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Abst ract. 

· Nondeterminism in Logics of Programs 

by 

David Harel and Vaughan R. Pratt 

Laboratory for Computer Science 
Massachusetts Institute of Technology 
Cambridge, Mass. 02139, 11/10/77 

We investigate the principles underlying reasoning about nondeterministic 
programs, and present a l~gic to support this kind of reasoning. Our logic, an extension 
or dynamic logic ([22) and (12)) ,· subsumes most existing first-order logics of 
nondet erministic programs, including that developed by Dijkstra based on the concept of 
weakes t precondition. A significant feature is the strict separation between the two 
ki nds or nonterminating computations: infinite computations and failures. The logic has a 
T arskian truth-value semantics, an essential prerequisite to establishing completeness of 
axiomatizations of the logic. We give an axiomatization for flowchart (regular) programs 
that is complete relative lo arithmetic in the sense of Cook. Having a satisfactory tool 
at hand, we turn to the clarification of the concept of the total correctness of 
nonde terministic programs, providing in passing, a critical evaluation of the widely used 
"predicate ·transformer" approach to the definition of programming constructs, initiated by 
Dijkstra [SJ. Our axiom system supplies a complete axiomatization of wff. 

/. Introduction 

I.I. The Interest in Nondeterminism. 

Nondeterministic programs have attracted considerable attention lately. This 
interest could be atiributed to · a concern for generality: anything we have to say about 
nonde te rministic programs covers deterministic programs as a special case. However there 
are also deeper reasons for this interest: 

first, nondeterministic programs have been proposed [21) as a model of parallel 
processes. Such parallelism arises in timeshared computers, where nondeterminism 
expresses the apparen_t capriciousness of the scheduler. It also arises in the management 
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of external physical devices, where the nondeterminism captures tht' unpr~dictablll bt'havior 
of physical devices. 

Second, nondeterminism is gaining credence as a component of a programming style 
that imposes the fewest constraints on the processor executing the program. For example a 
certain program may run correctly provided that initially x is even. If the programmer 
requires the processor to set x to an even number of the programmer's choosing, the 
processor may be unduly constrained. On a byte oriented machine where integers are 
represented as four-byte quantities, setting x to a particular number requires four 
operations, but if the programmer has merely requested setting it to an arbitrary even 
number the p-rocessor can satisfy the request with one operation, by setting the low- order 
byte to, say, zero. 

Third, nondeterminism supplies one methodology for interfacing two procedures 
that, though written independently, are intended to cooperate on solving a single problem. 
The app.roach is to make one procedure an "intelligent" interpreter for the other. Woods' 
Augmented Transition Networks (27] supply an instance of the style. The user of this 
system writes a grammar for a specific natural language which amounts to a 
nondeterministic program to be run on Woods' interpreter, which though ignorant of the 
details of specific languages nevertheless contributes much domain-independent parsing 
knowledge to the problem of making choices left unspecified by the . user's program. This 
technique is in wide use in other areas of Artificial Intelligence, and supplies a way of 
viewing such Al programming languages as QA-3/QA - 4/STRIPS (8], PLANNER (14], etc. 

Fourth, from a strictly mathematical viewpoint, there is something dissatisfying 
about taking such constructs as if then else and while do as primitive constructs. If 
then else involves the two concepts of testing and choosing, and while do involves the two 
concepts of testing and iterating. A more basic approach is to develop these concepts 
separately. However, in isolating the concept of testing from the concepts of choosing 
and iterating, we have removed the parts of the if then .tlse and rµhile do constructs 
responsible for their determinism. 

Fifth, from a practical point of view, when reasoning about deterministic programs 
it can sometimes be convenient to make what amounts to claims about nondeterministic 
programs. When we argue that "if x>O then x+-x- 1 else x+-x+l" cannot affect y, a part of 

our argument might _be that, whether we execute x+-x-1 or x+-x+l, y will not change. The 

fact that the whole program is deterministic played no role in this argument, which 
amounts to the observation that the nondeterministic program (x+-x-1 u x+-x+l) cannot 

change y. ( cxufj is a program calling for execution of either program a or program {!J, the 
choice being made arbitrarily, i.e. nondeterministically.) By the same token the 
obse_rvation that "while x<O do x+-x+2" leaves the parity of x un~hanged depends 

principally on the fact that executing x+-x+2 arbitrarily often, i.e. executing (x+-x+2)*, 
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leaves the parity of x unchanged. (Q* is a program calling for a number of executions of 
program ex, the choice of number being made nondeterministically.) This illustrates the 
appropriateness of applying nondeterministic reasoning to deterministic programs. 

1.2. The Interest in Abstract Programs. 

Concretely a program is "just its listing," unless we consider its intensional 
aspects such as its raison d'etre, its proof of correctness, or the actual cost of writing 
it. At any event we shall consider in this paper that its listing supplies everything we 
know about the program. To facilitate reasoning about a program we shall of.ten find it 
convenient to discard information about that program. The amount of information discarded 
depends critically on the nature of the reasoning. When the reasoning involves only the 
so-called input-output .behavior of a program, as it does in discussing partial 
correctness, the appropriate degree of abstraction treats programs as functions on states, 
or binary relations in the case of nondeterministic programs. However this degree of 
abstraction is inappropriate when one wants to distinguish between different kinds of 
nontermination such as diverging versus failing, or when one wants to deal with running 
time, or space utilization, or the program's interaction with its environment as it runs, 
or any other aspect of a program not covered by simple initial-state-final-state 
relationships. 

In this paper we shall find it convenient to talk about three kinds of programs, 
namely concrete programs (listings, or elements of a word-algebra), computation trees, and 
binary relations on states. 

The interest in computation trees is that they exhibit in a natural way just those 
details relevant to the main problems we address in this paper, namely how to talk about 
the behavior of nondeterministic programs taking into account pathological behavior such 
as diverging and failing. A computation tree is a tree whose vertices are states. Each 
path of the tree represents a possible state trajectory or computation sequence for the 
program. The root of the tree identifies the starting state of the program. 

The interest in binary relations may be attributed to the fact that much reasoning 
about programs centers on their "external" behavior, the question of which state (or 
states, in the presence of nondeterminism) the program will ul'timately drive the processor 
into from a given starting state. Such reasoning can often be confined solely to the 
external behavior of the program and its constituent subprograms, in which case it is 
convenient to take as the objects under discussion not the programs themselves but merely 
their behaviors. The appropriate abstract object that associates with each initial stale 
of the world a final slate, is a Junction from states to states. When nondeterminism is 
possible the appropriate choice of object is a binary relation on states. 
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The three levels of abstract ion, concrt'I<' programs, comput.,t ion t rt•cs, .rnd l,111.11 v 
relations, form a hierarchy of levels of increasing abstraction, or equivalently 
decreasing information. If one were to embed our treatment in a more algebraic framework 
than we shall do in this paper one would treat the -concrete programs as an initial algebra 
of a category of abstractions, with a chain of arrows (homomorphisms) from the initial 
algebra to computation trees and thence to binary relations. In fact we shall explicitly 
exhibit these homomorphisms, but we shall not explicitly adopt a cat~gory-theoretic 
approach in so doing. 

1.3. Upper and lower bou~ds. 

Much discussion about programs takes the fo.rm of bounds on their behavior. For 
example we may claim that if and when program « terminates, x=3. This is an upper bound 
on the behavior of a in that a .may not terminate in slates not satisfying x=3. It forbids 
transitions having a final state not satisfying x=3, but says nothing about the existence 
of t ransi lions. Conversely we may claim that it is always possible for "while x>O do 
x~x-1" to terminate with x=O. This is a lower bound; it promises the existence of 
transitions with final state satisfying x=O, one such transition for every possible 
starting state (because of the "always"). However it says nothing in itself forbidding 
the possibility of other transitions, though in tnis instance the knowledge that the 
program is deterministic allows us to infer (as an upper bound) the absence of any other 
transitions. More generally, asserting that a program is deterministic is by itself an 
upper bound. Asserting that it is total (there always exists a halting computation) 
amounts to a lower hound. 

A substantial difference between our approach to bounds and that implicit in 
Dijkstra's weakest precondition (wp) operator [SJ is that we shall at all times ke-ep the 
upper and lower bounds separate. It will become evident when we come to prove our 
completeness results that such a separation is essential to the success of an approach 
such as ours to getting completeness results in this area. In contrast Dijkstra lets the 
single wp operator impose both upper bounds (partial correctness) and lower bounds (pr.oper 
termination) simultaneously, and we do not see how to deal with the combination in any way 
that is not equivalent to the decomposition mad·e explicit in our approach. 

1.4. Contents. 

Elsewhere (see [22] and [12]) we describe a language for reasoning about bounds on 
abstract programs, which we have called dynamic logic; a language sufficiently general 
that it encompasses the expressive power of most existing first-order languages proposed 
for this purpose, yet so simple in its conception that it would appear to be suitable as a 
standard tool supplying convenient terminology for defining the concepts and constructs 
arising in other languages. 
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In Section 2 we first recall the ba.sic concepts of dynamic logic (DL) as given in 
[22] and [121 We then describe the .1-computation-tree and the .1-computation sequences of 
a program a in state .1, emphasizing the importance of the notions of diverging and 
Jailing, corresponding respectively to executing an infinite computation, and reaching a 
false test. 

Having the trees of Section 2 in mind, Section 3 ( which is the main section of the 
paper) deals with the extension of DL to DL +, by adding a divergence state to the universe 
U of states, and adding to the [a] and <a> modalities of DL, a [a]+ modality with its dual 
<a>+, constructed for facilitating reasoning about the presence and absence of 
divergences. Various important properties of the new system are proved. The axiom system 
P which .was proved relatively complete for DL in (12], is augmented with two rules, and 
the resulting p+ is proved complete for DL +. Thus one can now say and prove e.g. <a>true 
I\ [a]+p of a program a and formula P, meaning "a can terminate, and whenever it does P 
holds; moreover, there is no way of entering an infinite loop". 

Section 4 contains a clarification of the concept of "total correctness" when 
applied to nondeterministic programs, advancing the argument that this becomes an 
ill-defined concept unless a strict method of executing the programs is adopted. We then 
carry out a critical investigation of Dijkstra's notion of the weakest precondition (wp), 
which is consid,ered to be a basic tool for proving the correctness of nondeterministic 
programs. The notion of wp has been described in [S] ·and (6] in three different ways, 

· none of which is-constructive, and none of which is completely consistent with the others. 
Observations in this direction have been made in [1], (23] and (15], but we still feel 
that a mist covers this widely used notion, which seems to have been introduced to the 
program-proving community with the same strong motivation, but with the same lack of 
underlying semantics as was Hoare's partial correctness notion P{a}Q. We hope to have 
achieved a clarification of this concept. Finally, in Section S we refer to important 
work by others related to the topic of our paper. 

2. Dynamic Logic, Computation Trees, Diverging and Failing. 

First we recall the basics of regular DL, described in greater detail in (12]. We 
assume we are given some universe of states U, the elements of which we denote by :J ,9 etc. 
First order formulae are assigned truth values in the states of U by the standard methods, 
writing Jl=P when P evaluates to_ true in .1. Furthermore, every regular program a over 
assignments tsimple, in this paper) and tests, is regarded as a binary relation over U in 
the following manner: 
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x+-E = {(.1,9)1 every symbol has the same value in j and 9 except x which in 
9 has the value that the expression E has in .1}, 

P? = {(.1,J)I Jt=P}, 

ex; fJ , exufJ and a* are the composition, union and reflexive transitive closure 
of their components respectively. We will write 3a9 for (J,9)(:a, A new formation rule is 
added to those of predicate calculus by admitting <a>P (read "diamond-a P") as a formula 

· for any program ex and formula P, with the semantics 

JF<cx>P iff 39(.1a9 I\ 91=P), or equivalently 

Thus for the dual ,(a),P denoted by (a]P ("box-a P"), 

JF[a]P iff V 9 ( J a9 => jt=P), or equivalently /\ 9t=P . 
.1a9 

With this language many of the properties of programs which relate initial and final 
stales, can be stated and proved,· like l=R=>[a]Q (partial correctness), l=R =><a>Q (.total 
correctness if a is deterministic) as well as more sophisticated statements such as the 
valid 

[(a;ex)*JP /\ [a;(a;a)*J,p = P /\ [a*J(P=>[a]-.P /\ ,P=>[aJP). 

Two approaches to the axiomatization of DL can be pursued, namely construeting infinitary 
axiom systems with the goal of achieving (absolute) completeness (this can be done for DL 
as work we are doing jointly with A.R. Meyer shows), and a variation of Cook's method, 
namely constructing finitary axiom systems which are complete relative to arithmetic; i.e. 
taking as axioms all the valid formulae of first order arithmetic. We would like to 
reserve for the latter the term Arithmetical Completeness. We reproduce here a variant of 
the axiom system P first appearing in (22], which was proved to be arithmetically complete 
in (12]. 

(A) 
( B) 

(C) 

(D) 
(E) 
(F) 

All valid sentences of first order arithmetic, 
All tautc;>logies of Propositional Calculus, 

[x+-EJP = PE where P is modality-free, 
X 

[P?JQ = P=>Q, 
[exufJJP = [aJP /\ [fJJP, 
[ex; fJJP = [exJ[fJJP, 
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(C) 

( H) Invariance 

[aJP :::, [a]Q 

P:::>[aJP 

(I) Convergence P(n+l) :::>(a>P(n) 

P(n):::><a*>P(O) 

where P( t) for some arithmetical term t stands 
t . 

for P x' x does not appear in a, and n does not 

appear in P(x) or a . 

We make a side remark here and note that rule (H) can be replaced by the 
equivalent "induction" axiom (P /\ [a*J(P:::>[a]P)) :::, [a*JP, and that we have changed the 
rule of necessitation so as to make possible the elimination of the axiom 

[aJ(P:::,Q) => ([a]P :::, [aJQ) 

of [22] and [121 Neither change falsifies our completeness result of [12]. 

Were our programs restricted to be deterministic (say, by replacing u and * by 
some deterministic conditional and iteration programming constructs), DL would suffice. 
In this case <a>P states that "everything will be ok"; the program (via its one and only 
possible path of execution) will terminate satisfying P. [a]P states that if a terminates 
then P will be satisfied, . whereas capturing the fact that "something goes wrong" can be 
done with [a]Jalse, etc. Hence, theories of total correctness of deterministic programs 
are quite easy to construct and understand; they are based in most cases on one basic 
construct corresponding to <a>P (sometimes-at_ [19] and [4], P[SJQ [3], [P{S}QJ 
[26], <PISIQ> [18], som [16] etc.). In [10] we describe a deterministic version of DL, 
and survey a large number of known methods for reasoning about deterministic programs, 
arguing that the underlying principles in this case are few and relatively simple. 

For the more complex case of nondeterministic programs we will formali~e the 
notion of "executing" a program a in a given state .1~U, by first defining the 
1-computation tree of a, t(a,.1) .. Given j and a, t(a,.1) is a possibly infinite tree, each 
node of which can have only finitely many descendants, and is labeled with either a state 
(element of U) or the symbol/ together with an i'ndication of whether the node is a "halt" 
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node ( which we denote with a square-; a. circle indicates a non-halt node). 

t(x+-E,J) is ili where 3 is the unicrue state 
such that (1,3)~x.-E, 

t(P?,J) 1s [I/ if Jt=P, and (1) if jt=-,p, 

t( cxu/j, J) is \ j ; <--- identification of roots (ro0:t is square iff one /t or component roots is) 

~ t(fJ,1 

t( ex; fj, J) is the tree resulting from the attachment, for any state 3, o'r t(/3 ,9) to 
every halt node of t(a,1) which is labeled with the state 3, except for the case 
where t(fJ,9) is a single non-halt node and the node to which it is being 
attached has no descendants, in which case the tree 

is used instef of t(/1,9). The halt nodes of the resulting tree are taken to be 
just the halt nodes of fj (i.e. square nodes· of t(a,j) are "rounded" unless they 
are also square nodes of t(fJ,J)). 

t(cx*,J) is the (possibly infinite) tree defined recursively as t((true? u ci';a*),J) 
where a' is « with its root "rounded" (made non-halting). 

The reader may verify that computation trees have finite out-degree at every node. 
In proving this it is helpful to note that if a tree has a leaf that_ is not a halt node 
then that leaf is the root. (This would not be the case if we did not "round" the root of 
a in t(a*,J).) From the point of view of our definition we are regarding ci* as the 
"finitely-wide / infinitely-deep" program I u a;(I u a;(I u a;( ... ))), and not as the 
"infinitely- wide/ finitely-deep" program I u au a;a u a;a;a u ... (where I abbreviates 
true?) . · 

The reason for not associating an / - node with a false test directly, and instead 
introducing /-nodes only via ";", is so that failure to satisfy a test does not count as 
failure if an immediate alternative is provided (necessarily via union). This permits us 
to retain the definition of "if P then a else fJ" as P?;a u .,P?;fJ. In view of the 
convenience of reasoning about tests and union independently, it seems to us well worth 
while to arrange the slippery notion of "failure" so that it does not make this definition 
unusable later on. · 
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The set of paths of t(a,J) from the root 3 will be called the set of computation 
sequences of a and J, c(a,J). We will call the infinite elements of c(a,J) divergences, 
and the finite elements of c(a,J) terminating in nodes labeled f, failures. A divergence 
corresponds to the presence of a possible infinite computation of a, while a failure 
corresponds to coming across a test evaluating to false and having no immediate 
alternatives to pursue that do not entail backtracking. 

These concepts supply the setting and motivation for the following sections. 

3. Dynamic Logic+. 

In this ·section we define an extended DL which we will denote by DL +. It will 
have the ability to express the absence of divergences in c(a,3), by employing the 
modality [a]+ (and its dual <a>+), taking [a]+p to mean that there are no divergences and 
that every possible final state satisfies P. In Section 4 it will also become evident 
that DL + is powerful enough to express the absence (and hence the presence) of failures 
too. Thus, a wide range of properties of nondeterministic programs can be expressed in 
DL +, including, as we will see in Section 4, all the different versions of the notion of 
total correctness. The central theorems of this section are an inductive characterization 
of the fact that a* can (cannot) diverge, and the .arithmetical completeness of an axiom 
system for DL +, which provides for the first time a complete formal proof method for 

. formulae including assertions about infinite loops and failures. 

A remark seems to be in place before we proceed. We are about to add a divergence 
state to the universe U, which for lack of a better symbol we denote by .l. This state 
should not be confused with the similar "undefined state" of say [1), [23) or [17), the 
difference being that the .l symbol in these papers stands for a divergence and failure 
state. The pros and cons of this different approach will be analyzed, and arguments for 
adopting ours will -be presented, in Section 4. 

Define therefore, for a given universe U, u+ =dr Uu{.L}. Truth in .l is given by 

defining .LI/P for every formula P (i.e. the set {Pj.Ll=P}- is empty). Validity in u+ is, 
however, defined to be validity in U, to avoid losing such familiar theorems as P=>P. New 
denotations for programs are obtained in DL + by adding ( .1., .1.) to every test and assignment. 
The definitions of union and composition remain unchanged. However, we take a* to be the 
reflexive transitive closure of a together with transitions (J

0
, .1.) when there exist 

states J1 ,J2, .... such that Vi~O(JiaJi+l) .. 

( An alternative definition of the binary relation on u+ represented by a is that it is 
the set of all pairs ( J ,9) such that 9 labels some halt node of t(a,3) not labelled/, 
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togethc-r with ( 1, .L) whenever t(a,1) is infinite, or equivalently has an infinite path 
( equivalence follows by Koenig's Lemma and the finite outdegree of the nodes of the tree). 
This approach simP,lifies the definition by making the description of computation trees do 
all the work.) 

Now let us reexamine the definitions of <a>P and [a)P. The fact that for Jl=[o:JP 
we could write V9(Ja9 => 91=P) although [«J was defined as.,<«>.,, depends on the fact that 
jt/-.P is the same as 91=P for all 3. We note that .1.t/P and .1.tf.,p, and consequently .11=.,<a>-.P 
1s no longer the same as V9(.1a9 :::> 91=P) for all states J. Rather, we now define 

Jl=[a]+p iff V9(1a9 => 91=P), or " $1=P, 
J«9 

JHaJP iff V3(.1a3 => Jtf-.P), or " 3tf.,p, 
Ja:3 

Jl=<o:>P iff 33(1«9 " 91=P), or V 91=P, 
Ja9 

Jl=<a>+P iff J9(1a9 " Stf.,P), or V Stf .,p, 
.1«9 

and we clearly have (]:-,()., and []+:-.()+ ... (The new motlalities are read "box- plus a", and 
"diamond-plus o:".) Inspection shows that these four concepts assert about c(a,J) that 
(respectively) 

there are no divergences and ever1final state satisfies P, 
every final state satisfies P, 
there exists a final state satisfying P, and 
there exists either a divergence, or a final state satisfying P. 

Note that JHo:]+true states the absence of divergences in c(a,J), and Jl=<a>+Jalse the 
existence of (at least) one. 

We now gather some of the basic properties of our new modalities: 

Lemma I. For all programs a and {J, DL+-formula P, assignment x+-E and test Q?, the 
following are valid: 

(a) [o:J+p ; [o:JP A [«]+true, 
(b) (o:)+p ; <a>P v <a>+Jalse, 
(c) [x+-[]+true, 
(d) [Q?]+true, 
( e) [o:; {JJ+p - [a]+[fJJ+p ; [«J+true I\ [a][{J]+true I\ [a][{JJP, 
(f) ·<a;t,>+P ; <«>+<fJ>+P ; <.a>+Jalse v <«><fJ>+Jalse v <a><{J>P, 
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( g) [autn+p ·= [aJ+p /\ [t3l"P, 
(h) . <aut3>+P = <a)+p v <t3>+P, 
(i) [a:J+(PAQ) = [aJ+p /\ [a:JQ, 
(j) <a:>+(PvQ) = <a>+P v <a>Q, 
(k) [a:*J(P=><a>P) => (P =><a*>+false), 

Proof. All follow quite easily from the definitions. We omit the proofs. D 

Note the (seemingly paradoxical) equivalent assertions: 

[a]+false = [a]+true I\ [a]Jalse. 

Define a 0 =df true? (i.e. the identity relation), and an+l =df a;an. 

Theorem I. Jt=<a*>+Jalse iff V n~O Jt=<an>+true. 

A rigorous proof of this theorem is given in the Appendix (Section 6). Intuitively, the 
right hand side implies that arbitrarily long computation sequences can be found in 
t( a*, J), which must therefore be infinite, implying the left hand side. Conversely, if 

t(a*,J) contains an infinite path then t(an,J) must either contain an infinite path or a 
halt node. 

Corollary 1. JHa*]+true iff 3n~O such that Jt=[an]+Jalse. 

At this point we will start talking about the specific universe of arithmetic N 
(see [12]), remarking that for the universe A of arithmetic with uninterpreted function 
and predicate symbols (augmented arithmetic), all results of this paper would also hold. 
We can now rephrase the results of the previous Theorem and Corollary as 

t= N [a*J+true = 3n[an1+false, 

t= N <a*>+false = Vn<an>+true. 

An eq.uivalent but more comprehensible description of the behavior of the 
plus-modalities on a* is given by the following Theorem and Corollary, the proofs of which 
we omit: 

Theorem 2. 

Corollary 2. 

t= N <a*> +false = V n<an)true v <a*><a> +false. 

t= N [a*J+true = 3n[an]Jalse I\ [a*][a]+true. 

Theorem 2 states that a divergence in a* is due either to being able to "run" a for as 
many times as you wish ( which by Koenig's Lemma is equivalent to being able to run a for 
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ever), and this we might term diverging for global reasons, or to being able to run a for 
a certain number of times and then have a itself diverge, terming this diverging for local 
reasons. Corollary 2 states that a* is divergence-free if there is a limit on the "depth" 
we can go to by doing a, and that furthermore a itself does not diverge in the process. 

We recall the fact (mentioned in (12)) that (augmented) first order arithmetic is 
expressive for (aug_mented) DL. We extend that result to: 

T hcorem 3. First order arithmetic is expressive for DL +; i.e. for every DL + formula P, 
there e.xists a formula F of first order arithmetic such that FN F=P. 

Proof. Use induction on the structure of formulae and programs via the result in (12) and 
Corollary 2. C 

We make a remark here which concerns the Algorithmic Logic of the group of Polish 
researchers initiated by Salwicki (24). They employ an operator (na), for which (na)P is 

to be equivalent to Vn<an>P. Although (241 allows only programs which are deterministic, 
we can admit this operator into DL (allowing the formula (na)P for any program a and 
formula P, with the above semantics), and call the resulting logic AOL. We thefl have: 

Tlicorcm 4. AOL is expressive for DL+; i.e. for every OL+ formula P, there exists an 
A OL-wff F such that FN F=P. 

Proof. Again induction is employed. This time the key fact is Theorem 2 which is · 
rephrased as Jt=<a*>+Jalse (in DL +) iff j t= (na)true /\ <a*>"<a>+Jalse" (in AOL; where 
"<a>+Jalse" stands for the AOL formula equivalent to <a>+Jalse, which exists by the . 
inductive hypothesis). D 

In [9] an arithmetically complete axiomatiz.ation of AOL has been exhibited. 

We would like to pause here and pose an important open problem ( pointed out to us 
by M.J. Fischer), concerning the expressive power of Dt +: 

Is it tl1e case that for every DL+-wff P there exists a DL-wJJQ such that t= P=Q? 

We st rongly conjecture that the answer to this question is no, i.e. that DL+ is strictly 
stron&er than DL in e·xpressive power. Meyer [20) has shown that if array assignments of 
the form F(x) ~ y are allowed, then the answer is yes, i.e. DL+ is no more expressive than 
DL. However, the proof in [2.0J, and the manner in which it uses array assignments in DL 
to make possible expressing the presence of a divergence, further convinces us that with 
simple assignments the answer is nevertheless no. Another version of this question, is in 
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the case of propositional OL (POL, see Fischer and Ladner [7)), where we can similarly 
define POL+. It can be shown that PPL+ is strictly more expressive than POL. Other 
related questions and observations can be found in (201 

We now augment P to P+, by adding the following axioms and rules: 

( J) 
( K) 
( L) 
(M) 

(N) 

[xf-EJ+true, 
[Q?]+true, 
[a ;,S]+true - [a]+[fJJ+true, 
[au,S]+true - [a]+true I\ [fJJ+true, 

(0) Finiteness P(n+l) =>[aJ+P(n) , -.P(O) 

P ( n) =>[a*J+ true 

where n does not appear in «. 

( P) Divergence 

P =><a*> +false 

The soundness of the axioms follows from the above discussion, and the soundness 
of rules (P) and (0) can be shown to follow from Theorems 1 and Corollary 2 respectively. 
We proceed to show what we mig!lt call the "completeness" of each of the last two rules, 
followed by box and diamond completeness theorems for OL +, and then present our main 
result. For these purposes denote p+ without rules (I) and (P) by p+[], and without rules 
( H) and (0) by p+o. As in [12], we will concern ourselves with the proofs of the 
comple teness directions of the theorems only. 

Lemma 2. If FR=>[a*J+true, then there exists a formula of arithmetic P(n) with free 
variable n, such that the premises of rule (0) and R=>3nP(n) are all valid. 

Proof. By expressiveness of arithmetic, [an]+Jalse is expressible as such a P(n). By 
Corollary 2, FR=>3nP(n). Noting that P(O)=Jalse, we observe the trivial validity of the 
premises of ( 0 ). D 

Theorem 4 ( D L + Box Completeness Theorem). 
program a 

For any formulae of arithmetic R and· Q and 
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Proof. Assume t= N R=>EaJ+Q, which really asserts that both t= N R=>[a]Q and t= N R=>[a]+true 

hold. By the DL Box Completeness Theorem of [12] we have ... p+[J R=>[a]Q. We shall 

show that 1-p+[] R=>[a]+true, and axiom (N) will serve to combine. the results. This follows, 

however, by induction on the structure of a (using Lemma 2 for justifying the application 
of rule (0) when a is fJ*), from which we obtain P(n) =>[a*J+true, and then R=>[a*J+true. I 

L€mma 3. If t=R=><a*>+false, then there exists a formula P of arithmetic such that the 
premise of rule (P) and R=>P are both valid. 

Proof. Assume t=R =><a*>+Jalse. We will exhibit here a situation similar to that occurring 

with the rule of Invariance; in [22] it was implicitly shown that both [a*JP and <(«- )*>R 
could be taken as invariants, satisfying those conditions which guaranteed that the rule 
could be applied. Here too, both a "strongest <>+ consequent" and a· "weakest <>+ 
antecedent" will be shown to satisfy the requirements of the Lemma. The latter is simply 
<a*>+Jalse which trivially satisfies the requirements. The former is a little more 
subtle. Intuitively what we _will construct is the predicate P which is true exactly in 
those states which lie on an infinite path of "computation" which started in a state 
satisfying R (by assumption there is at least one such path for every such starting 

state). Take P to be an arithmetical equivalent of <(a- )*>R /\ <a*>+Jalse (recall that 

J(a-)J iff Jed). As first order arithmetic can be shown to be expressive for DV 
augmented with the converse( - ) operator on programs, this equivalent exists. <(a- )*>R 
states that the present state is on a path from R via a*, and <a*>+Jalse makes sure that 
we are on a path with a possible infinite computation. First we observe that 

R=><(a-)*>R, and by the assumption also R=><a*>+Jalse. Thus R=>P is valid. We are left with 
having to show P=><a>+P. This can be seen to follow directly from the easily checked 
validities 

1. <(cx - )*>R =>[a]<(a-)*>R, 
2. <cx*>+Jalse = <a>+<a*>+£alse, and 
3. ([cxJU /\ <a>+V) => <a> (U/\ V) 

( taking U to be <(a-)*>R and V t.o be <a*>+Jalse) 

(To check 1, use the validities W=>[a]<a->W and <fJ><fJ*>R :::> <fJ*>R, taking W to be 

<(a-)*>R and {J to be· a-.) r:I 

Theorem 5 ( DL + Diamond Completeness Theorem). For any formulae of arithmetic R and Q, and 
program a, 

t=N R=><a>+Q iff .,_p+o R=><a>+Q. 

Proof Analogous to the f.(evious theorem, using Lemma 3. a 
Lemma 4. for any DL+ wffs P and Q, and for any program a, if ... p+ P=>Q, then 

(a) 1-p+ [a]P => [a]Q, 

(b) .,_p+ <a>P => <a>Q, 
( c) .,_ p+ [aJ+p => [a]+Q, 

(d) 1-p+ <a>+P => <a>+Q. 
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Proof. (-a) is obtained. by rule (G), as is (b) (with -,Q:,-,p); (c) and (d) are obtained 
similarty with help of axiom (N). II 

Theorem 6 (DL+ Completeness Theorem). For any DL+- wff P, 

t=N P iff J-p+ P. 

Proof. The framework of the proof follows in the footsteps of our proof of the 
DL-Completeness Theorem of [12), which employs induction on the number n of modalities in 
P, and works with a conjunctive normal form. Rather than reproduce it here, we ref er the 
reader to [12), pointing out that Theorem 3 (above) gives us the expressiveness we need, 
Theorems 4 and 5 provide for the justification of the additional parts of the case n=l, 
and Lemma 4 is needed for the last stage in which J-p+ m(«)LCP2) ::> m(«)P2 

1s established. C 

A subsequent paper [9) provides insight as to the pattern by which we obtain 
arithmetically complete rules for various modalities applied to a*, and in the process 
clarifies the analogy between the aforementioned rules for [a*J+ and <a*>+, and the [a*J 
and <a*> rules of P. Thus, e.g. the invariant assertion method of Floyd/Hoare, which is 
captured concisely by the rule of Invariance (H), is seen to fall out easily as a special 
case of a much broader observation. 

In [11) , the work of this section and of [12) is considerably extended, by adding 
a recursion operator µXT(X) to ; , u and *, together with inference rules for [µX,-(X)], 
<µX'T(X)>, [µX-r(X)J+ and <µX.,.(X)>+. The resulting axiom system is shown to be sound 
and arithmetically complete. The interesting part occurs when the analogue of e.g. 
Theorem 2 is attempted for µXr(X). 

4. T or-al Correctness and Weakest Preconditions. 

Let us try to clarify the notion of "total correctness" of a nondeterministic 
· program a. In the sequel we will argue that this is a concept which is necessarily 
dependent on the particular notion of execution of « one has in mind. We will consider 
t(a,J) and c(a,J) of Section 2. 

Since c(a,J) might be an infinite set, a feasible "execution" of « in J cannot in 
general be carried out on a machine by calculatil)g c(«,3), choosing one or some of its 
elements, and proceeding to execute them. Rather, what we need is to choose some method 
of traversing t{a,J) which will either eventually lead to a halt node (either an / -node or 
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"good" node), or will go on for ever. We envisage four possible such methods: 

( 1) Depth first. At each node choose arbitrarily between possibilities and proceed; stop 
wh,en a halt node is reached. 

( 2) Depth fir st with backtracking. Same as (1); backtrack if an / - node is encountered. 

(3) Breadthfirst. At each node pursue all possibilities simultaneously; stop when a 
halt node is reached; if more than one is reached 
together, choose one arbitrarily. 

(4) Breadthfirst with ignoring. Same as (3); ignore all/- leaves (in stopping and m 
choosing). 

We now observe that assuming the existence of at least one final state 
(Jt=<cx>true), if the machine executing a program a in state j using these various methods 
is to reach a final state upon completion, without having diverged or failed, then t(a,J) 
should adhere to the following tabie, where "no" means that c(a,j) _should be free of 
failure/ divergence elements (/-nodes/infinite paths): 

failure divergence 
(1) no no 
(2) yes no 
(3) no yes 
(4) yes yes 

Thus for example, if we choose method (2), we do not mind having /~leaves in the tree, but 
do not want any infinite paths to be present. 

The importance of the above table is that it illustrates the fact that the notion 
of lolal correctness of · nondeterministic programs is indeed strongly dependent upon the 
particular method used. Saying that a is totally correct with respect to R and Q amounts 
to saying that for any J such that Jt=R, application of the chosen method of execution is 
guarant€'ed to lead to a final state 9 such that 9t=Q. Thus, whenever Jt=R, we always want 
both a final state to exist, and .every final state to satisfy Q. Furthermore, whether we 
require the absence of divergences and/ or failures depends upon the execution method used. 
We arrive, therefore, at the following description of the notion of total correctness of 
nondeterministic programs, the variants of this concept for the four methods being 
respectively: 

(1) 
(2) 
(3) 
(4) 

R => ( <cx>true I\ [a]Q /\ jl(a) I\ dv(a) ) , 
R => ( <a>true I\ [a]Q /\ · dv(a) ) , 
R => ( <cx>true I\ [a]Q /\ Jl(a) }, 
R => ( <a>true I\ [a]Q ) , 
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where Jt=jl(a) iff c(a,J) has no failures, and jt=dv(a) iff c(a,J) has no divergences. 
Adopting DL +, dv(a) is simply [a]+true, thus total correctness for method (2) can be 
expressed in DL + as 

We would like to point out at this stage, that we are quite satisfied with the 
adequacy of DL + for capturing the notion of total correctness for methods (2) and (4) (for 
the latter it is expressible even in DL). One cannot imagine an implementation using 
breadth first search without igno-ring the failure nodes, as in (3). Also, backtracking 
has become an integral part of depth first search, to the point of people having 
difficulty in envisioning it without. As we shall see, however, Dijkstra's notion of 
weakest precondition is really addressed to method (1), and it is, therefore, at this 
concept that we now direct our attenti~n, showing, quite surprisingly, that DL + is 
powerful enough to capture the concept of failing too, and hence the notion of total 
correctness for all four methods. 

In [SJ and [6] Dijkstra introduced the concept of weakest precondition: 

(*) "The condition that characterizes the set of all initial states such that 
activation will certainly result in a properly terminating happening, leaving the 
system in ·a final state satisfying a given post-condition" ([6), p. 16). 

T his condition was defined to be the value of a function wp(«,P), which we will write as 
{a:}P, satisfying the five conditions: · 

( a ) {a}Jalse = false 
(b) if l= P=>Q then t= {a}P => {o:}Q 
(c) {a}P /\ {a}Q = {a}(PAQ) 
(d) {a}P v {a}Q => {a}(PvQ) 
(e) if Vi~0(Pi=>Pi+l) then {a}3iPi = ]j{a}Pj (continuity). 

Dijkstra then introduces a syntax for a programming language, and defines its semantics by 
specifying {a}P for each allowed program ex. Specifically, the programs and his 
definitions are: 

empty program 

identity prog. 

assignment 

{false?}P =df false, 

{true?}P =df P, 

{x~E}P =df P~, 
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composition 

n . n n 
IF { u (Q?;a)}P =df (v Qi) " " (Qi:,{«i}P) 

i=l i=l i=l 

n n 
DO {( u (Q;'?;«i))*;(/\ .,Qk)?}P =dr 3jHj(P), 

i=l k=l 

n 
where H0(P) =dr P " (/\ -,Qk), and 

i=l 
n 

Hj+l(P) =df H0(P) v { u (Q?;ai)}Hj(P). 

i=l 

At this point we should assume that (a)-(e) are to characterize the notion of wp, 
and that they ought to give rise to a unique "predicate transformer" {«}P. This, as we 
shall see ( and as observed independently in e.g. [23) and [15)), is not the case. 
Moreover, there seems to be no further definition to fall back on, if what we want is to 
understand what wp(«,P) is really saying (i.e. which states j satisfy wp(a,P)) . The 
English description (*) is vague, and uses the word "activation", so leaving unspecified 
which method of activation is being used. The definition of Dijkstra's programming 
language uses wp, and certainly does not define it, and thus cannot be of much help. 

We first set out to find something which satisfies (a)-(e) for regular a 's. 
Inspection shows that (c) fails for <a>P and (e) for [a]P. (Example of latter: take a to 
be x ..... O; (x~x+l)* and Pi to be x~i.) This, however should not cause alarm, because 

(a)-(e) are required to hold for the final product satisfying(*), which is to have the 
always ("will certainly") and the sometimes ("will certainly") properties. An attempt to 
take {a}P to be [a)P /\ <a>P (equivalently [«JP /\ <a>true) will result in (c) holding, but 
( e) still failing ( same example). This observation explains our remark in [12) in which 
we incorrectly claimed wp(«,P) to be [a]P /\ <«>true, which was made solely on the basis 
that this construct satisfies the axioms which appeared in (5) ((a)-(d)), without 
ref erring to the later addition (e) of [6]. The reason (e) fails for [a] (and for that · 
matter fails for [a]P /\ <«>true) is rooted in what (6) calls "unbounded nondeterminism", 
which in this case is a misleading term: «* can, as remarked, be viewed as a tree with 
finite outdegree, but can have infinitely many final states, by virtue of being able to 
apply ex infinitely of ten. Outlawing this situation is brought about by further asserting 
the absence of divergences! Thus we propose to add to our suggestion [a]•true, arriving 
at 

{a}P =df [a]+p /\ <a>true. 

Lemma. Conditions (a)-(e) are satisfied by {a}P. 
Proof Omitted. 

Thus it would seem that our task is completed, as would indeed be the case if wp 
was defined to be any predicate transformer satisfying (a)-(e). We might note here that 
the result of Wand [25) strengthens our argument. Wand has shown that ir a program is 
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defined to have the property of allowing only a finite number of possible out-states for 
every initial state ( which in our case amounts to asserting [a]+true), then a functional 

f:2U ➔ 2U is equivalent to [a]P /\ <a>true for some such a iff (a) - (e) hold for f (that 
is substitute F for {a} in (a)-(e)). This result is essentially showing that our {a}= 
[a]+p I\ <a>true is indeed the "greatest" predicate transformer satisfying these axioms. 
However, the fact is that there is more, in Dijkstra's description, than just the axioms. 
Let us take a look at the definition of his language. We notice that {a;fJ}P={a}{fJ}P 
does not hold for our definition of {a}P, and neither do the "eq·ualities" for If and DO. 
(Parenthetically, we might note that, contrary to what is implied in [15], the importance 
of having e.g. the property wp(a;fJ,P) = wp(a,wp(fJ,P)) hold, should not at all be 
overestimated. This property is important for easing the construction of the weakest 
precondition of a given P with respect to a given a, only if the wp construct is the only 
thing you have! In our case the f.act that {a}P does not enjoy the property is irrelevant, 
because {a}P is defined as the conjunction of two constructs which do (namely <a>true and 
(aJ+P). Constructing {a}P in a concrete situation would proceed, therefore, by 
constructing the two components in the natural way using this property for both!) These 
o bse rv at ions call for extra analysis. 

Suppose we were to attempt to capture the third class of members of c(a,J), namely 
the failures, by adding a failure-state (say .1.') to u+. Despite the fact that Dijkstra's 
axioms do not require this, his informal discussion of failure (referred to as abortion) 
indicates that failure is considered not to be proper termination, whence if we are to 
capture what Dijkstra had in mind by wp (as opposed to what he axiomatized) we will need 
to include .1.' in our reckoning of what constitutes a binary relation abstraction of a 
program. We can do this as we did for .1.: (J,.1.') is in the binary relation for a when 
t(a,J) contains a failure node. We now give a way of expressing, in DL+, the formul·a 
jl(a) whose truth in state j asserts that t(a,J) contains no failure node. 

jl(x~E) = true, 
jl(P?) = true, 
fl(auf3) = fl(a) I\ fl({:J), 
jl(a ;f3) = jl(a) I\ tr(a,fJ) I\ [a]jl(fJ), 
jl(a*) = [a*]Jl(a). 

In turn we need to define the "transition" predicate tr(a,fJ), which expresses the 
hope that if a leads to a state from which fJ has no chance of eventual success or 
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divergence then a may be resumed. (Such resumption is possible with programs such as -y*, 
where one might execute 'Y some number of times, try to execute fJ, fail immediately, and 
so execute 'Y again. This is precisely the behavior one would expect in the 
in.terpretation of the DL translation of while P do a as (P?;a)*;.,P?.) 

tr(a,(3) = [a]<tJ>+true for a an assignment or test 
tr{-y ;o,fJ) = [,yJtr(o,tJ) 
tr(...,,uo,f3) = tr(,y,tJ) I\ tr(o,tJ) 
tr(,y* ,fJ) = [,y*J<fJu..,.>+true 

Let us define now {{a}}P =df [a]+p /\ <a>true I\ jl(a). 

Lemma. Conditions (a)-(e) are satisfied by {{a}}P. 
Proof. Omitted. 

It can be shown ( quite tediously though) that the equalities in Dijkstra's derinition of 
the guarded command language above also hold for {{a}}P. Thus {{a}}P exactly expresses 
wp(a,P), namely the weakest condition guaranteeing correct termination when execution 
method (1) is adopted. Now, given that fl can be expressed using DL +, and given that we 
h:we completely axiomatized DL +, we infer that we have also completely axiomatized {{a}}P. 
So we h:we given an arithmetically complete axiomatization of Dijkstra's notion of weakest 
precondition. 

These remarks, combined with the elegance of the logic developed in Section 3, 
seem, even without any additional backing up, to point to the unavoidable conclusion that 
reasoning about programs should be carried out. using well-defined primitive basic concepts 
( such as [a]P, <a>P, [aJ+true, jl(a) etc.) as the building blocks, from which other more 
complex notions can be constructed. We are strongly against the approach implicit in 
Dijkstra's work, in which the basic construct (wp) and the properties required of it, 
appear to obscure the simple parts of which it consists. We are further against the 
attempt to define the semantics of a language using a complex (execution-method dependent 
in this case) notion. Recently deBakker [2], deRoever and Plotkin (unpublished) have gone 
to great efforts in trying to find the appropriate denotational semantics which would 
correspond to what essentially is Dijkstra's definition, using predicate transformers, of 
the semantics of a recursive programming language ( with the explicit addition of an if 
then else construct). In our opinion, not only have they not fully solved the problem of 
tying up a denotational semantics to a total-correctness-based semantics ( the same process 
remains to be carried out for the other three execution methods, for their solution 
implicitly assumes the need for outlawing both divergences and failures), but also the 
"top down" viewpoint of having to "apologize" for defining a language with the aid of wp, 
by conjuring up a suitable ordering on the domain which gives rise to an equivalent 
denotational definition, is inferior to the much healthier "bottom up" approach. The 
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l;\tter consists of first defining the semantical objects (states and binary relations), 
and only then introducing the logical language and assigning meaning in the manner of 
Tarski. At this point the truth of the formulae or the logical language has already been 
determined ( and in a plausible way!), and the "axioms" of Dijkstra's definition can then 
be verified as mere theorems. This formalizes what happens when a semanticist is 
confronted with those axioms; he attempts to verify their agreement with his intuition 
about the behavior of programs. In contrast, deBakker, deRoever and Plotkin {in this 
case) start from the axioms and assign semantics that are faithful to those axioms. 

5. Other Work. 

Some or the points made in the previous section appear also (either explicitly or 
implicitly) in Hoare [15]. He writes a a P and a e P (allows and ensures) for <a>P 
and [aJP respectively and notes the duality of <> and []. (The notation was interestingly 
confusing for us, since <> and [] correspond to 3 and V, or e and a respectively, not to a 
and e!) More significant is his definition of b(a), which in state J asserts the · 
finiteness of the members or ,·(a,J), and which, if we take the liberty of rewriting for 

our a*, is vn~0(an e false), or as we would write, 3n[an]Jalse, which should now be 

viewed in the light of Section 3. Hoare observes that {a}P = [a]+Pl\<a>true does not 
satisfy "the · basic axiom for program composition", and proceeds to describe explicitly in 
his logic of traces, that condition .f{a) (similar to our fl(a)) which guarantees the 
non-existence of failures ("blind alleys"), and shows that wp(a,P) defined as {a}P/\f(a), 
satisfies that too. 

Manna [17] uses essentially quantification over states to spell out a variety of 
properties of deterministic and nondeterministic programs. His programs are many-valued 
functions of states, i.e. a(J)cU. Jt=<a>P is termed "a totall'J ]-correct wrt P in J", and 
is written 3J(JEa(J) I\ P(J,$)) (note the similarity to 3j(Ja3 I\ jt=P)), and Jt=[aJP termed 
"a partially V-correct wrt Pin J" and written V3(3fo(J) => P(J,3)). "Total equivalence" 
of a and {3 in state J is written "a(J) and fj(J) are not empty, and a(J):fj(j)", the last 
conjunct being inexpressible in DL without the use of state quantifiers. [17] then 
proceeds to express the above and other properties u~ing (here we translate for clarity 
into our own terminology) the primitive [a]P and second order quantifiers; in particular 
it is noted (perhaps the earliest mention of this fact) that <a>P=-,[a]-,p, and that 
"tMally V-corrat" is -,[a]Jalse I\ [a]P or <ti.>true I\ [a]P. Manna [17] then augments U 
with an undefined state oo, and requires that the programs map any state into a non-empty 
subset of Uu{oo}, thus as is the case with [1] and [23] (see below), (J,oo) is added to the 
program not only in the presence of a divergence, but also in the case of failure, and 
hence differs from DL+. However, [17] has four concepts of correctness analogous (and not 
identical, due to the above difference) to our modalities: 
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partially ]-correct ·(written 33(3fcc(:J) /\ (3¢oo::,p(J,3)))) 
totally ]-correct (39(:Jfa(:J) I\ j¢oo /\ P(:J,3))) 
partially V-correct (V:J((:Jf~(:J) /\:J¢oo) ::J P(:J,3))) 
totally V-correct (V:J(:Jfa(j) ::J (:J¢oo /\ P(:J,3)))} 

analogous to <a>+P, <a>P, [a]P, and [cc]+p respectively. 

The double duality of these concepts is proved, and other properties are expressed in a 
second order language using these four as basics. The af ormentioned difference in the use 
of c.o, comes to the surface in the remark of [17] that <cc>+true is valid for every a, a 
fact which is not true in DL +. However, this clean description of the four basic concepts 
of nondeterministic programs, formulated already in 1970 (and brought to our attention by 
N. Dershowitz), strengthens our confidence in the manner in which we have constructed DL +, 

In deRoever [23], who uses explicit quantification over states, we find in essence 
the remark that [a]P/\(cc)true satisfies (a) - (d). Also [23) proceeds to describe the wf 
which satisfies (e) as well as Dijkstra's definitions of (what boils down to} ; , u and . 
This is done, as we have remarked, by using J. to express both divergences and failures 
(respectively in the words of [23) with notation·adjusted: "if {91(:J,:J)fa} is infinite 
then ( J, l. )fa" and "I feel free to switch from a relation cc as a subset of values of some 
cartesian product UxU, to a function a from Uu{ J.} to nonempty subsets of Uu{ J. }, made total 
by using { .!. } as the value for a(:J) in case .... {91(:J ,:J)fcc} is empty"). As remarked, this 
approach eliminates the possibility of using u to branch conditionally, so an if then else 
is added explicitly to the language! Of course, in this setting wp(ccuf;J,P) = wp(a,P) /\ 
wp((J,P) because wp enables one to be able to choose either, and not have to backtrack, 
but on the other hand wp(if R then a else f;J,P) = wp(R?;a,P) v wp(-.R?;f;J,P}. [23] also 
proves that the Egli-Milner ordering on programs over u+ results in wp(a,P) being 
continuous in a, a result which it is possible to show holds for {a}P too. 

Turning to deBakker [1], the part of this work relevant to weakest preconditions, 
differs in an important respect from that of [23). de Bakker uses u and if then else as 
two independent constructs, and does not have our notion of tests. This eliminates all 
possibility of failure, making deBakker's task simpler than Dijkstra's or ours. In 
another important respect his work parallels ours; he states explicitly " ... with the 
convention that Jal. holds iff some computation sequence specified by a does not terminate 
properly .... either the computation sequence is infinite, or that one of the elementary 
actions .... is undefined at some intermediate state". Interestingly, [1] reaches the 
conclusion (as did we independently) that it is very helpful to define l. such that J.t;P for 
all P. What he really _does is to restrict his predicates to those that are false in .!.. 

Another noteworthy remark about [1] is his e(a), which is defined to be true in :J iff 
(:J,1.) is not in a, and thus in this light, the observation in [1] that e.g. e(a;f;J) = e(a) 
/\ [a]c(,S) amounts to our easily checked equivalence [a;f:JJ+true = [a]+true I\ [a][tJJ•true 
(see Lemma l(e)). · 
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Another paper des.cribing a logic which allows nondeterministic programs, and which 
is supplied with a complete axiom system, is .Harel, Pnueli and Stavi (13], in which the 
nondetermin_istic assignment x+-Ex'P(x,x') can be used to simulate general u and *. 
However, although [aJP and <a>P can essentially be expressed (and by the completeness 
theorem proved), as well as certain combinations or them, no mechanism is provided for 
reasoning about divergencies, and hence only total correctness for method (4) can be 
captured. · 

6. Appendix _ 

We give here a rigorous proof of Theorem 1. An interesting aspect of the proof is 
the way in which it makes use of a DL version of Koenig's lemma. While the reader may 
have been convinced by our informal justification of Theorem 1, the apparent difficulty of 
proving it carefully suggests that the "intuitively obvious" in this case needs to be 
approached with caution unless one is willing to accept it as axiomatic. 

The theorem asserts that a* can reach l if and only if for any number of 
iterations of a either a terminating state is reached or a divergence is encountered along 
the way. The "only if" part should be obvious, but the "if" part appears to depend on 
Koenig's lemma and the fact that if a doesn't diverge then a can reach only finitely many 
states, which is true of our particular nondeterministic programming language but not true 
of such assignments as n:=?. 

Since we can state an extended version of Koenig's lemma in dynamic logic, we can 
increase the rigor of the proof of Theorem 1 by using this extended version. first we 
need a notion of independent programs. We say that a and fJ (treated as binary relations) 
are independent when 

(i) a;fJ = fJ;a (order independence), and 
(ii) JaJ'fJJ" I\ Ja3'fJJ" ::J J'=9', and similarly with a,fJ interchanged 

(information independence). 

The first condition implies that for every computation 3a3'fJ3" there is a 
computation Jf39'aJ", and similarly with a,fJ interchanged. The second condition asserts 
that if we know what state a;fJ went to then we know what state ex went to in the process, 
i.e. the trajectory information can be recovered from the transition information, so that 
fJ cannot-destroy information supplied by a. 

Sec~nd, we need a generali:z;ation of the notion of "there exist infinitely many." 

We use [a]1P to · mean that P holds in all but less than i of the states reachable by a. 
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Hence [ai
0

P means th-at only finitely many of the states accessible via a can fail to 

satisfy P. So if [a]
00

Jalse holds in state .1 then there are only finitely many states 9 
satisfying Jaj, i.e. a has only finitely many transitions possible from this state. 

Extended Koenig's Lemma (EKL). Let a, fJ be independent programs. Then 

[fJJ
00 

false => ( <a> 00 
<fJ>P => <fJ><a> 00P). 

Proof. It suffices to show that the formula holds in an arbitrarily chosen state J. 
Suppose then that Jt=[{J]

00
Jalse and Jt=<a>00<fJ>P. Let V = {J'IJaJ' I\ j't=<{J>P}. Then since 

Jt=<cx>cn<f3>P, V must be infinite. Now let f:V➔U (U is the universe of states) be a 
function assigning to each element of V an element j" such that J'fJJ" and J"t=P. The 
construction of V ensures that such an J" exists for every J'. Since JaJ' for each j'(; V, 
property (ii) of independent programs ensures that f is 1- 1. Finally let W = 
{(9',f(j'))IJ'fV /\ Jfjj'af(j')}. Property (i) of independent programs ensures that a 9' 
can be found for every f( J'), and so the 1-1- ness of f ensures IWl~IVI, so that W must be 
infinite too. But only finitely many distinct states may appear in the first coordinate 

of W since Jt=[{3]
00

Jalse. Hence s·ome value 9' of the first coordinate must appear 

infinitely often in W. Hence :J'i=<a>
00

P. But JfJ:J', so Ji=<fJ><a>00P. I 

(It is possible to strengthen the second ::> of EKL to =, but we do not use this fact here. 
There is also a more general statement of th_e lemma that caters for other cardinals 
besides co, but we do not need this either.) 

In addition to the validities of Lemma 1 we need the validity: 

[a]+ true => [a]00 false. 

T lieorcm I. Jt=<cx*>+Jalse iff Vn~O Ji=<an>+true. 

Proof. (=>) We prove <a*>+Jalse ::> <an>+true by induction on n. When n=O the result 
follows trivially. If we now take as our induction hypothesis the result to be proved we 
get 

<cx*>+Jalse 

=> <cxO>Jalse v <a>+<a*>+Jalse 

:::> <cx>-+<cxn>+true 

=> <an+l>+true. 

( <=) For this part of the proof we express "for all n~O Jt=<an>+true" as 

"Jt=[n:=?J<an>+true" so that we can conduct the whole argument within dynamic logic. We 
take "n:=?" to be a program setting n to a nondeterministically chosen natural number, so 
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that [n:=?J _ expresses V n. Clearly we have [n:=?JP=>(n:=?> 00P. The arg1_.1ment assumes that a 
does not itself use n in any way. 

[n:=?]<an) + true 

=> [n:=?]<an,..l>+true 

=> [n:=?]<a>+<an>+true 

=> [n:=?]( <a>+Jalse v <a><an>+true) 

=> <a>+Jalse v [n:=?J<a><an>+trtte) 

Now if <a>+Jalse holds then so does <a*>+Jalse, and we are done. Otherwise if 
<a>+Jalse does not hold (i.e. [a]+true. holds) then we must have 

[a]+ true /\ [n:=?J<cx><cxn> +true 

=> [a]<xjalse /\ [n:=?]<a><an>+true (Lemma 1(1)) 

=> [a]rxjalu I\ <n==?>
00

<a><an>+true (3 infinitely many natural numbers) 
::, <a><n:=?>m<a0 >+true · (EKL) 

=> <a>[n:=?]<an>+true. (m<n => (<an>+true => <am>+true)) 

Thus we have [n:=?J<an>+true => <a>[n:=?]<an>+true. But this is of the form P=><a>P, so 

applying Lemma l(k) we get [n:=?J<an>+true => <o.*>+Jaise. I 
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