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Abstract. 

A language Q is defined and given semantics, the formulae of 
whic~ are quantifier-free first-order matrices prefixed by combinations 
of finite partially ordered first - order quantifi ers. It is shown that Q 

is equivalent in expressive power to second order logic by establishing 
the equivalence of alternating second order quantifiers and forming 

-conjunctions of partially ordered fi~st-order quantifiers. 

Introduction 

In [ll and [21 it is shown that the language consisting of 
formulae of the form QM, where Q is a partially ordered quantifier 
prefix (Henkin prefix, abbreviated poq) and Mis a quantifier-free 
matrix, is equal in expressive power to Ii (notation from 
Rogers[3J). Extending the language to allow the attachment of poq's to 
formulae as an additiona l - formation rule (together with, say,~ and 
- ) • yields ~1 (see {11). This _extension seems, however , to 
destroy the natural character of the semantics of poq's which existed 
in the case QM. We vie~ the semantics differently in the extended 
case, giving rise to an extension Q consisting of formulae of the 
form PM, where the prefix Pis a well formed formula over poq's (using 
n and -l, and M is a quantifier- free formula. The semantics of 
formulae of Q is given in terms of conventional second order logic, 
and it is shown that tn fact Q is equal in expressive power to ful I 
second order logic, by establishing a correspondence between 

alternating second order quantifiers and forming the conjunction of 
alternating poq's, This result supplie~ an alternative characteristic 
of second order logic using only (partially ordered) first-order 
quantifiers. 
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Definitions 

We assume throughout that a fixed second order langage L is 
given. and we freely use x,xl'x2 .... y .•••• u, •• ,v, ••• to stand for 
variables, and f,f 1,f2 ••••• g.h, ••• to stand for function symbols. 

We define the language Q as follows: 

A par tially ordered quantifier prefix (poq) is a tuple of the form 

where~ is a function which associates with each yi for lsism. a 
tuple. the elements of which are disjoint and are in {x1, ... ,xn}. 
Intuitively for a poq O. we will be using <0> to mean that 
the x•s are universaly quantified and the y's existentially, 
but that each yi depends only on ~(yi). 

A prefix is defined recursively as fol lows: <0> is a prefix 
for any poq a. _and -P1 and P1AP2 are prefixes for any prefixes 

Pl and P2 . 

A matrix is a quantifier-free formula of L. 

A wel I formed formu1a of Q is a formula of the form 
PM, where Pis a prefix and Ma matrix. 

We now set ourselves to define the semantics of wff's of Q by 
gathering that part of a prefix P which essentially quantifies on 
s econd order variables, on the left, and attaching the other (first 
orc!er) part of P to the matrix M. For the reader familiar 1-1ith the 
st anc!ard semantics given in [ll and [2]. this step can be seen to be a 
natural one, once he is wi I ling to admit that the xi's in (*) 

are artificial constructs which serve to help define the existential 
second order character of a poq. 

The second order part of P (fil!Q(P)) and Skolem f9rm of P and H 
!Ef. lP.wll are defined recursively for any prefix P and 1-1ff win Las fol lo~s: 
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I f Q is a poq of the form (*) then 

.§..QQ_ ( <0>) = a a 3f1 , ••• ,3fm 

where the f~ are ne1-1 function symbols. I 

sop{~P) .. Qlli!l(sop{P)) 

1Jhere dual (]f,r}=Vfdual (,r} and Qldfil{Vf,r) .. ]fQlli!J_{,r) for any second order 
prefix ,r, and dual of the empty prefix is defined to be empty. 

where "'l n,r2 is defined for any t1-10 disjoint second order prefixes as 
their merge, 1-1ith 3 preceeding V. Thus 3f1Vf

2
Vf

3
3t

4
°Vf

5
3f

6
3f

7 
is e.g. 

3f1Vf2Vt3Vt53t43t63t7 or 3f1Vf3Vt
2

Vf
5
3f

7
3t

4
3f

6
· etc. 

In order t6 make this definition unique 1-1e fix some ordering on the 
function symbols of Land merge 1-1ithin each run of the same type of 
quantifier, according to that order. Thus, if in the above example the 
f's are ordered by ascending indices, then ·the first alternative 1-1il I 
be chosen. Note that sop(P1vP2) is the dual merge of ~<P

1
) 

and sop(P2 >, that is, 1-1ith V preceeding 3. 

Q 
fil.(<□>,L-J) = Vx1 , ... ,Vxn(1-1) 

where .... □ is L-J with f~(~(y.)) substituted for every free 
I I 

occurence of y. in 1-1. 
I 

Given a model I for L 1-1e say that 
I I= sop(P)g(P,M). 

satjsfjes PM (1-1ritten It= PM) iff 

A prefix P 1-1ill be called a I! prefix and denoted by p<i>. if 
I 

2.QQ{P) is a It qu~ntifier-prefix in the usual sense (see [31); 

similarly, ant prefix 1-1i 11 be denoted by pCi]. 
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Resu I ts 

In order to slmpl i fy the exposition of the following, we use 
the fol lowing notational conveniance. For sets of formulae Sand T 

of Q and L respectively, we write S=T to express the fact that for any 
PMcS there exists wcT such that F W=~(P)tl(P,M), and vice versa. 

The fol lowing theorem establishes a tight link between 
alternating second order quantifiers in L, and forming conjunctions of 
alternating . poq's in Q. 

Theorem - For i~0, 

Ca) 

(b) 

Proof - Surely, given a prefix P' o·f the form <0>/\PCil, by 
definition sop(P') is a It1 prefix and g(P',M) has no second 
order quantifiers. Negation gives this direction for (b). 

We concentrate on the<= direction. For i•0 (a) simplifies 
to <O>M = Ii, which is shown in Walkoe[2) and Enderton[l), and 
negation gives (b). 

Assume {a) and {b) hold for i-1 where i>0. Given a it+l 

formula in prenex form, w: 3f1, ••• ,3fkaR,'with matrix Rand nt 
prefix a. Use the inductive hypothesis to come up with ([Q')vP'<i-l>)M' 

. [i) . <i-1> equivalent to aB. Denoting by P the prefix [Q']vP' , we use a 
generalization of Walkoe's techniq_ue in essence, to construct <0> and 
M such that {<O>AP[il)M is equivalent tow: 

Let there be n. appearances off. in M', for lSjSk, and let J . . J 
the arity of f. be m .• Define a to be the poq 

J ·J 

1 1 1 1 l · 2 k 
Cu 1 • 1 • u 1 , 2' ' • ' ' u 1 , ml ' Uz 1' " ' ' u m ·' ul 1' • • • 'u m ' nl, 1 ' nk • k 

v1, ... ,v~
1
,vf, •.• ,v~k; j3)_ with j3{v~)={u( 1; ••• ,u(m.), 

• • • I J where al I the various vs and us stand for new var,ab es not 
appearing in pCilM. <0>. can be comprehended more easily by 
vi sualizing it as 



1 1 1 Vun 1 ••. Vu m 3vn 
1' nl' 1 1 

k k 
1 ••• Vu m 3v 

nk, k nk 
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We no1-1 transform M' into a rnatrix M of the forrn RA(S➔M") 

by the fol lo1-1ing process: R is taken to be the formula 

k n . -1 m. 
J J 

/\ ( /\ ( ( (\ u(p=u~+l,p ) ➔ V~=V~+l)) 
j =1 h=l P=l 

which essentially states tha1 al I the "lines" of <0> which correspond 
to some f. define the same function. 

J 

We no1-1 consider the appearances of the f.'s in M', working "from 
J 

within". _These q=n1+ ••• +nk appearances can be ordered by dependency, · 
starting 1-1 i th those in 1-1hich some fj is applied to f-fr~e terms. 
De fine M0 as M' and s0 as true, Assume the r•th appearance in the 
above order is f.(t1, ••• ,t ), then M" is defined to be 

J m. r 
J 

M~-l with the appropriate v~ substituted for this appearance, and 

mj 

S l "" (uhj =t ), r- , s s 
s=l 

Take M" to be M" and S to b S q' e q ' 

This process completes the construction of (cQ>AP[i])M. We now sketch the 
argument" which serves to i-,rove that I= W=~(P)rt(P,M) with P: <0>/\P[i] 
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and M: Rn(S➔M"). By definition, 
[ . ) [.) 

sop(P)=sop(<□>) 0 sop(P 1 )=3g1 ••• 3g sop{P 1 
) . q 

for some new function symbols g., and 
• J 

tl CP, M) =tl ( <0>, tl (PC tJ , R1dS➔M 11 ))) .. vu1
1 l' •• Vuk (tl {PC l J • Rn {S➔M")) Q). 

• nk • mk 
For the sake of the fol lowing remarks we abbreviate 3f1 ••• 3fk to 3f, 

1 k 
3g1 ... 3gq to 3g and Vu1, 1 ..• Vunk,mk to Vu. 

Surely Vu(§.i(P[il,RA(S➔M"))Q) is logically equivalent to 
Vu(RQ}AVu(§.i(P[il _,S➔M") □). Careful application of the 

definitions involved establishes the additiona l fact that 
Vu(§.i(P[il,s➔M")Q) is in fact logically equivalent to 
_tl(P[i), (M')1) where (M')1 is M' with the corresponding 

ne1~ function symbols g1 ••• gq replacing the q appearances of the 
symbo Is f 1 ... f k. 

Using the inductive hypothesis, all we have left to show is 
the equivalence ·of 

w
1

: 3f.§..QQ(P[iJ}§.i(P[iJ,M') and 

1-12: 3gsop(P[i]l(Vu(R0) A tl(P[il,(M')~)). · 

Indeed, I I= w1 asserts the _e~istence of an assignment of 

to the symbols f1 .•. fk satisfying rum<P[i])tl(P[il,M'). 

To obtain I I= w2• simply assign to g1 ••• gnl the function 

assiqned to f · tog g the function assigned . - 1 • n1 +1'.' n1 +n2 
Trivially Vu(R□) is satisfied, and hence I I= w2• 

Conversely, if I I= w2 , Vu(RQ) forces the assignment to 
g 1 •.. g to be such that g1 ••. g are assigned the same 

q . n1 

k functions 

to tz: etc • 

function; gn +i·••9n +n are assigned the same function; etc. 
1 1 2 

This assignment of k functi~ns to the g's, when transformed 
appropriately to the fj's yields I I= w1• I 

As an example of the technique of the proof of the theorem, 
take w to be 3f13f2oR, and M' to be of t~e form 
M' (f1 (g(x),f2 (y)),f2 Cf1 (f2 (z),x))), involving these two terms and 
possibly other f.-free terms. Using new variable symbols v. 

I . J 
and uj, we take <0> to be <u1, •• ,u7:v1, ••• ,v4 ;~>, 
with ~(v1)=tu1 ,u2l, ~Cv2)=tu3,u4l and ~(vj)=luj+Z} fqr 3sjs5, more vividly 
displayed as 
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Vu1vu23v1 
Vu3Vu43v2 

Vu53v3 
Vu63v4 
Vu73v5, 

7 

((Ul=U3&u2=U4) ➔Vl=V2 & U5=U6➔Y3~V4 & U6cU7➔V4•V5) & 
(~j=u5&zeu6&g(x)~u1&x=u4&v3=u2&v4cu

3
&v

2
-u

7
) ➔ R(v1,v

5
). 

Corot lary - Q = L. 

Proof - The previous theorem -establishes the equivalence in 
expressive po1-ter. of Land a subset of the wff's of Q. Conversely. by 
tbe definition of I~ PM, every wff of Q is equivalent to a formula of 
L. II 
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