
-

LABORATORY FOR
COMPUTER SCIENCE tt MASSACHUSETTS

INSTITUTE OF
TECHNOLOGY

MIT/I.CS/'Il1-112

A DOCIDABILITY RESULT FOR A SOCOND

ORDER PRCCESS IffiIC

Rohit Parikh

September 1978

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/TM- 112

A DECIDABILITY RESULT FOR A SECOND

ORDER PROCESS LOGIC

Rohit Parikh

July 1978

CAMBRIDGE

MIT/LCS/TM-112

A DECIDABILITY RESULT FOR A SECOND

ORDER PROCESS LOGIC

Rohit Parikh

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

MASSACHUSETTS 02139

08/ 25/ 78 15:57

A DECIDABILITY RESULT FOR A SECOND ORDER PROCESS LOGIC.

Rohit Parikh

Laboratory for Computer Science, M.I.T ., and
Mathematics Department, Boston University

July 31, 1978

Abstract: We prove the decidability of the validity problem for a rather general

language for talking about computations. As corollaries of our result, we obtain
some decidability results of Pratt, Constable, Fischer-Ladner, and Pnueli and also

a new decidability result for deterministic propositional dynamic logic.

Introduction: In recent years various authors have introduced languages to talk

in an abstract way about computation processes and programs. Examples include the
dynamic logic introduced by Pratt [PrlJ and the monadic program logic introduced by
Constable [CJ. Constable's logic is decidable as is also the propositional case of

dynamic logic [FLJ. Both propositional dynamic logic and monadic program logic

allow us to talk about what happens if and when the program terminates. But they
do not allow us to say what happens during the computation. Recently, Pratt [Pr2]

has introduced a logic of processes which allows some process connectives whose
semantics is dependent on what happens during computation and not just on what

happens at the end. It appears likely that the logic that he gets has the finite
model property. I.e. every formula that has a model has a finite model. (It is

decidable, as we shall show.) We also have the temporal semantics newly introduced

by Pnueli [Pnl

Thus we have various languages introduced by various authors. Why not have a
universal language that includes them all? Let's look at the situation in detail.

Consider a computer C· and let S be the set of internal states. S need not be

finite but we shall assume that it is at most countably infinite. A (computation)
path p will be a sequence of states in S and a program will be a set of such paths.

Key Words: dynami c logic, theory of pr ograms, decidability

This research was supported by the National Science Foundation under
NSF grant number MCS78-04338.

08/ 25/ 78 15:57
2

A statement that we are interested in may be true in some states and false in
others, so it will be a unary predicate P on S.

The language L for talking about the situation above contains a finite number of

unary predicate letters P1,···,P m, and a finite number of basic program letters

a1 ,-·,an- New programs may be formed by taking (nondeterministic) unions, ; and
*. (It is well known that "if .. then .. else .. ", and "while _ do _" can be

defined in terms of these. See e.g. (PrlJ). We also have variables for states and
paths and atomic formulas will have the form P(s) (the predicate P holds at the
state s), a(p) (the path p is a computation of the program a) and

0 (p ,s1 , ... ,sn). (The states s1 , ... ,sn have occurrences on the path p in the

order shown.) New formulas are formed through truth functional combinations and
quantifying over states and paths. If A is a formula with a single state variable,
a program A? can be formed, which will be a test of the truth or falsity of A
[PrlJ. This language can easily be shown to include the monadic program logic of
Constable, the propositional dynamic logic of Fischer-Ladner-Pratt, the (recently

introduced) process logics of Pratt, and Pnueli's temporal semantics formalised in

his system DX.

It turns out that the language of which we have given a rough description above
is undecidable since the first order theory of an arbitrary binary relation can be
interpreted into it. However, there is a way around this problem, and it doesn't

consist of consulting an oracle. Rather imagine our computer to be equipped with a
clock. This cannot affect any question we are actually interested in since for the
running of a program or its correctness, a clock is neither here nor there.
However, a clock prevents a program from ever returning to the same point. The

most one can have now is a return to a point that looks very much like an earlier.
point but is none the less distinct. Now a clock keeps record of time elapsed. We
can also keep records of programs we performed starting from so, (some fixed

starting state). We can ask that records be kept of the paths chosen (for

nondeterministic programs), the number of steps performed along each path, etc.

Thus we get a new computer that looks just like the old one, except that these
records being part of the state give it a tree-like structure. No computation path

belongs to two distinct basic programs, no computation ever returns to the same

point and so on. None of this can affect the sorts of questions we are interested

in, such as termination or correctness of programs. It turns out, however, that it

~- --- ------·-··------ ______ ,.. ··- -· -·---. --

OP/ 25/ 78 15:51

3

can affect questions that can be posed in the language described above. It follows
that the questions we really should concern ourselves with are those that belong to
a subpart of L, the part L- consisting of those formulae that are unaffected by the
addition of auxiliary information. And now comes the payoff! We can show that
the languages of Constable, Pratt, etc., can still be interpreted in our smaller
language L-. Moreover, the theory of L-, which is clearly the same as the theory
of L- over tree-like models, can be interpreted in Rabin's SnS [RaJ, and is
therefore decidable. Also, a slight modification of the construction yields the
decidability of propositional dynamic logic where all basic programs are

deterministic.

1. The Language L:

Alphabet: state variables: s1,s21 ...

path variables: Pl,P2, ...
basic programs: a1,a2,-·,an
basic predicates: P1, ... ,P m

Also: u, ;, *, .,, v, 3, 0, (,), ,. Note that= is not a symbol of
L.(Vx) is an abbreviation for -,(]x),. Similarly/\, ➔, etc.

We define the notion "program" and "formula" for L by simultaneous recursion.

Programs: 1) Every basic program is a program . .
2) If, «,fJ are programs, so are (au {J), (a;fJ), a*.
3) · If A is a formula with a single free state
variable, then A? is a program.

Formulas: 1) If P is a basic predicate and s is a state variable, then P(s) is a
formula.

2) If s1 1 ... ,sn are state variables, where n ~ 1, and p is a path

variable, then O(p,s1,···,sn) is a formula. (Such formulas are called

0-formulas and their intuitive meaning is: "The states s1,-,sn occur, in that

order, on the computation path p." The si need not be distinct, but O stands for

. < rather than :S. I.e. the computation path may cross itself but O records a
positive passage of time.)

(3) If a is a program and p is a path variable, then «(p) is a formula. {It

Oe/ 25/ 18 1S:S1
4

means: "The path p is a computation path of the program «".)
(4) If A, B are formulas, so are ,A, (AvB}

(S) If A is a formula, s is a state variable and p is a path variable then
(]s)A, (]p)A are formulae.

Notation: A, B, C, .. stand for formulae, a,b,c, for basic programs. «, /J, "I for

arbitrary programs. s, t, u, for state variables, and p, q for path variables. s,
t, stand for actual states (in some model) and p, q for actual paths.

Semantics for L: An Interpretation M for L consists of

(1) A nonempty universe U (This will be the set of states)
(2) for each basic predicate Pi a subset Pi of U

(3) for each basic program ~i' a subset Ri of P where P = the set of all
finite or infinite sequences from U.

Interpretation of Programs: For each program « we define a subset R« of P as
follows:

(1) If a is an ai then Ra is Ri.
(2) If a is fju-y then Ra is Rt3uR'Y

(3) If a is fj;-y then Ra is the set of all paths (so,s1,-,sn,sn+l,->

where (so,-·,sn) is in Rt3 _and (sn,sn+i, ... ,-) is in R-y where the

path in Rt3 is finite and the path in R'Y may be finite or infinite.

(4) If a is fj* then Ra is ~ Rt3n where fjn = fj ;fl ;-;fJ (n times, n ~ 0).
(S) If A is a formula with the single free variable s, and « is A? then R« is

the set { (s ,s) Is satisfies A in M}.

Interpretation of fomulas: This is easiest to explain if we add constants to L for
each state sfU and each path pf P. We shall consider closed formulas only for the
moment. M !=A means: A is true in M.

p.

(1) M~ Pi(s) iff sf Pi.

(2) M~ 0 (p,s1 , ... ,sn) iff si,-,sn have occurrences in that order on

(3) M~a(p) iff pis in Ra

(4) M ~,A iff Mf A
(5) Mf AvB iff MJ:.A or M~B

OP/ 2S/ 78 15:57
s

(6) M~(3p}A(p} iff 3p such that M~A(p)
(7) MH3s)A(s) iff 3s such that M~A(s)

If A has a .single free variables thens satisfies A= A(s) iff M~A(s).
Similarly if we have several free state and path variables. A formula with free
variables is satisfiable in M if there are states and paths that satisfy it. It
is satisfiable if it is satisfiable in some M. It is valid if its negation is

not satisfiable.

Theorem J: The validity problem for L is undecidable. Proof: We show that the
validity problem for the first order theory of a binary relation can be coded into
the validity problem for L. Given a binary relation R over a set X, we can take an
interpretation M where V is X, there is a single program letter a where Ra is

intended to be {(s,t)l(s,t)ER)} and now Rxy can be written (Jp)(a(p)/\O(p,x,y)).
We extend this map to the predicate calculus in the obvious way. If A is a formula
of the predicate calculus and A+ its translation in L, then it is easily seen that
A is valid in the predicate calculus iff A+ is a valid formula of L.

Q.E.D.

2. The Language SOAPL

We saw in the last section that the language L is undecidable. We now define a
sublanguage L- of L obtained by limiting the class' of formulas. L- has the
property that whenever a formula has a model it also has a tree,..Jike model. · This
property can be used to code L- into Rabin's SnS and hence the validity problem for
L- is decidable. Because satisfiable formulae of L- can always have cycle-free
models, we shall refer to L- as second order acyclic process language or SO A PL.
Note that we are not requiring S0A PL only to have acyclic models, but merely
asserting that whenever there is a model, there is one that is acyclic.

Alphabet: S0APL has the same alphabet as L plus the symbol Bg. Bg(w,p) stands for:
"w is the first state of p", and can be written O(p,w)/\-,(Js)O(p,s,w), but the ·
restrictions on formulae that we shall impose make it necessary to have this as a

separate symbol.

OP/ 2S/ 18 15:51
6

Programs: Same as L except, having fewer formulae, we shall have fewer programs of
the A? type.

Formulas: Basically our formulae enable us to define unary predicates of states and
paths. We define first three auxiliary notions.

0-formulas: O(p1s1-sk) is an O-formula where k ~ 1.

Now we define path formulas and state formulas by simultaneous recursion.

State formulas. 1) P(w) is a state formula
2) If A, B are states with the same free state variable, so are -.A, (Av B).
3) If A(p) is a path formula then (3p)(Bg(w,p) /\ cr(p) AA(p)) is a state

formula, where a is any program.

Path formulas: 1) let C be a truth functional combination of O-formulas with the
same path variable and state formulas such that no state variable occurs in two
different O-formulas nor twice in the same one. If sl-Sk are all the free

state variables of C and Q1,-·Qk are quantifiers, then (Qi51)-(Qksk)C is a

path formula. (The quantifiers are thought of as relativised to the path in
question. E.g. if the path is p then (3w)("w") in S0APL means: (3w)(wEp I\

•• w ••) .)

2) If A, B are path formulas with the same path variable then so are -.A,
(AvB).

And now we can define arbitrary formulas of S0APL.

Formulas: (of S0A PL) are obtained from the state and path formulas by taking truth

functional combinations and/ or quantifying. Note that state and path formulas
define unary predicates of states and paths.

Basically we have set up a situation where we can say about a ·path what sorts of
states it has, and in what order. We can say of a state that it satisfies some Pi
or doesn't satisfy it and we can say what sorts of paths begi,n at it Also these
properties can feed off each other by recursion back and forth. However, we can
only define unary predicates this way, and while we do have access to 0, we have

OP/ 25/ 78 1S:S7
7

put limitations on its use, so that it cannot be used to create genuine binary
predicates. Ultimately, since the_= sign is absent, and we do not allow dual
occurrences of state variables in 0 -formulas, even states and paths do not have
real existence but only serve as a means of saying things about programs. E.g. we
can say about programs ex, fJ that they both have paths with some complicated
property, but we can't say in SOAPL that this is the same path. This fact is the
due to the decidability of (the validity-satisfiability problem of) SO APL. Since
SO A PL is dosed under truth functional combinations, this implies also the
decidability of the consequence problem for sentences.

Theorem 2: (a) SOA PL is decidable
(b) SOA PL is decidable if we restrict ourselves to deterministic programs.

Proof: Section 3. Note that (a) does not imply (b), since there is no way in SOAPL
to say that all basic programs are to be deterministic. .

Theorem J: Propositional dynamic logic, the process logic of Pratt, the logical
system DX of Pnueli, and the monadic programming logic of Constable are all
interpretable in SOAPL.

Cor: A JI the above mentioned logics are decidable.

We shall not give a detailed proof of Theorem 3. Rather we shall give actual
translations of certain. crucial notions from the various logics into SO A PL. From
that it will be evident that the whole logic can be translated. We also show that
the notions of partial and total correctnes·s can be translated into SOA PL.

a. A{ex}B. The partial correctness of ex with respect to A, B can be expressed by
the formula:

(Vw)(Vp)(Bg(w,p) /\ ex(p) /\ A(w) ➔ (Vs)(Jt)(O(p,s,t)vB(s))

b. A<ex>B. The total correctness of ex with respect to A, B can be expressed:
(Vw)(Vp){Bg(w,p) /\ ex(p) /\ A(w) ➔ ((Js)(Vt)(,O{p,s,t) I\ B(s))} Note: the

notation above is ad hoc. There seems to be no standard notation.

oat 25/ 1s 1s:s1
8

c. [aJA. This is a notion from dynamic logic [Prl]. [a]A holds at w if every
state reachable from w by a satisfies A. Here we assume that A has already been
translated as A+. Then [a]A translates as

(Vp)(Bg(w,p) /\ a(p) ➔ (Vs)(Jt)(,O(p,s,t) ➔ A+(s))

d. a.J"A. "a preserves A" [Pr2J, means that if, during an a computation, A holds at
any state, it continues to hold. It can be translated as:

. (Vw)(Vp)(Bg(w,p) /\ a(p) ➔ (Vs)(Vt){(O(p,s,t) /\ A(s)) ➔ A(t))}

e. In Constable's monadic programming logic, the basic programs are treated as
functions. It would seem that they are not only deterministic but are also
everywhere defined. However, we can translate without such assumptions. Thus,
e.g., P (f 1 (w)) can be translated as:

(Vp)(Bg(w,p) /\ f1(p) ➔ (Js)(Vt)(,O(p,s,t) /\ P(s)) (Here f1 is some ai in
our notation.)

f. We cannot say in SOA PL that a program is deterministic . This is because we
cannot say in L that two paths or states are equal or unequal. However, the logic
of deterministic programs can be handled by using a new translation of SOAPL into
SnS which allows programs only one path (at most) per state. Then the decidability
of the validity problem for SnS implies the decidability of the validity problem
for SOA PL interpreted over deterministic programs.

g. We can say in SOAPL that a particular program terminates. E.g., "a always
terminates at w" is

(Vp)(Bg(w,p) /\ a(p) ➔ (3s){Vt){,O(p,s,t))).

h. Pnueli [PnJ, in his system DX, introduces two temporal connectives which are
unary functions from statements to statements. The context in which he works is
that of a single deterministic program which we shall call a. If A(s) (our
notation) is a state formula then GA(s) means that A holds during all
future moments of the program, whereas XA(s) means that A holds at the next moment
of the program. If his program is a, then let fJ be the program which executes

exactly one step of a when a has not ended. Then we can write GA as [tl*JA, and
XA as [fJJA, and we have already shown, inc. above, ·how to express these. Note

Oe/ 25/ 18. 1S:S1
9

that we need not confine ourselves to one program as Pnueli does, but can take

arbitrary regular combinations of arbitrarily many programs.

Concluding Remark.: It is often said that the decidability or undecidability of a

particular problem in general does not give us adequate guidance for actual
practice. The L, SOA PL example illustrates this since L is undecidable, but SOA PL
is adequate to express most notions that interest us which are expressible in L.

3. The Decidability of SOAPL

Since this result is proved by reducing SOAPL to SnS, we shall briefly review
.SnS. SnS, the second order theory of n successors, can be thought of as the theory
of l:* where l:={O'i, ... ,O'n}. The language of SnS includes then successor

functions defined by Si(x) = XO'f, i = 1,.",n where xEl:*, 0'/2:. We also
have equality in this language, the usual truth functional connectives and two
kinds of quantifiers. We have first order quantifiers which range over I* (these
will be x,y,z, ...) and second order quantifiers (X,Y,Z, ...) which range over
subsets of l:*. Since we have in mind a unique model, the one described above, we
have the set of true sentences defined uniquely. This set is recursive by Rabin
[R], and non-elementary by Meyer [MJ.

The reduction of SOAPL to SnS is accomplished in the following way: we give a .
translation of L into SnS which is not meaning preserving for the whole of L.
However it has the property that if the formula A is in SOA PL then A i.s valid iff
its translation is true. This shows that the validity problem for SOA PL is
decidable. We begin by showing that certain notions are definable in SnS. Note
that concatenation cannot be one of them, since it known from [QJ that even the

first order theory of concatenation is undecidable.

OP/ 25/ 78 15:57
10

Notation: "x is in X" is written X(x).

(1) x s y. x is an initial segment ofy, is defined by

(VX)(X(x) /\ (Vz)(X(z) ➔/~X(Si(z)) ➔ X(y)).

More generally we can also define x SA y where A is a sub-alphabet of
2:, by restricting the conjunction on i=l,-,n, above to A only. x SAY
means: there is a string z in A* such that y = xz.

(2) LO(X): X is linearly ordered.
(Vx)(Vy)(X(x) /\ X(y) ➔ x s y v y s x)

(3) X ~ Y: (Vx)(X(x) ➔ Y(x)). Similarly X = YuZ,
X = Ynz, etc.

(4) x = lnit(X). xis the first point of X. LO(X) /\ X(x) /\ (Vy)(X(y) ➔ x s y).

(S) x = rin(X). xis the last point of X. Just like (4) above.

(6) X = Seg(x, y). X is the segment between x and y.
X = lnit(X) /\ y = rin(X) /\ (Vz)(x s z /\ z s y ➔ X(x))

(7) Let Y be a fixed regular set of strings. Let Rxy mean:
(3z)(Y(z) /\xz=y),

then Rxy is definable in SnS.

We sketch the proof which is by induction on the complexity of the regular

expression defining Y. If Y = {cri}, then the formula A(x,y) defining Rxy is:
y = Si(x).

If Y = Y1uY2, then A(x,y) is

A 1 (x ,Y) v A2(x ,Y), where A 1 and A2 are the formulae corresponding to Y 1
. and Y 2 respectively.

If Y = Y 1 ·y 2, where . denotes the product operation on sets of strings, then

A(x,y) is

(3z) (Ai (x,z)/\A2(z,x)).

08/ 25/ 78 15:57
11

And finally if Y = (Z)*, and B(x;y) corresponds to Z, then the formula for Y is:
(3W){W(x) /\ (Vz)(W(z) /\ z<y ➔ (]w)(z<w /\ wSy /\ W(w) /\ B(z,w)} /\ x~y.
A set that we are particularly interested in is the regular set K =

((al+'"+an).c.(b*))*. The binar, relation Kxy stands for: (3z)(K(z) /\ y = xz).

Note that we can use lnit, Seg, etc. as if they were functions. E.g. .
A(Seg(x,y)) is an abbreviation for (3X)(A(X) /\ X = Seg(x,y)) where Xis a variable

free in A(X).

Let A be a formula of L and M a model of iL We shall confine ourselves to
countable models M. We can also assume without loss of generality that M is
connected in the sense that there is an origin state so from which every other
state is reachable by executing programs. For let the universe U of states be
{so,s1,-,'"} and introduce a new program.a which takes si to si+l (sp to
itself if U is a finite set and there is a last state sp). We have to show how

M can be coded into a model for SnS (actually S(n+2) S) with certain auxiliary

sets V ,X 1,-,X n,Y 1,".Y m of strings, which code information about M. In
particular, the Xi code the programs ai, and the Y j code the pradicates Pr The ·

set V ~ l;* codes the universe U of M.

Suppose a1-an are the basic program letters and suppose' for simplicity that

the programs R i,, .. ,Rn in M are deterministic. (Later we shall show the
necessary modifications if these are not deterministic. The translation for
deterministic programs is not a special case of that for nondeterministic programs,
but they are similar.) We let :t = {a1,, .. ,an,b,c} and consider the map <Ii,
from :t*, into U and the map '1t defined on certain subsets of :t* as arguments. The
domain of <Ii is a proper subset of the :t*, and is in fact a subset of the regular
set K that we defined before. The domain of '1t consists of certain linearly ordered
subsets of :t*.

a) <Ii(>.) = so, where >. is the empty string.

b) Suppose that <li(x) is defined and equals sand that x does not end in some ai
or in c. Suppose there· is a path p in Ri (the path will be unique by the
assumption above) which starts at s, then <li(x) = <li(xai) = <li(xai') = s.
Moreover, for every k < l(p) (= length of p = number of states on p), the strings

OP/ 25/ 78 15:57
12

. xaicbk are put in Xi which is the correlate of Ri in 2:* and if s j is the jth

state on p, then ~(xajCbj) = s .t If X = {xajCbkl O:Sk(l(p)} then we let

if(X) = p.

finally we let Yi= {xix~?* and Pi(t(x)) holds}

and V = {xi 4i(x) is defined}.

Example: Suppose for example that the model M consists of the states

{ail O :s i :s 2}, a predicate P that holds at si for 1 = 1, 2. and two programs

Ri, R2, where R1 = {(so,s1), (s1,s2) }, and R2 = {(s1,s2)}. Then M', its
translation into S4S, will have

V = {",ai,a1 c,a1 cb,a1 cba1,a1 cba1c,a1cba1cb,a1 cba2,a1cba2c,a1cba2cb }.

Of these"' ai, a1c, will all represent so, and a1cb, a1cba1, a1cba1c,
a1cba2, a1cba2c will represent s1. Similarly a1cba1cb will represent s2 and

a 1 cba2cb will also represent s2. The set Y will contain all the strings that

represent either s1 or s2, The picture below shows both M and M'. In M',
the strings that belong to Y are enclosed in little squares. Note that the path W
starting at a1c and ending at a1cba1cb satisfies (a1;a1HW), but not a1(W),
beacuse the piece a1cb, a1cba1, a1cba1c, which is all within s1 as it were,

is missing. If we think of the paths ai as railway lines, then we can think of

pieces like a1cb, a1cba1, a1cba1c as taxi rides from one station to another.

These taxi rides perform the important function of allowing us to represent both

paths and programs as subsets of 2:*, rather than programs as sets of subsets of
l;*.

Oe/ 29/ 18 12:48
13

Now we define some futher notions in SnS. We write (writing xa1 for Si (x)

etc.)

(8) Suc(x,y) : y = xa1c v _ v y = xanc. t(x) and t(y) are the same, but y is

the beginning point of a program while x is not. If s = t(x) = t(y), we need
these two copies of s to prevent the following problem. Really er(p) should mean: p
is an element of er, but since we don't have sets of sets, we coded this as: p is a
subset of er. This creates the possibility that if the end state of a program is

also a start state, then the program would run twice without our intending this. We
avoid this problem by making x and y distinct, and to start up the program again,
we would need the connecting link from x toy. We shall also need,
Sam(x,y):(Jz)(Jw)(Suc(z,w) /\ z s x /\ z s y I\ x s w I\ y s w) Sam(x,y) says that x
and y represent the same state in M.

(9) Uni(V): (Vx)(Vy){V(x) /\ y s x ➔ V(y)}
/\ (Vx)(Vy){V(x) /\V(y) /\ x < y ➔ xb Sy V

(Jz)(Suc(x,z) /\ (z s y v ye= z))} /\ V ~ K
Uni(V) means that V is subset of l:* which could

correspond to the U for some model M.

ow 29/ 18 · 12:48
14

(10) Y = Cone(X,Z): (3x1H3x2HSuc(x1,x2) /\ Y(x1) /\
Y(x2) /\ (Vz)((X(z) .-. Y(z) /\ z s x1) /\

(Z(z) .-. Y(z) /\ "2 !!:z)) /\ LO(Y) /\ Y = X u Z u Seg(x1,x2)
·· This says that the path Y has been obtained from the

paths X, Z by taking their union and putting in the
connecting piece w·e mentioned in (8) above. If i'(X)

= p and i'(Z) = q, then i'(X) is deftned and equals
pq.

(11) a.(W): (a) If a is ai then c:t(W) is W ~ Xi/\ LO(W)

(b) If a is fJu-y then a(W) is fJ(W)v,y(W)
(c) If a is fJ ;,y then a(W) is

(JW1)(3W2HW = Conc(W1,W2) /\ fJ(W1) /\ -y(W2))
(d) If a is fJ* then a(W) is

LO(W) /\ (JZ){ZClnit(W)) /\ Z ~ W /\

(Vy)((Z(y) /\ -.(y = Fin(W)) ➔ (]z)(]x)(Suc(y,z) /\

z < x /\ Z(x) /\ fJ(Seg(z,x)) /\ Seg(z,x) ~ W)}

a(W) say-s that W is a path in the program a.

Lemma: a(W) holds in M' iff there is a p in Ra such that i'(W) = p. ·
Proof: By induction on the complexity of a:. The result holds by definition if a is
some program ai. Otherwise a: is of the form fJu-y, or fJ ;,y, or fJ*.

a) a = flux. This case is easy. a(W) holds iff fJ(W) or X(W) holds, by (llb)
above, iff if(W) is in RfJ or in R-y , iff 'IJr(W) is in Ra.

b) a is fJ;-y. Then by (He) above, if a(W) holds then Wis obtained by
'conc'ing two pieces U and V and fJ(U) and -y(V) hold. Hence 1' maps U, V

respectively into paths q and r which are respectively in RfJ and R,y , and

by the last part of (10) above i'(W) will be the path p =qr.Conversely, if i'(W)

is in Ra, then since a is fJ;-y, p must fall into pieces q, r, which are in RtJ,

R-y , respectively. There must be pieces V, and V (plus a connecting little
piece) of W, such that 'IJr(U) = q, and 'IJr(V) = r.

c) a is of the form fJ*. This case is just like b) above.

(12) Progi(X), X codes Ri for some model M, is:
(VY){LO(Y) /\ Y ~ X ➔ (3x)(3y)(y = xai' /\ Y(y) /\

(Vz)(Y(z) ➔ y !!e{b} z))} /\ X ~ V

08/ 29/ 78 12:48
15

(13) Pred (Yi): Yi represents a predicate for V
(Vx)(Vy)(Vz){Suc(x,z) /\ye= z /\ V(x) /\ V(y)

/\ V(z) ➔ ((Y1(x) +-+ Yi(y)) /\ (Yi(x) +-+ Yi(z)))}

Now for each formula A of L involving a1-an, Pi,-.,P m we define a formula

A' of SnS involving X1,·-,Xn, Yi,.-,Ym, V. We make the convention that the

string variables, x, xi correspond to the state variables, s, si and the set

variables, W, W i correspond to the path variables, p, Pi·

Def: (1) A is Pi(sj) then A' is Yi(x j)

(2) A is O(p1s1, ... ,sn). Then A' is

LO(W) /\ W(x1) /\ ... /\ W(xn) /\

x1 < x2 /\ ... /\ Xn-1 < ·xn /\ -,(Sam(x1,x2) v - v Sam(xn-1,xn))
(3) A is o(p). Then A' is o(W) defined under condition (11) above.
(4) A is Bg(s,p). Then A' is
(]y)(Sam(x,y) /\ y = lnit(W)).

(5) a} A is -,8. Then A' is .,B'

b) A is (BvC). Then A' is B'vC'.
(6) a) A is (]s)B(s). Then A' is (]x)(V(x) /\ B'(x))
. b) A is (Jp)B(p). Then A' is (3W)(L0(W) "W ~ V /\ B(W)).

Lemma: (A) lfcf}(x) = sand M~A(s) then M'~A'(x}, where A is a state

formula.
(B) If-,,(W) =. p and M ~A(p) then M' fA'(W) where A is a path for~ula

Proof: By induction on the complexity of A.
(A) (1) A(s) is Pi(s). Then MFA(s} iff s~Pi iff ~(xHP1 iff x~Yi

(2) A is BvC, or .,s. This case is trivial by induction hypothesis.
(3) A(s) is (]p)(Bg(s,p) /\ o(p) /\ B(p)) where B(p) is a path formula.

If M pA (s) then there is such a path, call it p. There is a corresponding W in

M', which is an appropriate linearly ordered subset satisfying a(W), and
beginning at x, and such that '\JI(W) = p. Since p satisfies B(p), by induction
hypothesis W satisfies B'(W). Hence M"F A'(x). · Conversely if there is a W in

M' then there must have been a p in M.

08/ 29/ 78 12:48
16

(B) (1) Note th at p is the image of W in M' and clearly the strings in W

corresponding to the states in p satisfy the same state formulas. Hence M~A(p)
iff M'~A'(W).

(2) A is BvC or ,B. This case is immediate by induction hypothesis.

Q.E.D.

Cor: Let A involving a1, ... ,an, P1,--,Pm be a closed formula in SOAPL. Let

A'(X1···Xn, Y l···y m, V) be its image. Then A is satisfiable, i.e. true in some

Miff
Tr(A):: (]X1,···,Xn,Y1,· .. ,Ym,V)(Uni(V"

Prog1(X1)A ... /\ Progn(Xn) /\ Pred(Y1)/\ ... /\Pred(Ym) /\ A') is true in SnS.

Proof : formulae of SO APL are obtained by quantification and truth functional
operations from state formulae and path formulae: Each of the latter contains only
one free variable. So we can separate variables. I.e. each formula of SOAPL is

equivalent to a truth functional combination of formulae of the form (Jp) B(p),
(3s) C(s) , where B(p) is a path formula and C(s) is a state formula. Hence w.1.o.g.
we can assume that A itself is (Jp)B(p), or (Js)C(s). So suppose for instance.that
(3p) B(p) is satisfiable. Then there is an M, p such that B(p) is true in M.
then there is a W in a corresponding M' such that B'(W) is true. Let

X !,···, X n, Y 1 , ... , Y m ,v be the subsets of l;* which code M'. Then

Uni(V)A ... Pred(Y m)AA' is true in SnS. Hence Tr(A) is true. Conversely suppose
(3X1••·)(Uni(V) /\ ... /\Pred(Ym /\ A') is true, then there are sets X1,-,V which·

satisfy Univ(V)/\ ... /\Pred(Ym) /\ A'. Hence X1,-,Xn,_v describe a model M'.
But it is easily seen that M' cod·es a model M obtained by identifying points x,

xai, xatc as a single state.
Q.E.D.

We still have to discuss the changes necessary if we are allowing the bask
programs Ri to be nondeterministic. Note that if x represents the state s, then

in certain circumstances so will y :: xajC, but the latter will represent s as the

starting state of the program ai. Now if ai can have several paths starting at

s, then the corresponding starting strings will have to be distinct. We can

accomplish this with another letter d in l; and let xaidkc represent s as the

OP/ 29/ 78 12:48
17

starting_ point of the kth path in Ri starting at s. The rest of the construction
will now go through as before.

Open question /: Does SOA PL have the finite model property? The particular acyclic
models coded into SnS can be forced to be infinite. However there may be other

finite models.

Open question 2: Does SOA PL have an elementary decision procedure? A positive
answer to question 1 above would probably also yield a positive answer to this one.

Open question J: How strong is SOAPL compared to the various special languages due_
to Pratt etc. that we have mentioned ? D. Harel [Ha] has shown that there are
process connectives expressible in SOAPL that are not expressible in Pratt's
process logic, but the question still remains what happens if Harel's example and a
few others like it are added. Harel's particular connective '7(a,A ,B) says: If A
holds during any computation of a, then B holds at the same time or sometime later.

Open question 4: What is the degree of undecidability of·the full language L? We
know it is undecidable, but probably, in the presence of path quantifiers, the
degree of undecidability is quite high.

Bibliography

[CJ R.L. Constable: "On the Theory of Programming Logics," 9th Annual ACM Symposium

on the Theory of Computing, 269-28S.

[EJ E. Engeler, "Algorithmic Properties of Structures", Math. S1stems Theor1, Vol.
12, (1967), 183-19S.

[FLJ M. Fischer and R. Ladner, "Propositional Modal Logic of Programs," 9th
Annual ACM Symposium
on T heor1 of Computing , 286-294.

[Ha] D. Harel, "Two Results on Process Logic", research report, Lab. for Computer
Science, M.J.T., Aug. 1978.

08/ 29/ 78 12:48
18

[Ho] C.A.R. Hoare, "An Axiomatic Basis for Computer Programming" CACM, Vol. 12
(1969), 576-580.

[HP] D. Hare! and V. Pratt, "Nondeterminism in Logics of Programs",
Proc. 5th ACM S1mposiu.m on the Principles of Programming Languages, Tucson, AriL,
1978.

[MJ A. Meyer, WSlS is not Elementary Recursive," Logtc Colloqutm, (ed. R. Parikh),
Lecture Notes in Mathematics, No. 453 Springer, 1974.

[Pal R. Parikh, "A Completeness Result for POL," Proceedings of tlte 7tlt
Symposium on

Mathematical Foundations of Computer Scien·ce,, Zalc.opane, Poland, September 3-9,
· 1978. To appear.

[Pn] A. Pnueli, "A Temporal Semantics for Concurrent Programs," Exte.nded abstract,
Nov. 1977.

[PrlJ V. Pratt, "Semantical Considerations in Floyd-Hoare Logic," Proceedings of
the 17th IEEE Symposium on Foundations of Computer Science, (1976) 109-121.

[Pr2J V. Pratt, "Axioms for a Logic of Processes," Unpublished manuscript,
Laboratory for Computer Science, M.I.T., April 1978.

[QJ W.V. Quine, "Concatenation as a Basis for Arithmetic", J. S,mbolic Logic 11
(1946), 105-114. ·

[RJ M. Rabin, "Decidability of Second Order Theories," Transactions of tlte
American Mathematical Societ"), Vol. 141 (1969), 1-35.

