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Abstract.

A language Q is defined and given semantics, the formulae of
which are quantifier-free first-order matrices prefixed by combinations
of finite partially ordered first-order quantifiers. It is shoun that Q
is equivalent in expressive power to second order logic by establishing
the equivalence of alternating second order quantifiérs and forming
conjunctions of partially ordered first-order quantifiers.

Introduction

In [1] and [2] it is shoun that the language consisting of
formulae of the form QM, where Q is a partially ordered quantifier
prefix (Henkin prefix, abbreviated poq) and M is a quantifier-free
matrix, is equal in expressive pouwer to El (notation from
Rogers([3]). Extending the language to allow the attachment of pog's to
formulae as an additional formation rule (together with, say, A and
=), yields Aé (see [11). This‘extension seems, houever, to
destroy the natural character of the semantics of pog's which existed
in the case OM. We view the semantics differentiy in the extended
case, giving rise to an extension @ consisting of formulae of the -
form PM, where the prefix P is a well formed formula over pog’s (using
n and -}, and M is a quantifier-free formula. The semantics of
formulae of @ is given in terms of conventional second order logic,
and it is shoun that in fact @Q is equal in expressive power to full
second order logic, by establishing a correspondence between
alteknating'second order quantifiers and forming the conjunction of
alternating pog's. This result supplies an alternative characteristic

of second order logic using only (partially ordered) first-order
quantifiers.,



Definitions

We assume throughout that a fixed second order langage L is
given, and ue freely use XyXgsXpseesUsassUyaasVyans to stand for
variables, and f.fl,fz,....g.h.... to stand for func¢tion sumbols.

We define the language @ as follous:

A partially ordered guantifier prefix (pog) is a tuple of the form

(%) (xl,....xn:gl,...,gm:ﬁl

where B is a function which associates with each Y; for l<ism, a
tuple, the elements of which are disjoint and are in g peeeax}.
Intuitively for a poq Q, we will be using <Q> to mean that

the x's are universaly quantified and the y's existential ly,

but that each y; depends only on B(gil.

A prefix is defined recursively as follous: <0O> is a prefix
for any pog Q, and -Pl and PlAPz are prefixes for any prefixes
P1 and P2.

A matrix is a quantifier-free formula of L.

A uell formed formula of @ is a formula of the form
P, uhere P is a prefix and M a matrix.

We abbreviate -<0> to [Ql, and H(aPln-PZ) to (Plvpzl.

We now set ourselves to define the semantics of wff’s of @ by
gathering that part of a prefix P which essentially quantifies on
second order variables, on the left, and attaching the other (first
order) part of P to the matrix M. For the reader familiar with the
standard semantics given in [1] and [2], this step can be seen to be a
natural one, once he is willing to admit that the xi’s in (%)
are artificial constructs which serve to help define the existential
second order character of a pog.

The second order part of P (sop(P}) and Skolem form of P and u

(sf(P,w)) are defined recursively for any prefix P and uff w in L as follous:
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If Q is a pog of the form (%) then

a

a
1,0..|3f

sop(<Q>) = 3If -

a

where the f. are neu function symbols.

sop(-P) = dual (sop(P))

where dual (3fx)}=Vfdual (x) and dual (Vfx)=3fdual (¥) for any second order
prefix x, and dual of the empty prefix is defined to be empty.

;gg(PIAPZ} = §gg{P1)o_ggiP2]

where x ~x, is defined for any tuwo disjoint second order prefixes as
their merge, with 3 preceeding V. Thus 3f1Vf2Vf33f4°Vf53f63f7 is e.g.
3f1Vf2Vf3Vf53f43f83f7 or 3f1Vf3Vf2Vf53f73f43f8' etc.

In order to make this definition unique we fix some ordering on the
function symbols of L and merge within each run of the same type of
quantifier, according to that order. Thus, if in the above example the
f's are ordered by ascending indices, then the first alternative will
be chosen. Note that §gQ(P1vP2} is the dual merge of ggglpll

and sop(P,), that is, with V preceeding 3.

SE(<O>,u) = Vxp,oon,¥x (D)

where wd is W uith f?(ﬁ(gil} substituted for every free
occurence of Y; in u.

sf(-P,u) = =sf(P,u)

Given a model 1 for L we say that I satisfies PM (uritten I E PM) iff
Il F sop(P)sf(P,M),

A prefix P uwill be called a E% prefix and denoted by P!>, it
sop(P) is a 2} quantifier-prefix in the usual sense (see [3]);

similarly, a H% prefix will be denoted by P['].




Results

In order to simplify the exposition of the follouwing, we use
the following notational conveniance. For sets of formulae S and T
of @ and L respectively, we urite S=T to express the fact that for any
PMcS there exists ucT such that F w=gop(P)gf(P,M), and vice versa.

The following theorem establishes a tight |ink betwueen
alternating second order quantifiers in L, and forming conjunctions of
alternating pog's in @.

Theorem - For i28,

(a) (<0saP iy = 31

<i> 1
(b) ([IQIVP™""IN = ﬂi+1'

i+l*

Proof - Surely, given a prefix P’ of the form <Q>AP[i]. by
definition sop(P') is a 2 o prefix and sf(P',M) has no second
order quantifiers. Negatlon gives this direction for (b).

Ue concentrate on the <= direction. For i=8 (a) simplifies
to <0>M = 21, which is shown in Walkoel2] and Enderton(l], and
negation gives (b).

Assume (a) and (b) hold for i-1 where i>8. Given a 2}+l

formula in prenex form, wu: Hfl,...,Hf oR, with matrix R and Hl

prefix o. Use the inductive hypothesis to come up with ([O'JVP‘<'_1>1H'
equtvaient to oR. Denoting by P['] the prefix [Q° ]VP'<}—1>. We use a
generalization of Walkoe's techniqpe in essence, to construct <Q> and
M such that (<U>AP['])N is equivalent to u:

Let there be n. appearances of f. in M’, for l<j<k, and let
the arity of fj be mj. Define 0 to be the poq

1 i 1 1 1 2 3
(u 2 e e syl el v oeninl
1.1 1.2 l,ml 2,1 nl.ml 1  § nk,mk

vl.....vnl,vl....,vnk : B)  with 5{vJ} (uh 1....,ué'm_

-e

),

where all the various v's and u's stand for new variables not
appearing in P[']N. <0>. can be comprehended more easily by
visualizing it as



k k k
Vul'l...Vul'mk3v1

K K k.
Yu «eoVu v
nk’l MM My

We nou transform M’ into a matrix M of the form RA(S-M")
by the following process: R is taken to be the formula

k n.-1 m.
J J

I ¥l

A oA la uh.p‘uh+1,p] > vh'vh+1])
i=l h=1 p=1 :

which essentially states that all the "lines" of <0> which correspond

to some fj define the same function.

We nou consider the appearances of the f.'s in M', working "from
within", These g=nq+...+n, appearances can be ordered by dependency, -
starting with those in which some f. is applied to f-free terms.

Define Hé as M' and SB as true. Assume the r’th appearance in the

above order is fj(tl,....tm ), then H; is defined to be

M._y with the appropriate vé substituted for this appearance, and

m.
J

’ o
SO Sr—l A A (uh,s-ts}'
s=1

Take M" to be Ha, and S to be Sq.

This process completes the construction of (<B>AP['11N. We now sketch the
argument uhich serves to prove that k wu=sop(P)gf(P,M) with P: <O>AP[']



and M: RA(S-M"). By definition,

sop (P) - __p_(<0>lo___g(P[']ln391...39 sop(Plil)

for some new function symbols g., and

st (P,M =5t (<O>, 5t P Ratsa vl ooovk (a1 P Ratsar Dy,
! k' Tk

For the sake of the follouwing remarks we abbreviate 3f1...3fk to 3f,

391...3gq to Jdg and Vui‘l...Vugk’mk to Yu.

Surely Vufgi(P[f].Rn(SaN")}Q) is logically equivalent to

Vu(RU}AVufgj(P['],S»ﬂ“)u}. Careful application of the

definitlons involved establishes the additional fact that

Vu(sf{P b= H")u) is in fact logically equivalent to

_j(P[' m’ )g) where (M’ )g is M" with the corresponding

neu function sgmbols 9y gq replacing the g appearances of the
symbols fl"‘fk'

Using the inductive hypothesis, all ue have left to show is

the equivalence of

up: 3tsop P se Pl ) ang

urt 3gson® 1 vu®D A st 09
Indeed, | E Wy asserts the existence of an assignment of k functions
[i])gifP[i].ﬂ').
To obtain I E Hos simply assign to 91+++9, the function

1

[il

to the symbols fl...fk satisfying sop(P

assigned to f;; to 9, 41°°°9 the function assigned to f2; etc.

|"|1+l"l2
Trivially vuRY) is satisfied, and hence | F Hoe

Conversely, if 1 E oo Vu(Ru) forces the assignment to
9)-++9g, to be such that gl...'gn1 are assigned the same

function; are assigned the same function; etc.

gnl‘l‘l' 3 gn1+n2
This assignment of k functions to the g's, when transformed

appropriately to the fj's yields 1 E Mye |

As an example of the technique of the proof of the theorem,
take w to be 3f,;3f,0R, and M’ to be of the form
H'(fl{g(x}.fz(g)).fz(fl(fz{z},x}}}. involving these two terms and
possibly other f. ~free terms. Using neu variable symbols v,
and u , ue take <Q> to be <u1....u7;v1,...,v4;c>,
With G(v }—lul u2 B(v -lu3,u4} and B(vjlaluj+2} for 3<js5, more vividly
d|splaged as



Vu1Vu23v1

Vu3Vu 43v2
Vu53v3
Vu83v4
Vu73v5.

and M as
{€u1=u3&u2=u4)»v1=v2 & Ug=Ugsva=v, & us=u7+va-v51 &
(g=u5&z=u8&g(x]=u1&x=u4&v3=u2&v4=u3&v2=u7) - R(vl,vsl.

Corollary - Q =L.

Proof - The previous theorem.establishes the equivalence in
expressive power, of L and a subset of the uff's of @. Conversely, by
the definition of I F PM, every uff of @ is equivalent to a formula of

L. @ . '
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