend
algorithmic logic to cope gracefully with nondeterminism. It seems unlikely to us to be
possible to so extend algorithmic logic other than by a wholesale replacement of its
constructs by those of dynamic logic. That the extension is necessary is evident from the
recent but very strong interest in reasoning about nondeterministic action
U,8,9,14,18,21,381 Dijkstra [9] in particular makes an excellent and delightfully
illustrated case for nondeterministic programming as a valuable tool for every programmer, a
case which our own programming experience bears out.

Second, algorithmic logic introduces a number of mathematically novel constructs taken
from the programming milieu whereas dynamic logic has no mathematical novelties save
assignment and the mathematically trivial notion of test, and even assignment is absent from
PDL. Instead dynamic logic takes its constructs from modal logic and Tarski's calculus of
binary relations, permitting greater utilization of existing theory and reducing the cost of
entry into the program logic arena for mathematicians already expert in those areas. (The
contributions made to dynamic logic by the modal logicians K. Segerberg and D. Gabbay supply
concrete examples of this phenomenon.)

Third, dynamic logic is eminently suited to reasoning about action (change of state)
in general, not merely the processes encountered in computer programming. Thus it is just as
applicable to reasoning about change of state in natural language discourse analysis as in
computer programming. For example, knowing the validity of "If your TV set won't work, then
.after you kick it still won't work" one can infer the validity of "If your TV set won't work
then no matter how often you kick it it still won't work," using the rule, from p=>[a]p infer

20

p =>[a*Jp. It was with such generality in mind that the term "dynamic" was chosen to describe
the logic, to maintain neutrality. towards particular domains of application of logics of
change of state.

Despite our feeling that dynamic logic is the better of the two logics, we
nevertheless feel also that algorithmic logic represents a substantial milestone in the
history of logics of programs, both in supplying a mathematically excellent treatment of
program logics and in starting a flourishing school of algorithmic logic in Warsarw. It is
unfortunate that the work failed to catch earlier the attention of the bulk of the western
world. (On the other hand, if it had we might not have felt the need for dynamic logic
sufficiently strongly as to have invented it, and so would have lacked a framework within
which to make the sort of discoveries reported here.)

Another contribution along the above lines was recently made by Constable [6).

Constable's logic is considerably closer to algorithmic logic than to dynamic logic. His
language however departs from both propositional dynamic logic and algorithmic logic in
permitting naming of and quantification over states. Constable has shown that Viilidity is
decidable in this language. More recently Parikh [33] has shown that an even richer language,
quantifying over both states and state sequences (of ongoing computations), and permitting
discussion of relative order of states within sequences, is decidable, using Rabin' s decis·ion
method for weak SnS.

Software Engineering Considerations

DL has received a mixed reception from what one might characterize as the "hard hat"
end of the program verification spectrum of researchers. A common reaction is that DL might
be cute theoretically, but it is not the robust sort of product demanded by practical
considerations in the real world of program verification. In fact no such objection can be
sustained because dynamic logic is no more than a cleaned up and extended version of Hoare's
logic, which is certainly taken these days as a sine qua non of verification. Thus in any
proof of p{a}q, there is a corresponding proof in DL of p=>[a]q. The fact that DL goes on to
handle in stride other issues such as termination can hardly be seen as a criticism of DL over
Hoare's logic.

There has also been the criticism that no substantial DL proofs have ever been given.
This criticism is unreasonable of any system into which it is straightforward to translate
substantial proofs that already exist in other logics, e.g. Hoare's. The process of
translating Hoare proofs into DL proofs is a purely mechanical exercise given a table of
abbreviations and rule derivations. Such tables are readily supplied for all the logics

mentioned above.

More sensible however is not translating proofs at all but rather considering DL to
mp ply the base language for an extensible logic of programs, where extensions are carried out
by (i) defining new constructs from old, (ii) taking theorems as axioms, and (iii) taking
derived rules as rules. Factoring out a base language in this way is sound engineering. The
bulk of the implementation effort can be focused on the base language, leaving the
implementation of the extended language as a relatively easy task. The smaller and more
modular the base component can be made, the simpler its implementation becomes.

21

It is possible to overdo the minimization of the base language, and one must take care
that the extended language remain easy to derive from the base language. It should be clear
from our examples of definitions in section 1 that DL observes this constraint admirably.

This methodology is a valuable tool in metamathematics, and there is no reason why it
should not be an equally effective tool in "meta-programming" (writing of program verification
systems, program synthesizers, and for that matter compilers, interpreters, and any other
programs that manipulate programs).

We are at present engaged in implementing mechanical proof systems to evaluate the
extent to which this technique helps. One such system incorporating early ideas about DL, and
implemented in LISP on a PDP-10, has been in operation since August 1977, and we are now
building a second system to incorporate and further improve the developments reported in this
paper.

Using the first system, the largest DL proof that has been subjected to successful
mechanical verification to date is a proof of the total correctness of the Knuth-Morris- Pratt
pattern-matching algorithm (231 This proof consisted of some twenty theorems stated in DL,
and was certified in 4S seconds. The proof supplies an excellent illustration of how one can
take ad vantage of DL's "primitive" primitives in structuring the proof for better
understandability to a human. This work will be reported on in the near future.

Bibliography

1. j. W. de Bakker, Semantics and Termination of Nondeterministic Recursive Programs,
in "Automata, Languages and Programming," J (ed. Michaelson, S. and R. Milner), 435-477,
Edinburgh University Press, Edinburgh, Scotland, 1976.

2. S. K . Basu and R. T. Yeh. Strong Verification of Programs. IEEE Trans. Software
Engineering, SE-I,) (1975), 339-345.

3. Berman, F. and M. Patersnn. Test-Free Propositional Dynamic Logic is Strictly Weaker
than PDL. T. R. 77-10-02, Dept. of Computer Science, Univ. of Washington, Seattle, Nov. 1971.

4. E. W. Beth, "The Foundations of Mathematics," North Holland, 1959.

·s. A. E. Chandra and L. J. Stockmeyer, Alternation, 17th IEEE Symp. on Foundations of
Comp. Sci., 98-108, Oct. 1976.

6. R. L. Constable, On the Theory of Programming Logics, Proc. 9th Ann. ACM Symp. on
Theory of Computing, 269-28S, Boulder, Col., May 1977.

7. S. A. Cook, Characterization of Pushdown Machines in Terms of Time Bounded Computers,
J. ACM, 18 (1971), 4-18. 1971.

8. E. W. Dijkstra, Guarded Commands, Nondeterminacy and Formal Derivation of Programs.
Comm. ACM, 18 (1975), 8, 453-451.

22

9. E. W. Dijkstra, "A Discipline of Programming," Prentice-Hall, Englewood Cliffs, N.J.,
1976

10. C. C. Elgot, Structured Programming With and Without GO TO Statements, IEEE
Transactions on Software Engineering, SE-2, (1976), 1, 41-53, March 1976.

11. E. Engeler, Algorithmic properties of structures, Math. Sys. Thy. 1 (1967), 183-19S.

12. M. J. Fischer and R. E. Ladner, Propositional Modal Logic of Programs, Proc. 9th Ann.
ACM Symp. on Theory of Computing, 286-294, Boulder, Col., May 1911.

13. M. j. Fischer and R. E. Ladner, Propositional Dynamic Logic of Regular Programs,
M anuscnpt, Dept. of Comp. Sc., U. of Wash., Seattle, Wash. c. Oct. 1977.

14. R. W. Floyd, Nondeterministic Algorithms, J. ACM, 14, 4, 636-644·, Oct. 1961.

1S. D. Gabbay, Axiomatizations of Logics of Programs, Manuscript, under cover dated Nov.
1977.

16. G. Gentzen, U ntersuchungen ueber das Logische Schliessen, Math. Zeitschr, J9 (1934-S),
176-210, 40S-431. (English tr.: Investigations into Logical Deduction, in "The Collected
Papers of G. Gentzen," 69-131, 1969.)

17. D. Hare!, A. R. Meyer and V. R. Pratt, Computability and Completeness in Logics of
Programs, Proc. 9th Ann. ACM Symp. on Theory of Computing, 261-268, Boulder, Col., May 1911.

18. D. Harel and V. R. Pratt, Nondeterminism in Logics of Programs, Proc. }th Ann. ACM
Symp. on Principles of Programming Languages, 203-213, Tucson, Arizona, Jan. 1918.

19. K. J. J. Hintikka, Form and content in quantification theory, Acta Philosophica
Fennica, 8, 7-SS. 195S.

20. C. A. R. Hoare, An Axiomatic Basis for Computer Programming, Comm. ACM 12 (1969),
S76-S80.

21. C. A. R. Hoare, Some Properties of Predicate Transformers, J. ACM, 2} (1918), 3,
461-480.

22. M. Jazayeri, W. F. Ogden and W. C. Rounds, The Intrinsically Exponential Complexity
Problem for Attribute Grammars, Comm. ACM, 18 (191S), 12, 691-106. 191S.

23. D. E. Knuth, J.H. Morris and V.R. Pratt, Fast Pattern Matching in Strings, SIAM /.
Comp .. 6 (1977), 2, 323-3S0.

24. D. Kozen, On parallelism in Turing machines, 17th IEEE Symp. on Foundations of

Comp. Sci., 89-97, Oct. 1976.

23

25. S. A. K ripke, Semantical considerations on Modal Logic, Acta P hilosophica F tnntca,

83-94, 1963.

26. S. A. Kripke, Semantical analysis of modal logic I: normal modal propositional
calculi. Zeitschr. f. Math. Logik und Grundlagen d. Math., 9 (1963), 61-96.

21. S. D. Litvintchouk, and V. R. Pratt. A Proof-checker for Dynamic Logic. Proc. ,o, Int.
Joint Conj. on Al, S52- S58, Boston, Aug. 1911.

28. E. Mendelson, "Introduction to Mathematical Logic," Van Nostrand, N. Y., N. Y., 1964.

29. A. R. Meyer, Equivalence of DL, DL+ and AOL for Regular Programs with Array
Assignments, Internal report, MIT, August 1971.

30. G. M irkowska, On formalized systems of algorithmic logic, Bull. Acad. Pol. Set.,
Ser. Sci. Math. Astr. Phys. (1914), 22, 421-428.

31. J. Misra, Prospects and Limitations of Automatic Assertion Generation for Loop
Programs, SIAM J. on Comp. 6 (1911), 4, 718-729.

32. R. Parikh, A Completeness Result for POL, Symp. on Mathematical Foundations of
Computer Science, Zakopane, Poland, Sept. 1918.

33. R. Parikh, Second Order Process Logic, 19th IEEE Symposium on Foundations of
Computer Science, Oct. 1918.

34. V. R. Pratt, Semantics of Programming Languages, Lecture notes for 6.892, Fall 1914,
M.I.T.

3S. V. R. Pratt and L.J. Stockmeyer, A Characterization of the Power of Vector Machines,
JCSS, 12 (1916), 2, 198- 221.

36. V. R. Pratt, Semantical Considerations on Floyd- Hoare Logic. Proc. 17th Ann. IEEE
Symp. on Foundations of Comp. Sci., 109-121, 1916.

31. V. R. Pratt, A Practical Decision Method for Propositional Dynamic Logic, Proc. 10th
Ann. ACM Symp. on Theory of Computing, 326-331, San Diego, Calif., May 1971.

38. W. P. de Roever, Dijkstra's Predicate Transformer, Nondeterminism, Recursion, and
Termination, I.R.I.S.A., Publication lnterne No.37. 1916.

39. A. Salwicki, Formalized Algorithmic Languages, Bull. Acad. Pol. Sci., Ser. Sci.
Math. Astr. Phys., 18 (1910), S, 221-232.

40. K. Segerberg, A Completeness Theorem in the Modal Logic of Programs. Preliminary
report, Notices of the AMS, 24 (1971), 6, A-552.

24

41. R. M. Smullyan, "First-Order Logic," Springer-Verlag, Berlin, 1968.

42. R. M. Smullyan, Trees and Nest Structures, J. Symb. Logic, JI (1966), 303-321.

43. B. Wegbreit, The synthesis of loop predicates. Comm. ACM, 17 (1974), 2, 102-112.

44. K. Winklmann, Equivalence of DL and DL+ for regular programs, Internal report, Lab.
for Comp. Sci., M.I.T. 1978.

