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ABSTRACT

The problem investigated in this thesis is that of finding
homeomorphic images of a given graph, called the pattern graph, inm
a larger graph. A homeomorphism is a pair of mappings, (v.t), such
that V maps the nodes of the pattern graph to nodes of the larger
graph, and d maps the edges of the pattern graph to (edge or node)
disjoint paths in the larger graph. A homeomorphism represents a
similarity of structure between the graphs involved. Therefore,
it is an important concept for both graph theory and applications
such as programming schema.

We give a formal definition of the subgraph homeomorphism
problem. In our investigation, we focus on algorithms which depend
on the pattern graph and allow the node mapping, V, to be partially
or totally specified. Reductions between node disjoint and edge
disjoint formulations of the problem are discussed. Also, reductions
facilitating the soluticn of given subgraph homeomorphism problems
are formulated. A linear time algorithm for finding a cycle in a
graph containing three given nodes of the graph is presented. Final-

ly, the two disjoint paths problem, an open problem, is discussed

in detail.
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Author's Note

This publication contains minor revisions to the thesis submitted
in May,1977. Since that time, an (O(|V||E|) time algorithm to solve
the two disjoint paths problem has been found by Y. Shiloachl. This
problem is discussed in Chapter V as an open problem. Shiloach's solu-
tion includes a proof of Watkin's conjecture (cf. Chap. V, p. 106).

The new algorithm extends the earlier work of Perl and Shiloach [Perl]

for planar graphs.

1. Shiloach, Y., private communication.
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I Introduction

In this thesis we examine various forms of the subgraph
homeomorphism problem. A subgraph homeomorphism problem is a problem
which may be described as the search for a homeomorphism from a pattern
graph H to a subgraph of another graph G. A homeomorphism between
two graphs characterizes a similarity of structure within the two
graphs. Similarity of structure is an important concept for graph
theory and for applications such as modeling computer programs.

Our goal in the body of this thesis is to present a precise
definition of each of the forms of the subgraph homecomorphism
problem, and to present solutions to specific subgraph homeomorphism
problems. We also relate the various forms to each other in the
hope that solving one type of subgraph homeomorphism problem may
lead to the solution of other types. In Chapter II, we define the
subgraph homeomorphism problem and give some motivation for our inter-
est in it. We alsc prove various relationships between subgraph
homeomorphism problems defined using node disjoint paths and those
defined using edge disjoint paths. In Chapter III, we discuss sev-
eral methods of solving subgraph homeomorphism problems based on a
network flow algorithm and reductions which we will describe there.
In Chapter IV, we present a new algorithm which solves a subgraph
homeomorphism problem when the pattern graph is a cycle of length
three. This problem is equivalent to finding a cycle in an undirected
graph containing three given nodes. In Chapter V, we concentrate
on what we believe to be the most alluring open subgraph homeomor-
phism problem -- the two disjoint paths problem. Chapter VI
summarizes our results and presents other directions of possible

future research.




IT Preliminaries

I1.1 Definitions

& directed graph G = <V,E* consists of a finite set V of nodes

(or vertices) and a set ES VXV of edges. If e=(u,v) is an edge in
E, we say edge e goes from node u to node v, and nodes u and v are
adjacent nodes. If a node v has k edges entering it and j edges
leaving it, we say that v has indegree k and outdegree j. BAn

undirected graph G = <V,E> is defined similarly except that E con-

tains unordered pairs of nodes. For an undirected graph, we will
retain the notation e={u,v) with the understanding that (u,v)=(v.,u),
and edge e goes from u to v or from v to u. In this case, the in-
degree and outdegree of a node are the same and will simply be called
the degree of the node. A subgraph of a graph G is a graph S = <U,A>
such that U=V and A is a subset of E containing only edges which
go between nodes in U.

Given a graph G = <V,E> (directed or undirected), we define
a path p in G to be a seguence <{vl'v2}{VE*VEJ"'Ivn-l'Vn}} of edges
in G, where n>2. The path may also be denoted -<v1.v2,. ..vn}. We
say that p goes from node vl to L and is of length n-l1. Each edge
(vi’vi+l]' 1< i< n-1, is an edge of p, and each node, Vi 1< i< n,
is on path p. The nodes v, and v, are endpoints of p, and nodes Vi

1
1< i< n-1, are interior points of p. A subpath of p is any path

, : < i< < n.
({vi'vi+l){vi+l‘vi+2]"'{vj-1’vj}} where 1< i< j< n. We call a path

simple if visﬁ vj for i#j, 1< i< n, 1< j< n, except that v. may equal

1
Vo in which case the path is a simple cycle. Two paths, p, and Py

are node disjoint if'vi# uj, 1< %E’m, ;f_jf_n, where
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Two paths, p

1 and p, as above, are edge disjoint if

i< m- < j< n-1.

i i+l
A (rooted) tree is a graph G containing no eycles (when direction
of edges in directed graphs is ignored). One node is distinguished as
the root, and there is a path from the root to each node in G. Nodes
in G of degree one other than the root (or of outdegree 0 for directed
graphs) are termed leaves,

In the following discussion, let G = <VG,EG> and H = {VH; EH?

both be directed graphs. Let P(G) be the set of all simple paths in
G. H is said to bz (node disjoint) homeomorphic to a subgraph of G,
denoted Hf“ﬁ, if there exists a one to one mapping v:?&*?s and a

one to one mapping a:EH*‘P{G} such that:

i) a((u;,u,))=p implies p goes from V(u,) to V(u,):
ii) for any two distinct paths p, and p, in a(E ),
p, and p., share at most one Vertex, which is an endpoint
for both p, and p.;
iii) for all uev_, v{u? is on p, a path in a{E ). if and only
if v({u) is an endpoint of p.

Then (V, u] is a homeomorphism from H to the subgraph of G:

HE U {vev |Cﬂp} psu(EH} and v is an interior node of p},
| @p) psufEH} and e is an edge of p}> .

Condition iii is implied by conditions i and ii if H contains no
isolated nodes (i.e. n?desvaéjacent to no other node). If we
replace conditions ii and iiiby the condition that a(E;) be a set

of pairwise edge disjoint simple paths of G, then H is edge ﬁisjaint
homeomorphic to a subgraph of G, denoted HEEG'

In the case of undirected graphs, an alternate definition of
node disjoint homecmorphism has been used historically. In this
definition, H<G if nodes can be inserted along the edges of H to
yield a new graph H' which is isomorphic to a subgraph of G[Ha 1973, p.8].

This definition is readily seen to be equivalent to the above defin-



ition. (See Flgure II.1-1.) We have chosen toc use the above defin-
ition since defining a homeomorphism in terms of paths of G allows
one to conceptualize the problem of finding homeomorphisms in terms
of finding paths in G and to readily use the body of pathfinding
algorithms already in the literature.

Our research has been primarily concerned with node disjoint
homeomorphisms. Section II.3 discusses relationships between node
disjoint and edge disjoint homeomorphisms. In the remainder of this
section and the next, we discuss only node disjoint homeomorphisms,
hereafter simply called homecmorphisms.

For both the directed and undirected cases, the general sub-
graph homeomorphism problem -- given H and G, is H homeomorphic to
a subgraph of G -- is NP-complete. This can easily be seen by con-
sidering the Hamiltonian Circuit problem [Ah, pp. 378-3924]. Given
the question, "Does G contain a Hamiltonian circuit?" we construct
H such that [VH[=|VG| and the edges of H connect the vertices in a
cycle. We then ask, "Is H homeomorphic to a subgraph of G?" Then
H is homeomorphic to a subgraph of G if and only if G contains a
Hamiltonian circuit.

Given that the general subgraph homeomorphism problem is
NP-complete, our research has focused on the existence of polynomial
time algorithms when H is a constant. (Thus, these algorithms
may take a number of steps polynomial in the size of G, i.e.
Ivﬁi+[EG!' where the degree may be a function of the size of H.)

We further allow as input a partial or total specification of v.

In this case, the subset of VH which serves as the domain of the



Figure II.1-1 Illustration of the twe definitions of homeomorphism.

Under definition given, HENG by:

via-1 a: (a,b) - <(1,2),(2,3)>
b+ 3 (b,c) + <(3,4),(4,5)>
c -+ 5 (c,a) » <(5,6),(6,7),(7,1)>

Under alternate definition:

Mapping: a —+

5
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partial specification of v is also a constant. The problem under
consideration can then be stated as follows:

Given: H=<V 'EH} a fixed undirected (directed) graph.
Let Bﬁgvﬂ also be fixed for the problem.

Input: Undirected (directed) graph G=<V ,EG> and
p:Ng ?G a one to one function.

Problem: Find v:V _ + VG one to one and Q:EH -+ P(G) one to one
such that:
i)(v,2) is a homeomorphism from H to a
subgraph of G.
ii) (V¥ VEN,) v(v)=p(v).
H is called the pattern graph and G the input graph.

If N = @ (i.e.p is vacuous), V is unspecified. We call this
an instance of the floating subgraph homeomorphism problem. This
terminology arises from the fact that the vertices of H can be mapped
anywhere in G. If Hﬁ = vH, Vv is totally specified. We call this
an instance of the fixed subgraph homeomorphism problem. If
g # NHE VH, Vv is partially specified.

Consider the example of Figure II.1-2. This example illus-
trates an instance of the subgraph homeomorphism problem when v is

partially specified. The presented solutions make it clear that

there need not be a unigque solution to any instance of the problem.
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Figure II.1-2: Example of an instance of the subgraph homeomorphism

problem with v partially specified.

Fixed; H: 1 X, = 11.8}
2 3
Input: G: a pz 1 + b
2*e
b
& c
d
Solution 1: Vv: 1+ b a: (1,3) + <(b,c)>
2+ e {3,2) *+ <(c,d),(d,e)>
i I T - (2,1) + <(e,a),(a,b)>
Solution 2: v: 1+ b g: (1,3) + <(b,ec),(c,d)>
2 +e {(3,2) = <(d,e)>
3> 4 (2,1) + <(e,a),(a,b)>

® indicates a node whose image in VG or inverse image in VH is
specified.
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IT.2 Motivation and Applications

The concept of subgraph homeomorphism is not new to graph
theory. In 1930, G. Kuratowskl established that a necessary and
sufficient condition for a graph G to be planar is that there is
neither a homeomorphism from the complete graph on five points, Ks.
to a subgraph of G, nor a homeomorphism from the complete bipartite

graph on two sets of three nodes each, K 3¢ to a subgraph of G

3
[Be, p. 211]. (See Figure II.2-1l) This characterization of plan-
arity has been extended to define a family of properties, Pn. such
that graph G has property Pn if neither Y nor]{hn+n/%J+l.rTn+l]f§]
are homeomorphic to a subgraph of G. [Ge, pp. 37-47] Here, K“ is
the complete graph on n nodes, and KP.q is the complete bipartite
graph on one set of p nodes and one set of g nodes. Given this
definition, planarity is property P4.
The homeomorphism from a graph H to a graph G reflects the
structural properties of G represented by H. For example, to see
if G contains a tree-like structure, we would seek a homecmorphism

from the desired tree to G. As another example, consider the graph

representing flow of control of an ALGOL program. The nodes of G

Figure II.2-1 The Kuratowski Graphs

s K

3.3"
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are the program statements, and edges go from each statement to
possible next executed statements. In this example, G is directed.
To decide if the potential exists to execute a loop containing three
particular statements, we would ask if the directed graph which is

a cycle of length three is homeomorphic to a subgraph of G with v
specified. In a more rigorous, but similar application, Hunt et. al.
present properties of a programming scheme which can be characterized
by the reachability of certain substructures of the programming
scheme [Hunt]. They pose the guestion of how complex a structure
can be and still allow a polynomid time algorithm for finding it in
a programming scheme. This is essentially the guestion of how com-
plex H can be while the homeomorphic subgraph problem for H is sol-
vable in polynomial time.

The family of properties presented by Hunt et. al. is an
example of properties characterized by forbidden subgraphs. Pro-
perty P is characterized by forbidden subgraphs if G has P if and
only if G dontains no subgraphs isomorphic to any of a family of
graphs determined for P. When a homecomorphism is used to charac-
terize P, the pattern graph (or graphs) which must not be homeomor-
phic to any subgraph of G defines an infinite family of graphs
which must not be isomorphiec te any subgraph of G. This infinite
family is produced by generating all possible graphs cbtainable
from the pattern graph by insering nodes on the edges of the pattern
graph. When we are testing for properties characterized by forbidden
subgraphs, we are interested in instances of the floating subgraph

homeomorphism problem.
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The fixed subgraph homeomorphism problem is applicable when
information about specific nodes in a graph is needed, as in the
ALGOL example above. Such problems as determining if two disjoint
paths exist connecting pairs of given nodes and determining if any
simple path exists centaining a given s& of k nodes can be formulated
as fixed subgraph homeomorphism problems. These problems, as well as
examples of floating and partially specified subgraph homeomorphism
problems will be discussed in the following chapters, In the next
section, however, we return to a comparison of edge disjoint versus

node disjoint homeomorphism.
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IT1.3 Edge Disjoint Homeomorphism wversus Node Disjoint Homecomorphism

In this section, we consider the relaticonship between the
subgraph homeomorphism problem for edge disjoint homeomorphism versus
node disjoint homeomorphism. We shall say that one type of subgraph
homeomorphism problem is reducible to another if given H and G (and
p ) of the first type,we can find H' and G' (and p') of the second
type such that H is homeomorphic to a subgraph of G if and only if
H' is homeomorphic to a subgraph of G'. We require that H' and G'
can be constructed in a number of steps polynomial in the sizes of
G and H and that the construction for H' is independent of G. Then
any algorithm which can determine if H' is homeomorphic to a sub-
graph of G' in polynomial time can be used to determine if H is
homeomorphic to a subgraph of G.

Below we present several reductions for node disjoint and edge
disjoint homeomorphisms. We begin by considering only problems
where V is fixed, since the control we have by knowing v simplifies
the constructions needed. The tables in Figure II.3-1 summarize
the results we will present.

Lemma II.3.1 &any fixed node disjeint subgraph homeomorphism

problem for directed graphs is reducible to a fixed edge disjoint
subgraph homecmorphism problem for directed graphs.

Proof: Given directed graphs H and G with V specified, we
construct H' and G' as follows. For each node v in H, H' will have
two nodes--HEAD(v) and TAIL({v)-- connected by an edge from HEAD(v)
to TAIL(w). Each edge {(u,v) in H is reproduced in H' by an edge
from TAIL(u) to HEAD(v). Graph G' is constructed in exactly the

same manner. Mapping V' matches HEAD nodes in H' with HEAD nodes




Figure II.3-1 :

a: For directed graphs:
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Summary of Reductions

is reducible to + HS. G HE G
s H<_HG parti?f or HﬁEG partial or
fixed floating fixed floating

HsﬂG, fixed = —-——— #emma II.3:1 —_—

HENG' partial or | see Chapter = -_— —_—
floating ITI

He G, fixed Lemma II.3.3 -— = S

&EEG' partial or —_— Lemma II.3.5 see Chap-| -
floating ter III )

b: For undirected graphs;

is reducible to - He, G He G

A He G partial or He G partial or

fixed floating fixed floating

H.SNG' fixed B —-_— S .

H< G, partial or see Chap- - —-— —_—
floating ter IIT

HEEG, fixed Lemma II.3.2 — = -——

H<_G, partial or - Lemma II.3.4| see Chap- =

- ] :
floating ter III
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in G' and TAIL nodes with TAIL nodes consistent with the mapping
from H to G.(See Figure II.3-2.) Our construction can be executed
by processing all the nodes, followed by all the edges of H and G
in a number of steps proporiocnal to IVHI+IEH!+IVG!+IEGI‘

It is left to show that HiNG if and only if B'SEG'. Suppose
we have u:EH* P(G) such that (v,) is a node disjoint homeomorphism
from H into G. We construct a' to map (HEAD(v), TAIL(v}) edges of
H' into corresponding (HEAD(W(w)) ,TAIL(V(v))) edges of G'. Each
(TAIL(u) ,HEAD(v)) edge of H' is mapped into the path of G' which
corresponds to path a(uv) of G. Since the paths of u{EH) are node
disjoint up to endpoints, the paths of a'(EH,) are edge disjoint.
This can be seen by noting that the only edges on which two paths
of u'(EH,) could collide would be (HEAD(v), TAIL(v)) edges, but this
would imply that the coresponding paths in a(EHj collide on node v,
which is not an endpoint.

Now suppose that we have u':EH, + P(G) such that (v',a') is
an edge disjoint homeomorphism from H' into G'. Consider any path
in P(G') which is the image of a (TAIL(u),HEAD(v)) edge in H'. This
path must start at a TAIL ncde, go to a HEAD node, and alternate
(TAIL,HEAD) and (HEAD,TAIL) type edges. It can be contracted to
form a corresponding path in G which is the image of (u,v) in H.

If any two paths in u{EH) so constructed collide on a node v which
is not an endpoint, then the corresponding paths in a'{EH,} both
contain (HEAD(v), TAIL(v)), and are not edge disjoint.l

]
lnote that in notational convention, edge (u,v) has tail u and head v.

Thus, HEAD(v) is the head node for all (u,v) edges in G; TAIL({v) is
the tail of all the (v,u) edges in G.
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Note that the above constructicn is essentially the same as
that used to change vertex capacities to edge capacities in network

flow problems [Ta 1974],

Lemma ITI.3.2 Any fixed edge disjoint subgraph homeomorphism

problem for undirected graphs is reducible to a fixed node disjoint
subgraph homeomorphism problem for undirected graphs.

Proof: Given undirected graphsHand G with V specified, we
will construct G' and specify V' such that HEEG if and only if
HENG'. For any node VEVG s Suppose v has degree dv' Number the edges
of v arbitrarily from 1 through dv. (Note that any edge will have
two numbers, one for each endpoint.}) In G', we replace v with dv
nodes -- one for each edge of v. All edges between these nodes are
placed in G' to form a complete graph on dv nodes, which we will

denote K . For each edge (u,v) of G, if (u,v) is the :*B  cage of

u and the jth G

edge of v, then there is an edge in G' from the i
node of Ku to the jth node of Kv' In addition, if v=v{u), we add
an extra node v to G' with an edge from ¥ to each node in K,. We
define V' (u)=V. (See Figure II.3-3.) The construction can be exe-
cuted node by node in a number of steps less than cIEGIE, where c
is a constant (i.e. in tj?IEG|2]).

Suppose 0:E, + P(G) such that (V,d) is an edge disjoint homeo-

H
morphism from H into G. Let p=a(x,y). In G', p'=a'(x,y) will start
at V'(x), a v-type vertex, and go to V'(y), a V-type vertex. The
path p' will contain the edges in G' corresponding to those of p in
G. Edges in p' corresponding to consecutive edges in p are connected

by one edge in the complete graph for their common endpoint on p.

The path p' is completed by using the appropriate edge from V' (x)
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Figure II.3-2: Construction for Lemms II.3,1

in H: / in G;
“Te ——----? mﬂps tﬂ—ﬂnﬂﬁﬂﬂﬁﬁ———#

in G":=

in H': 3 HEAD -----2 maps to —---——-————3 AE?&D

AI‘AIL ----- » Maps to —--—------2 & TAIL

® indicates a node whose image in ‘U’G or inverse image in VH is
specified.

Figure II.3-3: Construction for Lemma II.3.2

in G: \3 !;;2 inGg': 1

V?IUWH} 3 i
3 \4
in G": 2
3
vev’ WH.}

(0 indicates a node whose image or inverse image is specified.
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to

and the appropriate edge from v'(y) to KU If two paths

Ku{x} (¥)"®
in u'{EH! collide on a node, say the ith node of Ev' then the cor-
responding paths in u{EHI collide on the ith edge of v. We conclude
that the paths of q'IEH} are node disjoint (up to endpoints) if the
paths of u{EH} are edge disjoint,

Now suppose {z':EH + P{G") such that (v',a') is a node disjoint
homeomorphism from H inte G'. Any path in a‘IEHI‘must start and end
at ©-type nodes. Suppose a path in a‘(EH] contains two or more
consecutive edges within one complete graph, Kw' wES. We can replace
this subpath of p by one edge in Kw going from the first node on
this subpath to the last. Therefore, we may assume that any path in
a'EEH} alternates edges corresponding to edges in G with edges in
the complete graphs. Thus, each path in m‘IEH] has a corresponding
path in G. We define u:EH + P{G) using this correspondence. Sup-
pose two paths in u{EH} collide on some edge, say the ith edge of
node v. By our definition of @, the corresponding paths in G' must
both contain the ith node of K implying (v',n') does not define
a node disjoint homeomorphism. We conclude that (v,a) defines an
edge disjoint homeomorphism.

]

Lemma II.3.3 Any fixed edge disjoint subgraph homeomorphism

problem for directed graphs is reducible to a fixed node disjoint
subgraph homeomorphism problem for directed graphs.

Proof: The construction is very similar to that in the proof
of Lemma II.3.2 and will be only briefly described. Let vEG have
indegree IHv and outdegree GUTV. In G', v is replaced by INv nodes

called head nodes andDUTv nodes called tail nodes. There is an
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edge frem each head node for v to each tail node for v, This graph
of head and tail nodes corresponds to the graph Kv in Lemma II.3.Z.
In addition, for each vew(V,) there is a node ¥, an edge from each
head node of v to ¥, and an edge from ¥ to each tail node of v. We
define V'(x)= ¥ if v (x)=v. Finally, if edge (u,v) in G is the ith
edge cut of u and the jth edge into v, then in G', there is an edqge
from the ith tail node of u to the jth head node of v, (See Figure
II.3-4.)

The remainder of the proof folbbws closely that of Lemma IT.3.2
and is omitted here.

[

When v is not completely specified, the previously described
constructions may result in an instance of H being embedded in one
of the constructs. The tactic we will use to avoid this is to con-
trol the degreez of nodes in the construction so that we have control
over what nodes will be paired by v'. In the lemmas below, p may
be empty, in which case we have a floating problem. The censtruc-
tions described below may be used in the fixed case. However, they
are more complicated than those used specifically for the fixed

case and would not be preferred.

Lemma II.2.4 Any edge disjoint subgraph homeomorphism problem

for undirected graphs is reducible to a node disjoint subgragh homeo-
morshisn for undirected graphs.

Proof: We construct H' and G' such that HEEG if and only if

H'< G'. To do this, we will construct for each node, v, in G. a
-

graph =, such that only one node in N, has degree > 4. In H', each
node corresponding to a node in H will have degree >4. To do this,

first consider H'. The gragh H' will contain z2ll nodes and edges
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Figure II.3-4: Construction for Lemma II.3.3

in G: in G': A 2
1 2f IN =2 head nodes
v
g
vEy (VH)
1 o tail
2 3 OUT =3 1 2 3| nodes
in G: in G';
IN =1 head node
VEU(VH)
L gk BRE R tail nodes

S 1
vEV [VH]

C) indicates a node whose image or inverse image is specified.
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cf H. In addition, for each node v in H we add four new nodes to H',
denocted IV.Z?,Bv,and dv. and connect each of these nodes to node v'
in H' (corresponding to v in H) by an edge., Thus, H' has VH nedes
of degree >4 and 4[VH! nodes of degree 1,

Now consider G'. We construct Hv for each node veﬁgis follows,
Let v have degree dv in G. On each edge of v, we insert dv-; nodes
"close to" v, each node corresponding to one other edge of v, Sub-
graph Nv will contain only these dvtdv—ll new nodes plus node v',
corresponding to node v in G. An edge (u,v) in G has now become a
path in G' starting at u', going through the dunl nodes of N, inserted
en (u,v}, followed by the dvrl nodes of Hv inserted on (u,v], and
ending at v'. If (u,v) is the ith edge of v, call the portion of
this path in Nv the ith chain of N, Thus N, contains dv chains cor-
responding to the dv edges of v. We interconnect the chains of Hv
by adding an edge between every set of "matching” nodes. That is,
the node on chain  corresponding to edge i of v is connected to the
node on chain i corresponding to edge j of v, i#j, This intercon-
nection allows us to simulate a path in G which goes through v with-
out going through v' in G'. The construction of Hv is now complete.
Each node of HV except v' is of degree 3, To insure that v' is of
degree >4, we add four new nodes to G'{lv,zvjav,and dv} and connect
them te v'., These nodes and edges are not in N Node +' now has
degree dv+4. Note that nodes in H' which correspond to nodes in H
must map under yu' to nodes in G' which correspond to nodes in G, by
the degree requirements of these nodes. If V was partially specified
in the original problem by p, then V' is partially specified by p'

such that p'(u")=v' if and only if plu)=v. Figure II.3-5 illustrates
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Figure II.3-5: Construction for Lemma II.3.4

in H: in H':

new
i 2 2 3 4v nodes
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the construction, The construction can be exescuted node by node for
both H and 8. The number of steps reguired is EaklEGrZ}.

We must now show that H< .G if and only if H‘ENG', Suppose we
have (v,q), an edge disjoint homeomorphism from H into G. Let
vix)=v. We define v' such that v'(x")=({v'} and u'{ix]=iv (1<iz<d,
Consider any path, p, in a{EHI, p=0(x,¥), In G', we can define path
p' corresponding to p. Path p'! will start at 2'(%') and end at y'(y').
If path p contains edge (u,v}), path p' will contain the cerresponding
edge from Hu to Nv' Consecutive edges entering a particular WV are
connected by portions of the two appropriate chains in Hv and one
interconnecting edge. Thus only "new" nodes of “v are used as inter-
ior nodes of a path., We can now define g'. Let o'(x',y')=p', where
alx,y)=p, and a'(x',ixl= (v'(x'), iu{x]']’ l<i<4, Suppose two paths
in ﬁ‘[EHg collide on some interior node. By our definition of o',
this node must be one of the new nodes of some Nv' Suppose this
node is on chain j of Hv' A nocde on chain j can appear on two paths
in u’{EHT} only if the jth’edge of v appears on two paths in a(E.),

H
contrary to our assumption that (v,a) is an edge disjoint homeomor-
phism. We conclude that (v',a') is a node disjoint homeomorchism
from H' inte G'.

Now suppose (v',a') is a node disjoint homeomorphism from H'
into G'. The degree requirements of nodes in H' and G' assure us
that for any stH-,u'ix'}zv', where vgvg. We therefore define vy
such that y(x)=v if and only if y'(x')=v'., Consider any path p' in
a'{EH,J such that p'=g'(x',v')., {x,y}EEH. Path p' must consist of
subpaths within particular Nv‘s connected by edges between different

-

N#‘s. We define path p in G corresponding to p' by deleting the
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subpaths within particular Nv's. Edge (u,v) appears on p whenever
the edge from Hu to Nv is used in p'. Then 0(x,y)=p. Suppose two
paths in u{EH} contain the same edge (u,v). The corresponding paths
in a'(EH,)must both contain the edge from N, to Nv' contrary to our
assumption that (v',2') is a node disjoint homeomorphism. We
conclude that (V,2) is an edge disjoint homeomorphism from H into G.

L

Lemma II.3.5 Any edge disjoint subgraph homeomorphism problem

for directed graphs is reducible to a node disjoint subgraph homeo-
morphism problem for directed graphs.

Proof: The construction is very similar to that used for
Lemma II.3.4, and is described briefly. We shall control the mapping
defined by V' by controlling the outdegree of each node. In H', three
nodes are added for each ¥' corresponding to v in H, and an edge is
added from v' to each of these new nodes. 1In G', N, will now consist
of two types of chains--in-chains and out-chains. Each edge into
a node v of G is changed into an in-chain by inserting outdegree of
v new nodes and directing all new edges toward v'. Similarly,
each edge out of v is changed into an out-chain by inserting indegree
of v new nodes and directing all new edges away from v'. Intercon-
nections are made from each in-chain to each out-chain. HNote that
the edge between Nu and Ny corresponding to edge (u,v) in G now goes
from an out-chain of u to an in-chain of v. Each node on an in-
chain has indegree 1 and outdegree 2; each node on an out-chain has
indegree 2 and outdegree 1. For each v' in G' corresponding to v
in G, we add three new nodes to G' and edges from v' to each. Then

the indegree of v' in G' is equal to the indegree of v in G; the
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outdegree of v' is equal to the outdegree of v plus three. Figure
I1.3-6 illustrates the construction.

Since the remainder of the proof parallels that of Lemma II.3-4,
we omit it here.

|

In summary, we note that Lemmas II.3.1 and II.3.3 imply that
solving fixed node disjoint subgraph homecmorphism problems for
directed graphs is equivalent to solving fixed edge disjoint sub-
graph homeomorphism problems for directed graphs. For all other
problems, we can reduce edge disjoint homeomorphism to node
disjoint homeomorphism, but we do not know how to reduce node

disjoint homeomorphism to edge disjoint homeomorphism.
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Figure II,.3-6: Construction for Lemma II,3.5

in H: in H':
v v
_} new nodes

in G: e indegree(u)=0
outdegree (u)=1

(v indegree(v)=2
cutdegree (v)=2

Yw indegree (w)=1
outdegree (w)=0
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ITI Methods of Solution

ITI.1 Foundations

In this chapter, we investigate methods of solving node disjoint
subgraph homeomorphism problems, hereafter referred to simply as
subgraph homeomorphism problems. Our approach is to find reductions
which allow us to solve a particular subgraph homeomorphism problem
by solving several instances of a subgraph homeomorphism problem for
which we have a polynomial time algorithm. We limit the number of
instances to be at most a polynomial in the size of the input graph,
G, and require the reductions to be executable in polynomial time.
Therefore, the original problem can also be solved in a polynomial
number of steps in the size of G.

The foundation of our solutions will be the class of fixed
subgraph homecmorphism problems in which H is a tree of depth one.
This problem is treated as a network flow problem with unit vertex
and edge capacities. Definitions and algorithms for the network flow
problem can be found in [Hu, pp. 105-111] and [Ta 1974]. For our
application, a network is a directed graph N = <V,E> with one nocde,
s, identified as the source and one node, t, identified as the sink.
The source has indegree = 0, and the sink has outdegree = 0. To
each edge of N, we assign a non-negative integer capacity, c(v,w),
and to each node other that s and t we assign a non-negative integer
capacity, c(v). A flow, £, in the network is a real-valued function
from VXV such that:

i) f(v,w) = 0 if (v,w)fFE
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ii) the flow on each edge of N, f(v,w), is non-negative and
does not exceed the capacity of the edge, c(v,w).

iii) for each node, v, except s and t, the flow intc that node
{wgvf{w.v} ) is equal to the flow out of that ncde

(wgvf(v,w) ) and does not exceed the node capacity, c(v),

The value of the flow, v(f), is the flow out of a.(wgvf(s,w) ), which,
by the conditions above, is equal to the flow into t.1 The network
flow problem is as follows: Given network N, find the maximum of
v(f) over all flows in N. When the edge and node capacities are
integer, there always exists an integer - valued maximum flow [Fo,
p- 19]. 1It has been shown [Ta 1974, Ev 1975] that an algorithm by
Dinic [Di] to solve the network flow problem executes Cﬁlvlllealm
operations for networks with unit vertex and edge capacities. Thus,
we may use this algorithm a polynomial number of times in our algor-
ithms for subgraph homecmorphism.

To find a subgraph homeomorphism from H into G when H is a
directed tree of depth one, and V is specified, we transform G into

a network N_. Suppose H has root r and leaves 11""' 1 In G,

G xr
we make V(r) the source, removing all incoming edges. We add a new
node, t, to G, which is the sink, and connect t to each of v(li),
1<i<k, by an edge (v(li),t). 2ll edge and vertex capacities are one.

If EfNG, then the k paths corresponding to the edges of H define a

flow of k from v(r) through v(li), 1<i<k, to t. If there is a flow

x This definition is a modification of that presented in [Ta 1974].

The definition presented there includes the one presented above,
but is more general.
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from V(r) to t with value equal to k, then there is an integer-valued
flow. This flow defines k paths from v(r) to t, each path going
through a different VCli}. These paths must be node disjoint since

all vertex capacities are one. Thus, HﬁNG if and only if the max-

imum flow in HG is k. The construction takes an amount of time
proportional to (IEG]+ k), certainly polynomial in the size of G.

When H is an undirected tree of depth one and G is undirected, we

first make H directed by directing all edges from root to leaves.

Then, we make G directed by changing each edge of G into two directed
edges, one in each direction. This process takes time fafIEG]).

Figure III.1-1 illustrates the construction for directed and undirected
graphs. Figure III.1-2 illustrates another problem which can be solved
using the network flow algorithm.

Once we have an algorithm for solving a fixed subgraph homeo-
morphism problem with pattern graph H, we can solve any floating or
partially specified problem with pattern graph H. We do this by
trying all possible v consistent with p and solving the resulting
fixed problem. There are:

vglelnglis  _ tlvgl-lslir g
4 78 B O P 78 B o 5 O A

possible completions of p, representing all one to one function from
VyN, to V-p(N). Since @ = Cﬁ|v¢]|vﬂl-lmﬂa), we have a polynomial
number of fixed problems to solve. (Recall that IVHI and INHI are con-
stants.) Therefore, the resulting algorithm for floating and partially

specified problems is of polynomial time if the algorithm for the fixed
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Figure III.l-1l Construction when H is a tree of depth 1.

He: N mfr}

(directed) "Niuwsdas Lo
edges of G

H: becomes H directed:

(undirected)

g *a X T 1

G undirected: ) becomes NG directed: 2 Vi)

(representative T f

edges shown) u u

W

® - ®
V() W1, (1, )

(® indicates that the image of the node undervyor the inverse image
of the node is specified.
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FPigure III.1-2 Other problems solvable using network flow.

for H directed:

becomes source—-
G directed becomes N _: c)\Ns) remove incoming edges in G
(unit vertex and
edge capacities)

nodes and edges of G

@V(t) becomes sink--
remove outgeing edges in G

HgNG iff maximum flow in NG is > n+l. Since all paths which consti-

tute the flow must be of length > 2 except possibly one path
(if (v(s),v(t))e EG}, we can identify u{vi), 1<i<n,on these paths.

¥f H undirected: then direct H as above.

and for G undirected, direct G as for depth one tree problem.

(© indicates that the image of the node under V or its inverse image
is specified.
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problem is of polynomial time, In particular, whenever the pattern
graph H is a tree of depth cne, we can solve the subgraph homeomorphism
problem in polynomial time.

The above reduction generalizes to any partially specified
problem. If we can solve a problem with pattern graph H and Nﬂ#ﬂ,
we can solve any problem with pattern graph H and Nﬁ g;bﬁi. However,
this reduction does not simplify H itself by removing nodes or edges.
In Section II1I1.2, we present two reductions which do simplify the

pattern graph.
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IITI.2 FReductions

We shall present two special purpose reductions which alter
both the pattern graph, H, and the input graph, G. In both cases,

V will be partially specified. These reductions can be combined with
the general reduction described in Section III.1 to further expand
the number of subgraph homecmorphism problems for which we have poly-
nomial time algorithms. The reductions will be presented in the
directed case, but completely analogous reductions exist for the
undirected case.

The first reduction is applicable when H contains a path of
length k, k»1, from a node EENH to a node BEHH‘an which all interior
nodes are not in HH and have indegree one and outdegree one. Call
this path PH. Nodes A and B need not be distinct. (In fact, B may
be absent, in which case the last node of the path is of indegree
one, outdegree zero, and is not in HH.} Any corresponding path in
G under a homeomorphism (V,) must be of length >k. Each of the
interior nodes on this path will not appear on any other path in
a{EH], Therefore, we can assume that V maps the intericr nodes
of PH to the first k-1 interior nodes in the path of G. Corres-
pondingly, & maps the first k-1 edges of PH to the first k-1 edges
of the path in G and maps the last edge of PH to the remainder of
the path in G. Given this, we can use the following reduction.

For any input graph G and partial specification p:NH -+ vg,
all length k-1 paths from p(A) which contain no nodes in pEHH] other

generate

than p(a). Since k is a constant, even the crudest methods of ex-

haustive enumeration, taking fﬁ]vglk! steps are still executable in
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time a polynomial in the size of G, For each generated path P, we
do the following. Extend p to map each interior node on PH to the
corresponding node of the generated path. Construct H' by removing
the first k-2 interior ﬁcdes on PH and the edges associated with them.

The last interior node on PH is now in N In G, remove the inter-

n*
ior nodes of the path P and all edges associated with them , yielding

G'. Specification p':N

gt * Vi is the restriction of the extended p

to nodes of N Now solve the subgraph homeomorphism problem for

-
pattern graph H' and inputs G' and p'. If this problem can be solved
in polynomial time, the original problem can be solved in polynomial
time by solving at most fﬁTllek) instances of the problem for H'
and G', Figure III.2-1 illustrates the construction for both directed
and undirected graphs, Figure III.2-2 gives two pattern graphs H
for which the subgraph homeomorphism problem can be solved using
this reduction.

The second reduction is applicable when H contains a node A
in NH which is adjacent to k (k>1) nodes not in “H' each of indegree
one and outdegree zero. Label these nodes 11,...,lk. Suppose (v,o)
is a homeomorphism from H to an input graph G consistent with partial
specification p. Ifamaps edge (A&, li), for some i, to a path of
length greater than one, say Pi’ none of the nodes on this path will
be on any cther path in a(EH}. We can alter v and g so that (A, li]
maps to the first edge of Pi and li maps to the endpoint of this edge
without changing any other values of v and g¢. The new mappings still
constitute a homeomorphism consistent with p. Given this, we con-

struct H' and G' as follows. Consider all the nodes in VG~p(NH)
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Figure II.2-1 The First Reduction

H directed containing: reduced to H' directed containing:

1, >

Shte—— =<3 Be—aEl A

N k-1 P }3 Ca—
vk-l B

H undirected containing: reduced to H' undirected containing:

jof

L
|
=1

G directed containing:

u u Ll]
2 -
2 aﬂ:path 1

p(a) :1=\>ﬁ.- e = path 2
1 wz w3 wk-l

reduced to G' for path 1 containing:

¥ G Yx=1™P" (e}
pYa) q‘——a- - =
W w

2 3 Yz Tl

and to G' for path 2 containing:

i &5 sn 30

P(a) o
Ol W LS

C}indicates a node in HH or ﬂ{HH}.
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Figure III.2-2: Problems solvable using the first reduction.

a: Hl directed: reduces to Hi:

|
|
|

Hi solved by removing p(A) in G' and solving v@__)% 5
k=1

Similarly, Hl undirected: is solved.

A vl vz vk~1 B
b: I-l2 A reduces to Hi: A
vl /> solvable.
v =
k-1 1 Vo vk--l

Similarly, Hz undirected: reduces to Hé:

A@ @A}g solvable.
Vk-1 ( D 2 Vk-1
Y3

(@ indicates that the node is in N

Here, solvable means solvable by a polynomial time algorithm.
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adjacent to p(a) by edges from p(A). These are the candidates for
images of the li under v. For each set of k of these nodes, we con-
struct G' by removing the k nodes and all edges associated with them.
These k nodes will be the images of the 1i under V; the actual cor-
respondence is arbitrary. Graph H' is constructed by removing 11,

1<i<k, and the edge from A to each. Then HENG if and only if for

outdegree p(Aa)
k

(equal to C?1|VG]k] ) different graphs G', each construction execut-

some G' so constructed,ﬁ'jﬂc'. We construct at most ( )
able in at most E§?|EG|) steps ( the time to add back in or delete k
nodes adjacent to p(A)). Therefore, if the subgraph homeomorphism
problem for H' with V specified on NH' = NH is solvable in polynomial
time, the subgraph homeomorphism problem for H with v specified on

NH is seolvable in polynomial time. We may extend this reductiecn to
include nodes adjacent to A with outdegree one and indegree zero.
Then, two sets of nodes must be considered for p(A), those with edges
to p(A) and those with edges from p(A). Figure III.2-3 illustrates
the construction in the most general form. Figure III.2-4 gives two
pattern graphs for which we can obtain polynomial time algorithms
using the reduction. Note that the solution of H, in Figure III.2-4
implies that the subgraph homeomorphism problem for any pattern graph

which is a tree of depth two such that the leaves are not in NH is

solvable in polynomial time.
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Figure III.2-3: The Second Reduction

H directed containing: reduces to H' directed containing:
11
_’_}..--'5
1 . A
2 B
1
13
4
H undirected containing: reduces to H' undirected containing:

T, § s,

1
13/ B

For H directed above,
G directed containing: reduces to G' containing:

d-‘\vk/@ e f

c  pla)

or G' containing:
b (a)

or G' containing:

3

a e
. - p (&)

@ indicates that the node is in N, or DIRH]

H
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Figure III.2-4 Problems solvable using the second reduction.

C
A

<¥

"3 2 k-1

n nodes

k. nodes k_. nodes k nodes
1 2 n

solved using n applications of the reduction and then solving:

PR n nodes

@) indicates that the node is in NH.

Here solvable means solvable in polynomial time.
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III.3 Special Cases

We have found three subgraph homecmorphism problems which can
be solved n polynomial time without the assistance of the reductions
described in Sections III.l1 and III.2. The first is the floating
subgraph homeomorphism problem when H is an undirected cycle containing
exactly three nocdes. In this case HENG if and only if G contains
a biconnected compeonent with at least three nodes. Definitions and
and E?{[?G!+[EG]} time algorithm for determining the biconnected com-
ponents of G can be found in [ah, pp. 176-187]. A biconnected graph
is an undirected graph in which, given any two nodes, there is a path
between them, and given any twe edges, there is a simple cycle con-
taining them. The biconnected components of G break up G into bicon-
nected subgraphs.

When H is an undirected cycle containing exactly four nodes,
the floating subgraph homeomorphism problem can also be solved in
failvsl+|EGf} using biconnected components.

Claim: Any biconnected graph containing at least four nodes
has a cycle of length > 4.

Proof: Suppose G is a biconnected graph containing at least
four nodes but no cycles of length > 4. Then all cycles are of
length 3. Consider any cycle <(A,B) (B,C)(C,A)> in G. MNow consider
a fourth node D in G. Suppose edge e is the first edge on a path
from D to A. Edge e and edge (A,B) must be on a simple cycle, and
this cycle must be of length 3. Therefore, this cycle can only be

<(D,a) (A,B) (B,D)>. But then <(D,a) (aA,C)(C,B)(B,D)> is a cycle of
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length 4 in G, contadicting our assumption.

|

Therefore, HfNG if and only if G contains a biconnected compo-
nent with at least four nodes.
When H (directed or undirected) consists of three nodes, A, B,

and v, and two edges, (A,v) and (v,B), and p:{A,B} + V_., we can solve

G
the subgraph homeomorphism problem by removing edge (p(A), pP(B)}

from E_, if it is in E

s and looking for a path from p(A) to p(B)

G’
in G minus (p(A), P(B)). This can be done in time ﬁ’(lvGMEGl)
using a depth first search of G rooted at p(a) (cf. [Ah, pp. 176-187]).
When H is an undirected tree of depth one with exactly two
leaves, and V is specified, an alternate algorithm to the network
flow algorithm discussed in Section III.1 has been suggested by R.
Rivest and A. Yao Ril. The problem is viewed as finding a simple path
in G from V(ll) to v(lz) containing v (r). (See Figure III.3-1ld.)
Using a depth first spanning tree of G [Ah, pp. 176-187], the prob-
lem is determined to be infeasible or is reduced to finding a simple

path from njst to ngV_ containing ngV_, where Nys Dy, and n, are

2 G 3G 3

in a biconnected component of G. A simple cycle containing ny and ny

and a path from n_ to qzwhich does not contain n, are then used to

3 1

construct the desired path. The existence of both the cycle and the
path is guaranteed by the properties of biconnected components.

Figure III.3-1 summarizes the special cases discussed above.




Figure III.3-1: Special Cases

a) H:
b) H:
c) H: G‘ - @
A v B
d) H: r
4 1,
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G contains a biconnected component
with at least three nodes.

G contains a biconnected component
with at least four nodes.

G' = <VG, EG-{[D(Aluﬂ(BH}>c0ntains

a path from p(a) to p(B).

G: find a path from p(l,) to p(lzl
containing p(r) using depth first
spanning tree.

@ indicates that the node is in Na.
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III.4 Conclusion

Although in Section III.2, we have presented two very useful
reductions for solving subgraph homeomorphism problems, our know-
ledge of how to solve these problems is still based on the solution
of fixed problems when H is a tree of depth one. In Chapter IV, we
extend this foundation for undirected graphs by presenting a
linear time algorithm for the fixed subgraph homeomorphism problem
when H is a cycle containing exactly three nodes. In Chapter V,
we discuss the fixed subgraph homeomorphism problem when H consists
of two disjoint edges. This problem remains open and proves to be
a fundamental open problem for undirected graphs.

Turning to directed graphs, we are not as fortunate. The fixed
subgraph homeomorphism problem for H a tree of depth one is the only
fixed subgraph homeomorphism problem for which we have a polynomial
time algorithm. The three most basic problems to investigate are:

1) Hy consists of two disjoint edges.

ii) H, consists of three nodes, A, B, and C, and two edges,
(A,B}) and (B.C).

1i1) H3 consists of two nodes and both edges between them.
In each of these problems, the pattern graph has only two edges.
Unfortunately, all of these problems are ejuivalent, as illustrated
in Figures III.4-1 through III.4-3. In addition, if we can solve

the fixed subgraph homeomorphism problem for H,, we can certainly

1
solve it when H consists of two undirected disjoint edges. Thus,
the fixed problem for H consisting of two undirected disjoint edges

not only proves to be a fundamental problem for undirected graphs,
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but also promises to be the simplest of the open problems discussed

above.
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Figure III.4-1 Reducing Hy to H2

: A
Hl: reduces to Hz. I
= =R s D

by adding new node V(S) to G and edges (V(B),v(S)) and (v(S),v(C)):

in G: \J{ﬁé) @U{C] becomes u{h]@ v(c)
v(s)

© o] @
V(B) V(D) v(B) v(D)

Then any path from v(A) to v(S5) must go through v(B) and any path
from v(S) to V(D) must go through v(C).

Figure III.4-2 Beducing H2 to H3

. A .
HE' reduces to H3. ;| 5

c B

by adding new node V(S) to G and edges (v(S8),v(A)) and (v(C),V(5)).

in G: @V (A) becomes «V(A)
@ © o]
W (B) v(c) V(EB) viC)

Then any path from Vv(3) to v(B) must contain Vv(a), and any path from
Ww(B) to V(S) must contain Y{(C).
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Figure IIX.4-3: Reducing H3 to H1

H.: A reduces to H

e
o

-y B Bz éAz
by breaking V(A) in G into two nodes V(A,), whose edges are all the

edges out of V(A), and V(A,), whose edgesS are all the edges into v(a).
Node v(B) is broken into two nodes in a similar manner.

in G: v{A) becomes U(Al} vtall
LI VANV AN

aXb¥ c. d. a b v

UIle UIAE)

Then any path from V(A) to Vv(B) is equivalent to a path from V(A,)
to v(B,), and any path from v(B) to V(&) is equivalent to a path
from U(31) to U(Az).

indi ode in ;o
(@ indicates a node in NH o p(NR)
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I¥ A Linear Time Algorithm

IVv.l Introducticn
In this chapter, we present a linear time algorithm for

determining if the graph C_, shown in Figure IV.1-1 is homeomorphic

3
to a subgraph of G when V is specified. Both C_ and G are undirected.

3
Let v(a)=A, Vv(b)=B, and V(c)=C in G. Then, we would like to find in
G a simple cycle containing A, B,and C.

Several concepts are needed before the algorithm can be pre-
sented. In this discussion, G is always an undirected graph. Two
nodes in a graph are connected if there is a path between them.

A graph G is connected if every pair of nodes in G is connected.

A set, S, of nodes in G is a (vertex) cutset for two nodes, x and

¥, in G if every path between x and y contains a node of 5. Thus,
removing the nodes in 5 (and the edges incident on them) from G
separates x from y. A set S of nodes in G is a (vertex) cutset for
G if it is a cutset for some pair of nodes in G. The connectivity
of nodes x and ¥y in G, denoted K(x,y), is the minimum number of nodes
in a cutset for x and y.l In particular, two nodes, x and ¥, are

biconnected if K(x,y)>2; two nodes are triconnected if K(x,y)>3.

The connectivity of a graph G, K(G), is defined to be % ?Eﬁn Kix,v).
F
G

A graph is biconnected if K{G)EE;E a graph is triconnected if K(G)>3.

1Thi$ notation follows that in [Ha 1971, p. 49].

2 -
The equivalence of this definition fora biconnected graph and that

given in Chapter III is presented in [Ah, pp. 179-182].
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Menger's Theorem statesthat if K(x,y)>n for two nodes, x and y, in
G, then there are at least n node disjoint paths between x and y
[Ba 1971, p. 49].

Suppose we remove a cuiset 5 ffoma cannected graph G. Graph G sep-
arates into several connected subgraphs. Denote the connected sub-
graph containing a particular node usvé - 5 by (G~51u. Using [G—S]u,
we will construct what we call the S-component of G containing u,
denoted [GKSIu. The notation "(Gfslu“ indicates that the only paths
from u contained in {G/S}u are those which either do not contain
nodes of S or contain nodes of § as endpoints. Thus, the nodes reach-
able from u in [Gfslu are restricted by S, To construct (GfSlu,
we add to {G~51u all nodes of 5 and any edges in EG which go from
a node in (G-S}u to a node in S, Note that we do not add edges bet-
ween nodes in S. It may be the case that some nodes of S are iso-
lated in {GfS]u. This can only occur if some proper subset of S is
alsc a cutset of G, Figure IV.1-2 illustrates the construction.

We will use the following algorithms within our algorithm for
Cy: (1) an O?:|vG[+]EG[J time algorithm for finding the biconnected

components of G. This algorithm is due to Hopcroft.
[ah, pp. 176-187] [Ho 1973a] [Ta 1972]

(2) The network flow algorithm discussed in Section III.1 .

We use this algorithm to find paths in G and cutsets for
pairs of nodes, Since we will need to find a flow of at
most three using this algorithm, the time taken will be
ET('UG[+iEG|I rather than fﬁtlvs|1/2lEGl) for each appli-

cation, [Ta 1974] [Ev 1975]



kn
(-

The use of the network flow algorithm for finding cutsets of

size two is presented in the next section,
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Figure IV.1-1

Figure IV.l1-2:Construction of (G/S}u

s = {1,2}: no subset of S is a cutset.
1
G: 3 3

v u remove S: v<<:/'

4,

2 (G—S}V=IG-S}3

=tG-s}4
1
(G/S)V: 3 (G/s)u: 1
v 2::::> "

I 2

s = {1,2,3} ; {1} is also a cutset.

remove S: ¢ X (G-S}x
Wi
“ {G-s)u
(G/S]u: 1 {Gfslx: ] X (G!S]w: 1
i &
u 2 2
e 2

(G-5)
u

s W (G‘S]w
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IV.2 Finding Cutsets of Size Two

In this section, we outline a procedure for finding a cutset
of size two separating s and t, the source and sink of a unit node
and edge capacity network, N, when the maximum flow from s to t is
two. This procedure will require f?llvﬂ]+}ENi} steps. The cutpoints
will have properties which will be crucial in the algorithm fer C3.

To understand how we find cutsets using the network flow algor-
ithm of Dinic, we must have a basic understanding of the algorithm.
Our discussion is limited to networks with node and edge capacities
of one. Note that each node, v, with capacity one in a network,M, is
represented by two nodes,HEAD v and TAIL v. All incoming edges of
v go to HEAD v, all outgoing edges of v leave from TAIL v, and there
is an edge from HEAD v to TAIL v of capacity one. The algorithm uses
the new network, N', created by this modification.

Given a flow from s to t in the network, N', the algorithm
proceeds by‘finding an augmenting path in N' along which flow can
be increased while maintaining the edge capacity restrictions on the
flow. This augmenting path can use edges not used by the present
flow and edges used by the present flow in the opposite direction
from that for the present flow. Using an edge in the opposite dir-
ection cancels the flow in the edge. HNote that the augmenting path
in N' corresponds to an augmenting path in N which uses a node on
a path of present flow only if at least one edge incident on that
node used by the augmenting path is also used by a path of present
flow, in the opposite direction. Figure IV.2-1 illustrates the use

of an augmenting path.
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Figure IV.2-1: An Augmenting Path
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To find augmenting paths, modify W' so that each edge used by
the present flow is replaced by an edge in the opposite direction,
Call the new network N. A breadth first search of N, beginning with
node s, is used to create a spanning tree of N. This tree contains
all nodes reachable from s by an augmenting path, If t is reachable
from s, a new augmenting path has been found. If not, the present
flow in N' is of maximum value. Details of the algorithm can be
found in [Ta 1974]and [Hu, pp. 105-120].

We now show how to find a cutset of size two separating s from
t when the maximum flow from s to t is of value two. In the discus-
sion below, we assume that N is a network formed from an undirected
graph G containing s and t by replacing each edge of G by two directed
edges and removing incoming (respectively outgoing) edges of s(res-
pectively t). Consider the spanning tree, T, of N when the network
flow algorithm terminates. Let Py and P, be the paths from s to t
in G corresponding to the flow of two in N' (and N). Let Ay be the
closest node to t on P, such that HEAD A, is in T. If A.,=s, then,

1 1 1

instead, let Al be the node adjacent to s on P Define A, on P2

? 2

similarly.

Lemma IV.2.1 The set{ﬂl,ﬁz}is a cutset separating s from t

in G.

BProof: Suppose, to the contrary, that there is a path, Q,

in G from s to t which does not contain hl or A2, Let v be the node

closest to s, but not equal to s, on Q which is also on Pl or Pz.

This ncde must be on %}s,hll or Pz[s,hz], where Plu,v] denotes the

portion of path P from node u to node v. Otherwise, Qls,v] corresponds
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to an augmenting path in N' to a node closer to t on P, {or PQJ

than hl br Az}_ Note that since t is on P., P_, and Q, the node v

: LaN iy

always exists. Let w be the closest node to t on Q which is also
on Plls,All or les.Azl. The node w is at least as close to t as v
on ¢ (i.e. w may equal v)., Therefore, w#s. Also, w#Al and w#Az by

our assumption that Q does not contain A, or A Let z be the closest

1 2"
node to w on Q[w,t] which is also on Plfﬁl.ti or Pz[hz,t]. We know

that z#w, but z may egual t. Without loss of generality, assume w
is on Plis,Al]. This implies that there is an augmenting path from

s to A, in N', since PIIS,AIJ cannot consist of a single edge.

d,

Consider the augmenting path constructed from the following segments
by removing interior cycles:

(1) the augmenting path from s to HEAD A_.

(ii) the pathin N' corresponding to P Ial,w]. (Note that this
is the opposite direction on P_from that used in the flow
from s to t, and is therefore usable as an augmenting
path.)

(iii) the path in N' corresponding to Q[w,z]. (Note that this
path is node disjoint from Pl and P, except at w and z.)

This augmenting path goes from s to HEAD z. Since z is on Pl[Al,t] or

Pz[az,t], and z is distinct from A, and A the existence of this

1 2’

augmenting path is contradictory to our definition of Al and AE'

Figure IV.2-2 illustrates one possible configuraticon of v, w, and 2z

on Pl and Pz.

L

and A, .

We would now like to prove an important property of hl 2

is crucial in the algoritm for C_. Let

This property of Al and A 3

2
g = (Gf{al.nz})s-
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Figure IV.2-2: A configuration of v,w,and z in the proof of
Lemma II.2.1.
] Q: s_
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Lemma IV.2.2 If there is an augmenting path to HEAD hl in N!

upon termination of the network flow algorithm, then there are three

17 and one from s to Az.

Proof: First observe that merging an augmenting path with an

node disjoint paths in Gl’ two from s to A

existing flow to obtain a new flow may cancel all flow through an
interior node of the original flow. However, the amount of new flow
into and out of endpoints of the flow can only increase,

The augmenting path to HEAD Al in N¥' upen termination of the
network flow algorithm uses no nodes of N' corresponding to nodes
on P1[A £] or P2[A2,t]. Therefore, we can regard HEAD hl and
HEAD Az as endpoints for the flow from s in N' without affecting
the augmenting path. This flow of two merged with the augmenting

path yields a flow of three in N'. There is a flow of two into

HEAD A., and a flow of one into HEAD A_. Therefore, this flow cor-

2 &
responds to three node disjoint paths in G -- two from s to Al and
one from s to “2’ Our construction of Gl = tG/{AI.Az}IS does not
eliminate any simple paths from s to hl or Az. Therefore, the three

node disjoint paths are also in Gl'

=

An analogous version of Lemma IV.2.2 exists with the roles of
Al and A, interchanged. Lemma IV.2.2 implies that there is no set
of two cutpoints separating s from t in G such that the cutpoints

are closer to 5 on Pl and P2 than nl and Az. Any such cutpoints would

have to separate s from Al and Az, which is precluded by the augmenting

paths to HEAD Ay and HEAD AZ'

To conclude this section, we discuss the time required to find
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A, and By and to construct G;. The Eﬁivs|+|EG|l network flow algor-

ithm terminates with T, the breadth first search tree, constructed.
We search T and create a table recording which nodes of G appear in

T. This takesﬁf{[vsli operations. The network flow algorithm pro-
vides us with the flow of two from s to t, We traverse the paths

Y and B, in G corresponding to the network flow and mark all nodes
on P, and P, in T using the table. This requires Cf{IEG]} operations.

Pointers can be used to keep track of the candidate nodes for Al and

az while traversing P, and P,. Then, when the traversal is completed,

1 2
A, and A, are known. Thus, we can find A, and A, in G¥[|VG|+|EG!1
operations.
To construct Gl = (Gf{hl,hg}ls, we remove hl and Az from G.

. . 1
Graph G is stored as a set of adjacency lists. Therefore, to remove

Al and A_, we must create a new set of adjacency lists, which

2

requires CF'[lEGH operations. After A, and A have been removed, we

1
2

do a depth first search of Gn{nl.hz} starting at s. This search

reguires f¥{|VGI+iEg]1 operations [Ah, pp.l176-179] and will produce

(G-{Al,ﬂz}}sﬁ To add nodes A and A, and edges from A and A, to

nodes of (G-{a,,A })_ requires at most & {[vGH operations. There-

fore, we can construct (Gj{Al,Az}ls in E?(lvGI+EEG1] operations.

1 : " , :
Themr is an adjacency list for each node in V., The list for a
node contains all nodes adjacent to that node. Each edge is
represented twice, on the adjacency list for each endpoint.

The notation G-S denotes graph G with the nodes in S, a subset
of Vor @and their incident edges removed.
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IV.3 The algorithm for C3

We determine if CafﬂG by attempting to find a simple cycle
containing nodes &, B, and C of G. We attack the problem by breaking
G into components and looking for the paths which must exist in those
components if the desired cycle exists in G. We do this by looking
for certain sets of node disjoint paths in G or a component of G.
If a set of node disjoint paths does not exist, we either know the
cycle does not exist or find cutpoints which we use to break up G
further. If a set of node disjoint paths does exist, we add this
to our knowledge of G. We build up the number of sets of node dis-
joint paths known to be in G until we can piece together the desired
cycle from the paths. The algorithm is presented in a step by step
fashion.

Algorithm IV.3: Determining if C3§HG
Step 1: If one of edges (A,B), (A,C), or (C,B) is an edge in

G, we can find the cycle immediately, if it exists, as follows. With-

out loss of generality, assume (A,B)EE Find a path from A to B

G
containing C. This is an instance of the fixed subgraph homeomorphism
problem when the pattern graph is a tree of depth one with exactly

two leaves, denoted K The solution of this problem has been

P
presented in Chapter III. The path from A to B containing C joined
with the edge (A,B) forms a simple cycle containing A, B, and C.
Step 2: Break G into biconnected components. If A, B, and C
are not in the same biconnected component, then no simple cycle con-

taining all three exists. If A, B, and C are in the same biconnected

component, consider only this component. BAny simple cycle containing
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A, B, and C must be in this component. Let this component be graph
G. Graph G is now a biconnected graph containing A, B, and C. HNone
of edges (A,B), (B,C), or (A,C) is an edge in G.

Step 3: Determine whether or not G contains three node disjoint
paths, each with A as one endpoint and either B or C as zhe other
endpoint. To do this, merge B and C into one node, dencted [BC].
Each edge (u, B) or (u, C) becomes edge (u,[BC]); duplicate edges
are removed. Call the graph resulting from merging B and C, G(BC).
Determine if A and [BC] are triconnected in G(BC) by constructing
a unit vertex and edge capacity network, N(BC), from G(BC) with source
[BC] and sink A. Nodes A and [BC] are triconnected in G(BC) if and
only if there is a flow of three from [BC] to A in N(BC). If A and
[BC] are triconnected in G(BC), then the desired node disjoint paths
exist in G. We apply ARlgorithm IV.4, described in Section IV.4, to
find a cycle in G containing A, B, and C.

If A and [BC] are not triconnected, test whether or not B and
[AC] or C and [AB] are triconnected in G(AC) and G(AB), respectively.
If any of these pairings is triconnected, we use Algorithm IV.4 to
find a cycle containing A, B, and C. If none of the pairings is
triconnected, continue to Step 4.

Step 4: At this point, we know that G is a biconnected graph
which does not contain edges (A,B), (A,C), and (B,C). We also know
that A and [BC] are not triconnected in G(BC).

Since G is biconnected, A and [BC] must be biconnected in G(BC).
Therefore, when we used the network flow algorithm on N(BC) with [BC]

as the source, the network flow algorithm must have found a flow of
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two from [BC] to A in N(BC). We can apply the procedure described
in Section IV.2 to find a cutset {Al,hz} separating [BC] from A in
G(BC). This cutset separates A from B and C in G. If {Ay Ry} also
separates B from C in G, then a simple cycle in G containing A, B,
and C does not exist, Each portion of the cycle -- from A to B,
from B to C, and from C to A -- would cotain one of nodes Al or Az.
To determine if {A,,A,} separates B from C, we need only construct
(G-{A;,Ay}) and ask if C is a node in (G—{nl,ﬁz}la. If not,
{A;.A,} separates B from C, and we can halt. If (G-{A ,A,})
contains C, then we continue to Step 5,

Step 5: We now have biconnected graph G containing cutpoints
Al and Az separating A from B and C, We alsoc know:

(1) (a,B), (B,C)}, (C,A) ¢ EG'

(2) {G-{Al.hz})s = (G-{Al,Az})C.

(3) There is a path in G from A_ to A_ containing A which
contains no nodes in lG—{Al,Az}]B.

{(4) Lemma IV.2,2 applies to (GIBC}/{Al,Az}} (e

Fact 1 follows directly from Step 1. Fact 2 is a direct con-
sequence of the definition of ca—{al,p.zh ¢+ and the fact that C is
a node in (G-{Al,Az})E. Fact 3 is guaranteed by the flow of two
from [BC] toc A in N(BC). The path defined by the flow segments from
to A cannot contain any nodes in {G-{AI,AZ}JB,

2

since Al and AZ separate A from B and C. Fact 4 follows from our

application of the network flow algorithm with [BC] as the source.

Al to A and from a

Given fact 3, we can complete our cycle in G containing A, B,
and C, if and only if we can find a path in (G/ﬁ&l,Az})B from A to

Ay containing B and C (in either order). This follows from the fact
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that (G/ia )B = (G{{Al,Az})c and that (G/{Al,az})g (respectively

3
l’A?..'
(G/{Al,32}1c1 contains all simple paths in G from A, or A, to B

(respectively C). Let G, = {G/fnl,nz}lg. We will now limit our

+ MNote that neither Al nor Az is

isolated in Gl' since there are two node disjoint paths--from A, to

search to the desired path in Gl

[BC] and from Az to [BC]--in G(BC). Therefore, Gl is connected.

Consider (G-{Al,Az})B. Are B and C biconnected in (Gn{Al,Az})B?
If so, continue to Step 6. Otherwise, find any cutpoint x (called
an articulation point) which separates B from C in (G-{Rl,nz}la.
In G,, fAl,Az,x} is a cutset separating B and C, since tG-fAl,Az}}B

is simply Gl with Al and Az (and their incident edges) removed. Let

= 3 = . P
Sg (Gl/{Al,Az.x,)B and Sc (Glf{al,az,x})c Note that {nl x},

1° Thereifore, ﬂl or Az
. (See FPigure IV.3-l.) Any path in G

{Az,x} or {x]} may be a cutset of G

may be isolated in S_ or S

B c 1

from Al to Az containing B and C must be of the form: path 1 in SB

from Al {or 32) to x, containing B but not containing 3

followsd by path 2 in SC from x to A

2 (oxr ﬂl)r

5 (or A]), containing C but not

containing A, (or Az). (See Figure IV.3-2.) The existence of these

1

paths can be determined by solving the fixed subgraph homsomorphism

TS T - ¥ "
problsms: So=181Y20 o wikh wizish, v(1))=3,, v(l,)=x and

SC-{Rz}EﬂKl'z with y(x)=C, u(11}=A1, u{12)=x
- - 3 - = =
Qr: SB IAZ}ENKI,E with y(r)=B, u{ll) Ay v u(lz) x and
=TI 1t = = =X .
S, ‘Al}ﬁﬂxl’z with y{r)= C, v(ll) Ays v(lzl x
Here, X, 5 is the tree of depth one with root r and exactly two

leaves, 11 and 12. We have presented an algorithm for this problem

in Chagter III.
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Figure IV.3-1 Exzamples of isolated A, and Az'

1
Gl: (Gl/{x'hl’hZ})B: (Glf(x-alyaz})ct
A A, | A, ey By
X =
P
B b4 c B b 4

ng,x} is a cutset.

Gl: (Gl/{x.hl.hz})a (Glf{x.hl,hz}}c:
A A A
1 1 A2 1 2o Al Azi
{ oA ——a L
B x C B * x C

{Al.x} is a cutset.

Gl: {Gl/{x'nl'az})B: £Gl{x'A1'A2},C:
. By ¢ B R, A Ayr

. — b
B x c B x x C

{x} is a cutset.
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Step 6: At this point we would like to find a path from Al to
Az in Gl containing B and C (in either order). We know the following
facts:

(1) G is biconnected.

{2) (A,B), (a,C), and (C,A) ¢ Eg-

(3) A, and B

1 2 separate A from B and C in G,

(4) [G/{RI.AE})B = LG/{Al.Az}]C =G, , a connected graph.

(5) Lemma IV,2.2 applies to (G(BC}/{Al,Az}) (8C]"

(6) There are two node disjoint paths in G, from B to C,

neither of which contains Al or nz.

Consider (G(BC]/{AI.ﬁz})IBC]. Since there is a path from B

1

to C in G, which contains neither A, or A, {G{BC}/{nl,A2}1EBC]

That is, the same graph results if we merge B and C in G and then take

= Gl(BCL

the {Rl,nz}-component of G(BC) containing [BC], or if we take the
{hl,h2}~component of G containing B (and C) and then merge nodes B
and C. Lemma IV.2.2 applied to Gl(BC) states that if there is an
augmenting path to A1 in N(BC) upon termination of the network flow
algorithm, then there are three node disjoint paths in GI{BC), two
from Al to [BC], and cne from hz to [BC]l. The analogous result holds

if there is an augmenting path to A, in N(BC) upon termination of

2
the network flow algorithm,

Determine if any two of edges (AI,B), (Az,B), {Al,C) and (Az,c)

are in Gl' If so, then,without loss of generality, there are three

distinct cases,

Case 1: Edges (Al,Bl and Ehl,C} are in G The desired path

1

from Al to 2, containing B and C (in either order)is in Gl if and
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only if there is a path in Gl—{ﬁl} from A, to B containing C,or a

2

path in Gl—{hl} from A. to C containing B. We can determine if

2

either of these paths exists by solving the fixed subgraph homeomor-

phism problem for pattern graph K If om of the paths exists,

1,27
we add to it the appropriate edge of {hl,Bj or {RI,C] to get the

desired path in G

1"
Case 2: Edges [Al,B] and ERE,B} are in Gl. The desired path
in Gl from Rl to az exists if and only if a path from B to A2 con-

taining C is in Gl-{hl}-nr a path from B to A, containing C is in

1
Gl-{hz}- We determine if these paths exist as for case 1.

Case 3: Edges (A1,31 and EAE,C) are in Gl. By fact 6 above,
there is a path in Gl from B to C containing neither Al nor A_.
Adding edges {nl,B} and EAE,C] to the ends of this path gives us the
desired path in Gl-

If no two of edges {al,B}, [AE,B}, (HI,C}. and Enj,C} are in

Gl' continue to Step 7.

Step 7: Determine if there are augmenting paths in N(BC} to
Al and Az upon termination of the network flow algorithm. At least

one of hl and A, must have an augmenting path to it. Otherwise, the

definition of nl and Az implies that both (Al,[BC]J and {Az,[BC]T

are edges in Gl{BC}, contradicting our findings in Step 6. If both
ﬁl and Az have augmenting paths to them, applying Lemma IV.2.2, we
know that there are two sets of three node disjoint paths in GI{BC]*

In the first set (respectively second set), two paths go from Rl

(respectively A,) to [BC], and one path goes from A, (respectively

2
Alj to [BC]. We continue to Step 8.
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Suppose there is no augmenting path to one of Al or Az. With-
out loss of generality, assume this node is Al. This implies that

there is no path from A, to [BC] in GIIBC)«{AZ} other than edge

1

[nl,[Bc]}. Otherwise, this path would define an augmenting path to

A, in N(BC). To see this, note that any path from [BC] to A, which

1 1

uses an interior node of the path defined by the flow from [BC] to

L in N(BC) can be canbined with the augmenting path to 32 to form

an augmenting path to Al. Any path which does not use such an inter-
ior node automatically defines an augmenting path to Al. We conclude
that a path in Gl from Al to Az containing B and C exists if and

only if edge (Al.[BC]) corresponds to edge (Al,s) (respectively (Al,C))

in G,, and a path from B (respectively C) to A

1 containing C (res-

-
pectively B) exists in Gl—{hl}. By Step 6, only one of (A , B) and
[AI.CJ is in Gl’ We determine if the path necessary to complete our
desired path exists by using the algorithm for the fixed subgraph
homeomorphism problem with pattern graph K1.2'

Step 8: At this point we know the following facts:

(]} G is biconnected.

(2) (a,B), (B,C), (C,A) ¥ E .

(3) Ay and A, separate A from B and C in G.

(4) (G/{AI.AZ})B = (G/{Al,az})c = G, a connected graph.

(5) There is a path in G from A

outside Gl.

to A, containing A which lies

1 2

(6) There are two node disjoint paths from B to C in G
neither of which contains Al or A,.

(7) There is a set of three node disjoint paths in G, (BC)--
two paths from A, to [BC] and one path from Az to [BC].

(8) There is a set of three node disjoint paths in Gl(BC}--

ll
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two paths from A, to [BC] and one path from A, to [BC].

2 : 3

(29) No two of edges {Al,B], {Az,El, (ﬁl,c}, {AE,C} are in Gl.
Determine if Gl is biconnected. If Glis biconnected, continue

to Step 9. If Glis not biconnected,then there is an articulation

point, %, in Gl' Recall that G is biconnected. Given this, articu-

lation point % must separate al from Az in Gl. Otherwise, x is also

an articulation point of G, contradicting the fact that G is bicon-

nected. Neither kl nor A2 can be an articulation point since Gl

was formed from (G-{AI,AZ})B, which is connected, and neither A  nor

Az is isolated.

Suppose x is not equal to B or C. By fact 8 above, there are

two node disjoint path from A, to [BC] in GIKEC}. Denote the path

2

which dees not contain x as Pz. Without loss of generality, assume

P_ goes to B in G

5 By fact 7 above, there are two node disjoint

1'
to [BC] in Gl(BC). Denote the path which does not con-

paths from Ay

tain x as Py- If Pl goes to B, then

cycles removed, is a path from.h2 to Al which does not contain x.

Pz joined with Pl' with any sub-

This contradicts the reguirement that articulation point x separate
Al from A2. Therefore, assume Pl goes to C. By fact 6 above, there

is a path in G, from B to C which contains none of A, ,A., and x.

1l 1772

Call this path PB . The path composed of P

c , P, and P, with sub-

2 BC 1

cycles removed is a path from Az to Al which does not contain x.
Again we have a contradiction. We conclude that x must egual cne
of B and C. Figure IV.3-3a illustrates the above argument.

Without loss of generality, assume B is an articulation point.

Node B cannot separate all three of Ay, A,, and C from each other,

%
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Figure IV.3-3: Illustration for Step 8.

a) Pl goes to B:

b) //

P

1

goes to C:
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since there must be a path from C to AE not containing B in G, by

the biconnectivity of G. This path is either completely in Gl or

has an initial portion from C to A, in G Without loss of generality,

1 2
assume B does not separate C from hz. Let 51={Glf{3}}ﬁ and
1
52=I61J{E}}AA' The desired path in Gy from A, to A, containing B

2

and C exists if and only if there is a path in 5’ from B to A, con-

2 2

taining C. (The path in S5, from A, to B is guaranteed by the defin-

1 1

ition of 51.} We determine if this path in %Zexists by solving the

subgraph homeomorphism problem for pattern graph X (Figure IV.3-3b).

1,2
Step 9: Consider the sets of three nodedisjoint paths in Gl{BC}

guaranteed by facts 7 and 8 of Step 8 above. These paths correspond

to three paths in Gl. Three cases are possible, as shown in Figure

IV.3-48-. Case 3 is reduced to case 1 or case 2 by finding a path from

C to Ay in Gl which does not contain B. This path is guaranteed to

exist by the biconnectivity of Gl. Some initial portion of this path
from C is node disjoint from the three paths in case 3 except at its
endpoint. This path is pieced together with the appropriate path
of case 3 to give case 1 or case 2. (See Figure IV.3-4b)

In case 1, we use Algorithm IV.4 to find a path in Gy from
ﬁl to Az containing B and C. In case 2, we continue to Step 10.

Step 1l0: Determine whether or not [AlB] and [ﬁZC] are tricon-
nected or [hza] and [AlC] are triconnected in the graphs obtained

by appropriately modifying Gl. If neither pair of merged nodes is

pacepBreaaCrana A

triconnected, then neither a path of the form {Rl 5

nor a path of the fcrm,ﬁﬂz,.._,B,...,c,...,n > exists in Gl' since

1

no two of edges {Al,El,{hl,C], {AE,E}, {AZ,C}, and (B,C) exist in Gl'
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Figure IV.3-4 Cases for Step 9

a)
Case 1: Aafx\ Waz Case 2: al Iaz
. !
B ¢ N o Bl wc
Case 3: A

In all cases, A, and hz are interchangeable, and B and C are inter-
changeable.

or

Reduces to case 1 or case 2 under

- i
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This is illustrated in Figure IV.3-5. If either pair of merged nodes
is triconnected, continue to Step 11,

Step 11: Without loss of generality, assume the three node
disjoint paths found in Step 10 are from [Alal to [AZC]. We know
the following facts:

(]) G is biconnected.

(2) (a,B), (B,C), (C,A) E‘sg.

(3) A and A, separate A from B and C in G,

(4) (¢/{a ,ah, = (6/1a, A0, =6

(5) There is a path in G from Al to A
outside Gl'

(6) There are two node disjoint paths from B to C in G

neither of which contains Al or Az.

, @ biconnected graph.

2 containing A which lies

ll’

(7) There is a set of three node disjoint paths in G_,with
one path from A, to B, one path from Al te C, and one
path from hz to one of B or C.

(8) There is a set of three node disjoint paths in G_,with
one path from A_ to B, one path from kz to C, and one
path from al to"one of B or C.

(9) No two of edges (Al,B), (Al, (4 (ﬁz,B), or (AE,C) are
in Gl.

Consider the two disjoint paths from B to C which are guar-
anteed by fact 6. Since [Ala] and [AEC] are triconnected, there
exists at kast one augmenting path in a network constructed from Gl
with flow corresponding to the two node disjoint paths between B and
C. This augmenting path results in three node disjoint paths, each
from Al or B to Az or C In Gl' Note that at least two of the paths

must have B as an endpoint and at least two must have C as an endpoint,

since augmenting paths can only increase the flow into or out of




74

Figure IV.3-5 Illustration for Step 10

then:

exist with at least

two of Pl‘ P_, and
or: P3 of length > 2

—

or:
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endpoints of flow. The possible configurations of these paths are

shown in Figure IV.3-6. Cases 1, 2, and 3 are those which must be

examined.
Cases 2 and 3 can be reduced to either case 1 or case 5 as

follows. Recall that Gl is biconnected. Consider case 2. Find a

path in Gl from Az to B which does not contain C. The existence of

this path is guaranteed by the biconnectivity of Gl' Some initial

portion of this path, say <A2,-..,v% is node disjoint from the paths
Pl' ?2. and P, shown in case 2 except at endpoint v. Note
that v may egual Al or B, but not ¢. If v is an interior node of

path Pl or egual to Al, we have reduced case 2 to case 1 as shown

in Figure IV.3-7a. If v is an interior node on one of paths P2 or

P3 or egual to B, we have reduced case 2 to case 5as shown in Figure

IV.3-7b. Case 3 is handled similarly.
We now must deal with case 1. By fact 7 above, we have three

node disjoint paths of the form : path Ql from A, to B; path 2,

1

from Al te C; path Q3 frcm.h2 te C or from hn to B. Without loss

of generality, we assume that Q3 goes from A_, to C. We will use

2

these three node disjoint paths in conjunction with the three node

disjoint paths of case 1: Pl from Al to A2 3 P2 from B to C;

P3 from B to C. (See Figure IV.3-8)

Let: Py be the vertex closest to A, on Qi which is alse on

1
P, or 93, i=1o0r 2. Node p, may egual B; node p, may
equal C, but both Py and 92 are distinct and different

from Al'
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Figure Iv.3-6 Configurations for Step 11.

1) Ay B 2)
G Fa
P
.Fi.z C
3 A B 4)

Reduces to (1) or (5) Eliminated at Step 3

3)

Desired path
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Figure IV.3-7: Reduction of Cases 2 and 3 to 1 or 5.

reduces to:

reduces to:

Al B
new P
Pl v P3
AZ B
(case 1)

(case 5)

Figure IV.3-8: Paths Pl,Pz,P3 and Ql.Q2fQ3,
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Let: %be the vertex closest to A2 on Qa which is also on P2

or P3 . Nede p, may egual C.

Let: 9 be the vertex closest to p; on Qilnl,pi] which is also
on Pl' i=1o0or 2. Nodes 9, and q, may egqual Al.

Let: g, be the vertex closest to py on 93[A ] which is also

2'P3

on P,. Node qj may equal A

1 2"

Figure IV.3-B shows one configuration for the pi‘s and qi‘s.

Noting that two of Py Py and p, must both be on Pz or both

be on P3, we have the following cases. Without loss of generality,

let Py and pj both be on P_; let %‘be closer to Al on P, than qj'

of 1

Case a (Figure IV.3-2a) :We have pi#pj and qi#qj. Also, Py is

closer to B on P2 than pj. Then the path composed of:
Pl [Aqui] !Qi [qlrpl] '92 [Pi:B] :P3 [B +C] fP2 [C.Pj] er {PJ rqj] 'Pl [qJ rﬂzl

is a simple path from A, to A, containing B and C.

1 2
Case b (Figure IV.3-9b): We have pifpj and qi#qj, but ggis

closer to B on.P2 than D, - The path:

P]. [Aqull ‘Q]. [qlnPi] rP2 [Pircl J'Ps [c,B] 'Pz [Bij] er [Pj qu] 'Pl [qj fplz]

is a simple path from A, to A

1 2 containing B and C.

Case ¢ (Figure IV.3-9c): We have pi=pj. By our definition,
Pi=Ej only if i=3 and j=2 or i=2 and j=3, and p2=pa=c. In this case,
pl# Py and qI# 9y3since Ql and Q3 have no nodes in common. Also P

and p, are both on P, or P, since B, is on both P

2 3 and P3. Thus,

2

case ¢ reduces to case a or case b.
Case d (Figure IV.3-9d): We have qinqj. By our definition,

qi=qj only if i=1 and j=2 or i=2 and j=1, and q1=q2=h We know

s
P, 7P, /P 7Py p,#B, and q,#A,, by construction. Therefore, p, does
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Figure IV.3-9: Configurations of pi's and‘qi's.

¥y
P;7Py
p; may egual

pj may egual
qi may egual

 o» 0 W
LS

9y may equal

b}
pi may equal C
Pj may egual B
q; may equal

g. may egual 2

c)

|

I

]
or TN

hz 3 gl Ctpzmpa

ql may egqual hl; 3, may egual A may egqual B.

2% By
d) PB#H or C

p,¥ C

q3 may egual RZ
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not egual T, since then Py and P, would both be on P, and case a

2
would apply. Similarlysneither plzB nor p2=c since then one of Py

or p, and p, would be on B, and case a or case b would apply.
2 3 3

By fact B above, there are two node disjoint paths from Az to

[BC] in GllBC]-(Al}. Call these paths R, and R,. Let r, be the

closest vertex to 32 on Ri which is also on Pz,PB,Qlthl,pll. or

Qzlal,pzl: let sy be the closest vertex to r, on Ri[AZ'ri] which
is also on Py i=l or 2. (See Figure IV.3-10.) Nodes § may equal
Az; nodes r, may egual B or C. The following cases can occur.
Without loss of generality, assume P, is closer to B than p2 on Pz'

Case (i): For t =1 or 2, £, is on Ql[Al,pll or r_ is on
tanl,pzl. Then, path:

Pl [AZ rst] rRt [5trrt] rQl [It,Pll ;Pz [PliB] ;PS [B +C1 er [C ;92] JQZ [Pz 'All
or path:
Pl EAE'St] r Rtlst'rtl er [rtfpzl J‘Pz EP: +C] ,P3 [c,B] 1P2 [BoPl] le Ipl -"Al]

is a simple path from A, to A

1 2 containing B and C. (See Figure

IV, 3-11i.)

Case (ii): For t=l1 or 2, L is on B, . Then the path

(if r_ is closer to C on P,

than pl) or path:

RN

(if T, is closer toc B on P2 than pl) is a simple path from Al to Az

containing B and C. (See Figure IV.3-11 ii.)

Case (iii): Both T, and r, are on P_ and only 93 {i.e. Tyv

2 3
and r, are not equal to B or C), and 51#52. Without loss of gener-

ality, assume r_ is closer to B than r_ on P_. Then path:

1 2 3
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Figure IV.3-10: Definition of r_,r_,s and s_.
9 Y 2

A, A
% o
o
r1 r 1
: Q ‘
Ry (8] B’ A, B 1 c

— = = = indicates may contain r, or r..

Sor=—=x indicates may contain 51 or 52.

Figure IV.3-11l: Possible configurations of ¢ ¢5., and s_,

yiEar®y 2
-===== indicates path used.

i)

s, may equal Az; r  may equal p, or p,.

ANy el

s, may equal AZ; X, may equal B or C.

iii) A;=q,=q, A159,79,
T L L N
4 82 = E
3, s,t
i 2
2 A,

51#52; S, may egual A ;rl#E or C: rE# Bor C

2
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Pl[ﬁz,szl.nzls /X, 1,P Irz.CJ P Ic,Bl, P [B,r ] R [rl,sll,Pllsl,All

or path:

Pl[azfsl]r R I-* Iz J;P [r +B] 0P2[B:c]rP3Ectr2];Rzrrzfszlvplfszaal]

is a simple path from Al to A, containing B and C. (See Figure

IV.3-11 iii.)

Case (iv): Both I and r, are on P3 and only P3,and §,8,¢
Then we know rl-fr2 (since r,=%, implies r,=r =B or = r2=c),and
s,=s,7A,. By definition of (G/{AI,AZ})B G, + edge (A,,A)) is not

in G- Therefore path P is of length at least two. Choose any

interior node v on P . Sincev is in (G- {Al,A h g+ there is a path

from v to B which does not contain Al or Az. Call this path Pv.

Let vl be the closest vertex ©© v on Pv which is also on

Pz. Py Ql{Al,pll, Qz[Al,pzl. Rl{AE,rl], or R2[A2,r2] (All paths

are shown in Figure IV.3-12a.) Let v, be the closest vertex to vy

on Pv[v,vll which is also on Py Note that vy does not egual Ay
or Az. 211 possible positions for vy and v, lead to one of the
cases solved above, as can be verified by examining Figure IV.3-12Zb.

Therefore using P [vz,v 1, we can construct a simple path from Al

to 52 containing B and C.

This completes Algorithm IV.3. 2ll cases have been resolved.

If step 11 is reached, a path is found from Al to Az containing B

and C (in either order).
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Figure IV.3-12: Final stage of Step ll--case iv,

a) All necde disjoint paths found before last stage of Step 1l:

c

p. and 92 not equal to B or C; r., and r2 not egual to B or C.

1 1

b) Possible positions for vi.

A B

v
o /
‘rl
2
&
A2 c
X indicates a possible position for v In addition, v. may equal

p B 1

B, C,; pl, pz, rl, or rz.
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IV.4 Algorithm IV.4

We now present Algorithm IV.4 which is used to find a path
from % to ﬁgcnntaining y and z when the node disjoint paths shown
in Pigure IV.4-1 exist. Node X may egual Xy This algorithm is
used in Step 3 of Algorithm IV.3 for e and some assignment of
A, B, and C to x, y, and 2. The algorithm is alsc used in Step 9,
case 1, of Algorithm IV.3 for some assignment of A, and A, to x

1 2 1

and xz,and Band C to y and z.

In Step 3 of Algorithm IV.3, we initially know that there are
three node disjoint paths from A to [BC] in G(BC). We must show
that the existence of these paths in G(BC) implies that the paths
shown in Figure IV.4-1 exist in G. Suppose the three paths in G(BC)
correspond to three paths from A to B (or C) in G. Without loss of
generality, assume the three paths go to B. Since G is biconnected,
there is a path, P, from C to A which does not contain B. Let v be
the closest node to C on P which is alsoc on one of the three node
disjoint paths, say P'. The initial portion P[C,v] plus the subpath
P'[v,A] yields a path from A to C node disjoint from the other paths
from A to B. (See Figure IV.4-2,)

We now present Algorithm IV.4.

Algorithm IV.4: Input: Graph G, biconnected and nodes x,, X

2!

1
y, and z such that the node disjoint paths shown in Figure IV.4-1

exist. It may be that X=X, =X, If Xy is distinct from X,, we are

also guaranteed that a simple cycle containing y and z exists which

does not contain xl or xz.



Figure IV.4-1: Node disjoint paths for Algorithm IV.4.

v
Q“
xy
p1
Xy
y
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-
or
s

XZ

XZ=

Figure IV.4-2: Construction to generate desired paths for Step 3 of
Algorithm IV.3.

m/_\\,,

Node v may egual A, but v not egual to B.

yields-—-2
Pl

[c.v]

c
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Output: A simple path from Xy to x5 containing y and z,

£y
Let paths Plxy and szy go from x. to y and path sz go from

1

x, to z in Figure IV.4-1l., Find two node disjoint paths from z to y,

Ql and Qs such that if xlfxz, x. is on neither of these paths.

1

Let Py be the closest node to z on Qi which is also on Ple
or szy' i=1or 2, Both Py and p, may egual y. One of p, or
p, may equal x, if xl=x2=x.

Let 9 be the closest ncde to X, on szwhich is also on Qi[z’pi]'
Both ql and q, may egual z; one of ql or q, may equal xz. Note that
p,=x implies that q,=%. Without loss of generality, suppose that

9, is closer to X, on E;‘z than q, - Then ql’!’%' and plfx, if X =X,=X.

Without loss of generality, suppose Py is on Plxy. Consider

the path P = szy[xl,y]Plxyly,pllQlIpl,zlgz[z,qzlpleqz.le-

This path goes from %, to %,

Claim: Path P is simple.

and contains y and z.

Proof: We must verify that each segment of a Puv path used
is node disjoint from each segment of a Qi path used. The gnrser
ments are node disjoint and the Qi segments are node disjoint by
construction.

Compare szytxl,y]Plxyly,pll and Qllpl,z]_ Since p, is the
closest node to z on Ql which is also on PlxY or szy,the subpath
szylxl.y]Plxy[y,pll is node disjoint from Qllpl,z} except at Py «
where the two subpaths join. If B =Y, then Plxyly,yl is a null path.

Now compare P2xy[x1,y]P1xyly,p1] with Qzlz,qzl. The path

Qzlz,qzl is a subpath of Qz[z‘le‘ Since P, is the closest vertex
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to z on Q2 also on P2xy or Plxy' Qz[z,pzl is node disjoint from
szy [xl,y]Plxy[y,pll except possibly at p,- However, qzsfpz unless
9,=P, =X, for X =%, =X, if 9,=P, =X, then Qzlz,x] joins szy{x,yl
to complete the desired cycle, and sz[qz,le = sz[x,x] is a null
path. If qz#pz, then taz,qzl is node disjoint from P2xy[x1,y]
Plxy[y,pll, including endpoints.

Finally consider sz[qz,le. This path is a subpath of
sz[ql,le. It is a proper subpath unless 9,=4,- Note that a,=9,

if and only if q,=9,%2- Since q, is the closest node to x., on Px

2
which is also on Q2[z,pzl. sz[qz,le is node disjoint from 92[2'q2]

-4

except at qz,where the two paths are intended to join. Since

ﬁz [qz,le is a subpath of sz[ql,sz and q, is the closest node to
X, on szwhlch is also on Ql[z,pl], sz[qz,xz] and Ql[z,pll are node
disjoint, including endpoints unless q,=9,=2. But in this case,
Q2[2.q21 is a null path, and sz[qz,le and Ql[pl,zl join at z to
form part of the cycle.

(.

Figure IV.4-3 illustrates the positions of Pyr 9y and q,-
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Figure IV.4-3: Positions of Py 9y and 9y and resulting path.

Nodes 9 and q, may equal z; q, may egqual Xy

Where we have:

=X.=X.

Nodes p. and p., may equal y; p. may egual x, if x
1 2 2 4 T

-—--~ indicates the desired path from xl to x2 containing y and =z.
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IV.5 Timing of the Algorithms

The algorithms presented in Sections IV.3 and IV.4 rely heavily
on Dinic's network flow algorithm. However, we never need to find
more than a flow of three between any two nodes in a network. 1In
particular, to determine if two nodes are triconnected reguires
finding a flow of three, and solving the.subgraph homeomorphism
problem for pattern graph K1,2 requires figding a flow of two. Upon
examination of the algorithm [Ta 1974, év 1975], we note that this
implies that we need to find at most three augmenting paths in the
network, and the time taken is C’(lVG}Pbsl). In Section IV.2, we
have shown how to find two cutpoints in Cf(]Vé|+|EG|) operations.
Note that the algorithm for biconnected components due to Hopcroft
finds the articulation points of a graph and only takes Gﬁ[lvcfihgll
operations. By appropriate bookkeeping, we can find an arti-
culation point separating two given nodes while increasing the time
taken by the algorithm by only a constant factor. We first consider
Algorithm IV.4.

In Algorithm IV.4, we are given as input the three node dis-
joint paths from % and X, (or x ) to y and z. To find the two
node disjoint paths from y to z takes<3y(|VG|+|EGh operations using
the network flow algorithm. To find Pl' Py ql, and a4, requires
comparing nodes on the two sets of path. Suppose we first tabulate
which nodes are on which paths. This will take & (|v,[) steps.
To find the closest node, u, to node w on a path P which is also on
a set of paths, S, we process each node on pathP in order, starting

with w, by locking up in our table whether the node is also on a

path in S. Since the number of paths in S is at most two, each node
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can be processed using at most two look ups. Thus, we can find u in
tHime CT[lVGI)-OnceSHf Pyr @+ and g, are found in this manner, the
construction of the desired path is immediate. We add up all the
times above to conclude that Algorithm IV.4 can be executed in
C?}!VG]+|EGI) operations.

To determine the time taken by Algorithm IV.3, we will consider
the algorithm step by step. We first note that each step is executed
at most once. When the time taken by a step isﬁa’{|v6,|+[EG.|),
where G' is a subgraph of G, we will use.53%|v¢|+]EG[) as an upper
bound.

Step 1: The time to test if an edge is in EG depends on the
representation of EG' Since the biconnected components and network
flow algorithms require an adjacency list representation, we will
assume this representation for Eg.

search the adjacency list of one of the endpoints of the edge.

Then,to find an edge, we must

This takeseﬁil?sl} operations, To find a path from A to B containing
C, we solve the subgraph homeomorphism problem for pattern graph

K) ;- This requires C§(|V6|+|EGI) operations. Thus, Step 1 takes
fj(|vG|+!EG|) operations.

Step 2: Breaking G into biconnected components reguires
E§(|V5i+|EG|] operationg. The test of whether A, B, and C are in the
same biconnected component can be incorporated in the algorithm for
finding biconnected components. The component containing A,B, and C,
if it exists, will be part of the output of the algorithm. Thus,

Step 2 requires Ey(]VG|+|EG[) operations.
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Step 3: Merging nodes B and C reguires & |EG|) operations
to modify the adjacency lists. The network flow algorithm on N(BC)
reguires fy{|VG|+|EG|) operations, since we need only find a flow
of three. Since we execute these node merging and flow algorithms
at most three times, this portion of Step 3 requires Ej(|VG]+|EG[)
operations. If Algorithm IV.4 is then used, another'éjklv¢]+lEG|)
operations are required.

Step 4: Pinding cutpoints A, and Az and constructing

1
(G-{a,,a,}); each require Cj(|VG|+|EG|) operations. (See Section IV.2)
Determining if C is a node in (G-{Al.az})B can be accomplished

while (G-{Al,az}) g is being constructed. Thus, Step 4 takes
Cj(IVG|+lEG|J operations.

Step 5: G1 = (foAl,Az})B is constructed from (G-{Al,az}}s
ichy(|V6!) operations. We apply Hopcroft's biconnected components
algorithm to (G-{a,,A,}) . This requires v} (]VG|+[BG|) operations.
If B and C are not biconnected in (G-{Al.AZ})B. an articulation point,
%, separating B and C, is part of the output of the algorithm when
appropriate bookkeeping is added. Constructing SB and Sc requires
CﬁleG[+IEG|) operations. The fixed subgraph homeomorphism problem

with pattern graph K is solved at most four times, taking

1,2
6(|VG|+IEGI) operations each time. Thus, Step 5 takes d(lvG[+|aG|)

operations.

Step 6: Determining if any two of edges {Al,B)f(Al,C). {Az,Bl.

and (A,,C) are in G requiresfff(lzc |), which is alsofj?|36|).
1

1

operaticns to search the adjacency lists. When two of these edges

exist, we solve at most two instances of the fixed subgraph
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homeomorphism problem with pattern graph K This reguires

1'2-
fj}]vg[+|EG[] cperations. Thus, Step 6 reguires at mostCET(|VG[+fEG])

operations.

Step 7: Determining if there are augmenting paths to Al and

Az should be done by saving the information from Step 3, when the
network flow algorithm is used on ¥(BC). Which of the edges [Al,B).

{al,cj, tnz,B}, and EAz,C}, if any, are in G, can be saved from

1
Step 6. We use the algorithm for the fixed subgraph homeomorphism

problem with pattern graph Kl 2
r

at most & (]VG|+[EG|) operations.

at most once. Thus, Step 7 takes

Step 8: The biconnected components algorithm requires

ijlvg|+]EG|} operations and will determine if either B or C is an

articulation peint in G With appropriate bookkeeping, the bicon-

1*

nected components algorithm will also output S, and 52, and the

|

desired path in Sl, if G1 is not biconnected. To find the desired

path in 52,'we use the algorithm for the fixed subgraph homeomorphism

problem with pattern graph K This requiresfa}[vc1+IEG|} oper-

: o
ations. Thus, Step 8 requires 652[V¢|+|EGI} operations.

Step 9: Each set of node disjoint paths in Gl(BC) is defined

by the flow from [BC] to Al and Az in N(BC) merged with an augmenting

path to Al or Az. The paths in Gl(BC) corresponding to the new flow
in N(BC) can be found in‘CiklvG|+[EG|} operations by tracing the

paths of flow in Gltsc}. The paths in G, can be found by determining

il

the correspondence between edges from B and C in Gl and edges from

[BC] in Gl(BC) used by the paths. This requires 631|VG|) operations

to search the adjacency lists of B and C. Once we know the paths
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in G we can determine which of the cases occurs. If case 3 occurs,

1!

we find a path from C to A, which does not contain B, and use this

2
path to reduce case 3 to case 1 or case 2. This requires'fﬁthGI+IEG]}
operations. If case 1 occurs, we use Algorithm IV.4, which requires
anctherfff{|vg|+|EG|} operations. We conclude that Step 9 requires
Ejt[vGE+|EGI] operations.

Step 10: Merging the nodes Al and B, Az and C, Al and C,
and Az and B requires ff{lEGJ} operations. Determining if the pairs
of merged nodes are triconnected requires.Eﬁfl?Gl+]EG[] operations
using the network flow algorithm. Thus, Step 10 requiresﬁfﬁ1ﬂvG|+EEG]}
operations.

Step 11: To find the two disjoint paths from B to C containing
neither A, nor A, requires Cff{[vs[+|EG|} operations. To find the
augmenting path requires Gfll?gf+|EG[} operations. Reducing cases 2
and 3 to case 1 or 5 reguires C§1]VGE+IEG|] operations to find a
path from A, to B which does not contain C or a path from Ay to C
which does not contain B. The merging of this path with the set of
node disjoint paths can be done 1“65?EV5|3 operations using the
method described in our timing discussion of Algorithm IV.4. Here,
the set S of disjoint paths contains three paths.

To process case 1, we need the sets of three node disjoint
paths examined in Step 9. We assume these paths have been saved.
To find the pi's and qi's using the method described for Algorithm
IV.4 then takes @’{]VGI] operations. Finding the configuration
of the pi's and q,'s will require 63&|VG[1 operations if the proper

bockkeeping is done so that we always know on which paths a given
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node appears, Similarly, nodes rl, . O 51. and s_ can be found and

2 2

their positions on various paths determined in g{IVG“ operations.
Finally, path Pv can be found in6(|VG[+]EG|) operations, and

v, and v, can be found in 5{[VG|] operations, We conclude that in
the worst case of Step 11, a path from.Al to Az containing B and C
(in either order) can be found in &WGI"'IEG“ operations.

To compute an upper bound on the time taken by Algorithm IV.3,
we add up the worst case times for each step. Since each step takes
at most Sllvc|+[EG|1 operations, we conclude that Algorithm IV,3
requires at most 6[|VG|+|EG|) operations. We cannot expect any
algorithm which finds a cycle containing A, B, and C in G to take
less thang’(IVGHIEG]] operations in the worst case, since it takes

6(|VG|+[EG|)nperatinns just to examine G. Thus, the time taken

by Algorithm IV,3 is linear in the size of G.
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IV.6 Conclusion

In this chapter, we have presented a linear time algorithm for
the fixed subgraph homeomorphism problem when the pattern graph H
is an undirected cycle of length three. This problem and the fixed
subgraph homeomorphism problem when H is a tree of depth one are the
only fixed subgraph homeomorphism problems which we know how to solve
in polynomial time. In Chapter V, we discuss the most basic open
problem for undirected graphs-- the fixed subgraph homeomorphism
problem when H consists of two disjoint edges. We will show that
this problem is fundamental to all other fixed subgraph homeomorphism

problems which we cannot solve in polynomial time.
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Vv The Two Disjoint Paths Problem

V.l Introduction
In this chapter, we discuss the fixed subgraph homeomorphism
problem when the pattern graph H consists of two disjoint undirected

edges. This problem is called the two disjoint paths problem for

undirected graphs since, in G, we are looking for two disjoint

paths between given pairs of nodes. (See Figure V.1-1.) It is

easily seen that the two disjoint paths problem for undirected graphs
is reducible to the two disjoint paths problem for directed graphs,

If H is undirected, H=<{a,b,c,d},{(a,c),(b,d)}> and undirected graph

G is input, we form directed graph Hd by making edges (a,c) and (b,d)
directed, We form directed graph Gd by replacing each undirected

edge (u,v) by directed edges (v,u) and (u,v]l. Then HSG if and only
if deNGd' since each path in Gd corresponds to a path in G containing
the same nodes, and each path in G corresponds to two paths in Gd’
one in each direction, containing the same nodes.

Recall that in Chapter III we showed that the two disjoint
paths problem for directed graphs is equivalent to the two other
basic open probems for directed graphs. In each problem, the pattern
graph contains exactly two edges, and the mapping V is specified.
These three open problems represent the only fixed subgraph homeo-
morphism problems for directed graphs which we cannot solve in
polynomial time when the pattern graph contains only two edges.

The fact that the two disjoint path problem is reducible to these

problems implies that, at worst, it is as hard to solve as these
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Figure V.l-1l: The Two Disjoint Paths Problem

pattern graph H:

a b

in input graph G:

via) ] v(b)

paths
exist?

v(c) v(d)

(*) indicates a node whose image under V or inverse image is specified.
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problems. It is also possible that the two disjoint paths problem
for undirected graphs is much easier to solve than the problems for
directed graphs. Therefore, we suggest that the two disjoint paths
problem for undirected graphs holds the most promise for sclution.
The relationships between the open problems discussed above are
summarized in Figure V.1-2.

The fact that the two disjoint paths problem promises to be
the "simplest" open problem to solve is not the only reason we focus
on it. This problem is alseo the most fundamental of the open prob-
lems which are fixed subgraph homeomorphism problems for undirected
graphs, as shown by the following lemma.

Lemma V.l.l Any fixed subgraph homeomorphism problem for undir-
ected graphs either

(2) has as pattern graph a tree of depth one or a cycle con-

taining exactly three nodes once isclated nodesare removed
or (b) contains the two disjoint paths problem as a subproblem.

Proof: A fixed subgraph homeomorphism problem contains the
two disjoint paths problem as a subproblem if the setiHEH] must con-
tain two paths which are node disjoint including their endpoints.
The problems which contain the two disjoint paths problem as a sub-
problem are exactly those problems whose pattern graphs contain two
edges with no common endpoints (two disjoint edges). We need to
prove that any pattern graph, H, which does not contain two disjoint
edges is a tree of depth one or a cycle containing exactly three
nodes after isolated nodes have been removed. When iEH] is one or

two, the result is immediately obtained by enumerating all possible
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graphs (up to isomorphism) with one or two edges and no isoclated
nodes. (See Figure V,1-3).

Consider any undirected graph H such that |EH|33. and H con~
tains no isclated nodes. Suppose H does not contain two disjoint
edges. Choose any edge (u,v) in EH. Now consider another edge in
H. Since H does not contain two disjoint edges, this edge must
have either u or v as an endpoint. Without loss of generality,
assume u is the common endpoint. The second edge is (u,w). Now
consider a third edge. This edge must have u as an endpoint or both
v and w as endpoints. Thus, the three edges either form a cycle of
length three or a tree of depth one rooted at u. Suppose the edges
form a cycle of length three: <(u,v), (v,w), (w,u)>. If H has a
fourth edge, this edge cannot have a common endpoint with all three
edges of the cycle. Thus, H has only three edges. Now suppose the
three edges form a tree of depth one rooted at u. If H has a fourth
edge, this edge can have a common endpoint with each of the other
three edges only if u is one of its endpoints. Thus H remains a
tree of depth cne. (See Figure V.1-4.) Continuing this reasconing,
we can prove by induction that if H has four or more edges, no two
of which are disjoint, then H is a tree of depth one.

|

We see that any fixed subgraph homeomorphism problem for undir-
ected graphs which we do not know how to solv? in polynomial time
contains the two disjoint paths problem as a subproblem.. If we can
solve any other open problem, we can solve the two disjeoint paths

preblem by adding to G and H corresponding nodes and edges until we
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Figure V.1-2:Relationships between open problems,

The fixed subgraph homeomorphism problem with pattern graph:

undirected
H -

1

@

7

directed

H1=‘?

reducible to

equivalent to

equivalent to

.

e

c:indicates that the node is in NH.

A<

Y

®

equivalent to
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Figure V.1l-3: Enumeration for the proof of Lemma V.1l.1l.

|EH] =1 H:

a tree of depth one.

|E ] = 2 H: 0 or H:

a tree of depth one two disjoint edges

Figure V.1l-4: Inductive argument for the proof of Lemma V.l.l.

u
add an edge _
v W
v L w

can add no more edges with-
out producing disjoint edges

u
add an edge
- W
v w
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have an instance of the problem we can solve.

The twe disjoint paths problem takes on further importance as
an open problem due to the result by Even, Itai, and Shamir [Ev 1978]
that the two commodity integral flow problem is NP-complete for both
directed and undirected networks, with unit capacities on the edges
of the network. The two commodity integral flow problem is a net-

work flow problem in which we have two sources, s. and s

1 ot two sinks,

t, and tz, and non-negative integer valued flows, f1 and £ Erom

1 57

s, to &, and from S, to tgirespectively. We modify our definition

of a network, N, to allow s and s, to have incoming edges and =
and t? to have outgoing edges, We reguire that:
i) fltu,w}+f2{u,w] < c(u,w) for each (u,w}gEH
ii} I fifu,w] = I fi{w,u} for each uavﬁr{si,ti}and i=1 or 2.
WEVH m’-.‘.VH

The wvalue of fi, v{fi),is z fi[si,w}- ; fi[w,sil. Even, Itai, and
HEVH wEvﬂ

Shamir show that}given as input a network N with unit edge capacities

and two non-negative integers, kl and k., determining if there exist

2

non-negative integer-valued flows £. and f2 such that vifl}=kl and

1
v{fz ]=k2 is NP-complete.

The directed two disjoint paths problem can be viewed as an
integral two commodity network flow problem by first reducing the
node disjoint homeomorphism to an edge disjoint homeomorphism (see
Chapter II),and then assigning each edge capacity one. Asking if
there exist disjoint paths from a to ¢ and b to 4 is equivalent to
asking if there exist flows fl and f2 such that v{fl}=l and v{f23=l,

for sl corresponding to a, 52 corresponding to b, tl corresponding
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to ¢, and t2 corresponding to d. Since the undirected two disjoint
paths problem is reducible to the directed two disjoint paths prob-
lem, it is also reducible to the integral two commodity network flow
problem. We would like to know if the two disjoint paths problem
is also sufficiently difficult to be NP-complete. If NP # P, it is
also possible that the two disjoint paths problem neither has a
polynomial time algorithm nor is NP-complete [Lad]. Since proving
this condition is egquivalent to proving NP ¥ P, we are not optimistic
about establishing such a result. If the two disjoint paths problem
does prove to have a polynomial time algorithm, we can ask for what
k,if any, does the k disjoint paths problem become NP-complete, and
for what k, if any, does the integral two commodity flow problem for
v(fl) and v(fz) no larger than k become NP-complete when the algor-
ithm is allowed to depend on k.

We have shown in the discussion above that the two disjoint
paths problem not only has a key role in the quest for algorithms
to sclve fixed subgraph homeomorphism problems, but also has impor-
tance in our understanding of the hierarchy of complexities of prob-

lems. In the next section, we discuss the progress which has been

made in finding polynomial time algorithms to solve the problem.
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V.2 Attempts at Solution

Attempts to selve the two disjoint paths problem have resulted
in polynomial time algorithms to solve the problem when the input
graph G has certain properties. Perl and Shiloach [Perl] have shown
that when G is a triconnected planar graph, the two disjoint paths
problem can be solve by an algorithm reguiring Ey?lsc]) steps. In
fact, the algorithm presented for triconnected planar graphs is
applicable for a planar graph G whenever nodes a and ¢ are triconnected
and nodes b and d are triconnected, where disjoint paths from a to
c and b to 4 are desired, Perl and Shiloach also show that in a
triconnected chordal graphl, there are two disjoint paths between
any two pairs of nodes in the graph. The paths can be found using
fiﬁlsclj operations. They claim that A. Itai can solve the two
disjoint paths problem for planar or chordal graphs whch are not
triconnected in €f(IEGl) operations by using the algorithm of Hopcroft
and Tarjan to separate G into triconnected components [Ho 1973b],and
solving inscances of the problem within thase trlconnected components.

The paper by Perl and Shiloach also discusses the two disjoint
paths problem for directed graphs and for edge disjoint, rather than
node disjoint, paths. They present methods of reducing the two edge

disjoint paths problem for undirected (or directed) graphs to the

X A chordal graph is an undirected graph, G such that for any cycle

of length greater than three in G, there is an edge in G, called a

chord, connecting two nodes which are on the cycle,but not adjacent
on the cycle.
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two ncde disjoint paths problem for undirected (or directed) graphs.
These methods of reduction are specific to the two disjoint paths
problem and simplier than our general methods of Chapter II. It is
shown that if an undirected graph is three-edge-connected (i.e. any
set of edges whose removal separates the graph is of siZe at least

three), then there are two edge disjoint paths between any two pairs

of nodes in the graph. An algorithm executable in 5[]‘»?6 oiEG|} steps
is presented to solve the two (node) disjoint paths problem for acyc-
lic directed graphs.

Several of the results by Perl and Shiloach discussed above
give properties of G which guarantee the existence of two disjoint
paths in G between any two pairs of nodes. Larman and Mani [Lar]
and Watkins [Wa] also address this question., Recall from Chapter IV
that triconnectivity of G was sufficient to guarantee the existence
of a cycle containing any three given nodes of G. We would like a

similar connectivity result for the two disjoint paths problem.

However, Watkins illustrates that S5-connectivity of G does not

guarantee the existence of two disjoint paths between any two pairs
of nodes in G. Figure V.2-1 is the counterexample used. (This graph
also appears in [Lar]) Larman and Mani do prove that if G is
6x2'*-connected, then there exist two disjoint paths between any

two pairs of nodes in G. However, the size of the connectivity is

so large as to be unusable for practical algorithms. Watkins shows
that if the connectivity of G is at least four,and K

BENG' where

KS is the complete graph on five nodes, then there exist two disjoint
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pahs between any twe pairs of nodes in G. HNote that K5 ENG implies
that G is not planar, by Kuratowski's result. It is conjectured
by Watkins that if the connectivity of G is at least four and

K, < G, where K

3,3% 3,3 is the complete bipartite graph on two sets of

three nodes, then there exist two disjoint paths between any two
pairs of nodes in G. 1If this conjecture is true, then any non-
planar graph whose connectivity is at least four contains two dis-
joint paths between any two pairs of nodes. The proof of this con-
jecture remains an open problem. The minimum connectivity of an
arbitrary graph, G, which guarantees the existence of two disjoint
paths between any two pairs of nodes in G is also an open gquestion

[Perl].

Consider again the existence of two disjoint paths from a to c
and from b to 4, when a,b,c,and 4 are four known nodes in the graph
G. Pigure ¥.2-2 illustrates that no particular connectivity between
a and ¢ or b and d guarantees that the two disjoint paths exist.

The particular graph shown in Figure V.2-2 is planar, and the algor-
ithm of Perl and Shiloach can be used. However, this algorithm
uses Theorem V.2.1 below to decide whether the disjoint paths from
atocand b to d exist.

Theorem V.2.1 (Theorem 4.1 of [Perl]) Let G be a planar

graph. If there is an imbedding of G in the plane such that nodes

a,b,c,and 4 are on one face of G in that cyclic order, then two dis-

joint paths--one from a to ¢ and one from b to d-- do net exist in G.
Wnen an arbitrary graph G is considered, we have not found

criteria which will allow us to decide if the two disjoint paths
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Figure V.2-1: Counterexample to 5-connectivity guaranteeing two node
disjoint paths between any two pairs of nodes,

a - b

d . c

There are no disjoint paths from a to ¢ and b to 4.

Figure V.2-2: Counterexample to any connectivity of a and ¢ and b and
d guaranteeing two node disjoint paths from a to ¢ and

b to 4,
a and c k-connected . b and 4 k-connected
A te s arl 1 2 3 k-2 k-1 k
b to d > \
3 s
. ; \
i ! ¥ ' X
; 1 i ' y l
b ) ; i ; : d
i i : Y "
i FL 2T
= S A PP
k nodes =)
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exist. Our attempts to devise an algorithm similar in methodology
to Algorithm IV.3 have not been successful.

Another approach which we have pursued to solve the two dis-
joint paths problem for an arbitrary graph G is that of building up
sets of pairs of nodes in G for which we know disjoint paths exist.
Suppose we know that for any choice of two pairs of endpoints from
among the set {[x,y], ly.,z],[u,w], [w,v]}, there are two disjoint paths
(excluding endpoints) in G. We would like to conclude that there
are two node disjoint paths in G with endpoints [x,z] and [u,v].
However, Figure V.2-3 shows a graph G which provides a counterexample
to this conclusion. The problem is that different paths may be used
between the same endpoints when testing for different sets of dis-
joint paths. Keeping track of all the paths used leads to an algor-
ithm which is essentially exhaustive search and requires exponential
time in the size of G. We may attempt to be more clever and attempt
to use the following criterion:

We conclude that there are two disjoint paths in G between u

and v and x and z of lengths m and n, respectively, (denoted
[%’%]n m ©only if for each i and j, 0<i<n, 0<j<m, such that
r | i

no two of i,j,n-i, and m-j are simultaneously equal to zero,there

exist nodes £ and § such that[ﬁ:ai.j']-fgﬂz;]n-i,m-j, Ef:gi.m-j'
and B:g:ln-i.j'
However, the graph in Figure V.2-3 also provides a counterexample
when we attempt to conclude [§:§]3'2. Again, we must keep track of
actual paths used, leading to an algorithm taking an exponential
number of steps in the size of G. There may be a polynomial time

algorithm based on path merging of this type. However, we have not
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Figure V.2-3: Counterexample for path~joining criteria,

For:

<xX,y> disjoint from <u,w>
<x,y> disjoint from <w,v>
<x,y> disjoint from <y,w,2z>
<y,v,z> disjoint from <u,w>
<y,u,2z> disjoint from <w,v>
<u,w> disjoint from <w,v>

However, there are no node disjoint paths from x to z and u to v.
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found a criterion which allows us to do this.

In this section we have attempted to present the understanding
of the two disjoint paths problem which we have developed during our
attempts to solve it. Given the results of Perl, Shilocach, and Itai
for planar graphs, the most promising area of investigation appears
to be based on the conjecture of Watkins that if G is 4-connected
and not planar, then there exist two disjoint paths between any two
pairs of nodes in G. .This concludes our discussion of solutions to
subgraph homecomorphism problems. Chapter VI summarizes our results
and presents some general open problems related to subgraph homeo-

morphism.
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Vi Conclusion

VI.1 Summary

In this thesis we have presented definitions of the subgraph
homeomorphism problem for node disjoint homeomorphism, edge disjoint
homeomorphism, directed graphs, and undirected graphs. After observing
that the most general subgraph homecmorphism problem--when both graphs
H and G are input--~is NP-complete, we concentrated on finding algor-
ithms which depend on the pattern graph H and are of polynomial time
in the size of the input graph G. We showed that in all cases, an edge
disjoint subgraph homeomorphism problem could be solved by solving
a nede disjoint subgraph homeomorphism problem. However, only in
the fixed, directed case could we find a reduction allowing us to
sclve a node disjoint homeomorphism problem by solving an edge dis-
joint homeomorphism problem.

The algorithms we have presented to solve subgraph homeomorphism
problems rely heavily on the polynomial time network flow algorithm
discussed in Chapter III. Our algorithm for finding a cycle in gragh
G containing three given nodes in G, presented in Chapter IV, combines
this network flow algorithm (to find node disjoint paths in G) with
algorithms to break G into components. We are able, through splitting
G into components and "cutting and pasting” node disjoint paths of
G, to determine if the cycle exists and, if so, to construct it in
linear time in the size of G. This algorithm and the algorithm
for solving the fixed subgraph homeomorphism problem when the pattern

graph is a tree of depth one are the only polynomial time algorithms
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for fixed subgraph homeomorphism problems which we know of. Combining
these algorithms with the three reductions presented in Chapter III

allows us to solve a number of problems when the node mapping v is

partially specified or unspecified,
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VI.2 Topics for Further Investigation

We have spent Chapter V discussing what we believe to be the
most alluring subgraph homeomorphism problem for which no polynomial
time algorithm is known--the two disjoint paths problem. This prob-
lem not only appears to be the simpliest open problem but also is
a fundamental probklem for qll open fixed subgraph homeomorphism prob-
lems. There are, however, nthe; areas of research which do not
involve solving a particular subgraph homsomorphism problem.

Suppose we can sclve the subgraph homeomorphism problem for
a pattern graph H = <VH,EH>. We would like to know if we can solve
the subgrach homeomorphism problem if we add an edge-to H or delete
an edge Irom H, keeping HH constant. It would be informative to
characterize the situations in which we can solve the new problem
for H =<V EH——{tu,v: }> or B =<v_,E u{(u,v)}>, where (u,v)e(v.)2.

H'H H

For example, if u and v are in HH, then we can solve the subgraph
homeomorohism problem for H in a straightforward manner by adding
edge (a,v) buck .nto 5, adding fp(u',pl(v)) tc the input crapb &,
and solving the subgraph homeomorphism problem for H with the mod-
ified grapgh G as input.® If nodes u and v are not in NH' it is not
clear how to use the solution for H to find a solution for Hf,
since w2 éo not know what nodes in G swould correspond to u and v.
Even less is Xxnown about the solution of the subgraph homeomorphism
problem Zor H+4 For example, it is easy to solve the fixed subgraph
homeormoronisn problem when H consists of four nodes, a,b,c, and d,
and ons =dz2, (a,b). We delete the nodes vic) and v(d) from G and

deternine if w(a) and v(b) are connected in G. However, if we add



114

edge (c,d) to H, we get the two disjoint paths problem, which has
so far defied solution,

Similar gquestions can be asked about the set NH. fn Section
ITI.l, we showed that we can always remove nodes from NH and solve
the resulting problem in polynomial time if the original problem was
solvable in polynomial time. We would like to know when we can add
nodes of vﬂ to NH and be able to solve the problem. For example,

we can solve the subgraph homeomorphism problem for H a tree of

depth two in polynomial time when the leaves of H are not in NH.

How do we solve the problem in polynomial time when we add leaves

to N,? Note that we can always add or delete isolated nodes from
VH and add isolated nodes to NH' If we have deleted a node from

Vv

5 we simply add the node back into V

q add an isolated node to the

input graph, and solve the original problem. If we have added a
node to VH' we solve the old problem for each graph resulting from
deleting a node from the input graph. If we have added an isolated
node to NH' we delete this ncde from NH' delete the correspending
node from the input graph, add an isolated node to the input graph,
and solve the old problem. Given that we can add isclated nodes in
this fashion, a generally applicable method for solving H+£NG once
a polynomial time algorithm for HENG is known would provide us with
a means of solving HENG, for any graph H, in polynomial time. We
would begin with a simple pattern graph for which a polynomial time
algorithm is known and add nodes to vH and HH and edges to E_, until

H
the desired graph is constructed.
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Another lime of investigation which may be pursued is:

"Given pattern graph H and specified node set M, what properties

H
of the input graph G guarantee that H< G (or HEEG) for any partial

N
specification p?"™ We discussed this question in Chapter V in con-
junction with the two disjoint paths problem. An example of the type
of results we would like is the theorem by Perl and Shiloach [Perl]:
Any triconnected chordal graph contains two node disjoint paths
between any two pairs of nodes. In this case, the properties of

G guaranteeing two disjoint paths are triconnectivity and chordality.
Watkins [Wa] and Larman and Mani [Lar] have investigated this gues-
tion for the n disjoint paths problem. Larman and Mani have also
investigated this guestion for pattern graphs Kh (the complete undir-

ected graph on n nodes) and Kn A (the complete undirected bipartite

’
graph on two sets of n nodes). They consider the question for both
NH =@ and NH = VH' Similarly, we may ask, "What properties of G

and p(NH) guarantee that HfNG (or HEEG) for a given partial speci-
fication, p?" For example, we know that there is a cycle containing
three given nodes of G whenever there are three disjoint paths from
one of these nodes to the other two.

The ultimate goal of this research is to answer the guestion,
"Is there a polymomial time algorithm for every subgraph homeomorphism
problem when the algorithm is allowed to depend on the pattern graph,
H, and the partial specification set, NH?" Hunt and Szymanski [Hunt]
have asked this guestion for floating subgraph homeomorphism problems

in conjunction with their research on programming schema. The results

presented in this thesis represent our present knowledge of the answer
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to this guestion. The research problems preoposed in this section
are designed to further our knowledge of the subgraph homeomorphism

problem with this ultimate goal.
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