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ABSTRACT

Recently studies on parallel computation architecture
have yielded a new type of computer architecture known as the
data-flow processor. As part of the effort in realizing the
data-flow processor, a logic design for the Cell Block of the
basic data-flow processor is proposed in this thesis.
The resulting design has a modular structure which is derived
from a top-down decomposition of the specification given in
an Aechitecutere Description Language. The desired speed of
operation of the Cell Block is obtained by exploiting the
parallelism inherent in its operation. The logic design is
carried out using electronic devices available commercially
today, but is based on an asynchronous communication protocol.
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Chapter 1

1. Introduction

1.1 Background of the Study

Background

To meet the demands for high-speed computation, a com-
pletely new approach to the design of computer language and
architecture has been proposed. The approach, which exploits
the parallelism inherent in a computation tc achieve the de-
sired high-speed, is known as the concept of data-flow.

A high-level computer language, known as the data-flow
language [ 2,7,5,6 ], has been designed to allow a natural ex-
pression of the parallelism in programs.

The language is a radical departure from conventional ma-
chine languages, and the conventional computer architectures
are not organized to execute a program written in this
language at a satisfactory speed.

Efforts have therefore been concentrated on the develop-
ment of a new computer architecture, known as the data-flow
processor [ 5, &5, 7, 12 ], for the implementation of
the language and the evaluation of the computation scheme based

upon the data-flow concept.



The Data-Flow Processor

The data-flow processor is actually a generic term for
several types of architectural configurations. Each type of
processor is defined to implement one of a family of data-flow
languages of different but increasing expressive power.

So far, the data-flow processor can be classified accord-
ing to four levels of capabilities vested to them:

Level l: processors which can execute reasonably small
programs with iteration operations but nc data
structures.

Level 2: processors which caﬁ handle data structures [ 9,
13].

Level 3: processors which are equipped with multi-level
memories to handle large programs ( i.e. caché-
bulk ).

Level 3: processors which can handle procedure activations

and streams [ 22 ].

The data-flow processors which belcng to the Level 1 are
the most fundamental, and two types of them have been intro-

duced. One is known as the elementary data-flow processor [ 5 ],

and the other is known as the basic data-flow processor [ 6,7 ].




The Level QOne Data-Flow Processors

The elementary data-flow processor is developed to execute

a program written in the elementary data-flow language [ 5 ].

while the basic data-flow frocessor is developed to execute a

f[ J

rogram written in the basic data-flow language [ 7 ]. The ele-

mentary data-flow language is not equipped with the decision
capability, and the basic data-flow language is simply the ele-
mentary data-flow language augmented with the decision capa-

bility.

The level one data-flow processors are considered the most

basic architecture among all types of data-flow processors,
since it embodies most of the important characteristics common

to all the data-flow processors.

Design Target

The Level one data-flow processors should thus be the
first target in the realization of the data-flow processors. It
is the objective of this thesis to provide some concrete design
proposals for the realization of a module of the basic

data-flow processor, the Cell Block Module.

Before proceeding into datails, the computation scheme of

the basic data-flow processor is briefly explained in the




next section. This scheme is quite different from conventional

computation architectures.

1.2 cComputation Scheme of The Basic Data-Flow Processor

The basic data-flow processor has the configuration
shown in Fig. 1l.1. It consists of four sections: the Memory
Section, the Arbitration Network, the Functional Unit Section,
and the Distribution Network.

The data-flow program to be executed is represented in the
Instruction Cells of the Memory Section. Each Instruction Cell
consists of four registers, as shown in Fig. 1.2. The first
register ( register #1 ) holds an instruction which is composed
of an op-code and destination address(es). The op-code specifies
the operation to be performed, and each of the destination ad-
dress (es) specifies the address of a register of a destination
Instruction Cell, to which the result of the operation is to be
directed. The second, third and fourth registers hold operands
to be used in the execution of the instruction.

When an Instruction Cell is loaded with an instruction and
the necessary operands, it is enabled and its contents are
transmitted as an operation packet. Based upon the op-code, the
operation packet is routed through the Arbitration Network,
which is a switching network, to an appropriate Functional Unit

where the operation specified by the op-code is performed on
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the operands.

The result of the operation is then sent to each destina-
tion address as opnd packets. The opnd packets proceed through
the Distribution Network, which is also a switching network,
and are delivered to the destined register of the destined
Instruction Cell.

Each Instruction Cell stores the result as an operand,
and may be enabled in turn. If it is enabled, its contents are

eventually transmitted as an operation packet as well.

Concurrent Computation Capability

As easily seen, many Instruction Cells may be enabled si-
multaneously, and it is the function of the Arbitration Net-
work to efficiently deliver operation packets to the Function-
al Units and to queue operation packets waiting for each Func-
tional Unit. Similarly, the Distribution Network may also have
many packets travelling through it simultaneocusly. In addition,
the Functional Units are organized in a pipeline fashion. Thus,
all major sections of the processor are organized to operate

with a high degree of concurrency.

Deadlock Avoidance

To avoid deadlocks in the highly parallel computation

1 Ui B




scheme explained above, it is necessary to introduce a third
type of packet, called ACK packet [11].

It works as follows: when an operation packet n from an
Instruction Cell a is processed at a Functional Unit, an ACK
packet is transmitted to each Instruction Cell which has pro-
vided an operand to Instruction Cell ¢ to form the operation
packet n.

The incorporation of the ACK packet to the basic computa-
tion scheme reguires modification to the fields for destina-
tion addresses. An instruction of an Instruction Cell must
include the addresses of Instruction Cells to which ACK packets
must be sent, as well as the destination addresses to which the
computation result is delivered. The condition for an Instruc-
tion Cell to be enabled is also modified. An Instruction Cell
is enabled when it is loaded with an instruction and the neces-
sary operands, and, in addition, has received an ACK packet
from each Instruction Cell to which its computation result has
been delivered.

The ACK packets are generated in the Functional Unit Sec-
tion, and transmitted to the Memory Section together with the
opnd packets.

The two types of packets, opnd and ACK, are called event
packets. Hence the Memory Section receives event packets and

transmits operation packets. When the basic data-flow

12



processor is working under normal condition, which means that
neither program loading nor error handling is taking place and
program execution is conducted successfully, there are only

event packets and operation packets in the whole architecture.

1.2 The Cell Block Module

Because it is the most complex part of the pasic data-
flow processor, the Memory Section is considered the best section
to investigate the feasibility of the realization of the basic

data-flow processor. After carrving out a logic design for
the Memory Section, it will be easier to estimate with relative-
ly high accuracy the performance and complexity of the entire
architecture as weil as its cost, and other factors which can
only be estimated after a design is carried out.

The Memory Section is actually a collection of identical
unit, namely the Instruction Cell. Each Instruction Cell must
perform rather complex tasks, including the reception of event
packets, the loading of operands, the managerial operations to
update the states of the Instruction Cell, the examination of
the,enahling conditions, and the transmission of the contents
of the Instruction Cell as an operation packet.

In addition, a mechanism for loading data-flow programs,

a facility to dump out the contents of memory, and an error

checking mechanism for the received packets, are considered

13




necessary.

The complexity of the Instruction Cell is considered to
lie mainly in the control section of the Cell, therefore six-
teen Instruction Cells are consolidated into one. This perform-
ance - cost tradeoff has produced a function module, known as

the Cell Block Meodule. The Memory Section, then, is constructed

from Cell Block Modules.

To realize the Dbasic data-flow processor in the near
future, this Cell Block Mccdule should be implemented as a first
step, and it is the objective of this thesis to carry out a
logic design of the Cell Block Module to direct the implementa-

tion.

1.4 Statement of the Problem

It is strongly desired to realize the basic data-
flow processor in the very near future.

A logic design for the Cell Block Module is needed, in
particular one which employs conventional commercial electronic
devices available today.

A publication, including the specification of the Cell
Block Module, has been prepared for this purpose [ 4 ].

It is the objective of this thesis to carry out a logic
design for the Cell Block Module, utilizing conventional commer-

cial electronic devices available today, according to the spec-

14



ification already published.

1.5 Synopsis of Thesis

In chapter 2, a preliminary discussion is developed to
identify the most fundamental characteristics of the resulting
Cell Block Module. The discussions concentrate on the choice of
the communication scheme, the design tools and the design ap-
proach, choice of logic elements, the speed-space tradecff, the
properties of the specification, and the design assumptions.

In chapter 3, the data-flow Structure of the Cell Block
Module is developed in a top-down fashion. Also the control
structure of the Module is developed. Coordination of two inde-
pendent operation seguences in the Module is discussed.

In chapter 4, a performance analysis is carried out.

In chapter 5, concluding remarks are given and possibili-

ties for further improvements are discussed.
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Chapter 2

2 Preliminary Discussions on the Resulting Structure

The first step of the design activity is to choose a pos-
sible structure and investigate the fundamental characteristics
of the resulting Cell Block Module in a general context.

Two issues which influence significantly the resulting
structure are the choise between asynchronous and synchronous
control schemes, and the appreoach to functiconal decompasition.

In addition, several other issues, though less signifiqant,
must be taken into consideration in advance before proceeding
into details in carrying out the design trade-offs. They are,
for example, the logic elements to be employed and the speed-
space trade-offs. These issues are more or less interrelated,
and are discussed as a whole to yield design assumptions which

are summerized in the last section of this chapter.

2.1 Comparison between Asvynchronous and Synchronous Control

Schemes

In general, a hardware system can be implemented by em-
ploying either a synchronous or asynchronous control scheme,
or possibly a combination of both.

A synchronous system does not need mechanisms for detect-

ing the completions of operations. It is assumed for this

16



scheme that every initiated operation always completes within

a time duration determined from data on specification sheets,
Based on this assumption, the control of operations is perform-
ed by making use of a special purpose signal - a master clock -
which synchronizes the initiation of operations.

This scheme has been practiced widely, and is regarded as
a starndard. Almost all of the electronic devices today, the
large scale integration devices in particular, are synchronous
and design procedures utilizing this scheme are well establish-
ed and widely known.

But a synchronous system has disadvantages due to the lack
of mechanisms for detecting completions of operations. Unexpect-
ed delays of operation may cause system malfunctions, and, even
worse, the malfunctions may not be detected. The only way to
cope with this situation, though still imperfect, is to allow
ample margin in the timing estimates for completion of opera-
tions to prepare for the worst cases. Conseguently, the opera-
tion speed of a synchronous system tends to be slow.

Furthermore, the master clock is the only mean to synchro-
nize operations being executed in the system, and the clock
signal is sent to all parts of the system. Therefore, if the
system grows in size, the propagation delay of the clock sig-
nal increases, and the operation speed of the system tends to

be suppressed. This situation emerges as a crucial problem in

17




large systems intended to perform high-speed computations. A
compromising solution is to adopt a decentralized clock sys-
tem, but the synchronization of operations at the boundaries,
where different clocks meet, is still unsclved as one of the
most fundamental problems.

On the contrary, the asynchronous system resolves the syn-
chronization problem by employing special purpose hardware eles-
ments such as the arbiter [ 16,21,23] and the C-module [ 14,

23 ]. These elements guarantee the correct operation of the
system to be unaffected by changes in either the operation
speed or signal delays [ 3, 8, 10, 20 1].

The asynchronous system, eguipped with these elemants for
synchronization, exhibits the indispensable property of effective
performance when 1) high-speed computation is reguired,
2) the size of the system grows, 3) the synchronization of
operations whose occurences and completions are difficult to
predict, and 4) parallel computation is performed.

An asynchronous system employs either one or both hard-
ware elements wherever synchronization is regquired, and in
general many of these elements are regquired in a system.
Although each.of the hardware elements has a rather simple con-
figuration, there are no aéailable electronic devices for real-

izing them except individual gates and flip-flops.
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For this reason, an asynchronous system will need much space,
because a significant portion of the space is devoted to imple-
menting the basic hardware elenemts, and will result in a large
and rather expensive architecture. These are the disadvantages
of an asynchronous system.

It is obvious that these disadvantages are eliminated if
an asynchronocus system is realized as a composition of a small
number of devices, each of them being constructed in large

scale integration technology.

The Cell Block Module, as a part of the elementary data-
flow processor which is inherently an asynchronous system, must
observe the asynchronous communication scheme in interfacing
with other modules. In addition, it is quite natural to expect
that the asynchronous communication scheme is also obeyed in

comminications internal to the Cell Block Module.

2.2 Design Tools and Functional Decomposition

2.2.1 Design Tools

As a tool for designing an asynchronous system, a de-
scriptive scheme has been developed and utilized widely [ 23].

This scheme makes use of two graphs - data-flow graph and data-

dependency graph - to represent the organization and functions

19




of a system. The data-flow graph describes constituent devices
of the system and data paths between them. The data-dependency
graph describes the control of data transfer from one device
to another and the operations performed on the data upon the
completion of the necessary data transfer.

The combination of the data-flow graph and the data-d=psn-
dency graph is very useful. An alternative to the data-depen-
dency graph, known as Petri Net, has also been utilized widely.
The Petri Net is originally developed to model the behavior of
systems by studying the occurrences of events and coordinations
between them.

The pair of data-flow graph and Petri Net has proven to ke
a very effective design tool [ 1 },and are employed in the logic

design of the Cell Block Module.

Patil's Realization Scheme

The employment of Petri Nets, which are used to describ=s
control seguences, is also supported by previous works by Patil
[ 15, 16, 17, 18, 19 ], in which it is shown and proven that a
control structure can be implemented correctly provided its
sequence constraints is given in the form of a Petri Net.

The implementation, in his works, is carried out to the
gate-level, and PLA may be utilized instead of gates.

The results of his work are adopted as a basis for the

20



design of the control structure of the Cell Block Module.

2.2.2 Properties of the Specification

The Cell Block Module is defined abstractly, and its spec-
ification is written in a high level computer language, ADL
( Architecture Description Language ), as shown in Appendix 1.
There are a couple of noticeable characteristics implied in the
specification. The ;pecification describes the operations to be
performed in terms of abstract operational primitives. No im-
plications regarding actual characteristics of devices is im-
plied in the specification.

This characteristic enables a designer to enjoy presumably
a lot of freedom to make choises in order to incarnate his
concept. Interestingly enough, this characteristic motivates
the designer to exhibit his full abilities.

Another characteristic is that the specification, utiliz-
ing the block structured description in ADL, eliminates the
possibilities of leaving unspecified some operations, corre-
sponding to special cases which occur so rarely and are easily
overlooked at the very start in the design. A fucntionaly com-
plete specification spares a designer from checking around in an
ad hoc manner to get rid of design errors to implement a well

engineered system.
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The third characteristic, which relates to the operations
taking place in the Cell Block Module, is that the module per-
forms concurrent computation in two independent seguences which
can be activated independently. From the point of view of oper-
ation speed, the concurrent computation capability is quite

desirable.

Concurrent Computation in the Cell Block Module

In the Cell Block Module, concurrent computation takes
place as follows:

One sequence, called E/C SEQUENCE, is activated upon the
arrival of an event/command packet from the Distribution Net-
work, and processes the packet. The processing of the packet
may result in the generation of an enabled cell.

The other seguence, called OPT SEQUENCE, is activated
when there is at least one enabled cell in the module and a
ready signal to accept an operation packet from the Arbitration
Network is asserted. The seguence picks up an enabled cell and
transmits it as an operation packet for the Arbitration Network.
The enabled cell leaves the enabled state when the transmissicn
is completed.

The communication between the two seguences are performed

by passing the address of an enabled cell.

22



Apparently, the operations performed in the Cell Block
Module are the ones which take place in a generil one producer-
one consumer system. The problem regarding the cinflicts in
access is typically solved by utilizing a FIFO gqueue.

It is decided to implement this characteric, rather than
execute the E/C SEQUENCE and the OPT SEQUENCE seguencially.

In the course of the design, two synchronization problems
arise, one between the E/C SEQUENCE and the OPT SEQUEXNCE, and the

other is the resolution of priorities between the processing of
run packets and these two sequences. These problems are dealt
with in Sec.2 of Chap.3.

The problem of adopting synchronous devices to form an
asynchronous structure also arises. This problem is dealt with

in sec.3 of chap.2.

2.2.3 The Top-down Decomposition

As is well known, the top-down approach is quite effective
in designing well structured systems. In view of the way in
which the specification is given, it is considered the approach
to be taken up. Following the top-down approach, the original
abstract system is decomposed into submodules step by step, and
at each step, appropriate choices with regard to the adoption

and selection of conventional commercial device may be made.
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It should be emphasized that it is possible to eliminate
the design flaws which may take place on the interfaces be-
tween devices by utilizing the top-down approach intentionally
to make the resulting structures always form a modular system
at each step. Enforcing this rule provides the resulting struc-
tures with two advantages:

(i) it facilitates the realization of the entire structure

on account of modularity,

(ii) it is easier to replace modules by eguivalent ones

implemented with advanced and improved devices.

2.3 Miscellaneous Remarks

Utilization of the Synchronous Devices

Considering the complexity of the Cell Block Module de-
scribed in the specification, it becomes necessary to employ
LSI devices such as RAMs, ROMs, PLAs, and other LSI
functional devices as the primary constituents, rather than SSI
or MSI devices.

Because these LSI devices are in general manufactured for
synchronous machineries, they are not equipped with the func-
tion of generating acknowledge signal(s).

To overcome this problem, a delay line is utilized to sim-
ulate the function. Upon the acceptance of an activation signal,

it is directed to the delay line whose output signal is return-
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ed as an acknowledge signal. The delay time is determined by
the maximum time of operation calculated from the values con-

tained in manuals or data sheets.

Speed-Svace Trade-of

—_— -

h

The high-speed computation capability is always pursued
as the most significant objective , which is justified in chap.
s

Cost, size, and power consumption, are taken intoc consider-

ation as objectives of secondary importance.

2.4 Summary of Design Assumptions

—_

The logic design of the Cell Block Module is carried out
with a top-down approach to generate an asynchronous modular con-
figuration.

A set of data-flow graphs and a2 set of Petri Nets are pro-
vided to describe the resulting system. Control modules are
provided to specify the operation sequences, but actual device
configurations for them are not provided.

The high-speed computation capability is considered the
most significant target with respect to the performances of the
resulting Cell Block Module.

Implementation devices are chosen from conventional com-

mercial electronic devices available teday. LSI devices are in

25




particular preferred.
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Chapter 3

: The Desicn of the Cell Block Mcdule

In this chapter, a logic design of the Cell Block Module
is carried out, yielding the data~flow structure and the control
structure.

Although the data-flow structure and the control structure
are closely related to each other, the data-flow structure
can be determined rather independently. Firstly, the data-flow
structure is developed, and then the control structure is de-
veloped utilizing the resultant data-flow structure.

It should be remarked that the data-flow structure is
designed so that initialization and update of the cell states
can be completed in a short time. The reason is explained in
sec.2 of chap.3 ( exploiting the concurrent computation capa-

bility ), in terms of the control structure.

3.1 The Design of the Data-Flow Structure

3.1.1 The Level One Design

At the top-most level, the Cell Block Module is wviewed as
a black box with four ports for communication with other sub-

systems, as shown in Fig.3.1l.
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The event/command port is dedicated to receiving event
and command packets, while the packet output port is dedicated
to the delivery of packets from the Cell Block Module. These
two ports are utilized to load and to execute a data-flow pro-
gram.

The other two ports are utilized to control the running

stste of the Cell Blcck Module from the outside., The run packet
port receives run packets to change the Cell Block state between
the disabled and enabled states, The reset signal port
receives reset signals which force the Cell Block Module to be
reinitialized.

Each event/command packet is received at the event/command
port of the Cell Block Module and appropriate cperations are
performed on the information it conveys. The operations to be
performed are given in the ADL specification ( Appendix 1 ),

and the Cell Block Module hardware must execute these operations

to fulfill the requirements. During the execution of these

operations, a cell may be enabled, and eventually its contents

is transmitted at the packet output port as an operation packet.
We are led natually to a two-bus system, one for the input

packets and the other for the output packets.
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The Cell Block Module deals with two types of information
stored in its memory. One type includes all the contents of a
cell to be formed into an operation packet, i.e. instruction,
operands and addresses for sending the results and acknowledge-
ments. The other includes all information for keeping track of
the current state of a cell. The cell content information does
not influence the execution of operations in the Cell Block
Module. On the other hand, the cell state information is re-
ferred to during the execution of operations and controls the
operations to be performed. The cell state information is up-
dated during the execution of the operations.

The cell content information and the cell state informa-
tion, each serves a different purpose and can therefore be
stored in separate memory devices. This configuration enables
both the cell state information and the cell content informa-
tion to be accessed independently and utilized concurrently,
resulting in obvious improvement in the operation speed by re-
ducing memory conflict.

By naming the memory device for the cell state information
C Memory and the memory device for the cell content P Memory,
the conceptual configuration of the data-flow structure is de-
picted as shown in Fi§.3.2.

In the configuration, there are two buses and two memories,

as described in the preceding section. The buses in the
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structure, including two other internal buses which are ex-
plaineé later, are all unidirectional. By adopting unidirection-
al buses, the transmission of data naturally incarnates the
concept of data-flow. Furthermore, the adoption of an unidirec-
tional bus increases operation speed and eliminates the neces-
sity of registers which are required to hold temporary data.
For example, consider the case of an internal bus which connects
the output of C Memory to the input of it wvia a module named CU.
CU is a combinatorial circuit, and is used for the update
operations of C Memory. The C Memory is assumad to have separate
I1/0 ports. Its output can be presented to CU that performs the
appropriate operations on this input to yield the result at the
input terminals of the C Memory. Hence, a register for holding
the computation result at CU has been eliminated, and the up-
date of C Memory is performed by simply providing a write pulse.
The other internal bus in Fig.3.2 is used to access and
store operands in a cell register. It connects the memory
address register of the memory to the output of the C Memory.
This is necessary because the word length and relative loca-
tion of an operand register for a cell within the P Memory
are not fixed, and are determined at the time of compilation
of a data-flow program. The relocation information is stored
into the C Memory when the program is loaded.

In Fig.3.2, the T-shaped symbol labeled with a + sign
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stands for a wired-or connection of jbuses.
To implement all of the specified operations, a few other
buses are incorporated in Fig.3.2. They are utilized to execute

operations for processing the error or the dump packets.

3.1.2 The Level Two Design

Based on the conventional configuration in Fig.3.2,
datails of the data-flow structure of the Cell Block Module are
developed in this subsection.

To explain the resulting data-flow structure, it is neces-
sary to understand the detailed operations of the E/C and OPT
SEQUENCEs. We shall, therefore, describe the operations of
these seguences and the data-flow structure necessitated by

these operaticns.

The Operations for ACK, SET-ACK, and SET-VAR Packets

The E/C SEQUENCE processes seven types of event/command
packets ( Appendix 1 ), These can be categorized intc two
groups according to their demands on the C and P Memories.

The first category , which includes the types of ACK, SET-
ACK, and SET-VAR, consists of packets which utilize only the
C Memory when being processed. The contents of the C Memory
may be read out and modified, or be simply updated with the

information carried by an event/command packet, but the P
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Memory is not utilized by any of the operations performed by
the E/C SEQUENCE.

The processing of an ACK packet is illustrated below as
a typical example.

Example:

When an ACK packet is received, the E/C SEQUENCE extracts
the cell address from the packet, and puts it into the memory
address register of the C Memory. The addressed cell state in
the C Memory is read out, and reloaded into the C Memory at the
same location.

The new cell state computed during the update operation
may satisfy the conditions for enabling a cell. If so, the cell
state is reset to its initialized valua.

Thus to route a cell address, two paths are necessary, one
from the input bus to the memory address register of the C
Memory, the other from the memory address register to the FIFO
gqueue. A closed path also exists for updating the contents of

the C Memory.

The Operations for OPND, SET-INSTR, SET-CON, and DUMP Packet

The second category, which includes the types of OPND,
SET-INSTR, SET-CON, and DUMP, consists of packets whose
processing utilize both the C Memory and the P Memory.

For the types of OPND, SET-INSTR, and SET-CON, the C
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Memory is utilized in the same way as for the types in the
first category, namely in loading, reading out, and updating,
for control purposes.

The packets of these types, however, carry more informa-
tions with them. They are values to be utilized as operands,
op-codes or destination addresses in an instruction. This infor-
mation is independent of the cell states and so is saved in the
P Memory.

Furthermore, a byte-serial transmission schemes is employed
to transmit information from and to the Cell Block Module [ 4 ].
Naturally, the information conveyed in a packet will be splitt-
ed into a seguence of bytes which are transmitted serially. As
for the P Memory, it is reasonable to divide the memory area
into sixteen contiguous smaller sections, one section for an
entire cell, and to allocate contiguous memory locationd in ac-
cordance with the bytewise serial transmission of information.
The resulting map of the P Memory is shown in Fig.3.3.

When an entire cell state in the P Memory is retrieved,
the order of retrieval is the same as that of loading. Thus,
the capability to increment the memory address register of the
P Memory by one is desirable for simplifying the control mecha-
nism.

A binary counter suits this purpose, and certain types of

conventional commercial counters are furthermore equipped with
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other capabilities which can alsoc be utilized to realize a
simple control structure.

Two capabilities: resetting the contents to zero, and
generating a carry signal indicating the contents of the count-
er to be of maximal integer value, are utilized to facilitate
access to the entire content of a cell. If the memory loca-
tions allocated to a cell are aligned so that the first memory
location starts at the zero count of the counter, the succeed-
ing memory location at count one, and so on until the last
memory location corresponds to the full count, then the execu-
tion of the reset operation on the counter automatically set
the memory address register to the first address for a cell.
And the assertion of the carry signal generated when the count
is full can be used to detect that the last byte in a cell is
reached. A separate mechanism to keep track of the memory refer-
ences for detecting the processing of the last byte is not need-
ed in the data-flow structure.

This scheme is applied in the design of the Cell Block
Module, using a 4-bit counter as the lower order bits of the
memory address register to access the contents of a cell in the
P Memory.

In the specification [ 4 ], the total number of bytes of
memory for the contents of a cell is fixed. However, the inter-

nal allocation of this memory areas to an instruction and
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all of its operands are left unspecified, allowing
flexible and efficient memory utilization.

For each operand, the address of the first byte of the
operand, relative to the starting address of the cell, and the
length of the operand in bytes, are determined during compila-
tion, and sent to the Cell Block Module by a SET-INSTR packet.
They are stored in the C Memory as part of the corresponding
cell state.

Upon execution of a loading operation for an operand con-
veyed by either an OPND or SET-CON packet, the starting address
of an operand register and its length are both retrieved £rom
the C Memory.

The starting address for the operand is locaded into the
memory address register of the P Memory, and the length is
stored into an auxiliary ccunter. The consecutive bytes of the
packets are processed by storing their information in the P
Memory and by incrementing the contents of the memory address
register by one after each loading of a byte.

The contents of the auxilialy counter is also decremented
by one at each loading.

The counter is responsible for indicating the arrival of
the last byte of an operand through the use of a borrow signal.
If the bytes carried by the packet run out before the counter

reaches the zero count, zero's are provided to the P Memory as
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if they are the values carried by the packet, and the loading
operations are repeated until the whole memory area for the op-
erand is filled. This operation erases non-zero bit patterns
left by the previous utilization of the operand.

Therefore, the counter which serves as part of the memory
address register for the P Memory must be capable of parallel

loading, as in certain types of conventional counters.

Example: OPND packet case

The operations which take place on the arrival of an
event/command packet are illustrated below. As a typical exam-
ple, the OPND case is considered.

On arrival of an OPND packet at the event/command port,
the cell address carried by the packet is extracted and loaded
into both of the memory address registers.

The cell state of the addressed cell, to which the packet
is read out and utilized toldetermine whether the packet is an
error packet or not.

If the packet turns out to be an error packet, the whole
packet, including the cell address, is sent out from the Cell
Block Module. No changes are made to the contents of either
memory.

I1f the packet is not an error packet, the cell state is

updated based upon the retrieved values. In the course of
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update, the cell may be enabled upon fulfillment of certain
conditions. Then the cell address is directed to the FIFO gqueue
in submission for the transmission of operation packet, and the
cell state is reinitialized and stored as a new cell state into
the C Memory. If the cell is not yet enabled, the updated state
is stored as a new cell state.

After it is determined that the packet is not an error
packet two data items, the starting address and length, are re-
trieved from the C Memory and sent to the memory address regis-
ter of the P Memory and the auxiliary counter. The memory ad-
dress register is loaded with the cell address in the higher 4
bits, and with the starting address, named ORIGIN, in the lower
4 bits. The auxiliary counter is loaded with the length in
bytes of the memory area to be filled.

The data carried by the packet is stored into the P Memory
as described previously.

For the type of DUMP the state and content of the cell ad-
dressed are sent out. These are stored in the C Memory and the
P Memory respectively. Although both memories are utilized, the
contents of the memories are unchanged after the processing of
a DUMP packet.

The resulting configuration of the data-flow structure de-.
veloped so far is shown in Fig.3.4, and 3.5.

More datails of the design are supplied in the following

40



E/C-PKT PFCRT

FKT OUTPUT PORT

: INPUT BUS
E/C PKT
r S —— et it 1 it
| A-E M=K U &F-SP | MOIDULE —
: MEMORY B MEMORY MEMORY |
MODULE =) MODULE MODULE ‘ |
I (T il
. - i P-AD
: \Sm— | —y Tone
1 : : C-AD CNTR :
| A-E M-R U &P-SP I
| CNTRL CNTRL CNTRL | Ll 37
| MODULE MODULE MODULE I
'————-‘/—/——- b s e i o e o s e J P,
C MEMORY TY-RN REGISTER MODULE
MODULE ERR PKT d
DETECTOR CNTRL
L MODULE
LAY,
C \ = -
GUTPUT BUS
E/C SEQUENCE RESOURCE -
CNTRL MODULE ALLOCATION 2;?&“?;’33;’,3
MODULE i
DMP
INITIALIZATION CHIRL RUN
RESET A CNTRL HODULE CNTRL ,
SIGNAL MODULE MODULE RUN PKT
PORT 1 PORT
RESET ﬁ

Fig. 3.4 The Detailed Data-Flow Structure
of the Cell Block Module

41

(enable, disable)

=

OPERATION,
ERROR, and
DUME PETS



INPUT RUS

1 4: [0. .3]
FIFO IN RDY = ‘
FIFO LOAD - =
A-E CONTROL MOD.
1
AP-5W1 (MAR for P MEMORY)
F1FD
C-AD CNTR
[MAR for _l
C MEMORY} 4 ‘ ~1Jk4 | al P-AD-H P | P-AD-ORG
ol = ﬂ | g = =
L i JJ ! =
3|
., |
ORIGIN [0..3] e ) T 1 1 T T 1
LENGTH [4..6] ¥ —
U&F-SP MOD. F 4-f—]— l
LEN CNTR
' ale ‘
s — xak =
] 1) 1 S I
I__ =
INITIALIAZTION ' q\_ N{ ,
CONTROL MOD. —|_|_|_P T o ] I___/y—um- TRM CONTROL MOD
oo Q o GE s E 2
978 /85988 88 5§ o° 8
pOOk [ NoaRsd s pE 0GR 4
M al zd TR 2 ?;& Bf %o ¢ B
g E 1‘. l:j =1 5 1 =) o u Eﬁc a
2 (i 1% I« 1Y [+1] [
@ = o 8
§Ly 2 g o % g
= oo
E/C PRC CONTROL 8 3 w s g =¥
MOD. .
Fig. 3.5 DEVICES AROUND FIFO QUEUE

a2



section.

3.1.3 More Detailed Design and Remarks

The size of the P Memory is 2K bits. A 256x8 configuration
is chosen. A memory address register of 8 bits wide is needed
to access the contents. The lower 4 bits are provided from a
counter as described above, but upper 4 bits may be provided
from a conventional register. A cell address is stored in the
register for the upper 4 bits while the contents of the cell

are accessed by specifying the lower 4 bits in the counter.

The memory address register for the C Memory must also be
a counter, since part of every cell state must be initialized.
The use of a counter facilitates the operations and yields a

simplified structure.

To represent the information contents of a cell state re-
guires a relatively large number of bits. Considering the typi-
cal speed of the conventional memory devices, which may be
regarded as fairly slow in comparison with the conventional
functional devices, and also considering how each constituent
of a cell state is utilized in the processing of packets, it is
concluded that a horizontal configuration is suitable for the

configuration of the C Memory.
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A horizontal configuration reguires a much larger number
of memory outputs than that of a vertical configuration. The
operation speed achievable only by a horizontal configuration
makes up for this disadvantage because it exploits concurrent

computation capability as explained in sec.2 of chap.3

The information contained in a cell state, can be eclassi-
fied into three categories so that no interconnection exists
between categories.

In the execution of loading, updating, and initializing
operations on a cell state, the information in each category is
processed independently and then put together to form a new
cell state. Each category of information, therefore, is stored
in a separate memory device, as shown in Fig.3.4 and the detail-
ed configurations for the memory devices are shown in Fig.3.6 ,
Fig.3.7 , and Fig.3.8 respectively. It may be observed that
the internal bus mentioned in terms of the module CU in sec.l
of chap.3 is implemented in the detailed configurations, and
that opsrations, the loading and updating in particular, are

simple and fast.

The configuration of the P Memory is described in Fig.3.9.

44



C-AD DUT —p———

INPUT BUS

DP-SW1
A-E 5W
ZERO e
DETE- £ER0
A-E ROM CTOR
ouT f

CNTRL | P | A=E ROM L :
A3 Z 7 = p
I

A~E MEMORY

sapwe—ibll o

P 4

i 1

A-E OUT A-E  GATE
, & Ly
[4..7) | [0..3)
l l OUTPUT BUS
E Hew E
{(b) A-E MEMORY Module
E AE p A-R
i c~AD OUT BT,
—D ek T A-e  memoRy
L]
T L Al W { 16x8 )
Corresponding to the bits T ]
of ack-exp 1 lll l 11
E A-E F A-R

{e) ZERO DETECTOR
(d) A-E MEMORY Module

Fig. 3.6 The Configuration of A-E Module

from 8 a to
INPUT HUS ey eegde CUTPUT DUS
2 2
. A-E ,
A ROM OUT " * A-E ZERO
rn-ZER0 ——»f CKTRL
-E 5 R . | —p .
A-E STRT A-E W A-E —
AR BESTRE % A-E W MEMORY
OPT A-E STRT rep——— ———y et
. MODULE B
B — CNTRL r >
New E + HMODULE
FIFO RDY =~
INIT-H =|——————>
L - NA-E DONE
¢ B -
A-E OUT = —-— * PIFO IN
C-AD OUT
(a) Wiring of A-E Module
Coding of A-E ROM:
A=E ROM OPERATIONS
OUT CNTRL
A-E ROM
our —> 0o { No operation )
CHTRL — New A-R:=A-R: New F:=P;
01 { ACK Case )
t— — ! If A-E=A-R-1
= i A-E -
e — - Rew AR then Hew A-R:=0; New F:=1
ROM else New A-R:= A-R+1;
F Hew F:= 0;
— ( 512X4 ) b jew ¢ 10 { SET-INSTR,SET-ACK Cases )
e If A-E=A-R
then New A-R:=0; Naw F:=1

(e) A-E ROM

11

clse New A-R:=A-R;

New F:= 0;
{ OPT TRM Case )
Hew F:= 03
45



INPUT BUS

H-0UT

OPT-5W i
| 2 3 to
C-AD OUT ] | — ™ 1 " e OUTPUT BUS
M-W ¥ J M=R en v
&RN ! | MEMORY b
s ! : MODULE
M=W —,’J_' RCVD=~
: | rn-ZERD —————» > STATE
I ! R=w_ | M-r
| | =
; | M-R STRT ————> M-R OPT-SW__ | mEMORY
I : CNTRL MODULE
1 MODULE
R-W : sl 5l OPT M-R STRT —>
I he.. F =1 ’1|
’ £
: 13 __ B3 !
- |
|
|

- > ROVD-
; STATE
B-ou? I 2] M-R GATE l J
R0 - 4
L —, iy, TR T ST T o e A ur < ¥

| OUTPUT BUS C-AD QUT = % 7

= M-R DONE

(b) M-R Memory Module {a) Wiring of M-R Module

modo receivaed OPT-5W
flags flagsa /)
{m ) (.xp.) i TY &RN Coding of PLA: [ 04 ] is the output of the i-th bit of PLA .
'
! lL 1f OPT-SW=true, then [ oy l:=[ my 1; i=1..3 /*Reset operation of R-Memory*/
lll lll \l : 11 else input packet type of
SET-INSTR: [ o, J:=0; i=1..3 /* Set all my to be VAR */
M - R PLA SET-VAR: [ 0y 1:=0; i=rn J* Sot the receiver rn to VAR %/
[ o4 Ji=[ m3 }; itrn
1 SET-CON: [ 04 }J:=1; i=rn /* Set the receiver rn to CON */
l l l' [ oy Je=f my 1: itrn
output OPND : [ 04 ):=1; di=en /* Set the receiver rn to 1 which */
(new recvd flags) [ 03 Je=1 25 1§ /% designates OPND has been received */
{e) M-R PLA i#rn

Fig. 3.7 The Configuration of M=R Module

" 46



INFUT BUS - ' 1 48
. e e g ML R vt ou i [Fhabugis e ==
e SR X b [%7] (7 [0..6) | & .
o
reset —l— e I“ Fy from INPUT BUS ==——pp gl QUTPUT BUS
i GENERATOR |l ggﬂ;gg A-E ZERD ——
I
y MODULE 2
i ¥ 1 ! RN-BITS 4
i — | TY =¥ a e USED S
4 USED STATE
VR | U-MEMORY [ rn —5—> 2 ULF-SP
C P\-’(J GLA 1 1 | | "f l 2
- g ; — | , — MEMORY | 7
s | } F=SP STRT —> . . i
' : i . = MODULE '
} 2 I PSP MEMORY ] IN READY — B — Lol LENGTH
RN-BITS —— - — 41 R Uer-sp %
1 + - — -~ USED STATE WL AT CNTRL — |-
I 1 "4 31; #—— > ORIGIN & E/DMP OUT ——» S 5 P
U our — > I  LENGTH ACK MODULE w2
et | u GATE I
F-SP OUT — » | IHIT-W —
e =TS S S R N TR S 4
w OUTPUT BUS [
4 4
L—!’ - = B/C ACK
{b) UsPF-5SP MEMNDRY MODULE - E - # P-S5P DONE
- > E/DMP OUT
C-AD OUT NXT RDY
reset
T Tl e e — s_T 5y - gl |
h-E ZERO { Lq | *1-U QUuT, ¥2-—p-5F OUT
i_ | U-MEMORY  USED STATE
|
| ® |
| ng Oab—= c-u a) Wiring of USF-SP MODULE
pus [7..7] 7=—p1 o1 |1 ! % o t 4
1 D 2; : 7 Mp— u2
: , : Dy Quf—= u2
i CR : — e EE w 3 vl
| cL -
e i e
U-H
rogat —[
ie} €-U GENERATOR Bit configuration
Fig. 3.8 The Configuration of tho UAF=-SP Hodule
47

47



; 8 to
INPUT BUS 7 —_— s i  OUTPUT
f &S] B MODULE from INFU ABUS ‘ i
PoAl=l w—
e Sl s Sy —: 4 PeAD-ORG =]
: P=AD-H roegistor j g Lo ‘
| - | :
| |
| 4 : 2 p-ouT
P-AD-H : - I L P~FULL r MODULE
> \ rn=-ZERQ —™ e
1 LD LEN=ZERO
: P MEMORY |
; P-AD-ORG ONTR : "R
: ‘1, paseas 1 : ] AV
P=AD-ORG 7 ¥ >
! RAM 1 — Pl
. Ln i ERR STRT _Dp P CRTRL : 7
| e | STRT ———> ‘
! | P MEM ST
P-LOAD
L?.A l - 1 P B oo IN READY — BRDULE - — 1IN ZERO
P-ORG-CR i > P-FULL ! I i
ADV 7 g i LAST READY ——3 : >
M ra i | i
L ! > E/DMP HXT READY
| E/DMP ACK ‘
e s ——%  P-ZERO | | s b
: | I i DMP STRT — 3 > E/DMP LST HREADY
i LD I l !
: Ll CL i OPT STRT — | * OPT NXT READY
g i | =¥ OPT LST READY
' LEN CNTR : ARBNET-RDY —3
et ; f o ‘ ; * P MEMORY DONE
: [
ERR T ——— J - !
’,3 OUFTPUT RUS
(b} P Module P-LOAD 4
P-ORG-CR
el e el o e e (a) Wiring of P Memory Module
48

48



We have now completed the design of the data-flow struc-
ture of the Cell Block Module. The next section explains the

design of the corresponding control structure.

3.2 The Desicn of the Control Structure

As for the data-flow structure, the control structure of
the Cell Block Module is developed step by step following the
top~-down approach, resulting in a modular structure.

The original abstract specification in ADL ( Appendix 1 )
is translated into a representation utilizing Petri Nets |
Appendix 2 ), and the goal of the design activity with respect
to the control structure is described in terms of the Petri
Net representation as follows:

Given the Petri Nets representing the original abstract
specification, the Petri Nets are decomposed into a modular
system with each module also represented by a Petri Net. The re-
sulting Petri Nets will be augmented with the operations con-
cerning the characteristics of the actual devices.

Each module of the resulting modular system is further de-
composed into submocdules acquiring more datails. This procedure
is repeated until each of the resulting modules becomes simple

enough to be easily implemented from the detailed Petri Nets,

by Patil's realization scheme.
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Priorities between Control Seduences

At the outset of the design process, the.priorities asso-
ciated with the execution seguences in the Cell Block Module,
as given in the ADL specification, are examined and incorpo-
rated in the control structure.

Four processing seguences are distinguished in the origi-
al abstract specification: two of them are the E/C SEQUENCE
and the OPT SEQUENCE, and the other two seguences are a se-
quence, called INIT SEQUENCE, which performs initialization
operations for the Module upon the arrival of a reset signal,
and a seguence, called RUN SEQUENCE, which changes the running
state of the Module upon the receipt of a run packet.

Each of the four SEQUENCEs is activated independently upon

arrival of the corresponding signal or packet.

The priorities given by the specification are as follows:

The reset signal has priority over other signals and packets
in the sense that the arriwval of the reset signal forces the
Cell Block Module into a state in which the INIT SEQUENCE is
executed. This transfer must be performed immediately on the
arrival of a reset signal regardless of the operations being
executed in the Cell Block Module. As a result, if the Cell
Block Module is processing a packet, part or all of the infor-
mation conveyed by the packet may be lost upon the arrival of

the reset signal.
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Once this state is reached, the INIT SEQUENCE is executed
to reset every cell state.*l

Processing run packets may be inhibited by the reset sig-
nal, but it takes precedence over the processing of other sig-
nals. On the arrival of a run packet at the Module, the run-
ning state is switched over from the enabled state to the dis-
abled state or vice versa according to the type of the run
packet. This switching, however, must not interrupt the E/C
SEQUENCE and the OPT SEQUENCE, if one or both of them are in
progress, to avoid destroying any information being precessed.
By inhibiting further processing of packets by these two se-
quences ( see below ), all seguences in progress eventually
terminate. The state switching is then carried out.

Oon receipt of an enabling run pmcket the running
state is switched over to the enabled state. An event/command
packet or an operation packet may be processed in this state.

On receipt of a disabling run packet, the running
state is switched to the disabled state. The transmission of an
operation packet is inhibited in this state, while event/com-
mand packets are processed. The disabled state of the running
state is automm tically achieved after the INIT SEQUENCE is

L ’
* The abstract Cell state is reinitialized although

it may involve resetting only certain memory words.
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executed.

An E/C SEQUENCE or an OPT SEQUENCE in progress may be
interrupted and terminated by a reset signal. Further initia-
tion of these seguences are inhibited by a run packet which dis-
ables the Cell Block Module, although any such sequences in pro-
gress is allowed to run to completion.

The behavior of the Cell Block Module as governed by these
priority rules can be represented by a Petri Net as shown in
Fig.3.10. The hardware module implementing this strategy is
called the RUN CONTROL module and is easily realized using

arbiters and other conventional devices.

Resolution of Conflicts

Our design allows the concurrent execution of the E/C SE-
QUENCE and the OPT SEQUENCE. They may access several sections
of the Cell Block Module simultaneously, generating conflicts
in these sections. These conflicts must be resolved to ensure
correct module behavior.

There are four such sections which are introduced in the
specification or by the characteristics of the chosen devices:
the packet output port, the C Memory, the P Memory, and the
FIFO gueue.

The packet output port is utilized by the OPT SEQUENCE for

transmission of operation packets and by the E/C SEQUENCE for
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the transmission of DUMP packets or ERROR packets. In the
specification, the packet ocutput port is defined to serve
both seguences, yielding the possibility of conflicts.

The P and C Memories are selected from conventional LSI
memory devices., None of them allow simultansous access, and
hence yield the possibility of conflicts.

Regarding the FIFO gueue, there already are several typss
of asynchronous FIFO gueues available today, which are capable
of processing two concurrent accesses to them, one at the input
port and another at the output port.

By examining the specification, we can determine scome
characteristics of the utilization of these shared resources by
the E/C SEQUENCE and the OPT SEQUENCE: ( Table 3.1 )

(i) Both the E/C SEQUENCE and the OPT SEQUENCE always use

the C Memory.

(ii) Usage of the FIFO queue is closely related to the

usage of the C Memory.

A useful optimization which does not degrade
performance is to allow the access to the FIFO gqueue
only when the access to the C Memory is granted.

(iii) It is observed that no seguence can utilize the packet
output port while the other sequence utilizes the P
Memory.

Therefore, it is also harmless and helpful to
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simplify the situation by specifying that the packet
outpgt port is accessible to one of the SEQUENCEs
only when it is allowed to utilize the P Memory.
With these additional constraints the conflicts are re-
solved without deadlocks, as shown in Fig.3.11 by a Petri Net,
by utilizing two arbiters one for coordination at the C
Memory and the other for the P Memory.
The hardware module which implements this behavior is

called the RESOURCE ALLOCATION module.

RESOURCE ALLOCATION Module

The E/C SEQUENCE and the OPT SEQUENCE must be grant-

ed permission to use the C Memory to. begin operation.

The E/C SEQUENCE, then, reads the cell state from the C
Memory, which may be sufficient to process certain types of
packets, and, if necessary, requests the RESOURCE ALLOCATION
Module for using the P Memory. The module checks if the P Memo-
ry is utilized by the OPT SEQUENCE and grants permission to the
E/C SEQUENCE when the P Memory is released by other sequences.

The E/C SEQUENCE, then, makes use of the memory, and com-
pletes its operation. Each of the memories may be released in-
dependently on the completion of the corresponding shared re-

sources in each seguence.
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If a ready signal from the Arbitration Network is asserted
and there is at least one enabled cell, the OPT SEQUENCE wailts
for the release of the { Memory, and segures the C Memory upon
receipt of a grant signal issued by the RESOURCE ALLOCATION
Module. The OPT SEQUENCE then waits until the P Memory is re-
leased by the E/C SEQUENCE and starts its operations.

Thus, both SEQUENCEs can access the shared resources with-
out deadlocks.

This resource allocation strategy is depicted in Fig.3.1l.

Exploiting the Concurrent Computation Capability

The completed data-flow structure has the capability of
performing the update and the initialization operations of a
cell state in a very short time. Based on this characteristic,
the concurrent computation capability may be exploited.

Consider the scheme for the resolution of conflicts, as
explained in the preceding section. The OPT SEQUENCE starts
packet transmission using both the C Memory and the P Memory
at the same time. However, it takes a long time to complete its
sequential memory access to the P Memory. The total access
time to the P Memory includes as the primary factor the cycle
time of the P Memory multiplied by sixteen, while the OPT
SEQUENCE releases the C Memory immediately after the completion

of its operations on the C Memory. Therefore, there is a long
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gap in time between the release of the C Memory and that of the
P Memory by the OPT SEQUENCE.

The E/C SEQUENCE, then, can process packets in parallel by
taking advantage of this time gap in the OPT SEQUENCE's demand
on the C Memory, as long as each of the packets can be process-
ed without using the P Memory. This time gap is estimated to
be long encugh to process three ACK packets.

This scheme still suffers from limitations due to the lack
of parallel accessing capability in conventional memory devices.
Even though the C Memory is often available to the E/C SEQUENCE,
it is not able to take advantage of the opportunity if it pro-
cesses a packet which requires accessing the P Memory.

More parallelism can be incorporated if the configuration
of the P Memory consists of multiple memory devices to allow
parallel accesses, rather than just one as shown in this design.
This becomes clear when we consider the execution of a data-
flow programn.

During the normal execution of a program, only three types
of packets are in the entire architecture, namely the OPHND, the
ACK, and the OPERATION packets. Assume that an OPND is received
at the event/command packet port when an OPERATION packet is
under transmission, and that the destination cell of the OPND
packet differs from the cell address from whose contents the
OPERATION packet is formed ( which has very high probability
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ated with a contreol module, and operated only through the con-
trol signals issued by the control module. Each of the control
modules receives command signals specifying the sequence to be

executed and initiates the activation of the seguence.

This configuration has the following advantages. Firstly
each module can be accessed from both the E/C SEQUENCE and the
OPT SEQUENCE. Therefore, both segquences need not have separate
mechanisms to control the same data-flow module. Cbviously, the
number of hardware devices is reduced.

Secondly, the number of control signal lines, connecting

a data-flow module and the associated control module, remains
almost the same whether the control module is expected to serve
only one sequence or several sequences. The obvious reason is
that the complexity associated with the capability of executing
several seguences is transformed into the complexity of pro-
grams memorized by PLAs or ROMs, and does not appear in the
form of the increased number of devices and connections.
In addition, if PLAs are utilized in the implementation, even
the execution speed will not be slowed down significantly by
complexity. Therefore, the interconnection is simplified and
will result in the reduction of the number of control signal
lines.

Thirdly, a control module never receives more than one

command signal at a time due to the mutual exclusion which is
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guaranteed by the RESOURCE ALLOCATION Mcdule, and therefore no
mechanism to coordinate the reqguests is necessary. A control
module must return to the seguence generating the command
signal a done signal on the completion of operation. The ack-
nowledge scheme can be implemented correctly by broadcasting
done signals to all modules, because there exists only one
such SEQUENCE. Therefore, no other coordination mechanism is
necessary.

The fourth advantage is related to the second one. The
INIT SEQUENCE, which has not been examined until now, is easily
incorporated into this structure at the cost of slightly
increased complexity of programs stored in some of the control
modules.

Employing the configuration discussed above, the E/C
SEQUENCE and the OPT SEQUENCE must perform the following :
1) to reguest permission to utilize shared resources, 2) to
issue command signals to the appropriate control modules,
3) to release the shared resources on the completion of the
corresponding operations, and 4) to return to an initial state
for further packet processing. This behavior is described in

the Petri Nets shown in Fig. 3.14 through Fig. 3.20.
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3.3 Miscellanecus Cases

Handling of ERROR PACKET

It is necessary to provide a special purpose module, the
ERROR DETECTOR, which is a combinatorial circuit to detect
whether an event/command packet is an error packet or not. It
is expected that the detector is realized with PLA which is
encoded to detect every packet. The wiring of ERROR DETECTOR
is shown in Fig. 3.21.

Once the detection signal can be generated, the seguence
which handles the error packet is easily incorporated into the

E/C SEQUENCE. ( It is incorporated in Fig. 3.14. )

Handling of DUMP PACKET

The sequence which handles a DUMP packet is also incor-
porated into the E/C SEQUENCE, but for this case, the seguence
is encoded into a dedicated module, named DUMP CONTROL Module,
because of its complexity. The behavior of the DUMP CONTROL

Module is depicted in Fig. 3,22,

Handling of INIT SEQUENCE

The INIT SEQUENCE is encoded into a dedicated module,
named INITIALIZATION MODULE. The behavior of the module is

depicted in Fig. 3.23.
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An additionial circuit section which generates a signal

IN-READY is depicted in Fig.3.23.

We have completed the design of the control module, and
combined it with the data-~flow structure developed in Sec. 3.1
to construct the complete Cell Block Module. This proposed

design is evaluated in the next chapter.
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Chapter 4

4, Performance Analvsis

There are several parameters which determine the cost
performance of a processor, such as its architecture, power
consumption, physical size, the number of devices and their op-
erating speed. In our design for the Cell Block Module, the
control structure is not implemented with random logic, but is
assumed to be constructed from PLA's (Chapter 2). The actual
construction may result in any of a number of hardware config-
rations depending upon the specific PLA's to be utilized.
There is a significaht difference between the various config-
rations regarding speed, power consumption, size and the num-
ber of devices. In this section we will only analyze the per-
formance of our Proposed design based on time estimate for
executing the various control functions and data operations.
Consideration of other factors are postponed until a specif-
ic implementation of the control structure is chosen.

The operation speed of the entire Cell Block Module can
be estimated by estimating the operation speed of the various
control structures and data operations. The latter is easier
since the data-flow structure is given in terms of memory

modules, counters, registers, and FIFO buffers. Every control
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sequence at the lowest level is described by a Petri Net whose
events are the data operations. We estimate the operation
speed of each sequence by'postulating a reasonable time esti-
mate for the control functions necessary and calculating esti-
mates for the data operations from data on the operation speed
of such devices as memory modules, counters, registers, and
FIFO buffer. Since the design does not specify particular
devices available on the market, an average speed for these
devices is used.

The estimation is as follows:

an access to memory devices and FIFO gqueue === 50 ns
( a bipolar speed is assumed. )

an operation by other functional devices
in the data-flow structure === 20 ns

each action at the RESOURCE ALLOCATION
Module such as IN PRC RQ -=-= 30 ns

transmission delays at the event/command
port and the packet output port == 20 ns

Because the operation speed of the Cell BElock module for
the normal program execution is of the utmost importance, we
shall only provide the performance estimate for the processing
of packets associated with program execution.

Assuming that both the C Memory and P memory are available
when accessed:
type OPND case: 1090 ns

This estimate includes 7 x 70 ns for receiving the 7 bytes
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of oprand data and storing them into the P Memory. The other
necessary operations are the extraction of a cell address from
the operand packet, retrieval of the starting location and the
operand register length in bytes from the C Memory and setting
them up in counters and the memory address register of the P

Memory, updatingy the contents as the operand is stored.

type ACK case: 420 ns 1if the ACK packet enables the corre-
sponding cell

320 ns otherwise
An operation packet is transmitted by executing the OPT
SEQUENCE, its estimated execution time is, again assuming that

no conflict at the C Memory or the P Memory arises:
type OPERATION case: 1820 ns

This includes 16 x 70 ns for fetching 16 bytes from the
P Memory and transmitting them to the Arbitration Network. Tye
rest of the time is consumed in accessing the cell state and
setting up and maintaining counters and memory registers.

Assuming that 1) every Instruction Cell utilizes 2 op-
erands and 3 ACK packets, and 2) every ACK packet is processed
concurrently with the execution of the OPT SEQUENCE, the total
time to process the enabling and firing of an Instruction Cell
becomes 4000 ns ( 1820ns + 2180ns ). Instead of 2), if we
assume, as for the worst case, that 2)' no ACK packet is ever

processed while the execution of the OPT SEQUENCE is performed,
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then the total time becomes 5060 ns ( 4000ns + 320ns + 320ns +
420ns ). It may be reasonable to regard that half of the ACK
packets are processed concurrently with the execution of the
OPT SEQUENCE on the average, thus 4500 ns is obtained as the
average execution time of an Instruction Cell.

Because of the conflict resolution, the OPT SEQUENCE or
the E/C SEQUENCE is once in a while forced to wait before being
granted access to the memory modules. Taking this into con-
sideration, 5 us is estimated to be the average execution time
for an Instruction Cell, to transmit an operation packet, which
can be restated as 0.2 MIPS ( Million Instruction Per Second )
for the throughput of the Cell Block Module as designed.

Therefore, a Memory Section consisting of, for example,
512 Cell Block Modules has a 20 ( 51 ) MIPS throughput when 20%
( 50% ) of the Instruction Cells are always enabled.

It should be noted that the above values change signifi-
cantly under different conditions, for example the number of
operands per Instruction Cell, as well as the number of ACK

packet.
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Chapter 5

5 Conclusions

A logic design for the Cell Block Module has been complet-
es, emploving conventional commercial electronic devices avail-
abla today.

The resulting architecture forms an asynchronous modular
system which is derived from a top-down decomposition of the
specification.

The configuration of modules, as well as the internal con-
figuration of each module, is optimized to yield a structure
as simple as possible. Conventional synchronous LSI devices are
heavily employed in the modules, yet the modules behave asyn-
chronously because of the use of delay lines allowing an asyn-
chronous communication protocol to be simulated.

The resulting configuration is considered to be
small in size for the relatively complex operations to be

performed.

High Speed Computation Capability

Throughout the design process, the high speed computation
capability is pursued, leading to an architecture which can
process operation packets and certain types of event/command

packets concurrently. This capability does help the resulting
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architecture to achieve 2 high speed which is estimated to be
comparable to the projected speed in the specification note

[ ] . However, a higher degree of concurrency is achievable.
Exploiting this concurrency fully can result in a faster compu-
tation speed, not available in a conventional scheme £for many

applications.

Improvement

The desired improvement in the processing speed can be
obtained by employing a multiple memory configuration for the P
Memory, so that the P Memory can be a;cessed by the CPT SE-
QUENCE and the E/C SEQUENCE concurrently provided the cell ad-
dress dealt with by each SEQUENCE are different.

Because the conflicts at a cell address by the two SE-
QUENCEs will rarely occur under normal program execution, event
packets can be processed almost in parallel. The overhead at

the RESOURCE ALLOCATION Module may introduce problems.
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/* Packet Definitions */

/* An event packet, a command packet or a run packet is an input
packet to a cell block */

event/command-pkt = union| event-pkt, command-pkt ];
/* An event packet is sent to the cell block from other modules
of a data flow processor. It is either an operand packet or an
acknowledge packet */

event-pkt = union[ opnd-pkt, ack-pkt ];
/* A command packet is sent to the cell block from the host com-
puter, for initializing four different ( not necessarily disjoint )
sets of state variables and for dumping the state of a specified
cell */

command-pkt = union|[ set-cmnd-pkt, dump-cmnd-pkt ];

set-cmnd-pkt = union[ set-instr-pkt, set-ack-pkt, set-var-pkt, set-con-pkt ]:

/* A run packet enables or disables the transmission of operation
packets by a cell block */

run-pkt = union| enable-pkt, disable-pkt ];:

/* An operation packet, an error packet or a dump packet is an
output packet of the cell block. An operation packet is formed
from the contents of an enabled cell and sent to other modules
of the dala flow processor */
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operation-pkt = array[ 0..15 ] of byte;

/* An error packet or a dump packet is sent to the host computcr.
A dump packet dumps the contents of a cell, in response to a
dump-cmnd-pkt received */

error/dump-pkt = union[ error-pkt, dump-pkt ];

/* An error packet is sent to the host computer in response to an
event packet or command packet that arrives when not expected. The
contents of the error packet is identical to the conents of the
input packet whose processing leads to an error. */

error-pkt = union[ event-pkt, set-cmnd-pkt ];

/* packet Format Definitions */

/* OPND, ACK, SET-INSTR, SET-ACK, SET-VAR, SET-CON, DUMP-CMND, ENABLE,
DISABLE, and DUMP are literal packet type identifiexs */

cell-address = 0..15; /* specifies one of the sixteen cells in a cell block */

operand = array of byte;

opnd-pkt = packet| type: (opnd), cell-ad: cell-address,
rec-num: l..3; /* specifies one of 3 receivers in a cell */
opnd: operand];

ack-pkt = packet|[ type: (ACK), cell-ad: cecll-address];
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set-instr-pkt = packet[ type: (INST), cell-ad: cell-address,
ack-exp, ack-rec: 0..7, /* up to seven acknowledgements */
format-spec: array| 1..3 ] of opnd-spec,
/* opnd-spec specifies which bytes of instr comprise
the contents of the corresponding receiver */
instr: array[ 0..15 ] of byte ]:

opnd-spec = record|[ used: boolean, /* is receiver used ? */
origings 0..15, /* location and */
length: 0..7 ]; /* length of receiver contents in
instr */

set-ack-pkt = packet[ type: (SET-ACK),
cell-ad: 0..15,
ack-exp: 0..7,

ack-rec: 0..7 1:

1l

set-var-pkt = packet[ type: (SET-VAR),
cell-ad: cell-address,

rec-num: l..3 ];

set-con-pkt = packet[ type: (SET-CON),

cell-ad: cell-address, rec-num: 1..3,

opnd: operand ];
dump-cmnd-pkt = packet[ type: (DUMP-CMND), cell-ad: cell-address ];
enable-pkt = packet[ type: (ENABLE) ];

disable-pkt = packet[ type: (DISABLE) ];
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/* for an explanation of the components of a dump packet, refer to

Section 7 of " Data Flow Design Note 1 —--- Specification of the Instruction
Cell Block for a Data Flow Processor," Computation Structures Group,
Laboratory for Computer Science, M.I.T., Cambridge, Mass. */

dump-pkt = packet|[ type: (DUMP),
cell-ad: cell-address,
enab: boolean,
ack-flag: boolean,
ack-exp: 0..7,
ack-rec: 0..7,
recs: array[ 1..3 ] of record| used: boolean,
recvd: boolean,
origin: 0..15,
length: 0..7,
mode: (VAR, CON) ],
instr: array[ 0..15 ] of byte ];
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Cell-Block: module
event/command input port receives event/command-pkt,
run input port receives run-pkt,
arbnet-ready input port receives signal,
operation output port sends operation-pkt,
error/dump output port sends error/dump-pkt,
enabled output port sends signal;

behavior:
/* State Variable */

run-ind: boolean;

instruction-arry: array[ 0..15 ] of record operation-pkt;
control-arry: array[ 0..15 ] of cell-state;

enab-count: 0..16;

xmit-flag: boolean;

/* Cell State Record Format */

cell-state = record| used: boolean,
enab: boolean,
ack-flag: boolean,
ack-exp: 0..7,
ack-rec: 0,.7,
recs: array([ 1..3 ] of rec=-state ];

/* Receiver State Record Format */

rec~state = record| used: boolean,
recvd: boolean,
origin: 0..15,
length: 0..7, mode: (VAR, CON) ];
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/* Procedure to Transfer Operand Value from Input Packet to Instruction Array */

enter-opnd: procedure(opnd: operand, rs: rec-state; op: record operation-pkt );:

begin org := rs.origin;
lth := rs.length;
for k := 0 to 1th-1 do
if k < length(opnd)
then oplorg+k] := opndl[k]
else oplorg+k] := 0;
return

end enter-opnd;
/* Procedure to Select an Enabled Cell */

priority-search: procedure( ca: array[ 0..15 ] of cell-state );

j: own := 0; /* j is initialized to 0, but its content is retained between
calls to priority search */
until ca[j].enab = true do
Af~j €15 then j := j+l else j := 0:

return j:
end priority-search;

/* Procedure to Transmit an Operstion Packet */

xmit-operation: procedure( cs: cell-state, op: array[ 0..15 ] of byte );

send op at operation;
cs.ack-flag := false;
for i:= 1 to 3 do if cs.recs[i].mode = VAR then cs.recs[i].recvd := false;
cs.enab := false;
return
end xmit-operation;
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/* Initialize State Variables */

run-=ind := false:
enab-count := 0;
xmit-flag := false;
for j = 0..15 do

control-arry([j] . .used := false;
control-arry[j] .enab := false;

]

/* Process Packet */

repeat begin
when begin
event/command receives e-c-pkt do

begin
ad := e-c-pkt.cell-ad;
cntl := control-arry([ad]:

case e-c-pkt.type of
/* Process Operand Packet */

OPND: begin

if cntl.used = false

then send e-c-pkt at error/dump;
rn := e-c-pkt.rec-num;
rs := cntl.recs[rn]:
if rs.used = false

then send e-c-pkt at error/dump;
if rs.recvd = true

then send e-c~-pkt at error/dump;
enter-opnd (e-c-pkt.opnd, rs, instruction-arry[ad]);
rs.recvd := true;
end;



£6

/* Process Acknowledge Packet */

ACK: begin
if cntl.used = false Y cntl.ack-flag = true

then send e-c-pkt at error/dunmp;

ar := cntl.ack-rec;
if ar ¢ 7 then ar := ar+l else ar := 0;

(=
(a1

ar = cntl.ack-exp then
begin ar := 0;
cntl.ack-flag := true end;
cntl.ack-rec := ar
end;

/* Process Set-Acknowledge Packet */

SET-ACK: begin

if run-ind = true then send e-c-pkt at error/dump;
if cntl.used = false then send e-c-pkt at error/dump;

cntl.ack-exp := e-c-pkt.ack-exp:;
cntl.ack~-rec := e-c-pkt.ack-rec;
if entl.ack-rec = cntl.ack-exp
then begin
cntl.ack-rec := 0
centl.ack-flag :=
end
else cntl.ack-flag := false;
end;

H
true

/* Process Set-Instruction Packet */

SET-INSTR: begin
cntl.ack-exp := e-c-pkt.ack-exp:
entl.ack-rec := e-c-pkt.ack-rec;
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if cntl.ack-rec = cntl.ack-exp
then begin
cntl.ack=-rec := 0;
entl.ack-flag := true
end
else cntl.ack-flag := false

/* uf, indicating whether the cell is used or not,

is false

if and only if the cell expects no acknowledgement and

none of the receivers is used */

if entl.ack-exp = 0
then uf := false else uf := true;
for i :=1..3 do
begin os := e-c-pkt.instr.format[i];
if os.used = true then uf := true;
entl.recs[i] := | used: os.used,
origin: os.origin,
length: os.length,
mode: VAR,
recvd: false ];

end;
cntl.used := uf;
instr-arry[ad] := e-c-pkt.instr
end;

/* Process Set-Variable and Set-Constant Packet */

SET-VAR, SET-CON: begin

if run-ind = true then send e-c-pkt at error/dump;
if cntl,used = false then send e-c-pkt at error/dump;

rn := e-c-pkt.rec—-num;
rs := cntl.recs[rn];

if rs.used = false then send e-c-pkt at error/dump;
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case e-c-pkt.type of
SET-VAR: begin rs.mode := VAR;

rs.recvd := false end;
SET-CON: begin rs.mode := CON;
rs.recvd := true;

enter-opnd( e-c-pkt.opnd, rs,
instruction-arry[ad]) end
endcase;
cntl.recs[rn] := rs
end;

/* Process Dump Command Packet */

DUMP-CMND: Dbegin

dp: record dump-pkt;

dp := [ type: DUMP, cell-ad: ad, enab: cntl.enab,
ack-flag: cntl.ack-flag,
ack-exp: cntl.ack-exp, ack-rec: cntl.ack-rec,
recs: cntl.recs, instr: instruction-arry[ad] ];

send dp at error/dump;

end

/* end of the case statement for handling different types of
event and command packets */

endcase:
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/* Test Enabling Conditions and Transmit Operation Packets */

en := cntl.ack-flag;
for i :=1to 3 do

begin
rs := cntl.reecs[i];
if rs.used = true & rs.recvd = false then en := false;
end;
if en = true then
begin
cntl.enab := true;
if run-ind = true & xmit-flag = false
then begin
send signal at enabled;
xmit-flag := true
end
else enab-count := enab-count + 1
end;

control-arry[ad] := cntl

end; /* Processing of input packets from input port
event/command ends here */
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/* Arbitration Network signals ready */

arbnet-ready receives signal do
begin ad := priority-search (control-arry) ;

cntl := control-arry[ad];

xmit-operation (cntl, instruction-arry([ad]);
control-arry[ad] := cntl;

if run-ind = true & not( enab-count = 0 )
then begin enab-count := enab-count = 1:

send signal at enabled

else xmit-flag := false
end;

/* Control of Run and Idle Status */

run receives rp do
case rp.type of
ENABLE: beqin
run-ind := true;
if xmit-flag = false & not( enab-count = 0 )
then send signal at enabled

end:
DISABLE: run-ind := false
endcase

end when

end repeat

end Cell-Block;
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