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A Near-optimal Method for Reasoning about Action 

Vaughan R. Pratt 

Abstract 

We give an algorithm for "before-after" reasoning about action. The algorithm decides 
satisfiability and validity of formulae of propositional dynamic logic, a recently developed 
logic of change of state that subsumes the zero-order component of most other action-oriented 
logics. The algorithm requires time at most proportional to an exponentially growing function 
of the length (number of occurrences of variables and connectives) of the input. Fischer and 
Ladner have shown that that every algorithm for this problem must take exponential time, 
making this algorithm optimal to within a polynomial. No decision method for any other logic 
is known to be optimal to within less than an exponential. The typical time for our algorithm 
makes it a heuristically efficient algorithm of considerable practical interest. Application 
areas include program verification, program synthesis, and discourse analysis. The algorithm 
is based on the method of semantic tableaux, appropriately generalized to dynamic logic. A 
novel treatment of Hintikka sets via theory algebras supplies the theoretical basis for our 
treatment of tableaux. 
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Dynamic logic, program verification, decision method, exponential time, alternating Turing 
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· A Near- optimal Method for Reasoning about Action 

Vaughan R. Pratt 

1. INTRODUCTION 

Dynamic Logic 

Almost all existing logics of imperative programs contain implicitly or explicitly the 
construct "after(a,p)" which asserts that after program a halts, p holds. They also almost 
all cater for programming constructs to do with assignment, testing, sequencing, choice and 
iteration, and logical constructs to do with truth functions and quantification. Dynamic 
logic [36) consists of (i) a language in which such constructs appear explicitly, and (ii) a 
formal semantics for that language. 

Propositional dynamic logic (PDL) was defined by Fischer and Ladner [12) as the natural 
restriction of first-order dynamic logic to the term-free case (therefore no assignments, 
quantifiers or non-zeroary predicates). This restriction is of interest in that it gives a 
convenient way of studying the term-independent part of reasoning with formulae and programs. 
Propositional variables (as with any variables) can be viewed as expressions whose internal 
structure is of no concern in the reasoning at hand. Thus the techniques we develop here 
apply to more general reasoning about action in the same way that propositional calculus 
techniques apply to more general static reasoning about specific domains. 

The language of PDL is a set ·of expressions divided into formulae and programs. 
Letting a,b,c, ... range over programs and p,q,r, ... over formulae, we may enumerate the 
expressions of POL as follows. 

The set 4> of formulae: 
Atomic formulae: P, Q, R, 
Composite formulae: "'P, <a>p 

The set l; of programs: 
Atomic programs: A, B, C, 
Composite• programs: aUb, a;b, a* , p? 

P,Q,R, . . . are the usual propositional or formula variables, ranging over truth values, 
and ,.,, is logical negation. (We obtain all other logical connectives as abbreviations, 
starting with p/\q for <p?>q.) <a>p is our notation for "a can ensure p." To be more precise, 
<a>p is true of state u just when p is true of one of the states a can terminate in when 
started in u. (The need to deal with more than one state in such a definition is what makes 
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this a dynamic logic, as opposed to say the more static propositional calculus, where "'P is 
true of u just when p is not true of the same state u.) 

A, B,C, ... are program variables, analogous to formula variables. They may range over 
nondeterministic actions in general. aUb is the choice of a or b. a;b is the sequence a 
followed by b. a* is the iteration of a an indefinite but finite number of times. p? is the 
test of p, a program whose execution is permitted just when p holds. These concepts are made 
more precise by the semantics given in Section 2. 

Typical assertions possible in dynamic logic are <aUb>p (one of a or b can ensure p, 
equivalent to <a>pv<b>p), <a*>p (a can eventually ensure p), <a><b>p (a can ensure that b can 
ensure that p, equivalent to <a;b>p), and ,.,.,(a)p (p is guaranteed to be false after executing a, 
i.e. a cannot attain any state satisfying p). 

Definability. Dynamic logic subsumes a number of other logics by offering definitions for 
their constructs, and we shall take advantage of this throughout the paper. Using this 
ability we treat pAq as an abbreviation for (p?)q, F as an abbreviation for PA---P, T as ..,F, p=>q 
as --(pA--q), and similarly for v and =. Definable programming concepts include if p then a 
else b, as (p?;a)U(~p?;b), and while p do a, as (p?;a)*;,.,.,p?. We define [a]p as ---<a>---p; [a] is 
the dual of <a> in the same sense that Vx is the dual of 3x. Definable program correctness 
constructs include Hoare's [20] partial correctness construct p{a}q, definable as p=>[aJq, and 
Basu and Yeh's [2] total correctness construct p[a]q for deterministic programs, as p=>(a)q. 

Dijkstra's total correctness construct wp(a,p) for nondeterministic programs is 
definable as [a]pA<a>T A...,ooa where ooa asserts that a has a diverging computation. For 
deterministic programs ooa is definable in DL as [a]F but for the more general case of 
nondeterministic programs ooa is not definable in propositional DL. However Meyer and 
Winklmann [29,44] have shown_ that it is definable in first-order DL. 

Theorems. Some formulae are always true, or valid. They include pv---p; <aUb)p=<a>pv<b>p as 
we saw above along with <a;b>p=<aXb>p; [aJ(p=>q)/\[a]p ::> [a]q (a sort of "delayed Modus 
Ponens"); <a>(pvq) = <a>pv<a>q; <a>pA<a>q ::> <a>(p/\q) (but not the converse); <a*>p = 
pv<a><a*>p (decomposition of a* into zero and non-zero number of iterations); <(a;b)*;a>p = 
<a;(b;a)*>p; and pA[a*J(p=>[aJp) => [a*Jp (analogous to mathematical induction). One would 
expect such obviously valid formulae to be among the theorems of any practical axiom system 
for DL, and to be efficiently identifiable as valid by any practical decision method for 

validity. 

Rules. We may also observe that if p and p=>q are valid then so is q (corresponding to the 
rule of Modus Ponens), and if p is valid then so is [a]p for any a (the rule of Necessitation 
from modal logic). Any rule whose conclusion is valid when its premises are valid is called 
sound. Other rules include: from p=>p' and p'{a}q infer p{a}q; from p{a}q' and q'=>q infer 
p{a}q; from p{a}q and q{b}r infer p{a;b}r; from p/\r{b}q and p/\..,r{b}q infer 
p{if r then a else b}q; and from p/\q{a}p infer p{while q do a}pA---q (Hoare's rules [20)). One 
would expect such obviously sound rules to be derivable in any practical axiom system for DL. 

Example. The following gives a simple example of the sort of problem PDL is useful for. 
Consider the two programs "while P do (A;A)" and "while P do A". (We assume that testing P 
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has no side- effects, that is, does not cause a change of state.) It is the case that if the 
first program can reach a final state when started in a given state, so can the second. This 
is true even if A is nondeterministic. (When A is deterministic, "can reach a final state" 
means "is guaranteed to halt," or "terminates.") For if not, then P must hold after every 
execution of A, whence it holds after every execution of A;A. 

This valid statement about the relationship between the termination of the respective 
programs can be easily stated in PDL, as <while P do (A;A)>T :::> <while P do A>T, or 
..... «(P?;A;A)*;~P?>~<P?>~P?>~<(P?;A)*;...,P?>~<P?) ..... p if we were to expand out all our 
abbreviations (which we obviously wouldn't want to have to do in actual applications). 

Outline 

The main contribution of this paper is a deterministic exponential time algorithm for 
deciding satisfiability in PD L. 

Fischer and Ladner [12,13] showed how a nondeterministic Turing machine could accept 
satisfiable PDL formulae of length n within a number of steps proportional to en for some c 
(a nondeterministic exponential upper bound), and proved that there did not exist a 
deterministic Turing machine that could always decide whether an arbitrary PDL formula of 
length n was satisfiable in fewer than dn steps for some d>l (a deterministic exponential 
lower bound). The upper bound was obtained by using the equivalent for POL of the method of 
truth tables, which enumerates all possible models of a given size and evaluates the formula 
in each. With our present knowledge about nondeterministic computation the best deterministic 

upper bound derivable from their result is 2cn for some c. The lower bound was obtained 

by reducing the acceptance problem for linear-space- bounded alternating Turing machines to the 
decision problem for POL satisfiability. 

Using the equivalent for PDL of the method of tableaux we give a deterministic 
exponential upper bound, meeting the lower bound to within a polynomial and giving a method 
not much worse than any of the thus- far- analyzed methods for satisfiability in ordinary 
propositional calculus. Our method could be viewed as showing how to reduce the satisfiability 
problem for POL to the acceptance problem for linear-space-bounded alternating Turing 
machines. We shall not however so view it, since the algorithm is just as easy to describe 
without using alternating machines. The reader familiar with alternation will see the 
connection without any difficulty. 

The significance of our result will be felt first in the area of automatic program 
verification, where the primary objective is to minimize the amount of detail the programmer 
must supply in a proof of correctness of a program that is to be certified mechanically. In 
fact our motivation for studying this problem was to find and apply such an algorithm to the 
program verification system we have been constructing at MIT during the past two years. Our 
experience was that the amount of detail required from the user in the area characterizable as 
the propositional dynamic logic component of the system was the greatest bottleneck in 
user productivity. Observing the work being done with other verification systems, particularly 
those of Wegbreit and of Oppen, convinced us that our problems were common to most and 
probably all program verification systems. The role of dynamic logic in this was to simplify 
the problem domain, making it easier for us to formulate and solve this particular problem. 
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We hope that at some time the need for logics of action will be felt by the 
computational lignuistics community, at which time our algorithm will find application there 
also. 

The result is of theoretical interest because of the scarcity of naturally occurring 
problems with such tight non- linear bounds. In fact the only other such known problem is that 
of testing for circularity in Knuth- type attribute grammars, which was shown by Jazayeri, 
Ogden, and Rounds [22] to have a deterministic time lower bound of en/log n for some c>l 
and a deterministic time upper bound of dn for some d for grammars of length n bits. Even 
this gap, small as it is, is larger than any polynomial. 

Our result is of further theoretical interest in that, like the Jazayeri et al result, 
the tight bounds can be proved easily via a correspondence with a family of automata that 
characterize deterministic exponential time. There are at present two such families: Cook's 
family of linear-space auxiliary push-down automata [7], and the Chandra-Kozen-Stockmeyer 
family of linear-space alternating Turing machines [5,241 The Jazayeri et al result uses a 
correspondence with the former, our PDL result with the latter. Actually it is the lower 
bound that needs to make the connection explicitly, as is done in [12]. 

The result will be of interest to those concerned with automatic theorem proving 
because it offers an example of a logic in which the tableau method is provably superior to 
the method of truth tables, by an exponential. In contrast the tableau method for the 
propositional calculus tends to perform much better than the method of truth tables in 
practice, but there is no analysis of the two algorithms that definitively supports this 
observation. 

Our decision method can be viewed as symbolic execution, an approach to 
verification that has attracted interest in some circles in the past few years [31,43). 
connection will become apparent when the nonstandard semantics is encountered. 

program 
The 

Our application to PDL of the Hintikka set approach [19,41,42) may be of interest to 
theoretical logicians, as may be our notion of theory algebra within which we embed our 
treatment of H intikka sets. The applicability of the Hintikka set approach to binary 
relations is not immediately obvious until it is seen. 

The theory underlying our algorithm also contains most of the material for a proof of 
completeness of the Segerberg axioms for PDL [40]. Such a proof, using a Gentzen type 
axiomatization as an obvious intermediate step, was sketched in [37]. (The observant reader 
of [37] may have noticed two errors in our axiomatization: the two P's in the first rule 
should be lower case, and, as pointed out to us by M. Valiev, the first premise of our 
induction rule should read r➔p,~, not r➔p,) This application of the theory has been 
removed from this paper and will appear later as a separate paper. The existence of other 
proofs of the completeness result, particularly [32], which appears to be the first 
satisfactory such proof, has lessened for us the urgency of publication of yet another proof. 
(There also exists a sketch for a proof by D. Gabbay [151) Furthermore, complexity results 
and completeness proofs tend to appeal to different audiences; this paper accordingly has 
focused on complexity to the exclusion of axiomatizations. 
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Much of our theory is also applicable to our newly developed logic of processes, which 
also appeared in [311 In the interests of factoring out our substantive novel contributions 
the process logic material, like the axiom system, has been transferred to a separate paper. 

2. SEMANTICS 

This section develops some basic facts and techniques relevant to satisfiability and 
validity in PDL. Our treatment has a debt to Smullyan's study [41], although our algebraic 
approach to H intikka sets will differ somewhat from Smullyan's approach. 

States, Facts, Transitions, Statements, Theories 

States play a dual role in dynamic logic - formulae take on truth values in states, 
and programs travel from state to state. Given a set W of states, we take Wx~ to be the set 
of all possible facts (u,p), written ul=p, and WxT.xW the set of all possible transitions 
(u,a, v), written u<a>v. Although the complement ---a of program a is not in PDL, we will 
permit u(,,.,a)v as a possible transition. The literal facts are ul=P,ul="'P,ul=Q,ul="'Q, ... , the 
literal transitions u<A>v,u<---A>v,u<B>v,u( ... B)v, ... , for all u,v€W. 

A PDL statement is a fact or transition. Thus in this paper we draw a distinction 
between the statement ul=p and the formula p. (The pun may be of some mnemonic value.) We let 
s, t,... range over statements. 

A PDL theory is a set of statements. The theory defines what W is for that theory, 
namely those states that appear in some statement of the theory. (In modal logic practice, as 
in [12], W is given explicitly. If we were to follow this practice we would define a theory 
to be a pair (W,S) where S is a set of statements, or a triple (W,1r,p) where 1r is a set of 
facts and p a set of transitions, the triple being in effect the structures of [12].) We let 
x, y, z, . . . range over theories. 

The role of a PDL theory x is to assign meanings to formulae and programs. If ul=p f x 
we consider formu la p to be true, or to hold, in state u. If u<a>v € x we consider it 
possible for program a to go from state u to state v. The presence of statements s and ~s in 
a theory is an inconsistency. The absence of s and "'s is considered merely a lack of 
information about the truth values of s and "'s, either due to insufficient computation (as 
when both u<a>v and vt=p are present but ul=<a>p is not) or to genuine ignorance (as when both 
u<A>v and u(,,.,A>v are absent and only literal statements are present). 

A PDL theory x may be envisaged as a graph each of whose vertices u~W is labelled with 
formulae p, namely those such that ul=p € x, and each of whose edges from u to v is labelled 
with programs a, namely those such that u<a>v ~ x. Alternatively a separate labelled edge may 
be drawn for each transition. See [12] for some examples of theories presented in this way. 

Semantics 

We give the standard semantics of PDL in a form somewhat different from that in [12). 
To illustrate the form we first give the semantics of the propositional calculus with 
connectives "' and /\. 
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p,q .. p/\q 
"'P I- ,_,(p/\q) 
"'q I- ,_,{p/\q) 

This table specifies a relation from theories to formulae: I- is the least relation 
satisfying the above and also satisfying the conditions that if yl-s and yc;;x then xt-s, and if s 
is literal then sl-s. Strictly speaking we should write {p,q}l-p/\q and {s}t-s, but we shall make 
a habit of dropping set braces in this context. 

The intuitive meaning of xt-s is that if all statements of x are true then s ought also 
to be true. In add it ion there ought to be some sense in which the truth of s follows "by 
calculation" from a subset of the elements of x. The requirement that sl-s for literals is to 
reduce the extent to which we need to treat literals as a special case. 

The intuitive meaning notwithstanding, we shall be quite strict about I- being the 
least relation satisfying the given conditions. Thus we have sl-s only when s is literal, 
and we never have sl-(s/\s)/\(s/\s)). The reason for this strictness is that we want to work with 
I- in a quite mechanical and non-semantical way. 

We say xl-s minimally when xl-s and if yl-s and yc;;x then y=x. Thus if xl-p/\q 
minimally then x is p,q, while if xl-pvq minimally then x is p or q. If s is literal then 
sl-s minimally. In defining I- by tabulating instances of xl-s, we tabulate just the minimal 
instances, omitting sl-s for literal s. 

The semantic-s of "' cannot be given explicitly under such a scheme. Instead we give it 
implicitly, albeit wastefully, by tabulating xl-s and xl-"'s separately for each statement s. In 
addition we assume that "'"'P and p are the same statement, or if you prefer, that """"P is not an 
allowed statement and p and "'P are mutual negations. 

We shall make a practice of using such abbreviations as "'PV""Q for ,_,{p/\q), so that the 
above table would read p,ql-p/\q, pl-pvq, ql-pVq, recalling that "'"'p=p. 

Standard P DL Semantics 

This example and accompanying remarks should now make it possible to grasp the content 
of the following semantics for PDL. In this semantics W is an arbitrary set about which we 
will have more to say shortly. We abbreviate ul=-..<a>p to ul=[aJ,_,p. 

<a> u<a>v,vl=p I- ul=<a>p 

<?> ul=p I- u<p?>u 

<U> u(a)v I- u<aUb>v 

<U> u<b>v I- u(aUb)v 

<;> u<a>v, v<b>w I- u<a;b>w 

<*> uo<a>u l,· .. ,uk-1 <a>uk I- uo<a*>uk k~O 

[a] {u(.va)v or vl=plvfW} I- ul=[a]p 

[?) UF"'P I- u(..,(p?)>u 

[?) I- u(..,(p ?)>v ( v#u) 



[UJ 
[;] 

(*] 

u<..,a>v,u(..,b>v I­
{ u<...,a>v or v<..,b>wlvf W} 1-
{ w<...,a>w'l(w, w')fC} I-
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u<..,(aUb)>v 
u( ... (a;b)>v 
u( ... (a*)>v for any cut- set C of Kw separating u, v. 

(A cut- set of a directed graph separating vertices u, v is a minimal set of edges whose 
removal from the graph would eliminate all paths from u to v. Kw is the complete 

graph WxW on vertex set W.) 

Duality 

In addition to the binary relation I- on theories we shall find it convenient to treat 
,.., (conjugate) as a unary function on theories which replaces the statements of a theory by 
their logical negations, cancelling double negations. (The squarepotent nature of negation is 
the one semantical fact not embedded in I- but rather in the underlying algebra.) Conjugation 
satisfies ...,..,x:x, ... (xUy):..,xU..,y, ..... (x'): (..,x)', and x=,.,x ➔ Jy=x- ..... y (no statement is its own 

negation}. 

We call I- dual when "'Yl-"'s iff Vxl-s(xny;i!ip). The semantics for /\ is dual. To see 
this, consider first the literal P. Then if xl-P and "'Yl-""P, P must be common to x and y. Now 
consider the non literal s = p/\q. Then x must be p,q and "'Y must be p or q, so x, y are not 
disjoint. Moreover, if x has some element in common with p,q then x must contain one of p or 
q so "'xl-,.,(p/\q). The case s = ,.,(p/\q) is just the dual of this argument. Similarly it can be 
shown, at greater length, that the PDL semantics is dual. (We1 could have given just the first 
half of the POL semantics together with the condition that I- be dual, but checking that this 
yields the same semantics is awkward.) 

Models 

The following four properties (grouped as two mutually converse pairs, one pair for 
each of "' and 1-) formalize the intended interpretations of ,., and I- in the sense that the ideal 
theory ought to satisfy all four of these properties. 

x consistent: 
x complete: 

x Hintikka: 
x closed: 

sEx ➔ xl-s 
xl-s ➔ sEx 

A model (of a statement s) is a consistent complete closed Hintikka theory (containing 
s). We call s satisfiable when there exists a model of s. In the case of POL we call p 
satisfiable when ul=p is satisfiable for some u. 

Testing Satisfiability 

We test satisfiability by explicitly constructing a model. We shall approach such a 
construction cautiously, disposing of the four properties for model- hood one at a time in the 
order closed, complete, Hintikka, consistent. The first of these is easily disposed of. 
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Lemma 2.1. When I- is dual, if x is consistent, complete and Hintikka then x is closed. 

Proof. Otherwise for some s, xl-sfx'c;;;; ... x (x complete), so .... sc;;;;x, whence xl-,..s (x Hintikka), so 
xn~x#cp (I- dual), so x is not consistent. 11 

Complctencss 

The next step in constructing models is to dispose of completeness. We show how, 
given some consistent Hintikka theory x, we can form a complete consistent Hintikka theory by 
iterating the process of adding to x all s such that xl-s. If we write xi- for {slxt-s}, the 
construction is to form xUxl-Uxl-1-U ... , as justified by the following. 

Lemma 2.2. If x is Hintikka then xc;;;;(xl-). 

Proof. Immediate. D 

Lemma 2.3. If x is Hintikka so is xi-. 

Proof. s € xi- means xl-s, so xi- I- s by Lemma 2.2. I 

Lemma 2.4. When I- is dual, if x is consistent so is xh 

Proof. If s, ... s € xi- then xl-s and xl-... s, so by duality xn .... xl"cp, contradicting 
consistency. a 

To take care of completeness we need a further constraint on h We call I- inductive 
when there exists a function h (the height function) mapping statements to natural numbers 
such that ' 

( i) when s is liter a I, h(s)=h_( ... s)=0; 
(ii) whe·n s is non-literal and xl-s minimally, h(s)=h(...,s)>h(t) for all th. 

Taking h(P) = h( ... p) = 0 for each variable P and h(p/\q) = h( .... (pAq)) = l+max(h(p),h(q)) 
in the /\ ex ample shows that our propositional calculus semantics is inductive. In PDL we 
abbreviate h(u<a>v) to h(a) and h(ul=<a>p) to h(<a>p), and take h(A} = h(...,A} = h(P} = h( .... p) = 
0, h{p?) = l+h(p), h(aUb) = h(a;b) = l+max(h(a),h(b)), h(a*) = l+h(a}, and h(<a>p} = 
l+max(h(a),h(p)). Inspection of the POL semantics shows that it too is inductive. 

When such an h exists we define Xn to be {sfxlh(s)~n}, and say that x is n-complete 
when (x')n c;;;; ( ... x)n. 

Lemma 2.5. Given n~0 and I- dual and inductive, if x is n-complete then xi- is n+l-complete. 

Proof. We show ((xl-)')n+l c;;;; ( ... (xl-Hn+l· Let s € ((xl-)')n+l· If s is literal then 

s f (x')o c;;; ( ... x)o whence xl----s so s f ( ... (xH)n+l· Otherwise since x)/s we have zn(x'}nilcp 

for all zh by inductive condition (ii), so by duality ,.,,(x')nl-,..s. But (x')n c;;; ( .... x)n ~ ""'x, 

so ~(x')0 c;;; x, so xl-..,s, whence s € ( ... (xl-»n+l· I 
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Lemma 2.6. When I- is dual and inductive, if x is consistent, 0-complete and Hintikka then xJ-* 
is consistent, complete and Hintikka. 

Proof. Combine lemmas 2.3-2.5. I 

Given a consistent Hintikka theory x, it may be made 0-complete without compromising 
its being consistent or Hintikka merely by adding one of s or "'s for each literal s not 
already in xU .... x. 

Non- standard PDL semantics 

Our next goal is the Hintikka property. A direct assault has eluded us, and we sha11 
approach the construction indirectly via a "semantics" for PDL that is less plausible as a 
definition but more convenient computationally. (In the case of propositional calculus such a 
step is not necessary - the standard semantics leads directly to the usual tableau method.) 

With the non-standard semantics comes a third type of statement, the link s:>t where s 
and t are facts. Links are used in connection with facts of the form ul=<a>p. They supply 
a mechanism for retaining the finite character of *, via the condition O>+ below. A chain is 
a finite set of links so=>s1,s1=>s2,••·,sk-l=>sk. We write s=>*t <;; x to indicate that x 
contains a chain starting with s and ending with t. · As for any relation we write s:>s':>s" for 
s:>s' ,s':h" and s:>*s':>*s" <;; x fOr s:>*s'Us':>*s" <;; x. 

Non- standard PDL Semantics 

<=>>+ ul=<a>p:>*vl=p I-+ ul=<a>p 

<A>+ u<A>v,vl=p I-+ ul=<A>phl=p 
<?>+ ul=p,ul=q I-+ ul=<p ?>q :>ul=q 
<U>+ ul=<a>p I-+ ul=<aUb>p=>ul=<a>p 
<U>+ ul=<b>p I-+ ul=<aUb)p=>ul=<b)p 
<;>+ ul=<a><b>p I-+ . ul=<a;b>p=>ul=<aXb>p 
<*>+ ul=p I-+ ul=<a*>p=>ul=p 
<*> + ul=<a><a*>p I-+ ul=<a*>p:>ul=<a><a*>p 

[Al+ {u( .... A)v or vl=plv€W} I-+ ul=[A]p 
[?]+ ul=q I-+ ut=[p?Jq 
[?]+ ul="'P I-+ ul=[p?Jq 
[Ul+ ul=[a]p,ul=[b]p I-+ ul=[aUbJp 
[;l+ ul=[a)[b]p I-+ uJ=[a;b]p 
[*l+ ul=p, ul=[a][a*Jp I-+ ul=[a*Jp 
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We define +-Hintikka to mean Hintikka with respect to the nonstandard semantics. 

The conditions that spoil inductiveness are [*]+ and <*>+. We could easily make 

I-+ dual by adding further constraints, but it will turn out that we do not need duality for 

I-+, 

We now wish to show that, for the purposes of defining satisfiability of a POL 
formula, this semantics. is equivalent to the standard semantics. Our strategy will be as 
follows. Let h be the height function for the standard semantics (with the convention that 
h(u<a>v ), h(s~t) (. n for any non literal a and any n including (&) so that we can write x{a) 
for the non-literal-transition- free link-free part of x), and let Xn be defined with respect 

to this h. Taking x as xoU(V-(xoU---xo)), we shall prove that if x is consistent and 

+-Hintikka, then xCa> ~ xi-*. By observing that x is consistent, 0-complete and Hintikka 

we infer that if ul=p f x then xi-* is a model of ul=p, whence p is satisfiable. We also prove 
the converse: if ul=p has a model it occurs in some consistent +- Hintikka theory. This gives 
us a useful test for satisfiability: see whether ul=p belongs to some consistent +-Hintikka 
theory. 

The double induction of the proof of the main theorem has a sufficiently delicate 
"inner induction" that we isolate it as two lemmas. For each of these lemmas we assume (as 
part of the "outer" induction hypothesis) that x is +-Hintikka and that n is a positive 
integer such that for 0~m~n, Xm ~ £1-m, and xl-m is consistent, m-complete and Hintikka. 

Lemma 2.7. If ul=[c]p f x and h(c)~n, then for all vf W either u(NC}v f xi-" or vl=p f x. 

Proof We use induction on h(c). 

ul=[A]p f x. By [AJ+, u(..,,,A>v or vl=p f x for all vfW. Since h(..,A) = 0, u<..,,,A>v f 

xo~x~x1-n or vl=p f X for all vfW. 

ul=[p?]q f x. By [?), for all v-/u u( .... (p?)>v f xi- ~ xl-0 • For v=u, WP have by [?]+ u)=~p 

or ul=q f x. If the latter we are done. Otherwise, since h( .... p)~n-1, ul="'P f Xn-1 ~ 

x1-n- l, so by <?> u<---(p ?)>u f x1-n. 

ut=[aUb]p f x. By [UJ+ ul=[a]p,ul=[b]p f x. So by induction, for all vfW u<..,,,a>v f x1-n- l 

or vl=p f x, and for all vfW u(..,b>v f x1-n-l or vl=p f x. Thus for all vfW u<..,,,a>v,u<~b>v f 

x1-n-l or vl=p f x. So by [UJ, for all vfW u<..,,,(aUb)>v f xi-" or vl=p. 

ul=[a;b]p f x. By [;J+ ul=[a][b]p f x, so by induction u(..,a)v f xi-n-1 or vt=[b]p f x for all 

V' and so again by induction u<---a>v f x1-n- l or v(..,b)w f x1-n-l or wl=p f X for all V, w. 
But then u<---(a;b})w f xi-" or wl=p f x for all w. 

ul=[a*Jp f x: Suppose that for some vfW, u< .... (a*)>v f xi-" and vl=p .; x. Since 
h(u<..,a*>v) ~ n and xi-" is n-complete, u<a*>v f xi-", i.e. (x1-n-l)1-u<a*>v. Since x1-n-l 

is Hintikka, uo<a>u1,•• ·,uk-l<a>uk f x1-n-l for some uo,••·,uk, k~0, where uo=u and 
uk=v, by <*>. Now by [*Jp, uol=p,uol=[aJ[a*Jp f x. So by induction either uo<..,a>u1 f 

x1-n- l or u1l=P f x. The former is ruled out by the presence in x1-n- l of uo<a>u1 and 
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the consistency of xi--n-1. We may continue in this way to show u2l=p, ••• ,ukl=P E x by 
induction on k, contradicting vl=p ; x since v=uk. I 

Lemma 2.8. For all formulae of the form Lp = <c1><c2> ... <eg>p, g~O, if ul=<c>Lp~*wl=p E x 
and h(c)~n, there exists vEW such that ul=<c>Lp:>*vl=Lp:>*wl=p E x and u<c>v E xi-". 

Proof. We use induction on h(c), assuming ul=<c>Lp:>*wl=p E x. 

c=A. Then ut=<A>Lp:>vt=Lp:>*wl=p E x and u(A)v E x, by <A). Since h(A) = 0, u<A>v E XO 

c;;; x1-n. 

c=p?. Then ut=<p?>Lp:>ul=Lp:>*wl=p E x, and ul=p E x, by <?>. So ul=p E Xn- 1 c;; x1-n- l by 

induction, whence u<p?>u E xl--n by <?>. 

c=aUb. Then without loss of generality ul=<aUb)Lp:>ul=<a>Lp:>*vl=Lp:>*wl=p E x and u<a>v E 
x1-n-l, . by <U> and induction. So u<aUb>v E xl-n by <U>. 

c=a;b. Then ul=<a;b>Lp:>ul=<a><b>Lp:>*vl=<b>Lp:>*v'l=Lp:>*wl=p E x and u<a>v, v<b>v' E x.,_n-1, 
by <;> and induction (twice). So u<a;b>v' E xl-n by <;>. 

c=a*. Then, taking uo=u, uol=<a*>Lp:>uol=<a><a*>Lp:>*u1l=<a*>Lp:>u1l=<aXa*>Lp:>*u21= •••• 

=>uml=<a*>Lp:)uml=Lp:)*wl=p E x and uo<a>u1,u1<a>u2,••·,um- l<a>um E x1-n- l, by <*> and 

induction (m~0 times). Since ut=<c>Lp:>*wl=p is finite, m must be too. Hence uo<a*>um E x .. n 
by <*>. g 

Theorem 2.?. Let x be consistent and +-Hintikka. Then x(a) can be extended to a POL model 

Proof. We first show by induction that for all n~0, xn<;;xJ-n, 

Certainly xo<;;xJ-0, by construction of x. Now suppose that the inductive claim holds 

for n, and that sExn+l· If s is ul=[c]p with h(...,c),h(p) ~ n then by lemma 2. 7 u<---c>v E x .. n 

or vl=p E x for a II vE W, and vl=p E x 11 <;; xl--n by induction. So by [a], ul=[c]p E x1-n+ 1. If 
s is ul=<c>p with h(c),h(p)~n then by <:>>, for some wEW ul=<a>p:>*wl=p. So by lemma 2.8 (taking g 
= 0) there exists v such that ul=<c>p:>*vl=p E x and u<c>v E xi--". So by <:>>, s:>vl=p for some 
sE-1>, so by the appropriate <>+ condition vl=p E Xn <;; xl-n, Hence ul=(c)p E xi,.n+l. This 

establishes that Xn+l <;;xl-n+l. 

It follows that xw <;; xi-*. Since x is consistent (since x is), 0- complete 
(by construction), and Hintikka, xi-* is a model by Lemma 2.6. I 

Theorem 2.10. If x is a PDL model then x can be extended to a consistent +-Hintikka theory 
merely by adding links. 

Proof. The reader may verify that the []+ conditions are all met by any POL model x. The 
links to be added to x to meet the <>+ conditions are ul=<A>p:>vl=p whenever 

u<A>v, vl=p,ul=<A>p E x, ul=<p?>:>ul=q whenever ul=p,ul=q,ul=<p?>q E x, and similarly for the links 
named in the other <>+ conditions. These additions satisfy <A>+ through <*>+ by 
construction. The reader may verify that the additions also satisfy <:>>+ automatically. I 
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It follows that ul=p is satisfiable if and only if ul=p f x for some consistent 
+-Hintikka theory x. Henceforth we shall work only with t-+ semantics, permitting us to drop 
the + without confusion. 

3. TABLEAUX 

So far we have disposed of the properties of being closed and complete, leaving the 
properties of being consistent and Hintikka. We now show how to use the classical method of 
tableaux [4,16,41,42], via the non-standard semantics, to test for satisfiability of PDL 
formulae. The tableau method has two parts: tableau construction, which takes care of the 
Hintikka property, and tableau testing, which takes care of consistency. We begin with 
easy-to-grasp but not very effective constructions and tests, and gradually bring them up to 
speed to yield the final algorithm. 

A tableau for r is a rooted unordered tree whose vertices are labelled with theories, 
the root being labelled with wl=r for an arbitrarily chosen state w. We use the terms 
"parent," "chi Id," "sibling," for the obvious relationships among vertices, using "descendant" 
for the reflexive transitive closure of the "child" relation. 

The tableau exhibits an exhaustive search for a consistent Hintikka theory as follows. 
Each path in the tableau is labelled with a sequence of theories xo~x 1 ~x2~··· such that for 

each consecutive pair xi,xi+l in the sequence, there is some non-literal sfy, the chosen 
non-literal of xi, such that xjl's and xi+l = xiUz where zt-s minimally. For every path, 

and every xi on that path, and every statement sfxi, there exists x j on that path with 

i~j and x ts, the w-property. 

The one non-constructive aspect of this search is the choice of W in condition [A]+. 

We deal with [A]+ constructively by taking W at each vertex to be whatever states are 

mentioned in theories along the path from the root to this vertex. This means that any given 
ul=[A]p may need to be chosen infinitely often along any given path, to take into account the 
infinitely many states that may appear along the path. However this does riot invalidate the 
properties we want tableaux to have. 

To see that such a tableau can exist for any r we may give an explicit construction. 
(A different construction will be made possible by theorem 3.3, but since that theorem has 
very narrow applicability while these preliminary ideas are very general, this construction is 
worth mentioning.) At each vertex of the tree under construction, partition the theory 
labelling that vertex into a queue (a totally ordered set) and a grave (an unordered set). At 
the root, if wl=r is non-literal the queue contains just wl=r and the grave is empty, otherwise 
wl=r appears only in the grave. At vertex V the chosen non-literal s of y is always the first 
element on the queue part of y. For each of the finitely many finite z such that zt-s 
minimally, construct a child of V whose theory is yUz, whose queue is that of y less s and 
with z (in any order) on the end, and whose grave is that of y plus s. If s is of the form 
ul=<a>p then z may contain new states, in which case all statements of the form ut=(A]p must be 
removed from the grave and put on the end of the queue following z. 

By this construction the queue and grave of every vertex will be finite, which in turn 
guarantees that the constructed tableau has the <->-property. 
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Lemma 3.1. The union of theories along any path is a Hintikka theory. 

Proof. By the w-property, every possible counter-example to the Hintikka property is taken 
care of along a path, even for ul=[A]p. r.1 

We have taken care of the Hintikka property, leaving only the consistency property to 
be tested. 

A Test for Satisfiability 

We call a test of satisfiability of statements sound when it never claims that a 
satisfiable statement is unsatisfiable, and complete when it never claims that an 
unsatisfiable statement is satisfiable. These terms are motivated by the application of a 
satisfiability tester to validity checking, where their meaning coincides with normal usage. 

Our basic test is. that r is satisfiable if and only if the union of the theories along 
some path of a tableau for r is consistent. Completeness follows from the fact that if such a 
consistent theory is found, it must also be Hintikka and contain r, whence r is satisfiable. 
Conversely suppose the root theory ul=r = xo is satisfiable. We proceed by induction. We have 
xoc;;;y for some consistent Hintikka theory y. Now suppose xic;;;;y. Let xi+l=n{zlz~s and 

xic;;;;zc;;;;y} where s is the chosen non-literal of xi. Then Xi+l must be one of x/s 

children, being minimal satisfying Xi+lh, xic;;;;xi+l• It follows by induction that there 

is a path the union of whose theories is a subset of y. This subset must be consistent since 
y is. So the test is sound. 

Inspecting all paths is less convenient than inspecting all vertices, or even all 
vertices standing in the descendant relation to one another. Define the predicate bad on 
vertices to be the least predicate such that bad(V) holds when: 

(i) V's label is inconsistent. 

(ii) All V's children are bad, unless V has no children. 

The least predicate satisfying these conditions may be formed as the intersection of 
all predicates satisfying them; the intersection can readily be seen to satisfy the conditions. 

Lemma 3.2. Given any tableau for r, r is satisfiable if and only if the root is not bad. 

Proof. (If.) If the root is not bad there must be an infinite path of good vertices from the 
root, the union of whose theories must then be consistent. 

(Only if.) If r is satisfiable then there is a consistent Hintikka theory y such that 
wl=r f y. The tableau is constructed in such a way that if the theory labelling V is a subset 
of y (as is the case for V being the root) then so is some child of V. Hence there must exist 
an infinite path the union of whose theories is a subset of y, and hence consistent since y 
is. a 
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The marking procedure 

We would like to identify the bad vertices by a process that takes c.> stages to mark 
the bad vertices. In stage O it marks the vertices whose theories are inconsistent. In stage 
i+l it marks those vertices all of whose children if any have been marked at earlier stages 
(not marking if there are no childreh) and all vertices labelled with a theory containing 
ul=<a>p with no descendant labelled with a theory in which ul=<a>p closes. Then the root is bad 
if and only if it is marked by this procedure. (We defer proof of correctness of the marking 
procedure until we have the tableau in its final form.) This is our basic marking procedure, 
almost in its final form despite the fact that a quite different kind of tableau will be used 
ultimately. 

In the case of propositional calculus, at this point in the development there are ho 
further obstacles to constructing a tableau in a number of steps of computation (of some 
reasonable machine) bounded by an exponentially growing function of the length of the formula 
under test. In the case of non-standard PDL semantics the effectiveness situation is 
complicated by condition <:)>+, which on the face of things call for 
infinitely many children when the selected s is ul=<a>p. 

Dealing with chains 

We mod ify the rule (:)) used in constructing tableaux to: 

ul=<a)p:)t ~ ul=<a>p. 

That is, ul=<a>p now calls only for the first step of a derivation of a, not the whole 
derivation. With this modification we lose the completeness property of tableaux that every 
path yields a theory that is Hintikka with respect to the unmodified conditions. On the other 
hand we do retain the soundness property that for every Hintikka y such that xoc;;y some path 
yields a subset of y. T h is is because of the "self-propagating" nature of intermediate 
links of a chain ul=<a>p:)s1,srh2,••·,sk-l~vl=p. E-very si except possibly the 

final vl=p is of the form u'l=<a' )p' , and hence there must be some path which eventually 
accumulates all the links of such a chain, by inspection of the semantics. 

We restore completeness as follows. Define ul=(a)p to complete in x when ul=<a>p~*vl=p ~ 
x for some v. Define x to be chain-complete when for every ul=<a>p c;; x, ul=<a>p completes in x. 
Modify the path- oriented test to consider only paths the union of whose labels is 
chain-complete. The modified test can now be seen to be sound and complete, as the tableau 
overlooks no .possible way of completing a chain. 

The corresponding modification to our vertex-oriented test is to add a third condition 
in the definition of bad. 

(iii) ul=<a>p is in the theory labelling V but every descendant of V in whose theory ut=<a>p 
completes is bad. 

We leave it to the reader to verify that this third condition restores Lemma 3.2 
when (:f > replaces <~>. 
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Despite our simplification of <~> to <~'> there still remains the non-constructive 
aspect of the choices for v when <~'> is being applied to ul=<A>p to yield ul=<A>p=hJ=p. We 
deal with this by observing that renaming some state throughout a theory cannot make an 
inconsistent theory consistent, although it may make a consistent theory inconsistent (e.g. 
if v is renamed to u when the theory contains ul=p and vl=---p). This then permits us to satisfy 

<=f> for ul=<A>p with exactly one descendant, in which the new theory is the old together with 
uJ=<A>p=hl=p for some v not appearing higher in the tree. Clearly this smaller tableau does not 
compromise the completeness of the test. To see that soundness is preserved we modify the 
original soundness proof so that for any consistent y containing xo there exists a path 

yielding a theory z which can be made a subset z' of y by renaming states, as the reader may 

verify by induction. Now if z is inconsistent so is z', whence so is y, a contradiction. So 
if xo is satisfiable some path yields a consistent Hintikka theory. This disposes entirely 

of difficulties associated with <f>. 

Finiteness 

We have now accomplished as much as is possible without the following theorem, which 
we need to make our tableau construction into an algorithm that always terminates, and to make 
our marking procedure both effective and terminating. 

Theorem J.J. If r is of length n, l{pl3p(ul=p appears in a tableau for r)}I ~ n. 

This is essentially lemma 3.2 of [12], to which we refer the reader for a proof. 

This leads us to the observation that, for any u, at most n distinct statements uJ=p can 
appear in a tableau for a formula r of length n. A second observation is that any statement 
vJ=p '# wl=r in the tableau can be attributed to one of only three sources: ul=<A>p=hl=p, ut=[A]p, or 
some statement naming no state other than v. We shall arrange things so that these three 
sources are processed in three batches in the order given. In this way all statements of the 
form ul=p and ul=p~t will be formed while processing these three batches. Furthermore, 
processing of ul=<p~vl=p and ul=[A]p will be left until the end of the third batch, as they 
belong to the first and second batches respectively of other states. We postpone a more 
specific account to after the next step. 

Lean Tableaux 

Our next objective is to reduce the theories in the tableau to the point where the 
only statements in a theory are of the form ul=p and ul= p~t, for fixed u; we call such a theory a 
theory of u. 

To achieve this requires not merely reducing the theories but also splitting a simple 
vertex into as many vertices as are required for each to carry a theory of a single state and 
still have the new tableau retain the information in the old tableau. 

We make these vague notions more precise by introducing the concept of a full theory, 
which is one that is "as Hintikka as a theory of a state can be." More formally, a theory x 

of state u is full when xl-s for all sEx except those of the form ul=<A>p~vl=p and ul=[A]p, and 
otherwise is partial. A full (partial) vertex is one so labelled. 
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We introduce a new kind of tableau, the lean tableau, in which xic;;xi+l is no 
longer guaranteed for consecutive theories along a path. Lean tableaux enjoy the following 
properties. 

(i) The root as before is labelled with ut=r, u arbitrary. 

(ii) For each vertex V labelled with a partial theory x there exists some sEx not of the 
form ut=<A>p~vt=q or ut=[A]p such that the descendants of V are each labelled with some minimal 
theory z such that zl-s and xc;;z, and every such minimai theory labels some descendant. 

(iii) For each vertex V labelled with a full theory x each statement ul=<A>p=ht=p E x 
corresponds to a descendant of V whose theory is {vl=p}U{vl=qlut=[A]q E x}. 

Note that Jean tableaux contain no transitions. Moreover, a partial vertex has either 
one or two children while a full vertex may have up to n children where n is the length of r. 

We now describe a test for satisfiability in terms of lean tableaux. The test is just 
a straightforward modification of the one we used on ordinary tableaux. A fat path in a lean 
tableau is a maximal set of paths such that any two paths have a common initial segment 
terminating in a full vertex. Thus for any full vertex appearing in a fat path, all the 
children of that vertex also appear in the path, while for any partial vertex appearing, 
exactly one child also appears. The point of fat paths is that they correspond to ordinary 
paths in ordinary tableaux. 

Lemma J.4. In a lean tableau, if the union of the labels of a fat path is chain-complete it 
is a Hintikka theory. 

Proof. The construction of lean tableaux is such that only nonstandard conditions [A], O> 
and <A> might be violated. <~> is taken care of explicitly by requiring chain-completeness. 
Now for each ul=<A>p~vl=p in the union add u<A>v. This suffices for condition <A> as property 
(iii) of lean tableaux supplies vl=p. Finally, for each pair of states u, v appearing in the 
union such that u<A>v is not in the theory add u(..,A)v. Then for every ul=[A]p and for every v 
appearing in the theory, one of u(..,A>v or vl=p is also in the theory, by property (iii) of lean 
tableaux. D 

Lemma J.5. For every Hintikka theory y containing r, any lean tableau for r contains a fat 
path the union of whose labels is a chain-complete subset of y to within renaming of states. 

Proof. The construction of such a path parallels the construction in the ordinary tableau 
case, except that (i) instead of a sequence of vertices being developed, each labelled with a 
subset of y to within renaming, we have an advancing frontier of vertices, and (ii) the 
induction hypothesis must be that the union of the labels of all vertices seen thus far is a 
subset of y to within renaming (since we no longer have xic;;xi+ 1 all along a path, 

even if xi is taken to be the union of the frontier's labels at the Hh step). I 
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We immediately infer: 

Corollary 3.6. Given a lean tableau for r, r is satisfiable if and only if the union of the 
labels of some fat path is consistent and chain-complete. 

The Lean Procedure 

This path oriented test can be translated into a vertex oriented test as for ordinary 
tableaux, the lean procedure. The procedure is to mark all the inconsistent vertices at stage 
0, then at stage i+l mark all full vertices with a child marked at stage i, all partial 
vertices with all children marked at stage i or before, and every vertex containing some 
ul=<a>p not linked by a chain of * statements at vertices (anywhere in the tableau) unmarked at 
stage i leading to vl=p in an unmarked vertex. 

Lemma 3.7. The lean procedure leaves the root of a tableau for r unmarked if and only if r is 
satisfiable. 

Proof. Suppose r is satisfiable. Then the union of some fat path is a consistent 
chain-complete theory. Now consider the first stage in the marking process at which a vertex 
on that path was marked. If it was marked on account of inconsistency then the union cannot 
be inconsistent. If it was marked as a full vertex with marked child then this cannot the 
first stage at which a vertex on this path was marked. If it was marked as a partial vertex 
with only marked children then again this cannot be the first stage. (Note that in a lean 
tableau . every partial vertex has at least one child.) If it was marked for not being linked 
to vl=p via unmarked vertices then we use the fact that in the union of the labels of a fat 
path all statements of the form ul=p and ul=p*t label vertices of a single ordinary path within 
that fat path and going from a child of a full vertex to another full vertex. Hence all 
constituents of a chain starting ut=<a>p* ... that are in the theory of u can be found in the 
full vertex at the end of a path containing the occurrence of ul=<a>p responsible for the 
marking. This chain must continue in exactly one of the children of this full vertex, and so 
on until completion. The whole chain (to be precise, an occurrence of every link of the 
chain) then appears entirely within the given fat path, whence if there is a link of the chain 
in the fat path no occurrence of which is at an umarked vertex, again we cannot be at the 
first stage when this fat path was marked. Hence at no stage can any vertex of this fat path, 
including the root, be marked. 

Conversely, suppose the root is not marked at stage i for any finite i. Construct a 
fat path as follows. Initialize the set S of vertices to contain just the root. Proceeding 
by stages, at each stage, add to S all the children of each full vertex in S, and an unmarked 
child of each partial vertex in S not already having a child in S. Whenever a vertex labelled 
with ul=<a>p is added to S, add to S some full vertex below that vertex that contains as much 
of the promised chain for al=<a>p as appears in the theory of u (this full vertex must exist), 
along with all vertices between the two vertices, then follow the chain into the next state 
and continue adding states until the end of the chain is reached, a finite process. (As we 
have described it, an entire chain is added as part of a single stage.) By the marking 
process it should be evident that every vertex in S remains unmarked. Hence at the end the 
theory labelling that path must be consistent (since inconsistent formulae must belong to the 
theory of the same state and hence appear together in the full vertex of the part of the path 
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going through that full state) and chain-complete (by the construction). Hence r must be 
satisfiable. B 

We define two vertices to be equivalent when their theories are the same to within 
renaming of st;ites, ;ind two trees to be equivalent when their roots are equivalent and to 
every subtree of one root corresponds an equivalent subtree of the other. Since each theory 
can have at most n formulae to within renaming, there can be at most 2n mutually inequivalent 
vertices. We also observe that if equivalent vertices always have the same set of labels on 
their children (easily arranged by having a method of choosing s that depends only on the 
particular partial theory being extended) then two trees with equivalent roots are equivalent. 

Inspection of the marking algorithm reveals that equivalent t rees will be marked 
identically, whence equivalent vertices will all be marked simultaneously. Hence the marking 
cannot proceed for more than 2n stages without reaching some stage at wh ich nothing new is 
marked, after which nothing new is ever marked. 

This suggests that we filter the tableau (the term used by modal logicians for the 
process med in the proof in [12] of the finite model theorem). That is, we identify 

equivalent vertices to yield a directed graph, instead of a tree, having at most 2n vertices. 
Such a graph can be effectively constructed by a machine. 

To construct the graph using a random-access machine it suffices to construct a lean 
tableau, represented using bit vectors of length n to encode each theory, and to keep an eye 
out f_or repeated states. Since our algorithm is going to use exponential storage anyway, one 
may as well set aside an array of 2n locations indexed by the bit vector representation of 
theories to represent which theories (modulo state names) have been encountered and where they 
are in storage. A II this can be done in time proportional to 2n times some small polynomial 
in n. 

The marking procedure applied to this filtered tableau will at stage i mark exactly 
those vertices th at are the images of vertices in the unfiltered tableau marked at stage i. 
Hence the root of the filtered graph will be marked if and only if the root of the unfiltered 
graph was marked by the procedure. 

While the m;irking time is not linear in the number of vertices in the graph, it is 
clearly proportional to a small polynomial in the number of vertices, establishing our upper 
bound of c11 for some c. The non-linearity is due entirely to checking for chains. A crude 
method of checking would be to compute the transitive closure of the chain relation on the 
n2n facts appe;iring in the graph after each stage of checking, which would lead to c=16 if a 
cubic-time transitive-closure algorithm were used. This can be reduced to c=8 by taking 
advantage of the fact that only two links can have the same first statement, whence their are 
only 2n211 links. Further reduction should be possible. As a practical matter, one can 
expect the number of vertices in the graph to be quite small typically (e.g. in a program 
verification context), whence the important issue is whether one can reduce the marking time to 
say the square or better of the number of vertices, an issue we do not go into here. 

The marking procedure as described requires the marking to be done in stages, with all 
marks made in stage i+l depending only on marks made at or before stage i. This is a little 
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inconvenient to program, and the simpler procedure of having each mark depend on all marks 
made up till now, including those made at the current stage, will also work. This can be seen 
to be true by carrying out the proof of correctness of the unfiltered marking procedure 
modified so that at each stage only one equivalence class of vertices is marked. The 
procedure stilt halts in finitely many steps since there are only finitely many equivalence 

classes. 

4. MISCELLANEOUS REMARKS 

DL and Algorithmic Logic 

We developed dynamic logic in 1974 while teaching a course on Floyd-Hoare axiomatics 
[34], feeling a need for a treatment of the subject in the style to which mathematicians are 
accustomed, and described it at an ACM symposium in 1976 [36]. (The name "dynamic" was first 
used in [17].) Unknown to us at the time, the Polish logician Salwicki had already given an 
admirable treatment of the subject in 1970 [39] for the case of deterministic programs, 
calling his treatment algorithmic logic. Our discovery of Salwicki's work lessened 
considerably our estimation of the extent of the contribution made by the development of 
dynamic logic. However, the dynamic logic treatment differs from the algorithmic logic 
treatment in three important respects, each of which we feel makes dynamic logic the better o{ 
the two treatments. 

First, algorithmic logic confines itself specifically to deterministic programs, while 
dynamic logic deals with nondeterministic programs, thereby subsuming algorithmic logic. The 
syntax and semantics of algorithmic logic would take considerable restructuring to extend 
algorithmic logic to cope gracefully with nondeterminism. It seems unlikely to us to be 
possible to so extend algorithmic logic other than by a wholesale replacement of its 
constructs by those of dynamic logic. That the extension is necessary is evident from the 
recent but very strong interest in reasoning about nondeterministic action 
U,8,9,14,18,21,381 Dijkstra [9] in particular makes an excellent and delightfully 
illustrated case for nondeterministic programming as a valuable tool for every programmer, a 
case which our own programming experience bears out. 

Second, algorithmic logic introduces a number of mathematically novel constructs taken 
from the programming milieu whereas dynamic logic has no mathematical novelties save 
assignment and the mathematically trivial notion of test, and even assignment is absent from 
PDL. Instead dynamic logic takes its constructs from modal logic and Tarski's calculus of 
binary relations, permitting greater utilization of existing theory and reducing the cost of 
entry into the program logic arena for mathematicians already expert in those areas. (The 
contributions made to dynamic logic by the modal logicians K. Segerberg and D. Gabbay supply 
concrete examples of this phenomenon.) 

Third, dynamic logic is eminently suited to reasoning about action (change of state) 
in general, not merely the processes encountered in computer programming. Thus it is just as 
applicable to reasoning about change of state in natural language discourse analysis as in 
computer programming. For example, knowing the validity of "If your TV set won't work, then 
.after you kick it still won't work" one can infer the validity of "If your TV set won't work 
then no matter how often you kick it it still won't work," using the rule, from p=>[a]p infer 
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p =>[a*Jp. It was with such generality in mind that the term "dynamic" was chosen to describe 
the logic, to maintain neutrality. towards particular domains of application of logics of 
change of state. 

Despite our feeling that dynamic logic is the better of the two logics, we 
nevertheless feel also that algorithmic logic represents a substantial milestone in the 
history of logics of programs, both in supplying a mathematically excellent treatment of 
program logics and in starting a flourishing school of algorithmic logic in Warsarw. It is 
unfortunate that the work failed to catch earlier the attention of the bulk of the western 
world. (On the other hand, if it had we might not have felt the need for dynamic logic 
sufficiently strongly as to have invented it, and so would have lacked a framework within 
which to make the sort of discoveries reported here.) 

Another contribution along the above lines was recently made by Constable [6). 

Constable's logic is considerably closer to algorithmic logic than to dynamic logic. His 
language however departs from both propositional dynamic logic and algorithmic logic in 
permitting naming of and quantification over states. Constable has shown that Viilidity is 
decidable in this language. More recently Parikh [33] has shown that an even richer language, 
quantifying over both states and state sequences (of ongoing computations), and permitting 
discussion of relative order of states within sequences, is decidable, using Rabin' s decis·ion 
method for weak SnS. 

Software Engineering Considerations 

DL has received a mixed reception from what one might characterize as the "hard hat" 
end of the program verification spectrum of researchers. A common reaction is that DL might 
be cute theoretically, but it is not the robust sort of product demanded by practical 
considerations in the real world of program verification. In fact no such objection can be 
sustained because dynamic logic is no more than a cleaned up and extended version of Hoare's 
logic, which is certainly taken these days as a sine qua non of verification. Thus in any 
proof of p{a}q, there is a corresponding proof in DL of p=>[a]q. The fact that DL goes on to 
handle in stride other issues such as termination can hardly be seen as a criticism of DL over 
Hoare's logic. 

There has also been the criticism that no substantial DL proofs have ever been given. 
This criticism is unreasonable of any system into which it is straightforward to translate 
substantial proofs that already exist in other logics, e.g. Hoare's. The process of 
translating Hoare proofs into DL proofs is a purely mechanical exercise given a table of 
abbreviations and rule derivations. Such tables are readily supplied for all the logics 

mentioned above. 

More sensible however is not translating proofs at all but rather considering DL to 
mp ply the base language for an extensible logic of programs, where extensions are carried out 
by (i) defining new constructs from old, (ii) taking theorems as axioms, and (iii) taking 
derived rules as rules. Factoring out a base language in this way is sound engineering. The 
bulk of the implementation effort can be focused on the base language, leaving the 
implementation of the extended language as a relatively easy task. The smaller and more 
modular the base component can be made, the simpler its implementation becomes. 
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It is possible to overdo the minimization of the base language, and one must take care 
that the extended language remain easy to derive from the base language. It should be clear 
from our examples of definitions in section 1 that DL observes this constraint admirably. 

This methodology is a valuable tool in metamathematics, and there is no reason why it 
should not be an equally effective tool in "meta-programming" (writing of program verification 
systems, program synthesizers, and for that matter compilers, interpreters, and any other 
programs that manipulate programs). 

We are at present engaged in implementing mechanical proof systems to evaluate the 
extent to which this technique helps. One such system incorporating early ideas about DL, and 
implemented in LISP on a PDP-10, has been in operation since August 1977, and we are now 
building a second system to incorporate and further improve the developments reported in this 
paper. 

Using the first system, the largest DL proof that has been subjected to successful 
mechanical verification to date is a proof of the total correctness of the Knuth-Morris- Pratt 
pattern-matching algorithm (231 This proof consisted of some twenty theorems stated in DL, 
and was certified in 4S seconds. The proof supplies an excellent illustration of how one can 
take ad vantage of DL's "primitive" primitives in structuring the proof for better 
understandability to a human. This work will be reported on in the near future. 
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