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Abstract: We prove the decidability of the validity problem for a rather general
language for talking about computations. As corollaries of our result, we obtain
some decidability results of Pratt, Constable, Fischer-Ladner, and Pnueli and also

a new decidability result for deterministic propositional dynamic logic.

Introduction: In recent years various authors have introduced languages to talk
in an abstract way about computation processes and programs. Examples include the
dynamic logic introduced by Pratt [Prl] and the monadic program logic introduced by
Constable [CJ. Constable's logic is decidable as is also the propositional case of
dynamic logic [FL1. Both propositional dynamic legic and monadic program logic
allow us to talk about what happens if and when the program terminates. But they
do not allow us to say what happens during the computation. Recently, Pratt [Pr2]
has introduced a logic of processes which allows some process connectives whose
semantics is dependent on what happens during computation and not just on what
happens at the end. [t appears likely that the logic that he gets has the finite

model property. l.e. every formula that has a model has a finite model. (It is

decidable, as we shall show.) We also have the temporal semantics newly introduced
by Pnueli [Pnl.

- Thus we have various languages introduced by various authors. Why not have a
universal language that includes them all? Let's look at the situation in detail.

. Consider a computer G and let S be the set of internal states. S need not be
finite but we shall assume that it is at most countably infinite. A (computation)
path p will be a sequence of states in § and a program will be a set of such paths.

Key Words: dynamic logic, theory of programs, decidability
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A statement that we are interested in may be true in some states and false in
others, so it will be a unary predicate P on S.

The language L for talking about the situation above contains a finite number of
unary predicate letters Pl,...,Pm, and a finite number of basic program letters
aj,-,a,. New programs may be formed by taking (nondeterministic) unions, ; and
*_ (It is well known that "if .. then .. else .", and "while .. do .." can be
defined in terms of these. See eg. [Prl] ). We also have variables for states and
paths and atomic formulas will have the form P(s) (the predicate P holds at the
state s), a(p) (the path p is a computation of the program a) and
O(p,sy,my8p)- (The states sq,..,5,, have occurrences on the path p in the
order shown.) New formulas are formed through truth functional combinations and
quantifying over states and paths. If A is a formula with a single state variable,

a program A? can be formed, which will be a test of the truth or falsity of A
[Prll. This language can easily be shown to include the monadic program logic of
Constable, the propositional dynamic logic of Fischer-Ladner-Pratt, the (recently
introduced) process logics of Pratt, and Pnueli's temporal semantics formalised in
his system DX.

It turns out that the language of which we have given a rough description above
is undecidable since the first order theory of an arbitrary binary relation can be
interpreted into it. However, there is a way around this problem, and it doesn't
consist of consulting an oracle. Rather imagine our computer to be equipped with a
clock. This cannot affect any question we are actually interested in since for the
running of a program or its correctness, a clock is neither here nor there.

However, a clock prevents a program from ever returning to the same point. The
most one can have now is a return to a point that looks very much like an earlier
point but is none the less distinct. Now a clock keeps record of time elapsed. We
can also keep records of programs we performed starting from s, (some fixed
starting state). We can ask that records be kept of the paths chosen (for
nondeterministic programs) , the number of steps performed along each path, etc.
Thus we get a new computer that looks just like the old one, except that these
records being part of the state give it a tree-like structure. No computation path
belongs to two distinct basic programs, no computation ever returns to the same
point and so on. None of this can affect the sorts of questions we are interested
in, such as termination or correctness of programs. It turns out, however, that it
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can affect questions that can be posed in the language described above. It follows
that the questions we really skould concern ourselves with are those that belong to
a subpart of L, the part L- consisting of those formulae that are unaffected by the
addition of auxiliary information. And now comes the payoff! We can show that
the languages of Constable, Pratt, etc., can still be interpreted in our smaller
language L-. Moreover, the theory of L-, which is clearly the same as the theory
of L- over tree-like models, can be interpreted in Rabin's SnS [Ral, and is
therefore decidable. Also, a slight modification of the construction yields the
decidability of propositional dynamic logic where all basic programs are
deterministic.

1. The Language L:

Alphabet: state variables: 51,59,..

path variables : py,pg,..

basic programs: aj,ag,.,a,

basic predicates: Py,...,P,

Ay, 3% 5% 30, 0G) Note that = is not a symbol of
L.(V¥x) is an abbreviation for ~(3x)-. Similarly A, =, etc.

We define the notion "program" and "formula” for L by simultaneous recursion.

Programs: 1) Every basic program is a program.
 2) If, a,B are programs, so are (a U B), (a;B8), a*.
3) If A is a formula with a single free state
variable, then A? is a program.

Formulas: 1) If P is a basic predicate and s is a state variable, then P(s) is a
formula.

2) If $]wSp are state variables, where n 2 1, and p is a path
variable, then Q(p,sq,..,s;) is a formula. (Such formulas are called
O -formulas and their intuitive meaning is: "The states s,..,s, occur, in that
order, on the computation path p." The s; need not be distinct, but O stands for

.< rather than <. Le. the computation path may cross itself but O records a
positive passage of time.) '

(3) If a is a program and p is a path variable, then a(p) is a formula. (It
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means: "The path p is a computation path of the program a".)
(4) If A, B are formulas, so are ~A, (AVB)

(5) If A is a formula, s is a state variable and p is a path variable then
{3ds)A, (Ip) A are formulae.

Notation: A, B, C,. stand for formulae, a,b,c, for basic programs. a, B, ¥ for
arbitrary programs. s, t, u, for state variables, and p, q for path variables. s,
t, stand for actual states (in some model) and p, ¢ for actual paths.

Semantics for Lt An Interpretation M for L consists of
(1) A nonempty universe U (This will be the set of states)
(2) For each basic predicate P; a subset P; of U

(3) For each basic program a;, a subset R; of P where P = the set of all
finite or infinite sequences from U,

Inter pretation of Programs: For each progfam a we define a subset R, of P as
follows:

(1) If & is an a; then Ry is R;.
- (2) If e is Buy then Ry is RﬁUR,.‘r
(3) If a is B then Ry is the set of all paths (50,51 ,my5p:5n+]s=)
where (s0,..,5,) is in Rg and (sp,8n+] yemy) is in Ro, where the
path in Rg is finite and the path in R'Y may be finite or infinite.
(4) If @ is §* then R is Ln)Rﬂn where 87 = §;8;..;8 (n times, n 2 0).
(5) If A is a formula with the single free variable s, and & is A? then Ry is
the set {(s,s)|s satisfies A in M}.

Interpretation of fomulas: This is easiest to explain if we add constants to L for
each state s€U and each path p€P. We shall consider closed formulas only for the
moment. M FA means: A is true in M.

(1) MEP;(s) iff s¢ P,
(2) MEO(p,51,m5,) iff 51,5, have occurrences in that order on
b
(3) M{a(p) iff pisin Ry
(4) ME-A iff MFA
(5) MEAVB iff MEA or MEB
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(6) ME(Ip)A(p) iff 3p such that MEA(p)
(7) ME(3s)A(s) iff ds such that MEA(s)

If A has a single free variable s then s satisfies A = A(s) iff MEA(s).
Similarly if we have several free state and path variables. A formula with free
variables is satisfiable in M if there are states and paths that satisfy it. It
is satisfiable if it is satisfiable in some M. It is valid if its negation is
not satisfiable.

T heorem I: The validity problem for L is undecidable. Prooft We show that the
validity problem for the first order theory of a binary relation can be coded into
the validity problem for L. Given a binary relation R over a set X, we can take an
interpretation M where U is X, there is a single program letter a where R, is
intended to be {(s,£)](5,2)€R)} and now Rxy can be written (3p)(a(p) AO(p,x,y)).
We extend this map to the predicate calculus in the obvious way. If A is a formula
of the predicate calculus and A” its translation in L, then it is easily seen that
A is valid in the predicate calculus iff A* is a valid formula of L.

Q.E.D.

2. The Language SOAPL

We saw in the last section that the language L is undecidable. We now define a
sublanguage L- of L obtained by limiting the class of formulas. L- has the
property that whenever a formula has a model it also has a tree-like model. "This
property can be used to code L- into Rabin's SnS and hence the validity problem for
L- is decidable. Because satisfiable formulae of L- can always have cycle-free
models, we shall refer to L- as second order acyclic process language or SOAPL.
Note that we are not requiring SOAPL only to have acyclic models, but merely
asserting that whenever there is a model, there is one that is acyclic.

Alphabet: SOAPL has the same alphabet as L plus the symbol Bg. Bg(w,p) stands for:
"w is the first state of p", and can be written O (p,w)A~(3s)O(p,s,w), but the’
restrictions on formulae that we shall impose make it necessary to have this as a
separate symbol.
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Programs: Same as L except, having fewer formulae, we shall have fewer programs of
the A7 type.

Formulas: Basically our formulae enable us to define unary predicates of states and
paths. We define first three auxiliary notions.

O -formulas: O(p,s.sy) is an O-formula where k 2 1.
Now we define path formulas and state formulas by simultaneous recursion.

State formulas. 1) P(w) is a state formula
2) If A, B are states with the same free state variable, so are ~A, (AvB).

3) If A(p) is a path formula then (3p) (Bg(w,p) A a(p) AA(p)) is a state
formula, where a is any program.

Path formulas: 1) let C be a truth functional combination of O -formulas with the
same path variable and state formulas such that no state variable occurs in two
different O -formulas nor twice in the same one. If 51~k are all the free
state variables of C and Q;..Q, are quantifiers, then (Qqsy)..(Qs,)C is a
path formula. (The quantifiers are thought of as relativised to the path in
question. E.g. if the path is p then (Iw)(.w..) in SOAPL means: (3w)(w€p A
ww..).)

2) If A, B are path formulas with the same path variable then so are -A,
- (AvB).

And now we can define arbitrary formulas of SOAPL.

Formulas: (of SOAPL) are obtained from the state and path formulas by taking truth
functional combinations and/ or quantifying. Note that state and path formulas
define unary predicates of states and paths.

Basically we have set up a situation where we can say about a path what sorts of
states it has, and in what order. We can say of a state that it satisfies some Pi
or doesn't satisfy it and we can say what sorts of paths begin at it. Also these
properties can feed off each other by recursion back and forth. However, we can
only define unary predicates this way, and while we do have access to O, we have



08/ 25/ 78 15:57

put limitations on its use, so that it cannot be used to create genuine binary
predicates. Ultimately, since the = sign is absent, and we do not allow dual
occurrences of state variables in O -formulas, even states and paths do not have
real existence but only serve as a means of saying things about programs. Eg. we
can say about programs a, f§ that they both have paths with some complicated
property, but we can't say in SOAPL that this is the same path. This fact is the
clue to the decidability of (the validity-satisfiability problem of) SOAPL. Since
SOAPL is closed under truth functional combinations, this implies also the
decidability of the consequence problem for sentences.

T heorem 2: (a) SOAPL is decidable
(b) SOAPL is decidable if we restrict ourselves to deterministic programs.

Proof: Section 3. Note that (a) does not imply (b), since there is no way in SOAPL
to say that all basic programs are to be deterministic.

T heorem 3: Propositional dynamic logic, the process logic of Pratt, the logical
system DX of Pnueli, and the monadic programming logic of Constable are all
interpretable in SOAPL.

Cor: All the above mentioned logics are decidable.

We shall not give a detailed proof of Theorem 3. Rather we shall give actual
translations of certain crucial notions from the various logics into SOAPL. From
that it will be evident that the whole logic can be translated. We also show that
the notions of partial and total correctness can be translated into SOAPL.

a. A{a}B. The partial correctness of & with respect to A, B can be expressed by
the formula:

(Vw) (Vp) (Bg(w,p) A a(p) A A(w) = (¥s)(3t) (O(p,s,t) vB(s))

b. A<a>B. The total correctness of & with respect to A, B can be expressed:
(Yw)(¥p) {Bg(w,p) A alp) A A(w) > ((Is)(Vt) (-O(p,s,t) A B(s))} Note: the
notation above is ad hoc. There seems to be no standard notation.
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¢. LaJA. This is a notion from dynamic logic [Pr1]. [alA holds at w if every
state reachable from w by a satisfies A. Here we assume that A has already been
translated as A*. Then [alA translates as

(Vp) (Bg(w,p) A alp) » (Vs)(3t) (<O (p,s,t) » A*(s))

d. aJA. "a preserves A" [Pr2], means that if, during an & computation, A holds at
any state, it continues to hold. It can be translated as:

(Yw)(Vp) (Bg(w,p) A alp) » (Vs) (VO {(O(p,s,t) A A(s)) » A1)}

~e. In Constable's monadic programming logic, the basic programs are treated as
functions. It would seem that they are not only deterministic but are also
everywhere defined. However, we can translate without such assumptions. Thus,
eg., P(f{(w)) can be translated as:
(Vp) (Bg(w,p) A f3(p) » (Is) (V1) (-O(p,s,t) A P(s)) (Here f] is some a; in
our notation.)

f. We cannot say in SOAPL that a program is deterministic . This is because we
cannot say in L that two paths or states are equal or unequal. However, the logic

of deterministic programs can be handled by using a new translation of SOAPL into
SnS which allows programs only one path (at most) per state. Then the decidability
of the validity problem for SnS implies the decidability of the validity problem °
for SOAPL interpreted over deterministic programs.

g. We can say in SOAPL that a particular program terminates. E.g., "a always
terminates at w" is

(¥p) (Bg(w,p) A a(p) = (3s) (Vi) (-O(p,s,t))).

h. Pnueli [Pn], in his system DX, introduces two temporal connectives which are
unary functions from statements to statements. The context in which he works is

that of a single deterministic program which we shall call a. If A(s) (our

notation) is a state formula then GA(s) means that A holds during all

future moments of the program, whereas XA(s) means that A holds at the next moment
of the program. If his program is a, then let § be the program which executes

exactly one step of & when a has not ended. Then we can write GA as [§*JA, and

XA as [8]A, and we have already shown, in c. above, how to express these. Note
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that we need not confine ourselves to one program as Pnueli does, but can take
arbitrary regular combinations of arbitrarily many programs.

Concluding Remark: It is often said that the decidability or undecidability of a
particular problem in general does not give us adequate guidance for actual
practice. The L, SOAPL example illustrates this since L is undecidable, but SOAPL
is adequate to express most notions that interest us which are expressible in L.

8. The Decidability of SOAPL

Since this result is proved by reducing SOAPL to SnS, we shall briefly review
SnS. SnS, the second order theory of n successors, can be thought of as the theory
of Z* where Z={¢},..,0,}. The language of SnS includes the n successor
functions defined by $;(x) = xo;, i = 1,..,n where x€Z¥, 0,€Z. We also
have equality in this language, the usual truth functional connectives and two
kinds of quantifiers. We have first order quantifiers which range over Z* (these
will be x,y,2,..) and second order quantifiers (X,Y,Z,..) which range over
subsets of Z*. Since we have in mind a unique model, the one described above, we.
have the set of true sentences defined uniquely. This set is recursive by Rabin
LR1, and non-elementary by Meyer [MJ.

The reduction of SOAPL to SnS is accomplished in the following way: we give a
translation of L into SnS which is not meaning preserving for the whole of L.
However it has the property that if the formula A is in SOAPL then A is valid iff
its translation is true. This shows that the validity problem for SOAPL is
decidable. We begin by showing that certain notions are definable in SnS. Note
that concatenation cannot be one of them, since it known from [QJ that even the
first order theory of concatenation is undecidable.
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Notation: "x is in X" is written X(x).
(1) x £ y. x is an initial segment of y, is defined by
(YX)(X(x) A (V2)(X(2) »/\X(Si(2)) » X(y)).

More generally we can also define x < A Y where A is a sub-alphabet of
Z, by restricting the conjunction on i=l,..,n, above to A only. x SAY
means: there is a string z in A* such that y = xz.

(2) LO(X): X is linearly ordered.
(Vx)(Vy)(X(x) AX(y) >xSyvysx)

(3) X € Y: (Vx)(X(x) » Y(x)). Similarly X = YUZ,
X = YNZ, etc.

(4) x = Init(X). x is the first point of X. LO(X) A X(x) A (Vy)(X(y) » x S y).
(S) x = Fin(X). x is the last point of X. Just like (4) above.

(6) X = Seg(x,y). X is the segment between x and y. .
x = Init(X) A y=Fin(X) A (Vz2)(x SzA 25y X(x))

(7) Let ¥ be a fixed regular set of strings. Let RXxy mean:
(I2)(Y(z2) Axz=y),
then Rxy is definable in SnS.

We sketch the proof which is by induction on the complexity of the regular
expression defining V. If ¥ = {a;}, then the formula A(x,y) defining Rxy is:
y = §;(x).
If ¥ = V{uVyg, then A(x,y) is
Aj(x,y)vAg(x,y), where Aj and Ag are the formulae corresponding to ¥y .
-and V9 respectively. '
If ¥ = ¥1.¥V9, where . denotes the product operation on sets of strings, then
A(x,y) is
(3z) (A1(x,2) AAg(z,x)).
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And finally if ¥ = (Z)*, and B(x;y) corresponds to Z, then the formula for V is:

(AW {W(x) A (Y2)(W(2) A <y = (Iw)(z&w A WSy A W(w) A B(z,w)} A xSy.

A set that we are particularly interested in is the regular set K =
((ag*.ay).c.(b*))*. The binary relation Kxy stands for: (3z)(K(z) Ay = xz).

Note that we can use Init, Seg, etc. as if they were functions. E.g. ,
A(Seg(x,y)) is an abbreviation for (IX)(A(X) A X = Seg(x,y)) where X is a variable
free in A(X).

Let A be a formula of L and M a model of it. We shall confine ourselves to
countable models M. We can also assume without loss of generality that M is
connected in the sense that there is an origin state sy from which every other
state is reachable by executing programs. For let the universe U of states be
{50,51,...,...} and introduce a new program.a which takes s; to 5;4+1 (sp to
itself if U is a finite set and there is a last state sp). We have to show how
M can be coded into a model for SnS (actually S(n+2)S) with certain auxiliary
sets ¥V, X1 yuyX s¥ 15=¥ m Of strings, which code information about M. In
particular, the X; code the programs a;, and the ¥ j code the pradicates P i The
set ¥V € Z* codes the universe U of M.

Suppose aj..a, are the basic program letters and suppose for simblicity that
the programs Ry,..,R,; in M are deterministic. (Later we shall show the
necessary modifications if these are not deterministic. The translation for
deterministic programs is not a special case of that for nondeterministic programs,
but they are similar.) We let Z = {a{,..,a,,,b,c} and consider the map @,
from Z*, into U and the map ¥ defined on certain subsets of Z* as arguments. The
domain of @ is a proper subset of the Z*, and is in fact a subset of the regular

set K that we defined before. The domain of ¥ consists of certain linearly ordered
subsets of TX,

a) ®(\) = sp, where X is the empty string. -

b) Suppose that $(x) is defined and equals s and that x does not end in some a;
or in c. Suppose there'is a path p in R; (the path will be unique by the
assumption above) which starts at s, then $(x) = ®(xa;) = &(xajc) = .
Moreover, for every k < {(#) (= length of p = number of states on p), the strings
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xaicbk are put in X; which is the correlate of R; in Z* and if s j is the jth

state on p, then $(xajcbd) = sp If X = {xalcbkl 0sk< I(p)} then we let
W(X) = p.

Finally we let ¥; = {x| x€Z* and P;(®(x)) holds}
and V = {x| ®(x) is defined}.

Example: Suppose for example that the model M consists of the states

{aj| 0 =i = 2}, a predicate P that holds at s; for 1 = 1, 2. and two programs
Rl, Ry, where Ry = {(so,sl), (51,52) }, and R2 = {(51,32)}. Then M', its
translation into S4S, will have
v = {\,ay,ajc,ajcb,ajcbay,ajcbajc,ajcbajch,ajcbag,ajcbage,ajcbageb}.
Of these A, ajy, ajc, will all represent sp, and ajcb, ajcbaj, ajcbayc,

ajcbag, ajcbage will represent sq. Similarly ajcbajcb will represent s9 and
ajcbagcb will also represent sqg. The set ¥ will contain all the strings that
represent either s or s9. The picture below shows both M and M. In M,

the strings that belong to ¥ are enclosed in little squares. Note that the path W
starting at ajc and ending at ajcbajcb satisfies (ay;a3) (W), but not a;(W),
beacuse the piece ajcb, ajcbaj, ajcbajc, which is all within sy as it were,
is missing. If we think of the paths a; as railway lines, then we can think of
pieces like ajcb, ajcbaj, ajcbajc as taxi rides from one station to another.
These taxi rides perform the important function of allowing us to represent both
paths and programs as subsets of Z*, rather than programs as sets of subsets of
=r.
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M () -=aj ——)alc-a-—l'-— -alcb——)aicbal —-valcbalc
® =5
ajcbage

¢=52 @=$2

Now we define some futher notions in SnS. We write (writing xaj for Sj(x)
etc.)

(8) Suc(x,y) : y = xajc V . Vy = xac. $(x) and ®(y) are the same, but y is

the beginning point of a program while x is not. If s = ®(x) = $(y), we need

these two copies of s to prevent the following problem. Really a(p) should mean: p

is an element of &, but since we don't have sets of sets, we coded this as: p is a

subset of a. This creates the possibility that if the end state of a program is

also a start state, then the program would run twice without our intending this. We

avoid this problem by making x and y distinct, and to start up the program again,

we would need the connecting link from x to y. We shall also need,
Sam(x,y):«(32)(Iw)(Suc(z,w) Az<xAzSyAx<SwAysw) Sam(x,y) says that x
and y represent the same state in M.

(9) Uni(V): (VxHVy){V(x) Aysx~=V(y)}
A (Y)Y {V(x) AV(y) Ax<y=>xbSyvV
(Fz)(Suc(x,z2) A(zfyvyc=12))}AaVEK
Uni(V) means that V is subset of Z* which could
correspond to the U for some model M.
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(10) Y = Conc(X,7): (3x1) (3x9) (Suclxy,x9) A Y(xq) A
Y(xg) A (V2)((X(z) © Y(2) A 25 x9) A
(7(z) © Y(z) A xg32)) ALO(Y) AY=XUZu Seg(xy,x9)
This says that the path Y has been obtained from the
paths X, Z by taking their union and putting in the
connecting piece we mentioned in (8) above. If ¥(X)
= p and ¥(Z) = ¢, then ¥(X) is defined and equals

Pq-

(11) a(W): (a) If @ is a; then a(W) is W € X;a LO(W)
(b) If a is Buy then a{W) is B(W)vy(W)
(c) If ais B;4 then a(W) is
(3W1)(3W9) (W = Conc(Wy,Wg) A B(W) A v(Ws9))
(d) If a is B* then a(W) is
LO(W) A (372 {Z(Init(W)) AZ S WA
(Vy)((Z(y) A ~(y = Fin(W)) > (32)(3Ix) (Suc(y,z) A
1< x AZ(x) A B(Seg(z,x)) A Seg(z,x) € W)}
a(W) says that W is a path in the program a.

Lemma: a(W) holds in MI' iff there is a p in Ry such that W(W) = p.
Proof: By induction on the complexity of a. The result holds by definition if a is
some program a;. Otherwise « is of the form Buy, or B;%, or §*. ,

a) a = Bux. This case is easy. a(W) holds iff 8(W) or X(W) holds, by (11b)
above, iff ¥(W) is in Rg or in Ry , iff ¥(W) is in Ry,

b) a is §;7. Then by (1lc) above, if a(W) holds then W is obtained by
‘conc’ing two pieces U and ¥ and f(U) and ¥(¥) hold. Hence ¥ maps U, ¥
respectively into paths ¢ and r which are respectively in Rﬂ and R"Y , and
by the last part of (10) above W(W) will be the path p = gr. Conversely, if ¥(W)
is in Ry, then since & is f;7, p must fall into pieces g, r, which are in Rﬂ,

R.,f , respectively. There must be pieces U, and ¥ (plus a connecting little
piece) of W, such that ¥(U) = ¢, and ¥(V) = 1.
c) a is of the form % This case is just like b) above.

.(1'2) Prog;(X), X codes R, for some model M, is:
(VY){LO(Y) A Y € X = (3x)(Iy)(y = xac A Y(y) A
(V2)(Y(z) » y S{b} 2))}aXeV
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(13) Pred(Y;): Y, represents a predicate for V
(¥x)(Vy)(Vz){Suc(x,z) A yc=1z A V(x) A V(y)
A V(z) = ((Yi(x) & Yi(y)) A (Yi(x) © Y(2)))}

Now for each formula A of L involving aj..a,, P,,Pp, we define a formula
A’ of SnS involving X{,m,Xp, Y1, Yms V. We make the convention that the
string variables, x, x; correspond to the state variables, s, s; and the set
variables, W, W, correspond to the path variables, #, p;.

Def: (1) A is Pi(sj) then A' is Yi(xj)

(2) A is O(p,s,mysy). Then Ais

LO(W)AW(x{) A.AW(x,)A

" xp < X9 A . A xp_1 < Xp A ~(Sam(xg,x9) V . v Sam(xp,_1,%,))

(3) Ais a(p). Then A' is a( W) defined under condition (11) above.

(4) A is Bg(s,p). Then A' is

- (3y)(Sam(x,y) Ay = Init(W)).
(5) a) A is-B. Then A' is -B'
b) A is (BvC). Then A' is B'VC.. ,
(6) a) A is (3s)B(s). Then A'is (Ix)(V(x) A B'(x))
"~ b) Ais (Ip)B(p). Then A'is (AW)(LO(W) A W €V A B(W)).

Lemma: (A) If ®(x) =5 and MEA(:) then‘M'FA'(x), where A is a state
formula.

(B) If $(W) = p and M EA(p) then M' LA (W) where A is a path formula

Proof: By induction on the complexity of A,
(A) (1) A(s) is Py(s). Then MEA(s) iff s¢P; iff B(x)€P; iff x€Y;
(2) A is BvC, or -B. This case is trivial by induction hypothesis.
(3) A(s) is (3p) (Bg(s,p) A alp) A B(p)) where B(p) is a path formula.
If ML EA(s) then there is such a path, call it 5. There is a corresponding W in
M, which is an appropriate linearly ordered subset satisfying a( W), and
beginning at x, and such that ¥(W) = 4. Since p satisfies B(p), by induction
hypothesis W satisfies B'( W). Hence M'EA'(x). Conversely if there is a W in
M’ then there must have been a p in M.
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(B) (1) Note that p is the image of W in IM' and clearly the strings in W
corresponding to the states in p satisfy the same state formulas. Hence M kA( )
ifft M'EA"(W).

(2) A is BvC or +B. This case is immediate by induction hypothesis.
Q.ED.

Cor: Let A involving aj,..,a,, P{,~;Pp, be a closed formula in SOAPL. Let
A' (X)X, Y1-Y, V) be its image. Then A is satisfiable, ie. true in some
M iff
Tr(A) = (3X1,...,Xn,Y1,...,Ym,V)(Uni( Va
Prog; (Xy)A..A Prog,(X,)) A Pred(Y{)A.APred(Y,,) A A') is true in SnS.

Proof : Formulae of SOAPL are obtained by quantification and truth functional
operations from state formulae and path formulae. Each of the latter contains only
one free variable. So we can separate variables. le. each formula of SOAPL is
equivalent to a truth functional combination of formulae of the form (Ip)B(p),
(3s)C(s), where B(p) is a path formula and C(s) is a state formula. Hence w.log.
we can assume that A itself is (Ip)B(p), or (Is)C(s). So suppose for instance that
(3Ip) B(p) is satisfiable. Then there is an M, p such that B(#) is true in M.
then there is a W in a corresponding M' such that B'(W)is true. Let
X 1sesXys¥ 12oY maV De the subsets of 2* which code M. Then
Uni(¥) A..Pred(Y ,) AA" is true in SnS. Hence Tr(A) is true. Conversely suppose
(3X3...) (Uni(V) A..APred(Y, A A’) is true, then there are sets X{,..,/ which’
satisfy Univ(V) A..APred(¥ ) A A'. Hence Xy,..,X,,,-# describe a model M.
But it is easily seen that M’ codes a model M obtained by identifying points x,
xaj, xa;c as a single state.

QED.

We still have to discuss the changes necessary if we are allowing the basic
programs R; to be nondeterministic. Note that if x represents the state s, then
in certain circumstances so will y = xa;c, but the latter will represent s as the
starting state of the program a;. Now if a; can have several paths starting at
s, then the corresponding starting strings will have to be distinct. We can
accomplish this with another letter d in Z and let xaidkc represent s as the
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starting point of the kth path in R; starting at s. The rest of the construction
will now go through as before.

Open question I: Does SOAPL have the finite model property? The particular acyclic
models coded into SnS can be forced to be infinite. However there may be other
finite models. '

Open question 2: Does SOAPL have an elementary decision procedure? A positive
answer to question 1 above would probably also yield a positive answer to this one.

Open question 3: How strong is SOAPL compared to the various special languages due

to Pratt etc. that we have mentioned 7 D. Harel [Hal has shown that there are

process connectives expressible in SOAPL that are not expressible in Pratt’s

process logic, but the question still remains what happens if Harel's example and a
‘few others like it are added. Harel's particular connective #(a,A,B) says: If A

holds during any computation of &, then B holds at the same time or sometime later.

Open question 4: What is the degree of undecidability of the full language L? We
know it is undecidable, but probably, in the presence of path quantifiers, the
degree of undecidability is quite high.
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