
tt MAS ACH ETT
LABORATORY FOR . . l STI [TE F
COMP TER SCIENCE . ·~ TEC_ ·oLOGY

(formerly Projuc , 1AC)

MIT/LCSJlM.,-93

A lffi IC DESIGN FOR TTIE CEll BLOCK ·- .

Cf A DATA-fl.[Jd PROCESSOR

l<ATSIJH I KO ~ I KURA

DECEMBER 1977

CAMBRIDGE

A LOGIC DESIGN FOR THE CELL BLOCK

0 A DATA- FLOW PROCESSOR

Ka.tsuhikio Amikura

MASSAC'BUSEITS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

MIT/LCS/TM-93

MAS.SACHUSETTS 02139

A LOGIC DESIG_ FOR THE CELL BLOCK
OF A D TA-FLOT,• PROCESSOR

by

KATSUHIKO AMIKURA

Submitted o the Department of Electrical Engineering and
compu er Science on A gust 26, 1977 in pa tial f fillment
of the requirements forte degree o Master of Science

ABSTRACT

Recent y studies on parallel computation architecture
have yielded a new type of computer a chitecture known as the
data-flow processo.r.. As part of the effort in realizing the
data-flow processor. a logic design for the Cell Block of the
basic data-flow processor i~ proposed .:.n this .hesis.
T e resu ting de.sign has a modular structure w ich is der · ved
from a top-down decomposition of the specification given in
an Aech.:. tecutere oescr ·pt· on Lang age .. The des · red speed of
operation of the Cell Bloc is obtained by exploiting the
parallelism inherent ·nits operation~ he logic des.::..gn is
carried out using· electronic devices 2vailable commercially
today, but is based on an asynchronous comm nication protocol.

Thesis Superv · sor: Jack B,. Dennis
Title: Professor of Computer Science and Engineering

2

• CKNOl LEDGE.ME ~

he au hor wishes t.o express deep gratitude to and appre

c i a ..:. on of Pro 'IF es s or Jack B . Dennis~ for his pat · .en t encourage

rnen t and suggestions: His ideas have been most stimulatin~T

often leadi g to new possibil"ties and brea.JC-th ouqhs.

The a thor also than,s Mr. Ken Weng, for sharing time and

ene gy .:..n a·scussions, and above all1 for his help i writing

this thesis. Improve ents on the readability of the thesis,

its English~ the disc .ssion and presentation of concepts ha•e

been made through by bis adv ice and co,rrections .

The au tho thanks ."'r . clement Leung for his continuous

encouragement. discussions, and overviewing t:he draft.

The author thanks _.r. Dav id Misunas for discuss · on s ~ and

Mr. Glen Miranker. also for discussions and. above all, for

the uti_iz.at·o · of his library of manuals and catalogues which

have provided the author with a concrete, basis for his ideas~

The author thanks the EOKUSHIN ELECTRIC WORKS, LTD. of

Japan~ for the financial support during tbis study.

3

TABLE OF CO -=E JTS

Sectio

Title Page

Abstract

Acknowledgement

Table of Contents

chapter l
Ll
1. 2

1. 3
l.4

.s
Chapter 2

2.1

2.2
2.2.l
2.2.2
2.2.J

2.3
2 •.

Chapter 3
3.1

3.1.l
Ll.2
Ll.3

3 . 2
3 . 3

Chapter 4

chapter 5

Bibli grapny

Introduction
Background of the Stu y
Computation Scheme of The El•eIT'.en tary
Data-Flow Processor
The Cell Block Module
Statement of the Problem
Synopsis o~ Thesis

Preliminary Discussions on the Resulting
Structure
Comparison between sy chro ous and
Synchronous Cont.rel Schemes
Design Tools and Functional Decomposition
Design "'"'cols
Pr perties of the Speci~ication
The mop- down Decomposition
Miscellaneous Re:narks
Summary o - Design Assumptions

The Design oft e cell Block Module
The Design of the :iata- Flow Structure
The Level One esign
The Level T\-lo esign
More Detailed esign and Remarks
The Design of the Control Structure
Miscellaneous Cases

Pe formance An alys · s

Conclusions

Page

1

2

3

5

5
8

13
14
15

6

16

19
19
21
23
24
25

27
27
27
33
43
49
72

77

61

83

Appendix l The .ADL Specification for The Cell Block S6
Module

Appendix 2 A .Petri et Represent at·on of the ADL
Specification

4

98

Cha:pter l

l . Introduction

1.1 Backg:round of t.e Stud_y

Bae ground

To eet he derna •ds for high-speed computa.tio, a com

plete} ne-:.,: approach to the design of computer language and

architecture has been p oposed. The approach, w ic exploits

the parallelism inherent in a computation to acb.ieve t e c:e-

sirea high-speed, is K m,,.,.,_ as the concept of data-flow.

A hig -level com.puter language, known as the aata-flow

language [2,1,5,6], has been designed to allow a natural ex

pression of the parallelism in programs

The language is a radical departure from conventional ma

chiie languages, and the conventional computer architectures

are not organized to execute a program wri.tten in this

language at a satisfactory speed ..

Efforts have therefore been concentrated on the develop

ment o .f a ew computer architecture, known a.s tne data-flow

processor I 5 6 7 12] - , , , , for the implementation of

the language and the eva ua l.on of the computation scheme based

upon t be da,t a-flow concept.

5

The Data.-F o·,,; Processor

The data-flow processor is ctu lly a generic .crm for

several t 1 pes of architect. ral configurations. Bach type of

processor is defined to imploment o e o a fa.mi y of data-flow

languages of different but increasing expressive power.

so far, the data flow processor can be c assified accord

ing to four levels of capabilities, vested to them:

Levell: processors which can execute reasonably small

programs w'th itera ion operations but no data

structures.

Level 2: processors which can handle data struct res [9,

3] ·•

Level 3: processors wh'ch are equipped with multi-leve7

memories to handle, large pr,ograms (i.e. cache ...

bulk)1.

Level 3: processors which can handle procedure activa . .:ons

and streams [22] .

The data-flow process.ors fw"hich belong to the Level 1 are

t'he most fundame.ntal ,. and two typ.es of them have been intro

duced. One is known as the elem.entary ~~i:;l.ta-f ,ow processor [5] •

and the other is known as the basic clata-flow pro.cessor 6, 7] .

6

The,e •e Or..e Data-t lQ . ., Processors

he el~ entary data-f l ow ~roc essor is developed o execute

a p.rograrn writ en in the elementary data-flow anguage r 5],

wbile the basic data-flow froces .sor is developed to execute a

ro;::- a .. , •.~·r i.. .. ten i . t ne a c;,ic d a t - f lo 1 angu age r 7] . ""he e l e

ent-rj.' c?.. a - flow language is not equipped with ~he cecision

c -=1.;:iab· ity, a- d t'he basic data~ flow language i s s "mp y he elc -

rnen ary da a flow language augmented with the decision capa

bility+

The _eve one· data-£ o·>J _proces.sors are co sidered e most

bas · c a=c ·.·tee... re among al types of data-flow processors,

since it emboc.ies mo-st of the important character ' stics common

to all the data- flow processors.

Design Tarc;-e1.-

The Level one data-flow processors should th s be tne

firs.t target in the ealization of ne data-flow process.ors. It

is the ob ·ective of -his thesis to pro-vide some concrete design

proposals for the realization of a module of the basic

data-flow processor. the Ce 11 B lac t•lodu le.

Before proceeding into datai_s., the computation scheme of

the basic data-flow processor is briefly explained i n the

7

next: s,ect · on~ This scheme is quite different from conventio al

couputat1on architectures.

1.2 Co putation Scheme of The Basic Data-Flow Processor

The basic data- flow processor has the co figuration

shown ; n Fig. 1.1. It consists of four sections: the 'emery

Section. the Arbitration _J<ett-.ro k, the Functional •nit Section,

and the Distribution etwork.

The data-flow program t o be executed is represented in the

Instruction Ce ls of the Memory Section . Each Instruct·on Cell

consists of fo r re.gist.e:rs, as sho¼<n in Fig. 1. 2. The first

register (register #1) holds an instruction whicn is composed

of an co-code and des ination address(es). The op-code speci-ies

the operation to be performed, and each of the destination ad

dress(e s) specifies the address of a register of a desti ation

I ns truction Cell, to wb."ch the r es t of t"he operation is to be

directed. The second, third and fourth registers hold oper ands

t o be used in the execution of the instruction.

When an Instruction Cell is loaded with an instruction and

the necessary operands, it is enabled and its contents a.re

transmitted as an oper at ion packet. Based upon the op- code, the

operat ion packet is routed through the Arbitration Network,

which is a s"'1'·tching network, to an appropri ate Fu.nct·onal Unit

where the operation specified by the op- code is performed on

8

I

Functional u it Section
I

I
I

Functional n·t 0

-;.-=.-::.==============~ F ct · on al Unit m-

Instruction
Ce. 0

Instructio.
Cell ___ n_ 1

L
n

I -
-~--;...--------- l

I
/

I
I

I

Memory Section

I
I

I

Arbitration ~·etwork

Distrib ion etwork

Fig. L l The Con i g ratio of the Eleme tar
Data- Flow Processor

9

,op-code
register +Ll

destination address{es)

' • I • I ~
I I

Ins ruction -, ' I
I

operand ·1

operand :#2

operand 4 3

--~•---I

,7 I
I

register ~2 I

t

4 I
operat

register # 3 pac

~ register :A l "' .
-

Fig.. 1.. 2 The Configuration of an Instruction
Cell

10

e

the operands.

The result of the operatio is then sen to each destina

tion address as opnd packets. The opnd packets proceed through

the Distribu.t~on ~etwor, hich is also a switching net erk~

and are deli ered to the destined register of the destined

Ir.strtct~o. Ce l.

Each struction Ce 1 sto es the result as an operand,

and may be enab ed in turn. ,. it Ls •enabled, its con e .ts are

e entuall tr nsmitted as an operation packet as well.

Concurrer-t computation Capa~ilit_y

As easily seen.,, any Inst uction Cells may be ,enab ed si

multaneous _y, and it is the function of the Arbi tra . · on t

work to effic;.:..ently cieliver operation packets to he Function

al Units and to queue operation packets waiting for ,each Func

tional · n•t. Similarly, ·he Distribution Network may also have

any packets ravelling through it sinul taneously In addition~

the Functional Uni t s are orga: · ze.a in a pipeline fashion. Th s,

all major sections of he processor a._e organized o operate

with a high degree o co currency.

Deadlock Avoidance

To avoid deadlocks in he highly parallel computation

11

sche ~ exp ained above, it is necessary to ict_oduce e third

type o .· packet, called ACK packet r 11] .

! t \-.·cc~·s as follows: when an opera1..ion packet Jl fro an

Instruction cell a is processed a a Functional O it. an .CK

packet is tra s itted to each I.ns ruct·on Cell which has pro

vided an operand 1:.0 Instruction Cell a. to form the operatic-:.

packet Jl.

The i corporation of the ACK packet to the basic computa

tion sche::ie requires modification o the fields for desti _a

tion addresses. An · nstruction ,pf an Instruction Ce l r.i.ust

include the .:tddresses of Instruct ·on cells to w:1ich ACK packets

must be sent. as well as the destination addresses ow ich the

computat ion result is delivered. The condition =or an Ins ruc

tion Cell o be enabled is also m::>dified. An Instruction Cell

s enabled when it is loaded with an instruction and tne .eces

sary operands. and, in addition, bas received an AC'.K packet

from each Instruction Cell to which its computation result has

been delivered.

The ACK packets are generated in the Functio al Uni Sec

_io, and r.ransrnittea to the Hemory Section together with 1-he

opnd pac:eets.

The two types of packets, opnd and ACK, are ca led event

packets. Hence tbe Memory Section receives event packets and

transmits operation packets. When the basic

12

data-flow

processor is worki g u cer normal condition, wh"ch :neans t.na'.:.

neither program loading nor err-or handling · s t.aJ<:ing place and

pt"ograrn execut·on is conducted successfully, there are only

event pacKeLs and operation packets in the whole architecture .

1. 3 The ce .-1 B oc~ _odule

Because ·tis the~ ost comp ex part of the basic data-

flow processor, the ;t\emory Section is considered t'he '.::lest sect.:.on

to inrestiga.t.e the feasibility of the realization of the bas.:.c

data-flow processor. After carryi gout a logic design for

the ~ ·emory Section, it wi be easier to estimate with relative-

ly high accuracy the performance and complexity o~ the entire

architecture as well as its cost, and other factors w ich can

only be es imated af er a design is carried out~

'!'he Memory Section is actually a collection of identical

unit1 ame y the Instruction Cell . Each Ins ruction cell must

perform rather complex tasks, including the reception of event

packets, the loading of operands1 tne managerial operations to

update the states of the Instruction Cell, the examination of

the enabling conditions, and the transm·ssion of the contents

of the Instruction Cell as an operation packet.

In addition, a mechanism for loading data- flow programs~

a f aci li ty to dump out the c ,ontents ,of memory, and an error

,checking mechanism for the received packets, arc considered

13

necessary.

The complexity of the Instructio . cell is consioered to

lie mainly in the contr section of the Cell, therefore si~-

teen nstruction Cells a e consolidated ·nto one. This perform

ance - cost tradeoff has produced a function module, knmm as

the Ce _l 3 ock _ ooul~ . The Memory Section, then, is constructed

from eel Bock Modu es.

To realize the busic data-flow processor in tne near

future, this Cell Block cdule should be implo ented as a first

step, anc it is tbe objective of this hesis to ca.rry out a

logic dosig of the Cell Block l'iodule to direct the implementa

tion.

1.4 State ent of the Problem

It is strongly desired to realize the bas·c data

flow proc,essor in the very near future .

~?J.. ogic des· gn for t e Ce 1 Block odule is needed, in

particular one wh"ch emp oys conventional commercial electronic

devices available toda .

A publication, including the spec'if.:.cation of the Cell

Block ·oaule; has been prepared for this purpose [4].

It is t e object·ve of this thes..:s to carry out a logic

design for the Cell Block Module. utilizing conventional corn.~er

cial electronic devices available today, according to the spec-

14

"fication already published .

1 . 5 Synocsis of besis

In chapter 2; a prel.:.minary discussion is deve oped to

identify t .e mos fundai11;en ta.l characteristics of the resu ting

Cell Bloc. 'l- odule .. The discuss· o s conc,entr·ate on the choice of

the cam,,1unication sche e. he des ign tools and the es i;. 3.p

proach, c o·ce of logic e e ents , the speed- space tradeorf, the

prope ·es of .e specification, a nd the design assu ptions.

I chapter 3, t'he data-flm., structure. of the Ce 1 Block

odule is developed in a top-co n fashion. A.lso . . e control

structu e o_ the Module .is deve_oped. coordinatiori of two inde

pendent operation sequences i the icodule i s discussed .

In chapter ...-, a per-==ormance analysis is carried out .

In cbapter 5, concluding remarks are given and pos.s"bi_i

ties for further improvements are discussed.

15

Chapter 2

Pre minary D~scussions on the Resultin9 Structure

The first step of the design actirity is to choose a pos

s"blc structure and investigate the fundamental characterist:cs

of the resulting Cell Bloc· 1odu e in a genera context.

Two issues which in lucnce signific,antly the resulting

st uct rear~ the choise hei.ween asynchronous and synchronous

control sche~es, and the approach to functional decowpt1,'i i Lion.

In addition, several other issues, though ess sig · fica t,

must be taken into consideration in aovance before proceedi g

into detai_s in carry·ng out the design trade-offs. They are,

for examp e, the logic elements to bee ployed and the speed

space trade-offs . These issues are more or less interrelated,

and are discussed as a whole to yield design assu. ptions v.rhich

are summerized in the last section of this chapter.

2 .. l Comcarison between Asynchronous and Syncb._onous control

Scne es

In general, a hardware system can ne implemen ed by e:::i

ploying either a synchronous or a.synchronous control .scheme,

or possibly a combination of both.

A synchronous system does not need echanisms for detect

ing the completions of operations. It is assumed for this

16

sc eme tha~ e ery in ·t:ated opera ion always cop etes wi hi

a time duratio determine from data on specificatio sheets.

Based on tis assumption, the control of operations .:.s perform

ed by mak.:.. g use of a special purpose signa - a maste clock -

which sy chronizes the initia ion of operations.

his scne~e has bee practiced wi e y, ad is regarded as

a star.C:;i:~d .. -.lmost al of he electro ic devices today, be

large scale i egratio devices in particular, ares nchro ous

and desig rocedures utilizing this scheme are well estaclish-

ed and w·cely Known.

But a synchronous system h.as disadva.ntage,s due to the lack

of echa.nis .s for detecting comp etions of operations. Une>:pect

ed delays of operation ay cause system alfunc ions, and, e•,1en

worse, the . alfunct · o _.s a_ ot be detected. The on y "ay to

cope wi h's situation, thoug s._il- i perfect, is to allow

ample margin in the ti·ing estimates for completio of opera

tions to prepare for the worst cases. consequent y, the opera

tion sp e~ of a synchronous system ends to be slo .

Furt errnore, the master clock is the only mean to synchro

nize opera o s being ex1.=c '"ed in he system, and he c oc

signal is se. t to all parts of the syste . Therefore, if the

system grows in sizer the propagation del y of the clock sig

nal increa::.es, and the operation speed cf the system tends to

be suppressed . This si uation emerges as a crucial problem in

17

large s stems in tended to per form 'high- speed co:np'.l .;.- a ons . -~

compra is· n solution is to adopt a de·ce tral.:zed clock sys

tem, but the synchroniza~ion of opera~ions at t e boundaries,

where different clocks meet, is still unsolved as one of the

most fund~ ental problems.

On e contrary, tbe asynchronous systern resolves tbe syn

chroniza ion problem by e:nploying special purpose hardwa e ele

ments such as the arbiter [16, 21, 23] and the c-rnodule [14,

2 3] • These clements guarantee the correct operation o_ tne

system to be unaffected by changes in either ' he operation

speed or signal delays [3, 8, 10, 20] •

The. asy chronous system. e::ruipped with these elements for

syncnronizat.:..on, exhibits the indispensable property o::' e:Efect;:.re

perfor ance when 1) high-speed co:nputation is required,

2) the si .ze of the sy.stem grows, 3) the synchronization of

operat.io-:1s whose occurences and completions are difficuit to

predict, and 4) parall.el co pi.1ta.tion is performed.

An asynchronou.s system employs either one or both bard

ware ele ents wherev,er synchronizat · on is required., and in

general rna..'ly of these elements are required in a syste:::i~

Although each of the hardware eleme ts ha.s a rather sirnp econ

figuration; there are no ava.ila.ble e eetronic devices for real

i .zing them except ind· v -· dual gates and flip-flops.

18

For this reaso., an asynchro o s system will need much space,

because a s"gnificant po t~on of the space is devoted to imple

menti g the basic hardware elene ts, and will result ·n a large

and ra her expensiv,e architecture. These are the disadvanta3es.

of an asynchronous sys eI.

It is obvious that t. ese disadvantages. are e1iminat,ed if

an async- ronous system is realized as a compo.s · tion of a small

number of devices, each oft.hem being constructed in large

scale in.._ egr at ion echnology ...

The Cell Bloc;k Module, as a. part of the ,eler.ientary data.

flow processor which is inhe.:.:ently an asynchronous system,. must

observe the asyncbronous com,--nunication scheme in · nter.fac-i ng

witb other modules. In addition, it is quite natural to expect.

that the asynchronous cmnmunicatio scheme is also obeyed in

co. cflunications internal to the Cell Block Module.

2.2 es.ign Tools and Functional eco:nposition

2.2 1 Design cols

As a too for desig_ ng an asynchronous system, a de

scriptive scheme has been developed and utilized widely [23] .

This sche - e makes use o,f two graphs - da a.-flow grfil?h and data.

depende cy graph - to represent the organization and functions

19

of a system . The d3.ta-flow graph describes cons-'--"t e. t dev·ces

of the system and data paths between the.T"('L. The d-ata~depe_ dency

graph describes the control of data tra~sfer from one device

to another a~d the ope ations pa=formed on the data upon the

co. pletion of the necessary da a transfer.

The combination o.i= the data-flow gra;ih and t'c1e da. La-d-~pen

dency gr2'1ph is very useful. An alternative to the da a - depen

dency raph, known as Petri et, has also been utilized widely .

The Petri ~ et is originally aevelooed to . odel the beh.av .:..or o=

sy~tc:r.s b· studying the occurrences ,:,f events and coordinations

be tween the, .

The pair of data-flow grapb and Petri Net has proven to be

a very effect ·ve design to::il [1],,. a d are e. plo~ ed in he logic

design of he C,ell Bloc M,odule.

Patil's Realizati◊- Scheme

The employment of Petri . 1ets. which are used to desc.ribe

control sequences, is also supported by previ,ous wo_ks, by Pat· 1

I[15, 16, l 7. 18, 19] , in !;!;hich it is sho't-ln and p~oven t'hat a

,control structure can be implemented correctly pro- ided · ts

seque.ce constraints is given in the form of a Petri Net.

Tbe implementation, in his works. is carried out to the

gate-lei.rel, and PLA may be utilized instead of ga':.es.

The results of bis work are adopted as a basis for tbe

20

design o the control structure of the Cell Block od · e.

2. 2 .2 proPerti•~s'._ o · the Specif.:.catiqn

T~e Cell Bock Module is defined abst actly, and its spec

ification is ·..:r i tten in a h · gh level co pu ter lang,J age, · L

(Archi tee ure Description Lai."'lguage) , as shown in Appandix 1.

There are a couple of noticeable characteristics implied in the

specificatio "The spec'fication describes tne operations to be

performed in ter. s of abstract operatio,nal prim· tiv-es. No im

pl 'catio s egarding actual characteristics of devices is m

plied in the specification.

This characteristic enables a designer to enjoy presumably

a lot of freedom to make choises in order to incarnate his

concept . .Interestingly e ough1 this characteristic motivates

the designer to ex · ibi t his fu 1 abi 1 i ties-.

Another characteristic is that the specification" utiliz

ing the block structured description in ADL,, eli inates the

possibilities of leavi g unspecified some operatics, corre

sponding to special cases w ich occur so rarely and are eas·1y

overlooked at tbe very stal'"t in tbe design .. A fucntio a y com

p ete specification spare.s a designer from checking aro nd in an

a.d hoc manner to get rid of design errors to implement a well

engineered system.

21

'""'he thir d cbarac er·st · c, wbi c relates o the operatio~s

ta. : ng place i the eel Block Module, is that the odule per-

forms con current co, pu ation in two "ndependent sequences whic 1

can be activated independently. From he point o view of oper

ation speed. the concurren. ~ computat · on capability · s a:ui te

desirabl e.

In the Cell BLock Module1 concurrent computatio takes

place as follows:

One sequence, called E/C SEQUE.CE, is act · vated pon the

arriva of an event/co - and packet £rom tb.e n· stribution -e -

work. and processes the pacx:et ... The processing of he packet

may resul t in tbe generation of an enab. ed eell.

The other sequence, ,called OPT SE UENCE, is activated

when there ·sat least one enabled cell in the module a.nd a .
ready signal to a.ccept an operation pac et from t e Arbitra ion

Network is asserted The :sequence picks up, an enabl,ed cell and

transmits it as an operation packet f or the Arbitration Network.

The enabled ce 1 leaves the enabled state when the transm·ssion

is completed.

The communication between the two sequences a.re performed

by passing the address of an enabled eel.

22

Apparen ly, the opera·..:..ons perfo_med i the Cell Block

• . odule are tne ones w ich take place in a gene-1 o e producer

one consuner system. mhe proble regarding the cin icts n

access is typically solved bv utilizing a IFO queue.

I ·s decided to irnple_ent this characteric, ratbe l'lan

exec:.it t _e E/ SEQUE£-CE ad the OPT SE UE CE sequencially.

I the course oft e desig-:-i. two synchroniza .:o problems

arise, one bet•,...-een the ~le SEQ · ENC. and the OPT S..:.Q E::cE, and t e

other is tne reso ution of priorities bet~ee e processing O ·

r'l.::.n packets ad hese t-10 sequences. These problems a e dealt

with i Sec.2 of c ap.3.

le p oble of adopt.:.ng synchronous devices to form an

asynchronous structure also arises. This p oble. is dealt with

in sec. 3 of chap. 2.

2 . 2 • 3 The Top-·down

As is well kno•,..,rn, the op-down approach is quite effective

in designing well structured systems. I.n view of the way in

which t e specification is given. it is considered the approach

to be taken up~ Following the top-dO\iil approach, he original

abstract system is deco:nposed into submodules step b step, and

at each step. appropriate choices with regard to he adoption

and selection of conventional commercial device may be :nade.

23

It shoul~ be emphasized tha it is possible toe im · natc

t'he des · gn flaws which may take plac,e on the inter fac~s be~

tween device.s by ut· 1 · .zing the top-down approach intentionally

to make the resulting structures alwa s form a modular sy~tem

at ea.ch step. Enforcing this rule pro ides the re.suiting struc

tures with two advantages:

(i) it facilitates the :rea ization of the ent·re struct.re

on accoun of modularity;

(ii} it ·s easie to replace modules by equi a_en ones

implemented with advanced and improved aevices.

2.3 Miscellan~ous Rema~ s

Utilization of the Svnchronou~ Devices

Considering the comp exity of the Cell Block Module de

scribed in the spec· fication, it beco· es nece.s .sary to employ

LSI devices such as ROMS., PLAs, and other. LSI

.functional devices as the pri ary constituents, rat er tha~ ss

or }Sl devices.

Because these LSI devices are ·n general manu--actured for

synchronous roachineries:1 they are no _ ,equ ·.pped with the func

tion of gene a ing acknowledge signal (.s) .

To overco-:- e th.is problem. a de.lay line is u "lized to sirn

ula .. e the function. Upo,n the acceptance of an activation sig-na1,

it is directed to the delay line whose output signal is return-

24

•ed as an ac~'(owledge: si a . he delay time is deter i ed by

the max'm time of operation calculated from the values con-

tained in rnanua s or data sheets.

!."'ace- off ---~
T . . a n:;':i-speed co putation capability is always 9ursued

as the ;:,st significant objective, which is justi~ied in chap.

5.

Cost; size, and power co sump iot, are taken into consi e:--

ation as objectives of secondary importa ce.

2 .4

trhe logic des-ig of the Cell Bloc Module is car "ed out

r· th a top-down approach to generate an asynchronous . odular con-

f"guratio

A set of data-flow graphs and a set of Petri Nets ru:;:e pro

vided to describe the resul ing system. con ro modules are

provided to speci.fy tne operation sequences, but actua_ device

configuratio s for them are not provided.

The , igh-speed comp tation capability is considered the

most significant target with i:esp~ct to the performances of the

resulting cell Block odu e.

Implementation devices are chosen from conventional com

rnercial el.ectronic devices available today. LSI devices a.re in

25

par~ic lar preferred.

26

Cbapte 3

3 . ~he Design of the Ce l Block Modu e

n this chapter, a log~c design oZ the Cell Block odule

is carried ou~, yielding the data- flow structure ad the contro

structure.

Alt ough he data-flow structure and the control structure

are closely e ated to each other, the data-flow structure

can be de er ined rather inde_ emden -Y. F · rstly, the data-f l ow

structu~e is developed, and hen t econ rol structu e · s de

veloped ut.lizing the res at data-flow structure.

It should be remarK.ed that the data- '" low structure .is

designed so that initialization and update of the cell sta es

can be co ple ed in a short time. he reason is explained in

sec. 2 of chap. 3 '(exploiti g the co current computation capa

b~lity)~ i ter s of the control structure.

3.1 The Design of the re

3 .1.1 The eve o_ne Design

At the top-most level, the Cell B oc'k Modu ,e is v · ewed as

a black box wi h four ports for communication wi h other sub

systems, as shown in Fig.3.1.

27

eve I cor. .. ~and
pac.; · cl

I
I
I

I
I
I

e •.1 e . . r.: / ccmmanr

-

rese._ s i g al
?Ort

reset signal

O!Je ati ,::m
and o ther

03.CKe - OU t ::iu t
- port -

run oa.ckct
oort

run packet

packets
\
\

\
I

A ~lack Rox ~odal of t he Call. _oc~ ~cd~lc

28

The event/command port is dedicated to receiving event

and command packets, while the packet output port is dedicated

to the delivery of packets from the Cell Block Iodule. These

two ports are utilizea to load and to execute a data-flow pro-

gram ..

_ h;;i other t"\'O ports are utilized to control the running

stste of the Cell Block Module from the outside. Tbe rlln packe

port receives run packets to change the ce 11 Block state b£it• . .;een

the disabled and enabled sta es. The reset signal port

rece·ves reset signals which force the Cell Block Jodule to be

reinitialized.

Each event/comrna.nd packet is received at the eve t/command

port of the Cell Block Module a.nd appropriate operations are

perform.ea on the information it conveys. The operations to be

performed are given in the ADL specification (Append·x l }~

and the Cel Block Module hardware :nust execute these operations

to fulfill the requirements. During the execution of these

operations • a ce 11 may be enabled t and ev.en tua 1 ly its con tents

is transmitted at the packet output port as an ope.ration packet.

We are led natually to a two- bus system, one for the input

packets and the other for the output packets.

29

Tha ce Block odule deals wi tn wo types of iniorwa~~on

sored in its memory. One type includes all the contents of a

cell o be formed into an operation packet, i.e. instructiont

operands and addresses for sending the results and acknowledge

me ts. The other includes all information for keepi g track of

the curre" sta e of a cell. The cell content information does

not influence the execu ion of operations in the Cell Block

. odule. on the other hand. the cell state in format.ion is re

ferred to during the execution of operations and controls the

operations to bs perFormed. The cell state information is up

darted du-ing the execut · on of the o erations.

The cell content information and the eel state i nforma

tion, each serves a different purpose and can therefore be

stored in separate me,ory dev·ces. This configuration enables

both the cell state informatio and the cell content informa

tion to be accessed independe tly and utilize d co currently,

resulting in obvious improvement in the operation speed by re

ducing memory conflict.

By nam.:.ng the memory device for the, cell state i formation

c eraory ana he mei ory dev · ce for the cell co en~ ? ~•:e:-:-.::iry,

the conceptual configuration of the data-flow structure. is de-

~

picted as shown in Pig.3.2.

In the configuration, there are two buses and two memories,

as described in the preceding section. The buses ·n the

30

w
I-' ,, >

event/
command
port

Fig~ 3.2

/
/

✓

I

c Memory p Memory

MAR MAR

cu ~ II ;~

I : /~ ,, ✓ L '->I
- ==--=-=..._,,\ - 11 -

,control

c: > unidirectional bus

The Conceptual Configuration of the cell Dlo,ck Module

'p;
\

\
packe1
output
port

ontrol signal

.struc~\J,re, including tw.:> o ber ini..ernal buses w-n i ch are ex

plained ate , are all u idirectio al. By adopt·ng unidirection

a buses, the transmission o: da a naturally incarnates the

concept o data- flow. Furthermore, the adoption of" an unidirec

tional bus inc eases operation speed and eliminates tbe neces

sity of registe~s which are required to hold temporary data.

For exa .ple, consider the case of an internal bus .,;n"ch conne _ s

the outpu of c Mem:,ry to the input of it via a module named cu.

cu is a combinatorial circuit, and is usea for the update

operations of C Memory. T'ne C emory is assumed to ave separate

I/0 ports. Its output can be prese ted to cu that per f orms the

appropriate operati,ons on this input to yield t e z;esul t at the

input terminals of the C emery. Henc,e, a regist,er for holding

the cornpu tat io resu 1 t at CU ha.s been el imin.a tea, and the up

date of C 1e ory is perfo,r ed by simp y providing a write pulse.

The other inter a - bus in Fig.3.2 is used to access a~d

s t o re operands in a cell register . It connects the memory

address register of the memory to the output of the C . emory.

This is necessary because the word length and relat·ve loca

tion of an operand egister for a cell w · thin the P •. einory

a.re not f i xed, and are determined at the time of compilation

o f a data-flow program. The relocation inforrnatio,n is stored

into the c Memory when the program ·s loa.ded.

In Fig. 3 • 2 ,, the T-s aped syrnbo l labeled with a + s . gn

32

sta ds for a wired-or con_ection o~ buses.

To implement. all of the s-oecified operations, a few other

buses are incorporated in Fig.3.2. They are utilized to execute

operations for processing the error or the dump pa.eke s ..

~.1.2 The Level Two Design

Ba.sed on the conven ion al configuration in Fig. 3. 2.

datai s of t e data-flow structure of the Cell Block ~ ooule are

developed in this subsection.

To explain the resul""ing data-flow structure, it is neces

sary to u dersta d the detailed opera~ions of the E/C and OPT

SEQ E:}CEs . We shall, here fore, describe the operations of

these seque · ces and the data-flow structure necess·ta ed by

th~se operations.

The O:oer a. tior.s f Q_r ~~IS, SET-ACK ., and SET- VAR Packets

The E/C SEQUENCE processes seven types of event/com..-nand

packets (Appendix 1) . These can be categorized into two

groups according to their demands on the C and P Memories.

The firsc ca egory, which includes the types of ACK, SET

ACK .. and SET VAR, consist:s of packets which util~ze only the

C Memory when being processed. The contents of the C Memory

m.ay be read o and modifiedt or be si p.y updated wit· the

information carried by a event/command packet. but the P

33

t, cmory is not utilized by any of the operations. per: formed by

the E:/C SEQUE1..CE .

The processing of an ACK packet is illustrated below as

a typical example.

Exa!i\E_le~

When an ACK packet is received, the E/C SEQUK"CE extracts

the cell address from the packet, and puts it into tbe memory

address register of the C Memory. The addressicl:d cell state in

the c femory is read ou, and reloaded into the c Memory at the

same location.

The new cell state computed during the upda e operation

may satisfy tbe conditions for enabl"ng a cell. If so, the cell

state is reset to its ;nit'alized valu~.

Thus to route a eel, address., t'wo paths are necessary, one

from the .:nput bus to the memory address register of the c

Memory, the other from the me:nory address register to the FIFO

queue. A closed path also exists for updating the contents of

the C Me Ory.

The Operations foz: OP ·l.) ~ SE·I'-I(STR, SET-CO , and tJMP Packet

The second category, which includes the types of OP m,

SET-I STR, SET-CON, and UMP, consists of packets whose

processing uti i z.e both the C Memory and the p Memory.

For tbe types of OPND, SET-INSTR, and SET-CO .• the C

34

lemo y ·s util..:zed i the same way as or the types J.n the

first category, amely in loading, reading out, and updating,

for contra p _rposes.

The packets of these types, however, carry more i for a-

ti J. s \,,.; ·· t!-i the . They are va ues. to be utilized as o er ands~

o;:-co~es or es ... · na!:ion add ,esses in an instr,uction. This infor

ma ion ..:s independent of the cell states and so is saved in the

P e:nory.

Furtherrno_e, a byte-ser·a1 transmiss·on scheme is employed

to transmit information from a.nd to the cell Block .1oaule [4] ..

la•turally, the informa ·on conveyed in packet will be Splitt-

ed into a seq ence of bytes\ ich are transmitted serially. As

fo,r t e P .1e cry, i't is reasonable o di ide the e ory area

into sixtee contiguous smaller sectio s, one section for an

entire c ,ell, a.11.a to allocate contiguous ernory loca iond in ac

cordance with the ?:iyte,;,.Tise ser · al transmission of infor ation.

Tne resultin; map of the P Memory is shown in Fig.3.3.

When an entire cell state in the_ Memory is retrieved,

the order of retrieval is the same as that of loading . Thus,

he capabili ty to increment the rneaiory address register of the

P Memory by one is desirable for s ·mplifying the contr,ol mecha

nism.

A binary counter suits his purpose. and certain types of

conventional com:nercial counters . .are furthermore equipped with

35

byte#
cell-address
~ .,..--------.

#1

t----------;t!. ~ #15

"n--14

. 15
._ ____ v,.._- ___ _,

8 bits wide

,.

P - AD- H

-- : J
P- AD-ORG

8 bits wide

Fig. 3 .. 3 Field Allocation in P Memory

36

other capabilities wbich can a so be utilized to rea ize a

simple con rol structure.

Tw'o capabilities: resetting the con ents to zero, and

generating a carry signal indicating the· conte ts o ~ the count

er to be o- maxima_ integer value, are ut:11zed to acilitate

access to t ~e entire con ent of a cell. If the me ory loca

tions allocated to a cell are aligned so that. the irst memory

location starts at t e zero count of e counter, the succeed

ing memor location at count one, and so on until the last

Lemery location corresponds to the full count, then the execu-

ion of the reset ope_at.·on on the counter automatically set

the me-:nory address register to the first address for a cell .

And the a.ssertion of the carry signal generated when th coun

is full cart be used to detect that the last byte ~ a cell is

reached. A separate · ecban · srn to keep track of he memory refer .

ences for de ecting the p::-ocessing of he last byte is not need

ed int. e data-flow structure.

This scheme is appl·ea in the design of the Cell Block

Modu e, sing a 4-bit counter as t e lower order bits of the

memory address register o access the contents of a cell ·n the

P Memory.

l n the specification [4] , the tot a number of bytes of

memory for the contents of a eel is fixed. However, the inter

nal allocatio of this memo y areas to an instruction and

37

al of its operands are left unspeci ied,

flexible and efficient memory utilization.

allowi g

For each operand, the address of the first byte of the

operand, relative to .hes arti g address of the cell, and the

length of the operand n bytes, are determined during comp.:.la

tion, ad sent to the Cell Block Module by as_. -I STR packet.

Tbey are stored int e C Memory as part of the correspo. a.:.ng

cell sta e.

Upon execution of a loading operation for an operand co.n

veyed by e."ther an OP Dor SET-CO packet,. the starting address

of an operand register and its lengt are both r ,etrieved fro:.i

the C Memory.

The starting address for the operand is loaded into tbe

memory address register of the P Memory. and the length is

stored into an auxiliary counter. The consecutive bytes of tne

pa.ckets are processed by storing t'heir info mation i the P

Memory and by incrementing tbe con ents of the memory address

register by one after ,each loading of a. byte.

The contents of the auxilialy counter is also decremented

by one at each loading.

The counter is responsible for indicating the arrival of

the last byte of an operand through the us,e of a borrow signal.

lf the bytes carried by he packet run out before the counter

reaches t -e zero count. zero's are provided to the P Memory as

38

if they a.re tbe values carried by the packet, and the loading

operations are repeated until the whol.e memory area for the op

erand is filed. This operation erases non-zero bit patterns

left by he previous utilization of the operand.

Therefore, the counter whic serves as part of .. he memory

address register for the P Memory must be capable of parallel

loading, as in certain types of conve L. ion al c ,ounters .

Example: o0 ND packet case

The operations which take place on the ar ival of an

event/co and packet are illustrated below. As a typ·cal exam

ple. the OP~D case is considered .

On arrival of an OP D packet at the event/coru.~and port.

the cell address carried by th.e packet i .s extracted and loaded

into both o_ the, memory address r ,eg · s ters .

The cell state cf the addressed cell, to which the packet

is read out and utilized to determine whether the packet is an

error packet or not.

If th.e packet turns out to be an erro.r packet, the whole

packet, including the cell address; is sent out from the eel

Block Module. No changes are made to the contents of either

memory ...

If t.he packet is not an error packet, the cell state is

updated based upon the retrieved va ues. In the course of

39

update, the cell may be enabled upon fulfillment of certain

conditions. Then. the cell address is directed to the FIFO queue

·n submission for the transmiss·on of operation packet. and the

cell state · s reinitialized a d stored as, a new cell state into

the C Memory. lf the cell is not yet enabled, the updated state

is stored as a new cell state.

After i is determined that th.e packet is not an error

packet two data i terns, the starting address and 1,ength ~ are re-

tr-· eved from the C 1e:nory and se , to the memory address reg.:.s-

ter of the P Memory and t e auxiliary counter. The me:nory ad

dress register is loaded with the cell address · n the higbe= 4

bits,, and with the .starting address, named ORIGI , in the lower

4 bits. The auxiliary counter is loaded. witb the 1ength in

'bytes of the memory area to be filled.

The da -a carried by the packet is stor,ed into the P M.emory

as described previously,.

For the type of DUMP the state and content of the cell a.d

dress,ed are sent out. These are stored in the c M,emory and the

p Memory respectively. Although both J_ emeries are utilized, the

contents of the memorie.s are unchanged after the processing of

a DUMP packet.

The resulting configuration ,of the data-flow structure de-_

veloped so far is sbo,;,m in Fig. 3. 4. and 3 . 5.

More datails of the design a.re supplied in the following

40

E/C-PK'f PC RT

8/C PKT

RESET
SIGWU.
POR'l'

I

INPUT BUS

r---- ----------- - ------- -zy-----,
1 1 ~ [i:11 '1 I I
I I },-E M-R IJ E,,f·-SP I : I MEMOrW M.DtORY ME:~OR'i 1
I MODULE MODULE MO[.HJLE :

I ' I j ---- "'l'i'_..., l I

I
t
I
I
,I

'

~-
CN1'RI,
HODUL~

M-R
C'NTRL
t-ioouu:

u &F-SP
CN'l.'RL
MODULE

I
I
I
I
I
I L ___ , ____ _ -- - ____ , _____ , ,J

C MEMOll.Y

MODULE

P.ESE'il"

u

-

ERR PKT
DETEC110R

E/C SEQUENCE
CNTRL MODULE

HUT l.ALIZll.T lOtll
CNTRL

MODULE
I

OU'l'PUT DUS

OMP
Ct-.'TRL
KO0ULE

Fig, l. 4 The Oct.ai l ed Data-Plow S ti;ucture
of the cell Block Moc'lu,lo

C-AD C~ITR

'.l'Y-M REGISTER

RESOURCE
ALLCl CA 1'10 N

_!'l_OJ)JIJ,Ti;

RlrN
CNTRL
MODULE

I? NEMORY
MODULE

LtW ChlTR

t•
CJ,,"l'RL

~DUL.E

OPT SEQUENCE
CNII'IU, ~:ooTJJ'..E

P}(;'l' OIJ'l'.PU'l' PORT

RUN PKT
PORT

OPIW.ll.'l'ION,
&1!1.ROR, rrnd
DUMP PK'rS

(e1u1.lllc. disable)

FIPO lN RD't
FIF-0 l,01\D

l'i-f! CON'l'RO?,

11.P - Sl'l'l

C-1'\D CNT1l
(.MAR for

C MEMORY)

ORIGIN (0 •• J] ;
LEN'GTH [II •• 6) :~ 'J

Uf.P-SI.> MQD.

4: ro . . Jl

u i>:17. tJ ~

.....J

D
..:i

INPUT !lUS

<;: iG • • JJ

_. _ !WIR 1:0:r: E' ~IEMOllY)

~1Q UH ~ !
P-lll) - OJlCi

II I -':: .

Lf,;.N CN'l'.'R

17_

11 I

NrJ.'IllLIAZTION
CONTROL MOD •<R ~CI)

-,-r-,- 1j~7---.1--1 ±t • I ::p-on .,,,. coomwL """
,,_,__,___ t-1:.....1-- ---~--- -

: 11 ~
Iii u u r,,,
l~

a::::, Cl
d~'f u

a .11:.....2 ~ fl Q I Mr' 0
N ~ l:l. ,,.)7. I

I <(;:JU A
Z , UIP. ,C
Ill Do :& I
HA A~ o,

,<C •f,~ I(s ,e:_a, ti
E/C l'RC COH'fROL ,3

MOD·.,

r;C
t,~
0:: ~
9 u

1~
11,

fJ s
Fig, 3.5 DE\11:CES /\ROUND FIFO QUEUE

42

~M ~r,;
H

g~
°' 0

~2 ... ~
J,,

. :;;:
!i!~~
c'.,~t:

1 0

~n.
t.:J

Ji:
0

Cl ,! i:,;
,Q
.I
a 0
f ii II,

~ t~
00

t -+'

0

section.

3 1 . 3 More Detailed Design and Remarks

The size of the P -e. ory is 2K b s. A 256x8 configuration

is chosen. A memory address register of 8 bits wide is needed

to access t e contents. he lower 4 bits are provided -ro a

counter as described abo.,,e, but upper 4 bits may be pro,.rided

from a conventional reg·ster. A cell address is stored i n the

register for the upper 4 b"ts while he coni..ents of the cell

are accessed by specifying the lo er 4 bits in the counter.

The memory address register for the c Memory must also be

a counter, since part of every cell state m .st be ini iali.zed.

The use of a. counter facilitates the operations and yields a

simplified structure.

To represent tbe information conten sofa cell state re

quires a relatively large number of bits. considering he typi

cal speed of the conventional memory devices, which may be

regarded as fairly sl,ow i cornpariso with the conventional

functional devices, and also co sidering how each constituent

of a cell sta ~e is utilized in the process·ng of packets, ·tis

concluded that a horizontal configuration is suitable for the

configurat·on of the c e ory.

43

A borizontal configuration requires a much larger number

of memory outputs than that of a vertical configuration. The

operation speed ach· evable only by a. horizontal configuration

makes up for this disadva tage because it exploits concurrent

colllputa.'-ion capability as explained in sec.2 of chap . J .

The information contained .in a cell state, can be class·

fied into three categories so that no interconnec ion exists

between categories .

I:n the execution of loading~ updating, and initializing

operations on a cel l state, the information in each category is

processed independently and then pLlt together to fo=m a new

cell state. Each category of information, therefore, is stored

in a separate .memory devicei" a.s sbown in Fig. 3. 4 and the detail

e d configurations for the memory devices are shown in Fig.3.6 r

Fig~3.7, and Fig.3.8 respectively. It may be observed that

the internal bus mentioned in terms of the module cu in sec~l

of cbap.3 is impl emented in the detailed configurations . and

that operations, the loading and updating in particular, are

simple and fast ..

The configuration of the P Memo·ry is described in Fig. 3. 9.

44

10 .. JJ NPUT ilUS

A - E' S\•,

A -E rwM
OU'!.'
C~l'l'R

~ ~l•:T l:1-r·-,--::::.~==t----1- z1.mo
LCTOR

l

4
c - 1\D OUT ----1,/;_...;.......:..._

A-E M!-;HOR):'
11.-E W

4 4

11.-E OUT -----'~-- /\-8 Cl\'f_t;

4 I J [4 .. 7) ,1 1(0.,JJ

1 l New E

(b) A-E ME.MORY !--!Odulo

r--- -
I I'

~A-EZERO

(4 •• 6J : I_ __ _
correapondini:r l:C'I the bits
of ack-oxp

(c l ZERO DETECTOR

0 U-1' PU'f BllS

E J\-E !f' l\- R

1\- E MEMORY

A- E \ii 16Xl3)

E 1\-E F A-R

(d) A~E KD\OR~ Modul

P'ig. 3.6 The Configu.r.tt.ion cf A-E Module

4

l'

T'i'

i::11-Z.ERO

11 -E S'rRT

A-£ Rt:STR'.1'

01."T 1\-:E S'rlt.'F

E

New E

2

nro mn -j' j
ll!IT-W -

l\-& OUT

C-AD OU'.i'

f .r;Q:111 8
>:I INPtn' nus ' I

2
1\ - E •1
R.0.M UIJ1'\
Ch'"l'llL

A-E" SW

J\ - P. I ll-E w
CN'l'.R L \
MODIJl,E

(a) Wi.rin.g of A-E Module

I 8

• ~

I

ll-~: II

Hfsr10ftV

1-lODULE I

to
► OWPUT DUS

J< 1\-il ZERO

- p

,. t:

l!.-E PON

l"'I.FO IN

Cocling Of 11-E ROM:

J\-E ROM
our
CN'l.'RL

A-R

F

1\.-E

11-E Rml 0l?!l:MTI0NS
,OlJ'J1' CN'.r.RL

~ b o•
01

~ A- E • Now A-R ·

ROM

4
5l2X4 J 1--+ t4CW 11? 10 --

(e) A-t ROM
1.1

(~o opru::a ti on)
~ew h=,B:=11.-R: New F:•F;
(ACK cns:e)
!f A-g.,,tl-1

,hen HOW ~: =0, New F: • l
else New &:8,: "' lk:B_+l;

NOW F:= 0;·
{ S£T-INS'l"R,SE'l'-ACK caoo.9
lf ~;A-R
the11 NOW ~: ""o; NOW F:,ol
lscll Nl!W A-R ~""~:

New' F: = O;
(on TRM case >
Row I:'; ;; O•

4S

OP'l"-S:W

C-AD OU'l'
M-W

TY6JU~

n-w

M-OIFr
R-01.ll"

------- --

-ti- I -f. --
~ - - - 'J

M - Momory

j

M-i'I. p[J\

l

R - McnLOcy

l])

M-R Gi\1'1::

INPUT BUS

--- -i

J

3

I
I
J.r· M-R

M.Et--~RY

f,~ODUl.1~

RCVD
S'!'ll.'r~

I -------L--- - J.3 ----- -- OU'rE'!J'l' DUS

(b) r,\-R Mc~mo,:y Nodule

h!OdO
[I;;ig:s

I m1)

(c) M-R In.JI.

re!:'~ivocl
flags

l "'i)

M - El

O?'f - ffi'J

t
I 'i"i&RN ' ,

I

FL-',

uutrmt

coding or l'Lll.:

(new ~ocvd [lngs)

l"ig. 3 . 7 Thu c:0nfi <J111·,iuoo of M-R Module

'I"{

n

rcn-ZERC

:t-1-R STRT

OP'f N -R STR""l'

M--Otrr
R-OUT

C-J\D OUT

2
-

J' ~ , .
2

,.__,
M- W . . .
R-W M-1\

- M-ft OPT-SW _ MEMORY . .

CN'l'.'RL M.ODULI':
- M.OOULE

.
E

J I 4
I

l

(a) Wiring o f M-R Module

]

I

J
f

-

-

-

to
OUTPIJT BIJS

RCVO
STATE

-R OONE

I oi I is the output o(l:.ho i-~h bit of PLll.

If Oi>'l'-SW-= t:.ruo, then [o 1] : = r rn1 J : i=l . • J /•P.cset o p eration of R;--Memory• /

~1$e input packot
SET-INS'l"R: f
St-:"l'-Vl\U: I

I
Stc."T-C:ON: [

r
OPND: I

I

:ypc of
o 1 l : =O: i=l. . 3 I'
0;1 , : a:rO; i - rn I*
01 1: ~ I mi J: i1rn
01): - 1: ~• rn /*
oi]: = [mi); i~rn
Cli] , -= l; i=l'.'n /'
01 l: "' [r1. J; 1~

itt'n

Set all rni l:O be Vl\R "/
SQt tho 1:eceiv er r-ri to VAR. •/

s ot l:ho receiver en to CON w/

Set t.he receiver l:'fl to l which •/
desiunaLcs OPND has been receivad •;

~6 4~

UH'UT BIJS 1 -- ·ll --- II
A-E ZEIW [7 •• 1] 7 [O.,fl) I

ros,ct -•-----..-i ~ I U~.F-SP

c-1\.o OU1'

v-w

RN-BITS

4

J
::i

Gl::NERA'i'OR

•1

U-1-1~1{1

P-SP 1>1EH,OR"i

t Mll:M0R'l
I MOOULE

I
I
I
I
I
j
I
I

F----1-----......;.---- ----,<-:;-'~ UStD S'I'-1\.'l'E

U OU'l'
It-SI' OtJ'l'I

: ~ = et 1 I _, ORIGI:N &

1

; U Gi\.Tt 7 ~ L'ENG'l''I

1 9 I

4

(b)

A-!l: Z~RO

'BUS l7 •. 7]

u-w
t'C9al:

- ---- - -- - -- - _ J

U,r.?-SP ~1.ENORY MODULE

.--------------,
·--------- ' l
t
I
I

01
D2

1
Q:!

CR
CL

C-U C,:EL'H.:ltNl"OR

ot.n"PU'l' BTJS

11.Y u-.:n:v STl'l'I'E

~c-

01 Q1J:::: UJ
02 02 · U2

Ul

HSD I ~u: ul : LSI!

I c) c-U (.;£~E.Rll.TOR. Bi

Fig, .3,8 Tht! Con figuration or t.ho lJSaF'-SP MOdul~

41

a
from HWUT BUS

F-S?

IlMP S'l'RT

E/ot,!P OU'l'
J\CK

C-M CTJ'~

ra:;c1;t

*l- U UU'I',

A-It Z&RO

IUH:J:
M

•
~-~

U6<.F-S£l

CNTR.L

MODULE 1=: 1-1~

2 - li'-S l' OIJ'l'

U6<1-'-SP

MEMORY

MODULE

4

8 t;Q
t-,t • OU'I'Pl'J'l' BUS

USED STM•£

ORIC:IN .!<
l.ENGtH

I E/C ACX

---F-SP 001'11::
--.....t,, E/DMP OtlT

NX'l' R~

t ~) Wi~in9 or U&F-St ~ODULE

47

INPUT lllJ:!.

P-Ail-11 t'l! (Jlslc,r

4
I'-J\1)-H I •ii

J>~J\D-ORG

P-i.oAD

P--ORG-CR

ADV

P-W

LEN

P-AD-0RC CN'rR

4

.3

P--OlJT LEN CN'l'R
I

t'.j

----- - - -7

P Mt:.MOHY

256X8

MM

8

P Clll'l'E

I ,

I
I
I
I
I
r
I
I

6 I
I
I
I
I
I

P MOm.ru:
I

P-FULL

P-ZBM

I

ERn
1

__ _ __ - l s - - -OUTPUT uas ·----

(b) P Mouulo

.Fig. J . 9 C:onfiguratioh of the P "cntQry Module

4

9 8

from INPUT BUS
. - ' .. , ;

l'-J\.IJ-H .
,l'-1\ fl-<)RG

-

i..r::-. -

2 P• t l.U'lj _
'l'Y ~

T'-Flrl,1, [' MOOUl.,I':
r:n-Zl:':!tO ;-

LF.N-z.E:RO

•J--
t:lll\

•l f1l)V

~!RR STRT
r- l' Ct:'J'RL

1,-1,s

i' -lEJI'\ S'.l'R'f -

LA

I\

- M-:::.DULJ":
lN I.U:A.DY I I

• lN :lERO

l' READY ;: _ 1;/C J\CK

I i
/DMP ACK E/OMl' NXT i

I I
"P S'.l'R'r E/0~~ P J.ST f .

I I
~P"l' STR'I' I I

OPT NXT R£1

-IUlE'l'-R [)'f - I
'

F OPT LS'l' REI

' . I" MBMO.RY IX

rl DL I--- ---.
r

~

.
'P-LOA D

P-ORG-cn

(a) wiring or I' Me11K>ry Mod.ulo

to
DIITP".,'T
ElUS

EAn'i

MOY

OY

IJY

NE

4,9

We have no'vl co. pleted 11.e design of the data- flow struc

t re of the eel Block .1odu 1 e. The next sectio exp ains the

design of the corresponding control structure.

~.2 The ~esian of th ---~--"---'-'-~-----------
As r rte data- flow structure, the control structure of

t:he Cell Bloc Module is develo.ped step by step fol owi -g t.he

top-do\.Jll approach, resulting in a rnodu ar structure.

The original abstracts ecification in. ADL (Appendix 1)

is translated into a representation utilizing Petri ets {

Appendix 2), and the goal of the des·gn activity with respect

to the co.trol structure is described in terms of the Petr·

·et rep.rese ta ion as follows:

Given the Petri _ets representi;g the original abstract

specif"cation, the Petr· ets are decomposed into a modu ar

system with each module also represented by a Petri Net The re

sulting Peri ets will be augmented with the opera ions con

ce.rning the characteristics of the actual devices.

Each ,od le of the resulting modular system is ,. rt e r de-

composed into submodu es acquiring ore datails This procedure

is repea ed until eac of the resulting modules becomes simpl,e

enough to be easily i ple e ted f om t . · e detailed Petri , ets,

by Patil's realizat·on sch€me.

49

Priorities between Centro Seauances

At the outset of the design process, the. priorities ass,o

ciatea with the execution sequences in the Cell Block Module,

as given in the ADL specification1 are examined and incorpo

rated in the control st~ucture.

Four processing seque ces, are distinguished in the origi

al abstract specification: two of them are the E/C SE UELrCE

and tbe OPT SEQUENCE, and the other two seg:uences are a se

guence, called -1T SEQUE.CE, which performs initialization

opera ions for the ~odule upon the arrival of a reset signal,

and a sequence, called. RUN SEQUENCE, wb.ica changes the r n ing

state of the Modu.le upo the receipt of a run packet.

Each of the four SEQUE.tCEs is activated independently upon

arrival of the corresponding s·gnal or packet.

The priorities given by the spec"ficat·on are as follows:

The reset signal has priority over other signals and packets

J.n the sense that the arrival of the reset signal forces the

Cell Block Module into a state in whicb the INIT SEQUENCE is

executed. This trans fer must be performed i:mmedia.tely on the

arrival of a reset signa_ reg3rdless of the operations bein3

executed in the Cell Block Module. As a result, if the cell

Block Modu e. is processing a packet. pa.rt or all of the nfor

raation conveyed by the packet may be lost upon the arrival of

the reset signal.

50

Once his state is :r;eached, the IT SEQUE CE is executed

t_ O t 11 t * l . rese every ce s -a e.

Processing run packets may be inhibited by the reset sig

nal, but it tar<es precedence over the processing of other sig

nals. On the ,arrival of a run packet at the Module, · he run

ning state is switch ed ove.r from he enabled st te to he dis

abled state or vice versa. accordi g to the type o- he run

pac~e . This switch"ng, however, us not ·nterrup _ the E/ c

SEQUE -cE and the OP"r SEQ ... CE, if one or bo, th of the. 1:e in

progress, to avoid destroy·ng any info a~ion be"ng precessed.

By inhi.o"ti g further processing of packets by these two se

quences (see below). al sequences in progress e1entually

terminate. The state switchi g i s then carried out.

On receipt of an ena.bli g ru p:1 cket the runn · ng

state is switched over to the enabled state. An event/co:runand

packet or an operation packet may be processed in th is state ..

On rece·pt of a disabling ru packet, the r nning

state is switcbed to the disaoled state. The trans ·ssio:n of an

operatic packe is inh"bited in this sate~ while event/com-

mand packets are processed. e disa':)led state of f;he unning

state is au ores tically achie·1ed after the !NIT SE ENCE is

*l The abstra.c Cell state is r ,einitialized although
it may involve resetting only certa ·n memory words.

~

5

executed.

An E/C SE .:. .. CE or an OPT SE UEr CE in progress ay be

interrup ed and ter inated by a reset signal. Further initia

tion of these sequences. are inhibited by a run packet which dis

ables the Cell Block Modu e,. although any such sequences in pro

gress is allowed to run to complet·on.

The behavior of he cell Block odule as governed by tbese

priority rules can be represented by a Petri Net as sbown in

Fig.3.10. e hardware odule imple.nenting this str·a'-:.egy is

called the RUN CO.TROL module and is easily realized using

arbiters and other conventional dev·ces.

Resolutio::, of Conflicts

Our design allows the concurrent execution of the E/C SE

QUE CE and the OPT SEQUE" CE. They may access several sections

of the Cell Bloc Module si:nultaneously. generat·ng conflicts

in these sections. These conflicts must be resolved to ensure

co.rrect module behavior.

There are fo:Jr such sections which are introduced in the

specification or by the characteristics of the chosen devices:

the packet output port, the c Memory1 the P Memory. and tne

FIFO queue.

Tne packet output port is utilized by the OPT SEQUENCE for

transmission of operation packets and by the E/C SEQUENCE for

52

,,. ... -...
uri pac'iii;et

so,urc

t h

rasat 5igna inpu a.al< fe/c packet)

•o•r::.ttJ ctr
-l~I'I.'

running
st:ate cf

Cell Block
Hcdulo

--~-
rb

I I

arb

sync:

sync

p:roCIC!!'IElll'lg of
1 nput. (<:!/c)

ack•-·

TRM. OPT PKT ' · w O ---emtblcd

' =:!i~
1

LJ sou~c e

-,---- -- ... _

cell-ad

~

--arbna~- ready 0 sou:r;ce
I

---...
siqnal

...... _
transmission of
o~rat.ion pack;

Pig. 3,10

53

A P,et ri ~et Roprasent.a t.ion o,f Run Control Module

~r~ --- d.rbilration
riync -- synchronization

rllT --- lnii.iillizal:im1

T,t:4 OPT PK'l'
tranmnisaion or
cpe.r~tion p3ckot

53

the trans~~ss~on of D~_ P packets or ERROR packets. In tbe

specif "ca.tion, the pac et. output por_ is oefined to serve

both sequances1 yielding the ossibi ·ty of con.:licts.

The P and c Memories a e selected from conventional LSI

memory devices. None of them allow simultaneous access, and

hence y .·eld the possibility of conflicts.

Reg~rding the F~FO queue, there already are se~eral types

of asynchronous FlFO queues available today, which are capable

of processing two concu rent accesses to them, one at tbe input

port and another at. the output port.

By ex:a.rni ing the specification, we can determine some

characteristics of he utilization of these shared resources by

the E/C SE UEKCE and the OPT SEQUE~·cE: (Table 3 .1)

(i) Both the E/C SEQUENCE and the OPT SE UE-cE a ways use

the c Memory.

(ii) Usage of tbe FIFO queue is c osely rela ed to he

usage of the C Memory.

A useful optimization which does not degrade

performance is to allow the access to the FIFO queue

,o ly w en the acces,s to the c Memory is granted.

(i.ii) It is observed that no sequence can utilize the packet

output port while the other sequence utilizes the P

Memory.

Tnerefore, it is also harmless and helpful to

54

Ln
U'1

c Memory FIFO queue P Memory Output port
• • • • • • • • • • • • • • • ' • • • • • • • • • • • • • ■ ··········••·••· .. ·······'·· ,.. ,., ...

OPND 0 6 0 lZI
■ • • • • • I I • ~ • • ■ ■ ii ■ • • ■ • • • • • f • • ■ ~

ACK 0 6
• ■ • • ■ • ■ • • 9 9 * W ■ ■ • • ■ ■ ■ • • 4 • • • • a 6 i • ♦ 6 6 6 ■ • • f • ■ • ~ ■ 9 • "' ■ ■ • ■ ■ • • • • ■ ■ ■ ■ ■ I + • ■ • 4 ■ ■ •

SET-INSTR Q 6 0 (ZJ' j • • t ■ • • • ■ ■ ~ ■ • • + ■ • ■ ■ • • ~ • ~ ■ + • • ■ ■ • ■ ■ ■ • ■ • 9 • • • ■ • a ~ • • • ■ • • •

SET-ACK 0 6
• • • • • • • • • • • • • ■ ■ • • • • • ~ ■ ■ ~ ■ • A ., A • ■ ■ ■ .. i i • i ■ ililoi ■■

SET-VAR ,o 6*
• • • • • • • • • • • • • ■ ■ • • • • • • • ■ • • • • • • • ,., • I "' + + ■ ■ • ■ • • * ■ ■ ■ 4 ~ W ~ ■ ii 4 • ■ •

SET-CON 0 6 0 0
• • • ~ • 6 • • • • • • • • ■ • • ti • ,. .

DUMP 0 fZJ 0 0
• • • • • - • • • • • • • ■ • ~ • • • 4 • • • • • • • • • • • • • • • • • • + • •

OPERATION 0 o, 0 0
• • ~ • • ~ • • • + ~ ■ • • • ■ ■ ~ • • ~ • ~ i I ~ • + + + ~ • • ~ • ~ • • ■ ~ • • ' • • + ~ • • • • • • ■ • ■ ■ •

ERROR * 0
• • • • ~ • • • • • • • • • • • ■ • + • • 'P •••

*l Input port is secured. Impossible to utilize the input port
for processing the succeeding packets, anyway.

*2 Actually never utilized { result packet arrives later). But
specified in the Specification.

0
Always u ti l:ized.

6
Not always, but
utilized if the
associated
conditions are
satisfied.

0
Never utilized
but no way to ba
utilized anywav.

Table 3.1 Interrelations between the Resources with respect to
E/C and OPERATION Packets

simpli .fy tne situation by specifyi g tha the packet

output port is accessible o one of tbe SE UENCEs

only when it ·s alloued to utilize the P Memory.

With these additio al constraints the conflicts are re

solvec:3 without deadlocks, as sho\tlJl in Fig.3 . l_ by a Petri et,

by utilizing two arbiL.ers one for coordination at the c

Memory a d the other fo the P 1' emory.

The hardi.,tare . odule wh.icn i .plements this behavior is

called the RESOURCE ALLOCATIO~ ~odule.

RESOURCE ALLOCATIO Module

The E/C SEQUE-cE and the OPT SEQUENCE must be grant-

ed permission to .se the C Memory to b e gin operation ..

The E/C SEQUE CE, then, reads the cell state from tbe c

Memory, whicb may be sufficient to process certain types of

packets, and, if necessary, requests the RESOURCE ALLOCATio_·

Module for using the P Memory. The module checks if the P iemo

ry is ut" liz,ed by the OPT SEQUE CE and grants perm· ssio.n to the

E/C SEQUENCE w:1en the P Memory is released by otber sequences.

Tbe E/C SEQUENCE, t e .n, makes us.e of the memory, and co:n

p ,l e tes its opera ... ion. Each of the memories may be eleased in

dependen ly on the completion of the correspondi -g shared re

sources in each secrJence.

5,6

If a ready signal from the Arbitration. et-.... ,o~k is asserted

and thee is at least one enabled cell. the OPT SEQUENCE waits

for the release of the C ,Memory,. and se.,..,ures the C l emory upon

receipt of a grant signal issued by the RESOURCE ALLOCATIO

Module. Ti e OPT SEQUE_ Ct. • hen waits un ._ · l the P e .ory is re

leased by the E/C SEQUENCE and starts its operations.

Thus , both SEQUE~ ~cEs can ace es s the snared resources with

out deadlocks.

This resource allocation strategy is depicted in Fig.3.11.

Exploiting th_:€: concurren '.:. Com12:u tat ion Capability

The completed data-flow structure has the capab"lity of

performi g the update and the initializ:ation operations of a

cell state in a very short time~ Based on this characterist·c,

the concurrent computation capability ma.y be exploited.

eo,nsider the scneme for the resolution of conflicts, as

explained in the preceding· section. T , e OPT SEQUB ~CE starts

packet transmission using both the c Memory and the P Memo y

at the s a.me ti.me. Howeve r, it takes a. long time to comp le e its

sequential me. ory access o the P emory. The total access

time to the P Memory includes as the primary factor the cycle

tim.e of the P Memory multiplied by s·xteen~ while he OPT

SEQUENCE releases the c '1emory immediately after the completion

of its operations on the c Memory. Therefore, there is a long

57

U1
(X)

start
processing

I.a P Memory
required?

do process i ng
with respect to
C Memory

....... -..., ~
--_

~~ -...

packet
ready

..._.....,. --
to *l to, *2

*l *2

merge

....
to *4

*3

to *5

... ,
........

~
\

\
\

arbnet-ready

\

- secure C Memory

proC'essing

do processing with
respect to C Memory

\ to *3
\

\
\

\

' do processing with

do processing
with respect to
P Memory

r,espect to P Memory

Remark: The pat11 pas,si.ng through the link * 5 consumes the longest time. Thus the
path passing through the link *l can be executed while P Memory is utilized
by the transmission sequence.

Fig. . l Resource Allocation Strategy

gap in time between tbe release of the C fi emory and that of the

p Memory by the OPT SEQUE CE.

The E/c SEQUENCE, then~ can process packets in parallel by

taking adva tage of this time gap in the OPT SEQUENCE'S de and

on the c .!emery, as long as each of the packets can be process

ed witho t us·ng the P emery. This time gap is estimated to

he long enough to proces.s three ACK packets •

This s ,cheme still suffers from limitations due to th.e lack

of parallel accessing capability in conventional memory devices.

Even though the C Memory is often available to the E/C SEQUE~CE,

it is not able to take advantage of the opportunity if it pro

cesses a packet which requires access·ng the P Memory.

More parallelism can be incorporated if the configura ion

of the P Memory consists of multiple memory devices to allow

parallel accesses, rather than just one a .s showtn in this design.

This becomes clear when we consider the execution 0£ a data

flow progra.il.

During the normal execution of a program; only three types

of packets are in the entire architecture, namely the OPND, the

ACK, and the OPERA.TION packets .• Assume hat an OPND is received

at the event/ command packet port wben a.n OPERATION packet is

under tran . .smission, and that. the destination cell of the. OPND

packet differs from the cell address from whose conten.ts he

OPE.RATIO packet is £ormed (which has very high probability

59

RESET SIGNAL PORT

fol/ ·t: 1-•<1

disable

! .__I -

RUN]?JCT POil 1'

'-._ :RUN OONTROL MO0UJ,E

61

l~PU'l' {c/c) PK~ fO~T inpu
I

proecssi.ng r1.•ady
/ I

IN PRC

[23=='.,NPU'I" <e/o)~ roady I•

no-op

Gil I !/ Pile

St~rt input
pkt proccs.aing

' I :rn 1' .~l:.l •

'

...__ C

I

~~i.ng

-TRN

g•=RY 11 . ,'I TRM Ur<·- , - . ..~

Tru.l OPT C MEN_.,, _-==._ ~ .~- M-(
"""" - '- •

0

ooket ---= I ot I q= "· 0 ~:~:.,~ ,
oou:rco t

FlFO sou.i=ce
(Ol'IAl).led cell)

1111 C MEM
CONE

RESOURCE
ALI.OCAT IOt4
MODULE

__)

M.E!,! DONE

lt1: c:.in be rami
within the
RESOURCE
ALLOCl\'l'ION
MOOULt

ied

ated with a control module, and operated only through the con

trol signals issued by the control module. Eacho~ the control

modules receives command signals specifying the sequence to be

executed and initiates the activation of the sequence~

This conf · guration ba.s the following advantages. Firstly

each odule can be accessed from both the E/C SEQUE 1CE and the

OPT SEQUE CE. Therefore, both sequences need not have separate

mechanisms to control the same data-flow module. Obviously, the

number of bardware de.vices is r ,educed

Secondly, the numbe·r of control s .ign.al. lines, connecting

a data-flow module and the associated cr-~trol module, re ila.ins

almost · he same whether the control module is expected to serve

only , one sequence or several sequences. The obvious reason is

that tbe complexity associated with the capability of executing

several sequences is transformed into the cop exity of p.:-o

grams memorized b,y PLAs or ROMS1 and does not appear in the

.form of the increased number of devices and connections .

In addition, if PLAs are utilized in the implementa.tion, even

the execution speed will not be slowed down significantly by

complexity. "'herefore, the inberco nection is simplified and

will r ,esult in the reduct 'on of tbe number of control signal

lines.

Thirdly, a control module never receives more than. one

command signal at a time due to the t11 tual exclusion which is

63

guaranteed by the RESOURCE ALLOCATI O Module, and herefore no

mechanis,m to coordinate the req:Jests is necessary. A control

module, ust return to the seque!'lce generating the command

signal a doe signal on the completion of operation. The ack

nowledge scheme can be implemented correctly by broadcasting

done sign.as to al modules. because there exists only one

such SE UE CE. Therefor,e, no other coordination. mechanism is

necessary.

The fourth advantage is related to the second one. The

!NIT SEQUENCE, wnich ba.s • . ot been examined until now, is easily

incorporated into this structure at the cost of slightly

increased complexity of programs stored in soni.e of the control

modu.les6

Ernploy·ng the configuration discussed above, the E/C

SEQUENCE and tbe OPT SEQUENCE must perform the following:

1) to, request per ission to utilize sb.a_ed resources, 2) to

issue command .signals to the appropriate control modules,

3) to release the shared resources on the completio of th.e

correspona ·ng operations, and 4) to return to an initial state

for further packet processing. This behavior is described in

the Pet i Nets shown in Fig .. 3 .14 through Fig . 3. 20.

64

lN PRC
REO

input (e/c),
plct. ready

S'r,\RT
PRC

L0/.\0 •ry, r n.,
e-1\o

r ME:M P MEN
HEQ I t-1-11.C:!-: IN-RiUl.m' tl R

r
.

-- ---· -- .···----
ERR I ·. C - -- ··-- 9, - ·- -~1}

. ----1 • I N

--1::1-0-

I ,_ ,._

I
-c . I I I

input. l]jnd. Wai I: ..6 I j I
prOC:llSSing
rea.dy

Fig. 3.l.

1-1-
OIJMP

~CK1.__~o. \ I

'.I ..

Behavior of
IYC 511:Q,UENC:f! CN"rRL
Module,

65

.----1- 1--I' Jool a,.I

H-R
STR-1:'

N-R
OONE:

l\,-E
S'fR.T

A -E A-f:
ltUtRT DONE

p r-ll::M
S'l'RT l' Ml-:r-J

, LOAD i'-AD-H,
P-1\1)-0RG,

EN C~"I'R

1.01'1 D l>-AD-H,
•~ CL!l P-AD-O~G

~t F-SP
STRT

F-SP
OONf.: S'l',1!1,'l'

m~P '-. DMP P ~
C MEM OOtrn
!JONE

U,l C MEN IJOtw.

to
input processi~9
l!'~acly
{ rel:. u-i:n :i oo1-:e1n

IN P MSM DONE

65

TY

rn-ZERO

IN- READY
START PRC

P ME'.M GR

P MEM DONE
M- R 001:E

A-E 00 E

F SP OONE

D:-iP C MEM DO "E
mP P MEL DO E -

. -
~ ,

. ,

-.,
I

~ ,
E/C

'

- SEQUENCE
,

-I
CON'I'ROL -,

-
~

MO.DULE

.
r

·~ ,

.-

-,
-

.,.

-
~

. ..
,,
. ,
-.,,

-.
. .
-.

~ ,,.

~

~ .,

. .

. .,

IN-ACK
{ provide ACK to
e/c pkt port)

IN PRC REQ

LOAD C-AD

LOAD TY. rn

P MEM REQ
LOAD P-AD- E
LOAD P AD- ORG,LE.

CLR P- AD-ORG
P MEH STRT

M.-R STRT

A-E STRT

F - SP STRT

DMP PRC STRT

.A - E RESTRT

ERR STRT

INC MEM .OONE
IN P MEM DO .. E

C R

Fig. 3.15 Wiring of E/C SEQUENCE CONTROL Module

66

TRM OPT 1u;Q ST.RT TR.'1.
OP'l' P ~tEM
STP:'l'

A.!lDm.~r
iREA.DY

oporatic;m
p.,cket
l:'l('Anll

miss.ion
cilHtdy

*l

(

Con11 m:::t l" U'O]
output to
C-AD & l?-1\D-H .
while to!l:en
is bore.

---------~ ~

load c-AD.
P-l\.D-1, .•

clealt P-1\.D-ORO.

Ftt'O so·u rc:e
FIFO 01.f'l' RF.ADY

FIFO

RETRIINE

on 1\-'ll
S'FRT

(a) H.eh~v.ior of 01?'1" TRM CON'I'ROL l'!odule

t• MEM OOhi~"!

'l'RM P M F.l>t PON!-!

•1
f ope.rat.ion pilck~t

transmission re~dy

l ~ .,. TRM C M.EM DONE

H-!il. OONE

OPT M-R STJl1'

11.-E OON:t::

STRT T'RM

H'O OUT RDY

11.llDt.11!:'P Jt.Oi'

ii !r1EH OONE

1\ - E OONI;;

M-R OONE

I raso

-.
-
--

.
-.
.

')

OJJT '!'RM

CONTROL

HODULE

Fig. 3 .16 Bobavior o,f' OP'? SEQIJEN:Cf: contt"ol Module (b) Wiring ol OPT 'I'R.14 C0l'l'i'ROL Module

67

.

-
-
-

·-.

.
::

1'RM OPT REQ

Fl FO ltETlUEVl'>

OPT SW
OP'i' Wh.0 C-A[l ,. P-A.D--ll

OP'l' C:LR P-J\D-11, 1?-AO--ORG

OP'J' A-E S'l'R'l'

OM' M-R STR'l'

OP'f P KEM S'l'RT

TRM P M.E.t-1 DONE

'l'Rl'I, C M.rlt-1 00ml

67

lt.-t!

A-E
ll..F.S'.1111.T

OPT A - E
S'l'R'l'

case OPNO

II

A tA-E A-E r,'1

hold pattern (l l]

.dtil\ -E A.-t: W

J'ig. 3 .17 Behavior of A-& cm:iru. ro\odul8

B

FIFO w;m 11
• f'IFO I r-; RO'i'

hold pa'l::.tc.rn (□ DJ

A.-E ~llONii:

INI'l'-W

o-----1------. (S:lN~ J

A-E W

~8

°' "°

M-R STRT

OPT M-R STRT

M-R ready

•m.t-----------------------------
OPNP R-W

hold OPT-SW = false

SET-INSTR " - w ~ it, M-R DONE
- VAR " M

-CON

bold OPT-SW= true

Fig. 3.18 Behavior of M- R CNTRL MODULE

F-SP STR'r

DMI>
S'Jr:ll'I'

,--
M- R r e ady

Fig. 3 .1

70

F./C 11.Ct<

E/JW-tP OUT
l"lX"r RO'i

IN REl\DY

?

B/JX<ti' Oll'l'

ACK

l!lohavici:;" of U&F-SP CNTRl, Modul

F-S~ OONE

to
H-Jt ready

70

I> l'\ODtrl:.E READY

1

F.RR S'rll'l'

~
p HEM STR.T I

OPT

71

£/IIMP
f:/IW,I'

l'lX'r LS'f
ROY RDY l'IClit E/C l'IC.K

N
'>

hold I P-OUT• tru

I

LST J

r-W

P-W

P'l' ~X'I' ROY
OPT LST RD'i'

hold P-Omaotrue

I A_DV

.6t.

•2

ID\P S'l'Wf t------ ... S;u110 i19 OPT S'l'llT , cnc:cepl:.
ron•1nim h:nLion l.i.n~a.

l'l.cltl,u:c J\R!HlE'l' RO:i ,;,litll
1:;/11MP IICl<.

OP'I: NX'f' ROY with t./bMP NX'I.' ROY
n P'l" l~•w R DY l>lit.h E/D:'tP LST RD'i •

"'1 P ~onu:u: READ'i

P MEMORY DOW

4it

IP ig. J , 2 O Bchav i1;a:: of 1• CNTR;,, Modiu lo

71

3.3 ti scellaneous cases

Handling of ERROR PACKE

It is ecessa.ry top ovide a special purpose odule, the

ERROR DETECTOR, which is a combinatorial circuit to detect

whether an event/command packet is an error pacKet or not.

is expecte t hat the d ,etector i .s realized wi t h PLl which is

- J..
1..1..

encoded t o detect every packet. The wiring of ERROR DETECTOR

is shown in Fig. 3 . 21.

Once the detection signal can be generated,. the sequence

which handles the error packet is easily incorporated into tne

E/C SEQUE~ CE. (It is incorporated in Fig. 3 .14.)

Handling of ff :1~P PACKET

The sequence wh'ch handles a DUMP packet is also incor

porated into the E/c SEQUENCE, but for t'his case, the sequence

is encoded 'nto a dedicated module~ named DUMP co_TRO Module,

because of its complexity The behavior of the DUM.P CO TROL

Module is: depicted in Fig. 3. 22.

Handlir.g 0~ I IT' SEQUENCE

The I IT SEQUENCE is ,encoded into a dedicated module,.

named INITIALIZATION MODULE. The behav·or of the module is

depicted in Fig. 3 .. 23.

72

TY

rn

E (,enabled)

F (ack-flag)

RCVD S ATE

USED- STATE

A- E ZERO

RUN-IND

reset

.

.2 ,
I

I

2'

3 ,
I

4 .
I

,+.
I
I

. -
-

I

--
-.

-· ' ERROR

DETECTOR
,,

..
I

Connect to a disable
terminal, if exists.

-
I

rn ZERO

.

. ew E

~ ew c-u

~

- ERROR

Fig. 3.2 Wirings of ERROR DE ECTOR Module

73

TIM? rc~dy

, "'
OMP PRC S'l'R'l'

RF.SE'l'

E/DM P NXT' R DY E/0.!,,;Fl ACK DNP C MEM DO~E

~
~ , ~ ~

~

bold hold held
ERR "'t:r;ue A-1:; ou·r H-OUT
P-OUT=l:.ruc =t .rue • t~·ue

M

11.11,u:rt

- . .. -

NIT-W

rnsot

Close the 011 tplit o .
t:ho o/~ pkt port.

(to b~P ready)
•

;
,

hold
R-mJT
~ cr11<l ?I oo P P MEM omm

/.. /

CM~ 11/C
STRT 11C.&:

~
U,&,F-.51'
CO.N'l'ROL MO0IJUi;

' ' . \
I '

MP P 1-t~ORY
S1'R1' 00 !iE ...___

P M Ell-UlR"t CONTROi, MODULE

C-At> CN'i'R & wait ..i:l.'t

(sink)

Fig. l,23 ae~~vior of l~itial~z~ti0~
Cantrol Moaulo

Fig. 3.22 Bellavior 0£ PM.P
Contt'ol Module

74!

An addition;al circ it section w _· ch generates a signal

I - READY is depicted in Fig .. 3 • 2 3 .

,. e have co pleted the design of tbe control odu e, and

combi ed · - w~tb the data flow struc ure developed in Sec. 3.1

to co.s rue t:e comolete cell Block odule. This p oposed

design is e aluated in the next chapter

75

e/c pkt port INPUT BUS

suppresses the outpt
lines for I PUT BUS
to be zero I s,

--------~- IN-ZERO

IN-RMDY

"' ;c---e/c nxt rdy ,,
e/c 1st rdy·

Fig. 3. 23 WIRINGS OF E/C PACKET PORT

76

Chapter .

4 Performance Analysis

Th,ere are several para.meters w ich determine the cost

performa.11ce of a processor, such as · ts architecture, power

cons•..1, pt.:.on, physical size, the number of devices and their op

erating speed. In ou:c design for the Cell Block Module, the

co. rol structure is not implemented with random logic, but is

assu:r.ed to be constructed from PL.n. 1 s (Chacter 2). The actual

constructio a.y result in any of a number of hard ..rare con fig-

rations depending upon the specific PLA 1 s to be utilized.

Ther,e is a significant difference between the various conf ig

rations regarding speed, power consumption, size and the num

ber of devices. In this section we will only analyze the per

formance of our proposed desigµ based on time estimate for

executing the various cont_ol functions and data operations.

Consideration of other factors are postponed until a specif

ic implementation of the control structure is chosen

The operation speed of the entire cell Block Module can

be estimated by estimating the ope:::-ation speed of tbe various

control structures. and data operations. T'he latter is easie.r

since the da a-flow structure is given in terms of memory

modules. counters, registers. and FIFO buffers. Every control

77

segue ce? a_t the lot;,esT. level is described by a etri et whose

events are ~he data operations. We estimate the operation

speed of each sequence by postulating a reasonable time est·

mate for the control fu ctions necessary and calc lating esti

mates for the data operations from data on the operation speed

of such devices as emory modules, counters, eg:sters, and

FIFO buf"'.'er. Since the design does not specify particular

devices a ai able on the market, an average speed for these

devices is used.

The estimation is as foll~is:

an access to rne.ory devices and FIFO queue
(a bipolar speed is assumed.)

an ope ation by ot~er functional dev · ces
in the. data-flo,•.-1 structure

eac: action at the RESOURCE ALLOCATIO
ModuLe such as L PRC RQ

ransmission delays at the event/command
port and the packet output port

--- 50 ns

- - - 20 ns

--- 30 ns

20 ns

Because the operatio:'.I speed of the Cell Block odule for

the normal progra:a execu ion is of the utmo.st · mportance, w,e

shall only provide the performance ,estimate for the processing

o,f packets associated with prograJ execution ..

Assuming that both the C Memory and P' memory are ava·la::,le

wben accessed:

type OPND case·: 1090 ns

This estimate includes 7 x 70 ns for receiving t:he 7 bytes

78

of opran data and stori g them into the P emory. The other

necessary operations a e the extraction of a cell address from

the operand pac>et, retrieval of the startin;r location and the

ope.rand register le.n.gth in bytes fro t'he C emery and setting

them up n cou e:rs and the memory address register of the P

~ie.1 ory, updatin 3" the contents as the operand is stored.

type ACK case: 420 ns if the .ACK packet enables the corre
sponding cell

320 ns othe~~ise

An operation packet .:.s t ansmitted by ,executing the OPT

SEQU~~CE, its estimated execution time is. again assu ing that

no conflict at t e C emory or the P Memory ,arises:

type OPERA1_0_ case: 1820 ns

This inc udes 6 x 7 0 ns for fetching 16 bytes from the

P Memory and transrnitt ·ng t em to the Jl,rbitration ·et;,.;ork .. The

rest oft e time is consumed in access · ng the cell state and

setting up and maintaining counters and memory registers.

Assuming that 1) every Ins truction Cell uti1izes 2 op

era.nds and 3 ACK packets, and 2) every ACK packet is processed

concurrently with the execution of tbe OPT SEQUENCE, t e total

time to process the enabling and firing of an Instruction cell

bec,ornes 4000 ns (l820ns + 2 l80ns) • Instead of 2) , if we

assume, as for the worst case. that 2) 1 no A. CK packet is e,ver

processed while the execution of the OPT SEQUE CE is performed,

79

then the total time bee~ es 5060 ns (4 000ns + 320 s 320ns --r

420ns). I_ may be reasonablEl: to regard hat half oft e. CK

packets are processed concurrently with the execution o'"' the

OP SEQUE:.'CE on the aver.age, thus 4500 ns is obtained as the

average execution time of an Instruction Cell .

Because of the conflict resolution; the OP1' .SEQUENCE or

the E/C SE E.;:icE is once in a vlhile forced to wait before being

gran ea access to the memory modules. Taki .. g this in o con

sider a io::1, 5 p.s is estimated to be the average exec _on ti.. e

for an Instruction Cell, to transmit an operation pack,et. ..,r~ • ch

can be restated as 0 .2 MIPS (illion Instr ctio Per Seco.a

for the througl1:;:icut of the Cell Block Module as designed.

There=ore, a Memory S,ecti on consisting of~ for example,

512 Cell Block ~:todule.s has a 20 (s_) :MIPS throughput when 20"1f..

(50%) of the Instruction Cells are always enabled.

It sho ld be noted that the, above values change sign· fi

cantly under different conditions, for example the nurnbe!:' of

operands per Instruction Cell, as well as the nu ber of ACK

packet.

80

Chapter 5

5 .• .sions

A logic des· gn for the Cell Block _ odule has been complet

,e=:, ,e:-:-.?loy..:.ng conventional commercia.l electronic devices avail

able today.

The resulting arc:-d tecture for.ms an asy:r.c 1ronous 1::idular

system wnich · s derived from a top- down decomposition of tn.e

spec· ficatio •.

The co figuratio:1. of modules, as ,;,,1e.ll as the internal co -

figura ion o_ each module, is optimized to yield as ructure

as simple as possible. conventional synchronous LSI de ices are

heavil emolo- ed i t e modules, yet the modules oe a e asyn

cbronous_y because of the use of de _ay 1 ·nes a.llowing an asyn-

chronous co. nicatio.. protocol to be simulated ..

The resulting configu_ation is considered to be

small in size for the relatively complex operations to be

performe::i.

_isl! Soeed co. putation cqpabili~y

Throughout the design pro,cess, the nigh speed computation

capability · s pursued, leading to an archite•cture which can

process operation packets and certain types of event/command

packets cone rrently This capability does help the resu ting

81

architecture to achieve a big speed w,icb ·s estimated to be

comparable to the proje,cted speed in t e specifica ion note

[] . owever, a higher degree of co currency is ach·evable~

Exploiting this concu rency fully can :r,esult in a faster compu

tation speed, not ava · lable in a conv,e. tional scher.ie for many

applir.:ations.

l.m.E£~nt

The desired improvement in the processing speed can be

,obtai ed by e!nploying a - :ulti_ple emory configurat;ion fo the p

Memory, so that the P :Memory can be accessed by the OPT SE

UENCE and the E/C SEQUE-CE concurrently provided the cell ad

dress dealt with by each SEQUENCE are different.

Because the conflicts at a cell address by the twos ·

QUE]CEs will rarely occur under normal program execu ion~ even

packets can be processed almost in parallel .. The overhead at

the RESOURCE ALLOCATION Module may introduce problems.

8.2

BI BLIOGRi\PHY

1. · ennis 1 J.B .• ". odular, Asynch o ous control Structures
for a High Performance Processor , " Record 2.:£ he Pro · ec t,
lAC Conference on Concurrent Sys ems and Para e l

Computat ·o , AC$ New York, 55-80 (1970).

2. Dennis, J.P., "First Vers.:.on of a Data Flow Procedure
Language," Lec ture Notes in Co!!!E_uter Sc~ence 19, Springer
Verlag. New York, 326-376 (1 ~74) .

3 ~ enn is, J . B . . , •i Packet Communication Architecture, "
Proceeo ings o.,. the 197 5 Saaamore Conference on Parallel
Processing, EE, 22 -22 (August 1 375).

4 . Dennis , J . B _ , eu n g , C . K. , and Mis u as , D ~ P . , 1
' Specif i

c a ti on of the Ins true tion Cell Block for a Data F 7 m,
Procrssor, '1 ata Flow Design Note 1, Co . putation
Structures Group, Laboratory for· Computer Science, Mass.
Inst. of Technology, Cambridge. ass . • December 1 ~75.

5. Denn.' .s, J ._P . , and Misuna.s, D.P ... , 11 A computer .~rchitocture
for Highl Parallel Signal Processing, ' 1 Proceed.:.ns.!!., of the.
ACM 1974 ~]a iona confe e._ce, 402 - 409 (November 1 Y74) .

6. Dennis, J.B., and Misunas D.P.~ n A Preliminary
Architecture for a Basic Data-Flow P ocessor," Proceed ' n2
of the Second Annual Symposium. on Computer A.rch · tecture
IEPE, 126-132 (1975).

7. Dennis, J.B .. , Misunas, D. P_, and Leung, C~K., ' A Highly
Parallel Processor Using a Data Flow Machine Language,••
submitted for publication.
Computation Structures Group:t- Memo .134, Laboratory -"':or
computer Science, 1- ass. Inst. of Technology, Carnbr idge.
Mass •• January 1977.

8. Dennis • J.B. • and Patil, S . S. , 1 Speed Independent
Asynchronous Circuit," Proceedin~s of ~ Four Ha.i.,,Ta.1.1

International Conference on System Science, 55-58
{ Janua y 1971).

83

9. Dennis, ,1..B., ad .\~eng, 1: .-s., 11 Applicatio of Data Flo
Cornputa ion tot.he Wea.the Proo em," Co putat·o.
Structures Group e o 14 7, Labora1..ory for Computer
Scie ce, ass . .Inst. of Teehno logy, Cambridge, .. ·ass.,
?- ay 1977 .

10. Misunas, D.P. 1 "Petri Nets a a Speed Independent Design,"
Com.~unication 0£ the A - , Vol. 161 No. 8, 74-481
(Au.gust 1973 } •

11. r.1·s nas, D.P., 11 Deadlock Avoidance in a Data- Flow
Architecture.," P oce~d·nqs of be~ ilwaukee Syrnoosium on
Automatic Computation and co trol, IEEE, aew to_k; April
1975.

12. Misu::i.as, 0 ... P., 11 A Computer Architecture for the Data-Flo
Processor,n S.4. Thesis, Depart,ent of Elec r "ca
Engi eering and Computer Science, . -ass. Ins -. of
Technology, Cambridge, 1- ass., June 197 5.

13. _ · sunas, D. P., 1 Structure Processing in a Data-Flow
Comput,er," Proceed ·ngs of he 1975 Saga ore co-io ter
Con erenc~ £_._ Pa.rallel Coraputation, IEEE,. 230-234 (Aug s
975).

14. Muller, D. E. , ''' Async ronous Log· cs and Application to
Information Processing. ii Swi chi a m_heorv i _n Soace

,echno ogy~ Stanford Press ,t Sta ford, California; 1963.

15,. Patil, S. S~, jl Coordination of Asynchronous Events,"
Technica. Report 72; Labora ory for Comp er Sc· ,ence,.
Mass .. Inst. of Techno,logy, Cambridge, Ma.ss. , June 972

16 . Pati 1, s . S .. , 11 synchronizers and Arbiters , 1 co. pu ta tion
Struc ' ures Me o 91 ., Laboratory for Co puter Sc· ence1
Mass. Inst. of Techno; ogy, Cambridge, Mass~. October
1973.

17. Patil, s. s., "' Ce lular Arrays for .Asynchronous con tro
Proceed~n~s of tqe CM .ill. nnual Works op o M"cro
progra inq, 178- 185 (September 1974).

84

lB. Pat·1, S.S., 11 Micro-Control for Parallel A.synchronous
computers,,; Computation Structures Group Memo 120,
Laboratory for co pu er Science, ass. Inst . of Technology,
Ca ~~idge, ass., arch 1975.

19~ Pa.ti 1, s. s .. II An. synchronous Logic Array, " Technical Memo
62, Laboratory for Computer Science, ass I st. of
Tech ology, Cambridge, ass_, lay 1975.

2J. ?atil, S~S., "The Description and Realization of Digital
SysteLJ.s," Proceec:i .gs of _he Six h AlJ:!!_1:!,al IEEE Cc-mpu er
Soc.'..et Internat.iona conference, San Francisco, September
1972.

2 - P llUnrr er., W.W. • 11 .~synchronous A.rbi ters, u IEE... l"f'r. ans . on
Co puters, Vol. C 21 ., •o. 1, 37- 42, { January 197.2) •

22 . Weng, K. - s .. , 11 Str,eam r ien ted Computa t.ioI1 in Recursive
Data F lo\--l Schemas , '1 Technical Memo 68, Labor a ory for
Co tputer Science. 1ass. Inst. of Technology, ca. bridge.
Mass , October 1975.

23. course otes on 6 . 032 Co. putatiq Structures
Department of Electrical Engineering and Computer Scie11ce,
Mass . Inst. of Tee nolog-y, cambr idge,, Mass .

85

OJ,
O'I

/* Packet Definitions*/

/* An ev,ent packet, a command packet or a run packet is an. input
packet to a cell block*/

event/command-pkt= union[event-pkt, command-pkt] ;

/* An event packet is. sent to the cell block from other modules
of a data flow processor .. It is either an operand packet or an
acknowledge packet*/

event-pkt= union[opnd-pkt, ack-pkt J;

/* A command packet is sent to the cell block from the host com
puter, for initializing- four different (not necessarily disjoint)
sets of state variables and for dumping the state of a specified
~ell -A-/

command-pkt.:::: union[set-cmnd-pkt, dump-cmnd-pkt];

set-cmnd-pkt = union [set-ins tr-pkt , set-ack-pkt~ set.-var-pkt, set-con-pkt] ;

/* A run packet enables or disables the transmission of operation
packets by a cell block*/

run-pkt = union[enable-pkt, disable-pkt];

/* J\n o,peri\tion packet, an error packet or a dump packet is an
output packet of the cell block. An operation packat is formed
from the contents of an enabled cell and sent to other modules
of the d i1 L .1 flow processor * /

op,eration-pkt:::: array[0 .. 15] of byte:

/* An error packet or a durnp packet is sent to the host computer:.-.
A dump packet dumps the contents ,of a cell, in response to a
dump-cmnd-pkt received*/

,error/dump-pkt = union [error-pkt, dump-pk.t]I;

/* An error packet is sent to
event packet o,r command pack
conEents of the error packet
input packet whose processin

the host computer in response to an
t that arrives when not expected. Tne
is identical to the conents of th

leads to an error.*/

error-pkt= union[event-pkt, set-cmnd-pkt] ~

co /* packet .Format Definitions. */
/* OPNO, ACK, SET-INSTR, SET-ACK, SET-VAR, S'E:T-CON, DUMP-CMMD, ENABLE,
DISABLE, and DUMP are literal packet type identifiers*/

cell-address:::: 0 .. 15; /* specifies one of the sixteen cells in a cell block*/

operand= array of byte:

o,pnd-pkt = packet [type: (opnd) , cell-ad: cell-address,
rec-num: 1 .. 3; /* specifies one of 3 receivers in a cell*/
opnd: oparand];

ack-pkt = packet[type: (1\CK), cell-ad: cell-address}~

co
ro

set-instr-pkt ::=: packet [type: (INST), , cell-ad; cell-addrass,
ack ... exp, ack-rec: o .• 7~ /* up to seven acknowledgements*/

orma t-s pee: .2!,_ray [1 .. 3 1 ,2.f opnd-spec,
/* opnd-spcc specifies which bytes of instr comprise

the contents of the corresponding receiver*/
instr: arr2.Y_ (0 •. ~ 15] of byte] ;

opnd-spec ~ r ,ecord r u.sed: boolean~ /* is receiver used ? */
origin: 0 .. 15, /* Location and*/
enqth: 0 •. 7]i /* length of receiver contents in

instr */

set-ac'k:-pkt = packet [type: (SET-ACK) ,
cell-ad: 0 ... 15,.
ack-exp: 0 .. 7,
ack-rec : 0 .. 7] ~

set-var-pkt ::::, .e,acket [type: (SET-VAR) ,
cell-ad: cell-address,
rec-num: l .. 3];

set-con-pkt = packet [type: (SET-CON) 1

cell-ad: cell-address, rec-num: 1 .. 3
opnd: operand]·

dump-cmnd-pkt = packet[type: {DUMP-CMNO)

enable-pkt = ,2,ackct [type: (ENABLE)]I ;

disable-pkt = packet [type: (DIS/\FJLE)]' ·

cell-ad: cell-address]~

CD
\0

/* for an explanation of the components of a dump pack0t, refer to
Section 7 of II Data Flow Design Note 1 --- Specification of the Instruction
Cell Block for a Data Flow Processor,n Comput.J.t i on Structures Group,
Laboratory for Computer Science, M.I.T., Cambridge , Mnss. */

dump-pkt = packet r type : ,(DUMP) ;
cell-ad: ,c0ll-address,
enab: booleani
ack-flag: boolean,
ack-exp: O •• 7 •.
ack-rec: 0 .• 7
recs: arrayr 1 •• 3) of record[used; boolean

ecvd: boolean~
origin: o .. 15.
length: 0 .. 7,

mode: (VAR, CON)] ,
instr: array [0 .. 15] of byte] ;

Cell-Block: mo~

behavior:

event/command input Eort receives even t/comma.nd-pkt,
run input port receives run-pkt,
arbnet-ready input ,eor!:, receivc-s signal,
operation output E,Ort sends operation-pkt.
error/dump output e_ort sends error/dump-pkt ,
enabled output port sends §_i_g_nal ·

/* State Variable*/

run-ind:. boolean~
instruction-arry: array I O ... 15 J £! record operation-pkt t
control-arry: arr.:ay [O ~ .15 J of cell-state~
enab-count: 0 .. 16;

~ xruit-flag: boolean~

* Cell Sta.te Record Format * /

cell-state= record[used: boolean
enab: boolean,

ack-flag: boolea~,
a.ck-exp: O . . 7.
ack-roc: O .. , ,
recs: array: f 1 . . 3] of rec-state] ~

/* Receiver State Record Format*/

rec-state= record(used: bOQ.h~~
recvd: boolean ,

origin: O •• 15,
l,cngth: 0 . • 7, mode: (VAR., CON)] :

/~ Procedure to Transfer aper.and Value from Input Packet to I nstJ:-uct i on Array •,c /

nter-opnd: pr ocedure ,(opnd: operand, rs: rec- state; op= rec·ord operation-pkt } ;

begin org : = rs.origin,
1th:;;; rs.length:
for k : = O to lth-1 do

if k (l ength(op nd)
then op[org+k] : = opnd[k]
else op rorg+k] := O.i

return
end enter-opndr

/* Procedure to Sel•ect an Enabled cell * /

ID priority-search: proc·edure (ca: array [O •. 15 JI Q.£. cell-state) ;
I-'

j: own := O; /* j is initialized to 0, but its content is retained between - calls to pxiority sear~h */
until ca [j,] . enab = true do

if'" j < 15 th~ j : = j+l else j : = Or
return j1 ~

end priority-search:

/* Procedure to Transmit an Operstion Packet*/

xmit-,operation: procedur! { c .s:: cell-state1 op: array [O •• 15] of byte) r

s end op at ,operation:
cs.ack-flag := false;
for i := 1 ~ 3 dQ. if cs. recs [i] .mode = VAR th~n cs. r ,ecs {i]. recvd : = fals_e_,
cs.enab := false;
return

end xm i t - operation;

"'° l'J

/* Initialize State variables*/

run-ind ·= false;
enab-count : = O:
xmit-flag : = fal~e:
for j : = 0 .. 15 do

control-arry [j]! .used :== false·
control-arryrj] .enab : ~ falser

~ Process Packet*/

repea~ __
2

__ _

W. ,, -,event/command receives e-c-pkt do
1eg-i!}

ad : = e-c ... pkt.cell-ad:
cntl := control-arry[ad];
case e-c'-pkt. type of

/* Process Operand Packet*/

OPND: begin
if cntl.used = raise
- ·- then s,end ,e-c-pkt at error/dump:
rn := e-c-pkt.rec-num;
rs : = cntl. recs[rn]:
if rs .used = false

then send e-c- pkt at error/dump,
if rs.recvd = t~1=!_

then sen~ e-c ... pkt at error/dump;
,enter-opnd (e-c ... pkt . ,opnd, rs, instruction-arry rad]) i

rs.recvd : = true;
end· __ ,

ID
l,.,J

/* Process Acknowledge Packet*/

ACK: beg_in
if cntl.used = false V cntl.ack-flag =- true

th.•en send e-c-pkt at error/dump·
ar := cntl.ack-rec:
if ar (7 then ar :::a ar+l else ar : = 0:
if ar = •cntl. a ck-exp then

begin ar : = O;
cntl. ack-flag : : true end;

cntl.ack-rec := ar
end· __ ,

/* Process Set-Acknowliedge Packet*/

SET-ACK: begin
if run-ind==~ then send e-c-pkt at error/dump:
'f cntl.used = fal~a then send e-c-pkt at error/dumpr
cntl. ack-exp : == e-c-pkt. ack-exp :;
cntl.ack-rec ; = e-c-pkt.ack-rec•
if cirrtl.ack-rec = cntl.ack-exp

end· __ ,

then begin
cntl.ack-rec ; = O;
cntl. a.ck-flag ; = tru
end

else cntl.ack-flag : = falser

/* Process Set-Instruction Packet*/

SET-INSTR: begin
en t 1 . ack- .exp : == e-c- pk t. ack-exp ·
cntl.ack-rec := e ... c-pkt.ack-rocr

'° ;p,.

if cntl. ack-rec = cntl .. ack-exp
then begin

cntl.ack-rec := 0~
cntl.ack-flag := true
end

else cntl.ack-flag := false

/* uf, indicating whether the cell is used or not., is fals
if and only if t he cell expects no acknowledgement and
none of the receivers is used*/

j.f cntl. ack-exp = 0
then uf := false else uf ; ~ true~

:for i : = 1 .• 3 do
begln. os := e-c-pkt.instr.format[i];

end· __ ,

if os .. used = true ~ u.f := true:
cntl.recs [i] :~ [used: os.used,

origin: as.origin,
length: os.length,

rnode; VAR,
recvd: false];

cntl.used : = ufr
instr-arry [ad] : = ·e-c-pkt. instr
end:

/* Process Set-variable and Set-constant l?acket */

SET-VAR, SET-CON; begin
if run-ind == true them send e-c-pkt at error/dump; - -- ---- -if cntl.used = f~lse then send e-c-pkt at error/dumpi
rn : = a-c-pkt.rec-num;
rs := cntl.rccs[rn]:
i f rs. used ~ f ,1 !_oa th,£9. send e-c-pkt at erro:i:/durnp:

\0
VI

case e-c-pkt.type .2f
SET-VAR: bagin rs.mode == VAR :

rs.recvd := false end;
SET-CON: begin rs.mode:;::::, CONr

rs.recvd : = tru~:
cnter-opnd(c-c-pkt.opnd, rs,

instruction-arry[ad]) end
endcase,
cntl.recs[rn] := rs
end;

/* Process Dump command Packet*/

DUMP-CMND: b!9'._l:_n,
dp; r ,ecora dump-pkt;
dp : = [type:. DUMP, cell-ad: ad

ack-flag: cnt1.ack-flag,
ack-exp: cntl.ack-exp.
recs: cntl .recs, instr:

send dp at error/dump1 -- -
~

enah: cntl.enab

ack-rec: cntl.ack-rec ,
instruction-arry [ad]] :

/* end of the case statement for handling different types of
event and command packets*/

endcase;

ID

°'

/* Test Enabling conditions and Transmit Operation Packets*/

en: = cntl.ack-flag•
!Q!. i : = 1 to 3 do

begin
rs : = cntl.recs[i] ;
if rs. u.sed = true & rs. recvd == false

endr
if en= true then

bg_gin
cn.tl.enab : ;= true;
if run- ind =.;; ~ & xmit-flag = false

then begin

~en:= false,

send signal at en a.bled~
xmit-flag : = true

,end
else enab-count : = enab-count + I

end· -· control-arry '[ad] : = cntl

~; /* Processing o•f input packets from input port
event/command ends here*/

i..o
-J

/* Arbitration Network sign.a.ls ready"'/

arbnet-ready receives si..9nal £.9.
begin ad := priority-searc11 (control-arry)

cntl := control-arry[ad] r

end;

xmit-operation (cntl, instruction-arry{ad1);
control-arry[ad] := cntl;
if run-ind = true & not(enab-count = 0)
then begin enab-count : = enab-count - l·

send s,ignal, ~ enabled
!IDB_

else xmit-flaq : = false

/* Control of Run and Idle Status*/

r '1,:m receives rp do

end when -----
end reJ2.eat

end Cell-Block i

case rp. type .Q!
ENABLE: begin

end;

run-ind : = true~
if xmit-flag = false & not(enab-count = 0) - . --

then seo.g_ sign~~ enabled

DISABLE: run-ind:= false
endcase

even I:/ command p~t

•

••d~•

::i:om
PNR-4

sot
rid:
crrU-...,_: ___ _

Ii D:Ni

f;eom
PNR-2

9il

typ~
[)1JNP

~ct-11.1p
,.,.,""

cn.tl. usC!d typl! .f
0Ph1)

pt= [

tl usecl) ,no typ~ [(cm • ~ .~

ACK~~

CM.

~ ~'!:)<' : ~I,~! fl , co U-ad : ,Hl ,
ac),. -rec : cnt:.l .. ac-1':;-rr;H: ,

,:u:1+:.- flag: Cl".tl. ~ck- f1a9

n,1.b: cnt l. cn<1b,
c~-c~~:cntl.ack-cxp.

t'~c.s;cntI.r~cs

instr:instruetion-ar&y(adJ i

k-Uagl}] t(cntl • .i.c

set :"'al="
cmtl. aek-flag

~-=truo

o ol:n@r typas of packetlil:
PNR-2 , PNR-3)

l\pp!!!ridix 2 Pe1"ri r4et R,eprel;letH~ation of the ADL Specitlc.1.tion

!;iend .t,""ror/dump
pk

' :_ ., J

En~bllng ConditiOh;
P~-4)

u It!'~ I~ b" (
rom Pmt.-2)

'"rom PN'R - 2 ,

l>HR-3)

P~R-1: cvcnt/coimand:
DUMP, OPND, ACK]

I-rom P:-."R- l)

II

c-un-ind typo

·-~~; c~,p cnt 1 . .:irk-roe~
', cntl. O•CrC-Cl'lp

cnt. l . usao I'
/

I'
I'

',

set c:nt:l. ac'k-eicp e .. c-.:i-i>kt. ack-exp
cntl.ack-rnc: =o-c~pkt.~ok -

t

~ f L--,./ sc:t 1."l'H • .

~

. I e-~--~~ -~--
ypc ._➔>Tl- ,~ ,.,._,,.. , t LJ"'. l--~ l SE'li.'-CON ,/ ~ ,,, ,,, .,

r'Un-ihd cntl.used

set ,,"
.r.s: .,-cntl .reel,!, I ni l / ,,,

/ ,,.
.1;11.used

,,

(to PNR-1.
"c~ tor111ina.l

s~t c11tl.ack-flng:'-fals•~

no-op

s~t cntl. ack- ·flag
:=true

set

set rs,. rcc-vd: • f~lse

set rs.1110dc:=CON

set rs.rccvd: ~ true

Append.ix 2 Petri N'et Rcpc-estmtation, of the II.DI, Spccificatio,n

99

P!ilt-,.,
•·1 .~ \.t-rminill

l
(t:o PNR-1,

"a•• te:r;minal

P~~-2~ event/COl.'IUnllnd:
SE"F-ACK,S~"'l' -V~R.SET-CON

99

(t-r:o:m PNR-1 l

set
OB:=

s ,al

cntl . .;,ick-rac:=
-c-pl:t. acle-roc

-c-pkt. i11ist.r. format (i)

l\ppcndtx

100

9C
cntl.ack-flag: false

Y.p
;'

/

,, ., set u
;'

"<1lse

i : <a]

.,., set uf::tru
no
cntl.ack-flag: - tru0

Cl'1P
os.usa<'l

set cntl,tecsriJ
:o=[usod:os.uscd,

orig1n10s.origln,
lens th :os. lenglh,,
l!IOdC: V1'R,

t"CCVd: l:<il!i

CMP i~di
I
\
\

Petri Net Repi:eYentotlon of tbia l'IOL Spec.ificatio,1

cntl.used: • u

to Pt-'iJt-1, "b" t.ct"mina l)

int:•;~. arry I ad) : :
-c-p1ct. instr

I Ptm-3: e v ,en t/eomroand:
SE'l'-UlSTR]

100

set on: a cntl. nck- flag

:i;c;im Pmt- 1)

,,,
,. ,,

set rs: =cntl. recs {i)

en
f

:=true

Append.ix 2

101

set
contJ"ol - arrylad]
: - cntl J

1~t, / ino·· ··••••- eouot \ (t,om pm,-,; J

un- ind f ~ - ,., ,.0 "'
Xmit-flag soi:. ,(to PNR-6

xmi 1:.- n a.g : ,. tr-1.1.

Pe~t"i Net. Ropresentati.on cf tho 11.Dt. 5peci fication r PNR- 4: Te'-t l::na.blin.,,.
Condition.)

101

:n'.'bnet-ree.dy
Di';lnal
source

inc J
CNI' j=l5

<

co,en•blerl. r
~

set 1: c O
I,~

cntl .l'lc'k-flag: =[al!le

Appendix 2

102

t

set
oontl;'.ol-ai:i:y{ad)
: "'cntl ,,-,.

!IG

inatr-nrry o
cntl-a.rry !ad]

JCJnit-flag r• fnls:

not (enab-ocn.ml:=0,) dC<:1
en:ib-counl:

Petri Net Rapre~entation of the AOL Specification

e11U . rccs 1, i) • recvd

;
;

CMP
i:

(from PNR-6)

.--- I I to l'mt-6)

[PNR-5: T~ansm.ission·]

102

(from P~:R-~)

"r-om Pim-

run-packet sour-cc

DISABLE

set
run- ind
:= t:.ruo

set :tun-ind

not (cm1b-coun 1:

! =O)

➔

t

alse [enabl~d signnl 1

l processing of run pl!lckets J

Appon~ix 2 Pe't.ri Net Repr4HI01l 'tatio,n of l:llo A.DL Speci fic:ation

103

o Pfrn.-1)

(to i.'NR-5:
transmi:rnion)

[PNR-6 : run. packet &

enabled si9na.l

103

