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ABSTRACT

A set, V, of points in the plane is trlangulated by a subset, T, of the
straight line segments whose endpoints are in V, if T is a maximal subset
such that the line segments in T intersect only at their endpoints. The
welght of any trlangulation is the sum of the Euclidean lengths of the
line segments in the triangulation. We examlne two problems involving
triangulations. We discuss several aspects of the problem of finding a
minimum welght trlangulation among all triangulations of a set of points
and glve counterexamples to two published solutions to this problem.
Secondly, we show that the problem of determining the existence of a
triangulation in a given subset of the straight line segments whose
endpoints are in V is §P-Complete.
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Chapter 1 - Introduction

1.1 Geometric Complexity

Computaticnal geometry problems frequently arise in many real-world
and theoretical circumstances, Solutions to many of these prollems have
been known for centuries. Only recently, however, have the time and spacs
complexities of geometric problems begun to be examined., A large portion
of this work has been done by M., Shamos [12,13,14], vho has given efficient
algorithams for a number of the fundamental geometric protlems.

The complexity of geometric problems 1s important not only because of
the real nature of many of the problems, but also because of the insights
provided on the intrinsic nature of computation., For instance, consider
the problem of finding the minimum welght spanning tree of a set of points
in the Euclidean plane and the corresponding graph-theoretic problem of
finding a minimum weight spanning tree in an arbitrary graph. It has been
shown that the geometric problem, for n points in the plane, can be solved
in time O(n log n), whereas the best algorithm presently known for the
graph-theoretic version requires time ﬁ(nzj for a graph with n vertices
[1,12]. This suggests that the algehraic and geometric versions of a
problem may have substantlally different complexities, In contrast, we
note that both the algetraic and geometric versions of the Traveling
Salesperson Problem and the Stelner Tree Prollem have been shown to be
NP-Complete [7,8,9,11], At this time there remains a large amount of
mystery about what geometry contritutes to a problem in terms of its
complexity. Due to the recent emergence of the field there is a large

class of problems which remain open. The primary concern of this thesis
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will be with several related problems in geometric complexity.

1.2 The Triangulation Concept

The concept of a set of points in the plane being triangulated may be
Tormulated as follows: Let V be a set of n distinct points in the plane.
We assume that these points are not all collinear and that n = 3. The
points in V will be called vertices. Let L be the set of (5 ) straight line
segments between vertices in V. The elemsnts of L are EEEEEF Two edges,

e, and ey p;ape;ly intersect if e is not equal to ey and if ey and ep

intersect at a point which is not an endpoint of both ey and e,. A

triangulation of V is a maximal subset, T, of L such that no two edges

of T properly intersect, There are several useful properties of triangu-
lations which follow directly from this definition:
1. Each edge in the convex hull of V is in T,
2, Each interior face of the stralght-line planar gravh, as
determined by V and T, is a triangle,
3. Each edge in L is either in T or properly Iintersects an edge in T.
k. If yi¥, is an edge in T with endpoints y, and y, in V and yyy,
is not an edge on the convex hull of V, then in each half-plane
as determined by a2 line passing through Y1 and Yoo there must
exlst a vertex w in V such that edges y,w and y,w are in T and
there does not exist a fourth vertex u in V which lies on, or
interior to, triangle ¥1¥oW.
We will make use of these propertles throughout this paper.
Triangulations have an applicatlion in the approximation of function

values for a function of two varlables when the value of the function is




8

known at some number of arbltrary points. One method involves finding a
triangulation of the set of points where the function values are known [5],
To approximate the value of the function at another point, say p, we find
the trliangle in which p lies with respect to the triangulation and then
approximate the function value at p-hy linear interpolation of the function
values at the vertices of the triangle in which p lies,

The remaining two sections of this chapter describe the two proltlems

concerning triangulations in which we are interested.

1.3 The ¥inimum Weight ?riangulationaFrobiem

The ninimum weight triangulation problem is as follows: Given a set
of points in the plane, V, and the set of edges, 1L, whose endpoints are in

V, a weight can be assigned to each edge in L, the weight of an edge being

equal to the Euclidean distance between its endpeints. The weight of a

triangulation, T, is then defined to be the sum of the welghts of all of

the edges in T. We are interested in discovering an efficient algorithm
for finding a triangulation of minimum weight among all of the triangu-
lations of V. This problem will be referred to as MWT throughout this
paper.

An example is shown in Figure 1. There are five vertices to be
triangulated, The three triangulations shown are the only triangulations
of those vertices, The minimum weight triangulation is given in 1la,
because |AC| + |AD| < |BD| + |AD| and |AC| + |AD| < |BD| + |BE|, and

the three triangulations agree on all other edges.
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Figure 1: Three triangulations of a set of points in the plane,

5 B B
D D

E E E

(2) (v) (e)

The minimum weight triangulation problem has been studied previously
by Duppe and Gottschalk [6] and Shamos and Hoey [12]. We note that other
criteria for the "goodness" of a triangulation might be better suited to
certaln applications and may be easler to find., Criteria concerning the
size of the maximum or minimum angles in a triangulation and how they apply
to the finite element method are discussed by Babuska and Aziz [2] and
Bramble and Zlamal [4].

In chapter 3 we present counterexamples to two algorithms proposed
for solving MWT and give counterexamples to several conjectures concerning
minimum weight triangulations. A discussion of a dynamic programming

approach to this problem is also presented.

1.4 The Triangulation Existence Problem

In this problem we are concerned with determining when a triangulation
of V exists in some given subset of L. That is, glven a set of vertices, V,
and a subset E of L, does there exist a subset T of E such that T is a

triangulation of ¥V? This problem will be referred to as TRI.
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An efficient algorithm for solving this problem might be useful in
attacking other problems involving trlangulations. For instance, in our
work on MWT, we considered a matrold approach to the problem. A desirable
property was to be able to tell efficiently if a subset of L contained a
triangulation of V. It appears reasonable that other applications of
triangulations may also have cause to use such an algorithm,

In chapter 4, we show that TRI is NP-Complete, hence it is proballe
that it is not possible to find an efficient algorithm for determining

triangulation existence.
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Chapter 2 - Preliminaries

2.1 NP-Completeness

A recurring theme throughout this paper is the notion of a problem
being NP-Complete, We will give an informal discussion of this subject
here and refer the reader to Aho, Hopcroft and Ullman [1] for specifics.

The set NP is defined to consist of all languages which can be
recognized by a nondeterministic Turing machine of polynomial time
complexity., Similarly, the set P consists of all languages which can
be recognized by a deterministic Turing machine of polynomial time
complexity. It is not presently known if P is properly contained in NP,

A language Ho in NP is defined to be NP-Complete if the following
condition is satisfied: If we have a deterministic algorithm for
recognizing M, of time complexity T(n) 2 n, then for each language M in
NP, we can effectively find a deterministic algorithm for recognizing M
of time complexity T(p(n)) where p is a polynomial depending om M [1].
Thus, if any FP-Complete language is in P then the sets P and NP are equal.

A language M over alphabet 4 is polynomially reducible to a language

Mo over alphabet I if there is a deterministic algorithm which, when given
a string w over A produces a string w, over I in time polynomlal in the
length of w such that w 1s in M If and only if w, is in M.

The method that we will use to show that a language M, is NP-Complete
is to show that:

1. M, is in NP

2, There exlsts a language M whlch is NP-Complete which 1s

polynomially reducible to M.
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A language for which the second condition can be shown, but not necessarily
the first, 1s sald to be NP-Hard., A large number of comblnatorial and

optimization problems have been shown to be NP-Complete [1,8].

2.2 Definitions

A brief descriptlon of Voronol diagrams is given here. The interested
reader is directed to Shamos [12,13,1#] and Rogers [10] for formal
definitions and results. Consider a finite set of vertices, V, in the
plane, Surrounding each vertex, w, there is a maximal convex polygon

called the Voronol polygon associated with w, This polygon is defined

to consist of each point, p, in the plane such that no vertex of V is closer
to p than is w, The Voronol polygons for each vertex in V partition the

plane, forming a network of convex polygons called the Voronol diagram

of V. The stralght-line dual of the Voronol diagram of V is a planar

graph with vertices V, where a line segment (an edge) exists between two
vertices if and only if the Yoronol polygons of those two vertices share
an edge, We will refer to these concepts in chapter 3.

There are several other useful definitions.

Suppose V is a set of vertices and T is a set of edges whose endpoints
are in V. A path Q in T is defined to be a 1list of vertices of V,
(P1» Pps +»+ » D) such that each edge pypy,y of the path, for 1<i<k-l,
is in T, A circuit is a path in which k> 3 and Py ard Py are the same,

An elementary circuit is a circuit in which each of the vertices

Pll' Pzp (R R pk“l 15 distiﬂc‘b.
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2,3 HNotatlons

Throughout this paper either of the notations AB or [A, E] will be
used to refer to an edge whose endpoints are vertices A and B, Which
notation is used wlll depend upon which is clearer in the given situation,

The coordinates of 2 point in the plane will be eneclosed in
parentheses, For example, the origin is (0,0),

When applicable a set of edges between vertices of V will be denoted
as follows: If Q and R are sets of vertices of V, then QxR represents
the set of all edges [q, r] such that q is in @ and r is in R,

The symbol V denotes a set of vertlces to be trianmgulated throughout

this paper.
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Chapter 3 - The MWT Problen

This chapter provides counterexamples to two algorithms conjectured to
solve MWT, These lead to several observations about MWT, A dynamic
programming approach to MWT is discussed. Throughout this chapter L

is the set of all edges whose endpoints are in V.

3.1 The Duppe-Gottschalk Algorithm

The first of the algorithms purported to solve MWT was published by
Duppe and Gottschalk [6]. Unfortunately, their paper was written in a very
informal manner and the explanation they give of thelr algorithm is
ambiguous. For these reasons we have two different versions of thelr
algorithm. The first version is as follows:

1. SetLg <L, To+ ¢ and 1+ O,

2, While Ly + @ do

21, Let w be an edge of least welght in Ly

22, Ty441 ¢ T3 v W}

23, Lygyy + Ly - W} - {me Ly | m and w properly intersect}
24, 1 «1+41

3¢ T + T4
The claim is that T 1s a minimum weight triangulation of V. In Figure 2 we
give a set of vertices which shows that the triangulation produced 1s
not necessarily a minimum weight triangulation, In that example, we are
concerned only with the edges not on the convex hull of the vertices since
the convex hull is in every triangulation. The edges not on the convex
hull in the triangulation produced by this algorithm are ED and BE which

have a combined weight over 187 units, However, the interior edges in the
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Figure 21 Counterexample to the Duppe-Gottschalk Algorithm,

c, (80,30)

D, (125,25)

A, (0,0) 5 E, (160,0)

Edge lengths of interior edges (relative to the given coordinates)

Edge BD: 75 units
Edge CE: <85 units
Edge AC: <85 units
Edge BE: >112 units
Edge AD: > 127 units

Figure 3: Counterexample to the Shamos-Hoey algorithm,

(a)
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minimum weight triangulation are CE and AC which have a combined weight of
under 172 units. This algorlthm was independently proposed by R. Rivest,

The second verslon of their algorithm is simply a modification of the
first version. The following statements are added to the algorithm given
above between statements 23 and 24:

231, Let y be an edge of least weight in Li+1 which has a2 common

endpoint with w. If no such y exists then jump to step 24.
232, Liyyy +« Lyyy - {meLyyy | m and y properly intersect and the
A weight of m exceeds the weight of y }

The example in Figure 2 is also a counterexample to this version, In that
example the version two algorithm produces the same triangulation as the
first version. It may be that the two verslons are equivalent, which would
remove much of the ambiguity from the Duppe-Gottschalk paper. However, such
an equivalence was not apparent to us, In any case, neither version of the

algorithm always produces a minimum weight triangulation.

3.2 The Shamos~-Hoey Algorithm

The second algorithm purported to find minimum weight trlangulations
was published by Shamos and Hoey [12]. Their algorithm is as follows:
1. Construct the Voronol diagram for the set of vertices V.
2. Let T consist of the edges in the straight-line dual of the
Voronol diagram.,
They claim that T is a minimum weight triangulation of V, We note that
if more than three Voronol edges meet in a single point then the dual of

the Voronoi diagram is not a triangulation, btut only a network of convex

polygons which must then be triangulated by another method, Ignoring
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this detail, we note the correctness of this algorithm, as far as
producing a minimum weight triangulation is concerned, is partially based
on the work of Duppe and Gottschalk, That this algorithm does not always
produce a minimum welght triangulation is shown in Figure 3. The minimum
welght triangulation is shown in 3a and the triangulation produced by
the Shamos-Hoey algorithm is given in 3b. The Voronol edges are given
as troken lines in 3b., This example also shows that the Shamos-Hoey
algorithm is not equivalent to the Duppe-Gottschalk algorithm since, in
this example, the Duppe-Gottschalk algorlithm does produce the minimum
weight triangulation., Such an equivalence was implied in the paper by
Shamos and Hoey [12].
As an interesting observation, we note that Shamos and Hoey give an

0(n log n) lower bound for finding any triangulation of a set of n points
in the plane [12]. This bound follows from the reduction of a one-
dimensional sorting problem to the problem of finding any triangulation
of a given set of points. The Shamos-Hoey algorithm, slightly modified
to handle the case of greater than three Voronol edges meeting at a single

point, achieves this lower bound.

3.3 Observations about MWT

There are several observations about minimum weight triangulations
which follow from the counterexamples for the iwo proposed algorithms,

The first observation is that the shortest edge not on the convex
hull of V is not always in a minimum weight triangulation of V. The

counterexample to the Duppe-Gottschalk algorithm shows this. In that
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example - Figure 2 - edge ED 1s the shortest edge not on the convex hull
and it is not in the minimum weight triangulation,

A second observation is that a minimum weight triangulation does not
always contain a minimum weight spanning tree. The example in Figure 4
illustrates this., The minimum weight triangulation of the four vertices
is given in 4a and the minimum welght spanning tree is given in 4b. We
note that this observatlon alone is sufficient to show that the Shamos-
Hoey algorithm does not always produce a minimum weight triangulation
since a minimum weight spanning tree of a set of vertices is always a
subgraph in the dual of the Voronoi diagram of those vertices [12].

In addition to these observations we had conjectured that every
triangulation contains a Hamiltonian cireuit and in fact, that every
minimum weight triangulation contalns a minimum weight Hamiltonian ecircuit.
However, in Figure 5, we give a minimum weight téiangulation which does

not even include a Hamiltonian ecircuit, much less one of minimum weight.

3.4 The Dynamic Programming Approach

One possible algorithmic approach to finding minimum weight triangu-
lations is dynamic programming [3]. We have examined this possibility in
some detail, This section discusses such an approach and what we perceive
to be the major difficulty with it in terms of obtalning a polynomial
time algorithm.

Before proceeding, we need to develop the notion of a restricted
minimum weight triangulation. Consider a planar region, R, which is
bordered by an elementary circuit whose edges are in L. We require that

no two edges of this circuit properly intersect. R need not be a convex
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B

Filgure 5,

19

The minimum welght spanning tree is not always in the minimum
weight triangulation.
B

D

|BDI < JAC| < |BC| =|DC]
(2) (v)

The minimum weight triangulation does not always contain a
Hamiltonian circuit,

B
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region, Let Vp be the set of vertices of V that 1le in R and let I be

the set of edges of L which 1lie entirely in R. A restricted triangulation

of V is defined to be a maximal subset, TR' of Iz such that no two edges

of Ty properly intersect., A restricted minimum weight triangulation of

Vg 1s the restricted triangulation of Vg of least weight, We note that
if R is a convex region then the definitions of minimum weight triangu-
lation and restricted minimum weight triangulation coincide for Vg

We may now formulate a dynamic programming approach to the protlem
as follows, We know that the convex hull of V must be included in any
triangulation of V. Define R to be the planar region interior to (and
including) the convex hull of V. Now consider paths of the form
(Pys Pps oo » Py) With k22, where the following five conditions hold:

1. Each py is In V.

2. p, and p; lie on the convex hull of V.

3. Each py, except py and py, is not on the convex hull of V.

L, The path does not intersect itself in any way.

5. If k = 2 then P and P are not adjacent vertices on the convex

hull of V.

We will call such a path a splitiing path of R because it splits R into

two strictly smaller, although not necessarily convex, regions. Now, let
T be a minimum weight triangulation of V. As long as |V|Z 3, there exists
at least one splitting path Q whose edges are iIn T. If we knew §Q then
the minimum weight triangulation of V could be calculated from the
restricted minimum weight triangulations of the two subsets of vertices
of V in each of the reglons that @ treaks R into, These restricted

minimum weight triangulations could be found recursively in a similar
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manner, The difficulty lies in finding a splitting path Q whose edges
are in T,

One possibility is to consider each possible path which splits R
into two strictly smaller regions, However, with @(|V|) vertices interior
to the convex hull of V, this would mean examining @(|V|!) sequences
of vertices of V to find each possible splitting path. Hence, in order to
obtain 2 polynomial time algorithm using this approach the number of
splitting paths that need to be considered must be limited.

Let us examine splitting paths in T more closely. Let z be the vertex
in V with smallest x-coordinate., Note that z is on the convex hull of V.
There are two cases to consider:

Case 11 The only edges in T with 2z as an endpoint are the edges
connecting z to the vertices adjacent to it on the convex
hull, Let w; and w, be the vertices adjacent to z on the
convex hull., Then, by the definition of a triangulation,
edge WW, must be in T and path Q = (W), wp) is a splitting
path of R.

Case 2: There 1s an edge zy; in T such that y; is not w; or wp. If
y; lies on the convex hull of V then Q = (2, y;) is a
splitting path of R as desired. Hence, suppose y; does not
lie on the convex hull of V, The x-coordinate of y; is
larger than the x-coordinate of z. Since T is a2 triangu-
lation of V there is an edge y y» in T where the x-coordinate
of yp is larger than the x-coordinate of y;. And so on.
Thus, there is a splitting path Q = (2, Y34 ¥Yo» e+ 3 3k)

in T where the x-coordinate of y; is less than the
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x-coordinate of y;.q for each i, 1<ick-1,
Putting cases 1 and 2 together we find that it 1s sufficient to consider
splitting paths of the following forms:
1. Q = (w;, wp) where w; and W, are the vertices adjacent to z on
the convex hull of V.
2, Q= (2, ¥3» Y21 se+ 2 Yi) where for each 4, 1<sisk-1, the
x-coordinate of yj 1s less than the x-coordinate of yi 4.
Using the above observation, if there are F(|V|) vertices not on the

convex hull of V, then only ﬁ(ZIVI)

splitting paths for R need to be
considered, While this is certainly an improvement over O (IV|!), it is
still exponential as opposed to polynomizl,

Unfortunately, we have not been able to further reduce the number
of splitting paths that need to be considered, The major obstacle is a
lack of specific knowledge about the structure of minimum weight triangu-
lations., We have had 1little success in discovering specific properties
of minimum welght triangulations. Without such properties providing
a good characterization of minimum weight triangulations the dynamic
programming approach appears limited as far as obtaining a polynomial

time algorithm is concerned,
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Chapter 4 - TRI is NP-Complete

In this chapter we show that TRI is NP-Complete, The major portion
of the chapter is devoted to showlng that the problem of conjunctive
normal form satisfiability (CNF-Satisfiability) is polynomially reducitle

to TRI, CNF-Satisfiability is an NP-Complete problem [1].

4,1 Intuition and Overview

Assume that we have an instance of the CHF-Satlsfiability protlem,
That 1s, we have clauses Cy, C3, ... , Cy each of which is a sum of
literals drawn from the variables 2, X, «ss s X+ The problem is to
deternmine if there is a truth assignment to the n variables such that
each clause is satisfied, From the k clauses we will construct a set of
vertices, V, and a set of edges, E, whose endpoints are in V such that
there is a subset T of E trlangulating V if and only if the set of clauses
is satisfiable. Throughout thiz chapter a triangulation of V will refer
to a subset T of E whose edges are a triangulation of V.

The tilding block in our construction willl te a set of vertices and
edges which we will refer to as a switch, A rectangular array of these
switches will be employed, with one switch for each variable-clause pair.
This array of swliches will also be referred to as the network. We let
Sj j represent the switch for varlable x and clause Cj. Switch 53 will
be one of three types depending on whether X is in,ﬂj or Ei iz in Ej
or neither is in Cj. We note that the switches are numbered in an x-y

fashion as opposed to standard matrix numbering. That ls, switeh Sij is
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is in the i*M column of switches going from left to right and in the jth
row of switches going from bottom to top.

In any triangulation of this array of swltches we may regard two
streams of information to be flowing through each switch, one stream
flowing vertically and the other from left to right horizontally. The
vertical stream of informatlion flowing through Sij carries a truth value
for variable x;. For each variatle, x;, the same truth value must be
flowing vertically through each switch Sijv where 1 < j<k. The horizontal
stream of information leaving switch Sij on the right indicates whether
or not clause C; is satisfied by the assigmment of the truth values (as
determined by vertically flowing information for each variatble) to the
variables Xj, Xp; sss y Xj. Thls Information may then flow into the left
side of switch Siy) j. Our construction forces the information flowing
into the lefi side of each swiich S; 4 to be "not>satisfied" and the
information flowing out of the right side of each switch Snj to be
Meatisfied". What information is flowing through a switch depends on
how the switch is triangulated.

Now consider a truth assignment, H, to the variatles such that each
clause is satisfied, Then, there exists a triangulation of the switches
such that the vertical flowing information supports H and, for each clause
cj, there is a switch, Sij’ such that the truth assignment to x; satisfiles
cj. causing the horizontal flowing information about cjrto change from
"not satisfied" to "satlisfled".

Conversely, consider a truth assignment, H, which does not satisfy
every clause, Then there is no triangulation of the switches such that

the vertical flowing information supports H and yet for each clause Cj



25
the horizontal flowing information changes from "not satisfied" to
"satisfied" in some switch Sij'
The construction is such that the array of switches may be triangu-
lated if and only if there is a truth assignment to the variatbles which

satisfies each of the clauses,

4.2 Description of a Switch

Before giving a formal specification of the sets V and E we will
describe the structure of a switch, Each switch will consist of the
vertices and edges given in Figure 6. Note that the coordinates of the
vertices are given relative to E; as the origin, In Figure 7 is a
plctorial representation of a switch, An enlarged view of the center
portion of a switch is shown in Figure 8.

Various vertices of each switch are classified as follows:

Frame vertices: El,Ez,E3,Eu,F,G,H,I,J,L.H.H.P.Q,R.S

TeminalSI A‘]_'AE’BI .Bz,cl.czﬂ}l,ﬂz

Matched pair of terminals: Ay and A,, By and By, C; and Cjp,
D; and D,
When it is appropriate we will superscript the vertices of a switch,
For example, 81J 15 vertex N in switeh S13j. Note that each switch 1s
symmetric in structure with respect to the lines x = 50 and y = 50 (the

lines relative to Ey).




Figure 6:

Switch Specifications

Each switch consists of the following vertices. The coordinates of each
vertex are given relative to Ej.

E
(0,100)

M
(0,63)

K
(0,37)

Ey
(0,0)

L

(37,100)

5
(37,63)

P
(37,37)

F
(37,0)

J E3
(63,100) (100,100)

R I
(63,63) (100,63)

Ap Dy
(47,5?)  (53,57)
By Cy1
(43,53) (57,53)
Ca By
(43,547) (57,47)
Dz Ay
47,43)  (53,43)
Q H
(63,37) (100, 37)
G Ez
(63,0) (100,0)

Each switch consists of the following edges:

Fran‘e Edg&s: ElF’ Elr:' F‘P' F‘N' NP' EZG’ EZ}I' GHI GQ' HQ,' EaI' E3‘I,
IJ' IR. JR' ELLL' El““’ m’ Ils’ “3

Hon-frame Edges:

A1 G,
B,G,
cyQ,
D,H,
A5Q,
BoH,
Co9,
DG,

AlQ, AIH,
B,Q, ByH,
CiH, C1I,
BII' DIR'
Azﬁ, AZJ’
BoI, BoR,
CZH’ CEI'
DA, D,

FR, GS, HM, HS, IN, IP, JP, 14, MQ, NR,

AT, A\Cyy AjAn, 438, AyBs, ACoy AjDp, AgP, AGF,

B3I, BR, BL, BjDy, ByAg, ByM, 3Gy BN, ByDy, ByP, ByF,
CiR, C1J, C3L, C3S, C3Ap, CiM, C1B,, CiN, CyDs, CyF,

D,J, Dyk, DyS, DyAyy DyBay DiCs, D3P, DyD,,

AoL, AsS, AM, AN, ALy,

Byl BoL, B33, B, Bo¥, BoP, Baby Bala,

Cod, €38, CzM, CoN, CoP, CoF, CoG,

DM, DN, DoP, DF



Figure 71 A Switch

Ey
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The eight unlabeled vertices in the center portien of the switch are
the terminals. Figures 6 and 8 show the labels of thess vertices,
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Figure 8: An enlarged view of the center portion of a switech
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4.3 Specification of V and E

4.3.1 The Basics

As previously stated our construction consists of a rectangular
array of switches with one switch Sij for each variable x;, clause C j
pair., Adjacent switches in this network will coincide on appropriate
frame vertices, Such frame vertices will thus have two labels. For

instance, E]él and E%l

refer to the same vertex. Vertex E; of switch
Sy j Will have coordinates ( 100:(1-1), 100-(j-1)).

To fulfill the definition of a triangulation we need to modify the
switches in the outermost rows and columns of the network., Thess

switches will be identical to regular switches except they will have one

additional vertex (called a speclal vertex) and several additional edges.

These special switches are specified as follows:

1. Each switch Slj, for 1= j<k, contains a special vertex, Tld.
with coordinates ( 0, 100:-(j=1) 4+ 50 ) and the edges
(prdy x  (md, w13, A%j_ B%j}
2. Each switch Si;, for 1<1=<n, contalns a special vertex, U™,
with coordinates ( 100-(1-1) + 50, 0 ) and the edges
o Y & a0 w8 Y
3. Each switch Snjl for 1< j<k, contains a special vertex, v
with coordinates ( 100-n, 100-(j-1) + 50 ) and the edges
vy x o, cgj' ng}
L, Each switch Sjk» for 1<i<n, contains a speclal vertex, wik
with coordinates ( 100-(i-1) + 50, 100-k ) and the edges

oty x @, ot agS B o, 09



30
The frame is defined to be a set consisting of the frame edges of each
switch in the network and each edge of the network which has a frane
vertex as one endpoint and a special vertex as the other endpoint.

We note that no edge with a terminal as an endpoint is included in the

frame,

4,3.2 The Interswitch Edges

In addition to the edges within each switch there need to be edges
in E whose endpoints lie in different switches, These edges will be

called interswitch edges. Only terminals will be endpoints of interswitch

edges and these edges will lie only between adjacent switches. It will
be shown later that between any (horizontally or vertically) adjacent
pair of switches, exactly one interswitch edge will be present in any
triangulation. Intuitively, the chosen edge will carry information from
one switch to the other.
Vertical interswit~h edges may be specifled as follows:
For each i1 and j palr, with 1<i<n and 1< j<k, the following
edges are placed in Ei:
o, ofly x ¥ oy wa g, o) x Gb, i,
Intuitively, these edges will carry the vertical flowing information
about the truth values of the variables, with the A-C edges carrying

"false" and the B~D edges carrying "true".

The horizontal interswitch edges betiween two adjacent switches Sij and
Si+l,j will vary depending on the nature of switch Sij' For this reason

we classify each switch as being one of three possible types:
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A switch Sjj is a neutral switch if and only if xj ¢Cj and X3 §Cj

A switch Sy is a positive switch if and only if x3 €Cj

A switch Sij is a negative switch if and only if Xj €Cj

Horlzontal interswitch edges may be specified as follows:

1,

2.

3.

For each 1 and j pair, with 1<i<n and 1< j<k, such that switch

Sy j is a neutral switch the followlng edges are placed in Ei

{A%J 13 i+1, j iﬂ"j}and 1+1'J: Di-l-l j

}x Az 'Y, B3 e, o}y x (e}

We define terminals A; and By to be Clause-false and terminals

C, and Dy to be Clause-true in a neutral switch., Intuitively,
these interswitch edges and those specified in 2, 3, 4 and 5,
will carry the horizontal flowing information about the clauses,
with edges with a Clause-false endpoint carryling "not satisfled”
and edges with a Clause-true endpoint carrying "satisfied".
For each i and J pair, with 1<i<n and 1< j<k, such that switch
Sy j is a positive switch the following edges are placed in E:

a3 j} % {A1+1.,} E.'|.+1 J} o {Blj :fll..j j} - {ci-i-l = D1+l..]}
We jefine terminal Ay to be Clause-false and termina’s By, C; aad
Dy to be Clause-true in a positive switch,
For each 1 and j pair, with 1<i<n and 1< j=<k, such that switch
Sy 3 is a negative switch the following edges are placed in E:

15} = {A1+1 1+1 j} and {Aij, Cij. j} % {ci+1,3 D;!.-t'l,,]}

We define terminal By to be Clause-false and terminals A3, C1
and Dy to be Clause-true in a negative switch.

For each j with 1 < j<k, such that switch S, 5 1s a positive

switch, edge [an. Bl']] is placed in E.
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S. For each j with 1< j<k, such that switch Snj 1s 2 negative

switch, edge [an, A;j] is placed in E,

4.3.3 The Sets V and E

Set V contains all frame vertices, terminals and special vertices of
each switch in the network.

Set E contains all of the edges of each switch in the network, as
well as the interawlitch edges as specified in the previous section. We
note that the frame is included in E and that no edge in E properly
intersects any edge of the frame, This means that any triangulation of
V must contain all of the edges in the frame,

Finally, we note that the construction can be done in time polynomial
in n and k., There are n-k switches in the network, Each switch may be
constructed in a constant amount of time. Interswitch edges exist only
between adjacent pairs of switches. There are @( n-k ) such pairs.

The vertical interswitch edges are the same for each adjacent pair of
switches, hence, they can be constructed in constant time for any given
pair. The horizontal interswitch edges for any palr of adjacent switches
depend only on the type of the left switch in the pair and, hence, can be
constructed in constant time for any given pair of switches. Thus, the

sets V and E can be constructed in time O( n-k ),



33

.4 Proof that a solution to TRI ylelds a solution to CNF-Satisfiability

In this section we assume that T 1s a subset of E and is a triangu-
lation of V. We show that there is a truth assignment to the variables
X1y ees 3 Xn such that each clause C3, .us , Cx is satisfied. This truth
assignment will be obtained from T.

4.4.,1 Preliminaries

As stated earlier the frame must be included in T. This means that
the non-frame edges in T must:
1. Complete the triangulation of each switch in the network.
2., Connect the switches together in a manner which yields a
triangulation of V,
As we shall show, the triangulation T must fulfill these conditions with
a very particular structure,

A terminal, o, in switch Sij is defined to be East-connected in

triangulation T if and only if there exists an edgeap in T such that

o properly intersects edge [I'9, K9], Now consider edge [I9, K9],
Since this edge is not in T there must be an edge in T which properly
intersects [Iij, Hid]. By our construction, each such edge has a terminal
of 833 as an endpoint. This means that there must be at least one
East-connected terminal per switch in any triangulation of V. Similarly,

we can define and imply the existence of at least one West-connected,

one North-connected and one South-connected terminal per switch in any

triangulation of V. A connected terminal is a terminal that is at least

one of East-connected, West-connected, North-connscted or South-connected.



b

In chapter 1 we stated the following property of triangulations:
If edge yjyz is in triangulation T and is not on the convex hull of V,
then in each half-plane, as determined by 2 line passing through y; and
Y2, there must exist a vertex w in V such that edges ¥yi% and yow are in T
and there does not exist a fourth vertex in V which lies on, or interior
to, triangle y,y,w. That is, y;¥, is an edge in the boundary of two of
the triangular faces of the straight-line planar graph determined by V
and T (one face in each half-plane as determined by the line through y;
and yo).

This property will be used in the following proof as follows:
In general, there will be an edge yjy, in T and a specified half-plane.
Consider the set of vertices, P, such that for each vertex w in P:

1, w lies in the specified half-plane.

2. Edges y,w and y,w are in E,

3. No other vertex of V lies on, or interior to, triangle y;y,w.
If there is only one vertex w in P, then edge y; ¥y, in T forces edges
y1¥ and ypw to be in T by the property of triangulations stated above,
This 1s denoted by yy¥2 —-:»yij’zw.
If there are two vertices, z; and z,, in P then we will use the following

notatlon: ¥1¥2 —> cholce

1. ny%

2a ylyzzz

Typically, the first choice of Y1¥p%q will lead to a situation where an

edge r is forced to be in T and yet there is already an edge s in T such
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that r and s properly intersect, Such a contradiction will be denoted
" # to s ", In the proof in the next sectlon an edge is said to be

finally enumerated if it doesn't lead to a contradiction if placed in T.

It may be that |P|z 2 and no vertex in P leads to a contradiction, but,
that there exists a vertex Y3 in V such that for each w in P, V¥ YWy 3.
Intuitively, edge y;y, in T forces edge ¥1¥3 into T but the “"force" requires
two steps. In this case we write ¥1¥p i;»ylyg. A typical example is that
edge [A2J, ¥19] is 1n 7. Then P c {a}™1ed, B-1d, L3, piLidy ge
i>loxrP = {Tl'j} if 4 = 1. In either case, for any w in P, edge [A%j, W]

in T forces edge [Aij. Mlj] to be in T, Hence, we write A i—z-;hv .
e

L.,4,2 The Switch T,riangulatiom Theoremn

Theorem 1: Given any triangulation of V there are exactly two connected
terminals in each swltch and, furthermore, for each swltch those
iwo terminesls are a matched palir of terminals,

Proof

Consider any triangulation T of V and any switch S43 in the network. At

least one terminal of s‘ij is East-connected. Only terminals Ayr Byy Cg

and D, in 54 5 may be East-connected,

Case 1: Suppose terminal A, 1s East-connected in Elj' Then there is a

vertex Z in V such that Aiz is in T and &12’ properly intersects line

segment IH of Eij' Because of our construction Z is one of A%_ﬂ"j,

Ll oM Ld o i 4p 4 cnor 4s V™ 4£ 4 = n. Then, in s, .,
2 2 2 13
Alz —h:wAlZH

AH—> A HQ

Alﬁ' — Elﬁl



B

AIQ and ﬁlF force AJ_G

IP —IPB;
PB, —PB,D,
IB; —>cholce
1. IB4R
B,R —B,RF # to PB;
2. IBlﬂz
B,C, —>choice
1. B,CH # to PBy
2. ByCN
ByN —B,ND,
ND, —>ND,P
IC, — ICN
IN —1INCy
NC; —>NC;3B,
C,B,—>choice
1. CyBM

C;8 —>CySH  # to AT
2. CleI
B0y — B0y
BR —> BN
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RN —>RNA,
RAZ-——bRAZJ
AN Zoazm
AM —>AMS
AyS and A,J force A L
L A, 1s East-connected then Al is South-connected and Az is
North-connected and West-connected.
Because of the symmetries of the switch we also have:
1, If D; is East-connected then D, is North-connected and D, is
South~connected and West-connected,
2. If A, is West-connected then A, 1s North-connected and A, is
South-connected and East-connected.
3. If D, is West-connected then D, is South-connected and D; is
North-connected and East-connected.
In the above proof the non-interswiich edges which are finally

enumerated (along with the frame edges of Sij) constitute a triangu-

lation of Sij' This triangulation is called an A-triangulation and
is plctured in Figure 9. In an A-triangulation we say that terminal

Al is East-exposed and South-exposed and terminal A2 is West-exposed

and North-exposed. Analogously, corresponding to D1 and D2 being the

connected terminals of Sij' there is a set of non-interswitch edges

called a D-triangulation., This triangulation is shown in Figure 10,

In a D-triangulation terminal Dl is East-exposed and North-exposed
and terminal D2 is West-exposed and South-exposed.
Case 2: Suppose terminal By is East-connected in sij' Then there is a

vertex Z in V such that B4Z i1s in T and B,Z properly intersacts line




Fi.;m 91 The A=triangulation

g L J 5]
R

H 1

Az —_—
A

N H

2
E E
1 P . 2

The following edges are in an A-triangulation:
Each frame edge,
AP, MF, MG, A9Q, AyH, AT, ByI, ByCy, ByN, ByDy, ByP,
C1I, CyBay CyN, DI, DyR, DyBp, AgR, ApJd, AgL, AzS, AgM, AN,
BoR, BoN, BoI, C,I, C,N, DN, D,P, IP, WR, IN.



Figure 10: The D-triangulation

iu L J 53
8 R
.| I
o ey
Dy —
.| ): |
L P q.
E
‘1 F G a

The follewing edges are in a D-triangulationm:
Each frame .“..

AR, AH, A\Cp, ByH, ByM, ByCy, CyH, Cy8, CyN, CyAp, CyBs,
Dif, DyI, DyR, Dy, DyLy DyS, AgS, AgM, BoH, BN,
CM, CR, CoH, DpM, DN, D, D,F, DG, DoQ, HS, MQ, HX,
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segment IH in 54 3 Because of our construetion Z is one of A%"'l'j,
B%"'I' J c%_"'l'j or D%"'l’j unless 1 = n in which case Z is V?J, Then,
in switch 54 3 By2—s B 71,
Consider which terminal is West-connected in Sij' From case 1, since
B, is East-connected we know that it is not Ay or D,. Hence, suppose
it 1s C,. Then CM and C N must be in T. 'Then,

GBH —>cholce

1. CMBy

MBl —?MB]_H # to BlI
2. CMS

C,8 —CSC

BlI —>choice
1. BlIcz
Icz—»ICzN # to CZM
2. Blm
:BlH —a-BIRF # to SC
O 02 is not West-connected, hence, Bz is West-connected,
Now, in switch 31,1'
BlZ —>BlZI
Blz —>B.ZH

i

BlH == BlHQ

B].I —> choice
1, BIICZ

GEH — choice



41

1. C,NP

Cp —> choice
1. CPD, # to IC,
2, CZPF
CF 25,6

GzG —>czcs # to ICZ

2. C,NBy
NB, —>¥B;D,
B0, —> By
Bli-’ — BlPI # to BIH
2. BIR
B,R—> B,RF
B,Q and B,F force '.BlG
."+ By is the only East-connected and the only South-connected terminal.
Furthermore, since B, is West-connected, by the symmetrles of the
switch, analogously to the above, we can show that B, is the only
West-connected and the only North-connected terminal, This shows
that non-frame edges BM, ByS, ByL, BpJ, BoN, BoP and PJ are all in T,
All that remains is to show that the reglon bordered by the vertices
P, J, R and F can indeed be triangulated, This can be done with edges
JR, JCy, C,oP, Cphp, AoJd, AoDy, DyJ, D4R, DyD,, DoR, DGy, CqR, CyF,
Ci4,, AF, AyD,, D;F, FFy D,P, D;P and C,D,,
e JE ‘.Bl is East-connected then Bl is South-connected and ZB2 is
North-connected and West-connected.

Because of the symmetries of the switch we also have:
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If Cy is East-connected then C; is North-connected and C, is
South-connected and West-connected,
In the above proof the non-interswlitch edges which are finally
enumerated (along with the frame edges of Sij) constitute a triangu-

lation af‘Sij. This triangulation 1s called a B-triangulation and

is pictured in Figure 11, In a B-triangulation terminal B, is

i |
East-exposed and South-exposed and terminal B, 1s West-exposed

and North-exposed. Analogously, corresponding to Gl and 32 being the
connected terminals of Eij' there is a set of non-interswitch edges

called a C-triangulation. This triangulation is shown in Figure 12.

In a C-triangulation terminal C, is East-exposed and North-exposed
and terminal Gz is West-exposed and South-exposed.
.. Glven any triangulation of V there are exactly iwo connected terminals

per switch and they are a matched pair of terminals,
0

The following corollary follows immedlately from the above theorem
and our earlier remarks about the non-frame edges in T:
Corollary 1: If 51 and SE are adjacent switches in the network and T is
a triangulation of V, then there is exactly one interswitch edge in

T whose endpoints are a terminal in Sl and a terminal in.Sz.

4.4.3 The Main Result

In the specifications of interswitch edges we defined various
terminals to be Clause-true and Clause-false, For convenlence, those

definitions are restated here:
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L J
Ey
8 R
.|
32——-)
By
N
P Q
El F G

The following edges are in a B-triangulatien:
Each frame edge,
MFs M1C1, MDp, ByF, ByG, ByQ, ByH, ByI, ByR,
CiFs CR, CyDps DyR, DyJ, DyAg, DyCp, D4P, DyDp, Apd, AxC,
Bady Bal, BpS, BpM, BN, ByP, CpJ, CoP, DR, DoP, D;F, FR, JP.




Figure 121 The C-triangulation

L J

5 | P2

F G

The following edges are in a C-triangulatien:
Each frame edge,
MGy MQs AjAoe Ay, A By ADps BjQy ByLs ByDy, Byda,
C1Q, C3H, C3I, C3R, CyJ, CiL, DiL, DyAp, AL, A58, AR,
BaSs Baly BoDyy Co8, OgN, CaW, OGPy CoF, 02C Do, GS, IR,
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In a neutral switch, terminals Al and Bl are Clause-false and
terminals C; and D, are Clause-true.

In a positive switch, terminal Ay 1s Clause-false and terminals
Bl, cl and Dl are Clause=-true,

In a negative switch, terminal Bl is Clause~false and terminals
Al' Cl and Dl are Clause-true,

The following three lemmas are useful in proving the main result:

Lemma 1: In any gliven triangulation of V, for each 1, 1<1<n, elither
the connected terminals are B's and D's for all 54 U the connected
terminals are A's or C's for all sij' 1532k,

Proof

The result follows immediately from our construction of vertical

interswitch edges, theorem 1 and corollary 1, . O

Lemma 2: In any given triangulation of V, the West-connected terminal
in each switch 5, 3 is A%‘j or B}?j and the East-connected terminal
in each switch Snj is Clause-true, for 1< j<k.

Proof

The result follows immediately from our construction of special switches

and interswitch edges. O

Lemma 3: In any given triangulation of V, for eac_h J, 13 jJ=k, there
exists an i, with 1< i<n, such that the East-comnected terminal
of Si 3 is either ‘kl or By and it is Clause-true,

Proof

Consider any j such that 1 < j <k, and suppose the lemma doesn't hold.

By lemma 2, the West-connected terminal in 5, 3 is A, or B,. Then the

East-connected terminal is Al or Bl. By assumption it is Clause-false,
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Then, by our construction and corollary 1, the West-connected terminal in
Szj is A, or B,. Inductively then, the East-connected terminal in snj is
either Al or Bl' By assumption, it is Clause-false, This contradicts

lemma 2.

0

Now consider the following truth assignments to the variatles Xys eve y X3
Xy is true if the South-connected terminal in Syq is Bl or Dz.

X3 is false if the South-connected terminal in Sil is Al orvcz.

Theorem 2: For each j, 1<J <k, the clause cj is satisfied by this truth

assignment to the variables,

Proof

Consider any J such that 1 £j<k., By lemma 3, there is an i such that the

East-connected terminal of Sij is either A, or B, and it is Clause-trus,

Case 1: The connected terminal is B;. Since it 1s Clause-true this must
be a positive switch, so Xy is in Cj. But then B1 is the South-
connected terminal and by lemma 1, the South-connected terminal of
311 is Bl or Dz. Then, by our assignment %y is true and cj is
satisfied. :

Case 2: The connected terminal is A, Since it 1is Clause-true this must
be a negative switch, so X, is in C 3 But then A; is the South-
connected terminal and by lemma 1, the South-connected terminal of
511 is Al oxr Cz. Then, by our assignment Xy is false and cj is
satisfled,

Therefore, from a2 triangulation T of V, with T a subset of E, we have

obtained a truth assignment to the variables Xys ees o X such that

each of the clauses Gl. avs 3§ Gk is satisfied.
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4.5 Proof that a solution to CNF-Satisflability ylelds a solution to TRI

Assume that His ooe Hn is a truth assignment to Xys e 2 X such

that each of the clauses C;, ... , Cp 1s satisfled, We wlll show that

there is a subset, T, of E, such that the edges in T triangulate V.

Initially

we note that a set, T, consisting of edges meeting the following requirements

will suffice as a triangulation of V., It is clear that T need only include:

1., The edges in the frame.

2. The edges in a triangulation of each switch in the network.

That

is, for each switch, the edges in elther an A, B, C or D-triangu-

lation.

3. For each adjacent pair of switches an edge whose endpoints are

the appropriate exposed terminals of those switches. (The exposed

terminals having been determined by the triangulations specified

in 2.)

4. For each special vertex in V, an edge whose endpoints are the

speclial vertex and the appropriate exposed terminal of the switch

in which the special vertex is located.

The remalnder of this section is devoted to specifying a set of edges which

meets the above requirements, Initially we place the frame in T and agailn

note that no edge in E properly intersects any edge in the frame., The

Irame edges thus present no further difficulty.

4.5.1 The Triangulation of Each Switch

For each clause, Cj, we define Hj to be the least 1 such that xj is

in C5 or X3 is in Cj and the truth assignment of Hj to x; causes Cj to be
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satisfied, Then, switch Sij is triapgulated in T as follows:
For i= W 3 if Hy is true then Sy 3 is B-triangulated
else sij is A-triangulated,
For i> wj, if Hy is true then Sy 3 is D-triangulated
else Sij is C-triangulated,
The exposed terminals of each switch are determined by the trlangulation

specified for each switch,

4.5.,2 Interswitch Edges in T

Theorem 3: For each 1 and j pair, with 1<i<n and 1< j<k-l, there is an
edge in E whose endpoints are the North-exposed terminal of Si j and
the South-exposed terminal of Si, F#1°

Proof

Consider any i and j palr such that 1si<nand 1< j<k-1.

Case 1: The North-exposed terminal of 543 is B%j or Di-j. This implies

that Hi is true, hence, the South-exposed terminal of 51, #1 is
B%_" FL or D%' J1, But, by our interswitch edge specifications,
each of the four edges: [B‘%j, B%'j"'l} ' [B%J. D%'jﬂ‘] '

(043, 31,3417 |, ana [p}J, D4 31] 1s an E.

Case 2: The North-exposed terminal of S, is A%j or cid. The proof

J

is completely analogous to the one for case 1. 0

Theorem L4: For each i and j palr, with 1<i<n-1 and 1< j<k, there is an
edge in E whose endpoints are the East-exposed terminal of sij and

the West-exposed terminal of Si+1, 3
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Proof

Conslider any 1 and j palr such that 1€isn-1 and 1< j<k,

Case 1: i>W.

e —— J
Because 1i>W 3 the East-exposed terminal of sij 1s either Ciij or
D1ij and the West-exposed terminal of Si+1 3 is either c%*l

¥
Déﬂ"j. But, by our interswitch edge specifications each of the
four edges: [}, c3*1+d], [edd, pi*+d], [od, c3*10J], ana

[B%j. D%ﬂ'j]is in E,

!j or

Case 21 1 =W,

Subcase 1: The Bast-exposed terminal of Sy; is BjJ, By the definition
of W 3 this switch is either a positive or negative switch., Assume
that it is a negative switch, hence X; is in Cj. But since 3]J 1s
the East-exposed terminal, Hy is true. But this contradicts the
definition of W 3 Therefore, this is a positive switch. Since
1#1 >¥ 5 the West-exposed terninal of Sy, j is either c3*11J or D3*1+J,

J
But, by our interswitch edge specifications both of the edges
(839, e+ Jana [ 539, Di*rd ] are 1n 5.

Subcase 2: The East-exposed terminal of Si j is Ai‘j. Similarly to
subcase 1 we can show that this is a negative switch and that the
desired edge exists in E.

Case 3: 1<W 3

Subcase 1: The East-exposed terminal of Sy 3 is B{"j.

Subcase a: Switch Sij is a neutral switch., Because i+l <W3j, the
West-exposed terminal of Si+1, 3 is either A%ﬂ'j or B%ﬂ'j. By
the interswitch specifications both of the edges [ Bij ’ A%ﬂ"j] and

[Bij, Béﬂ"j] are in E.
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Subcase b: Switch sij is a positive switch. This means that ¥ 1s in
C4. Because B{J is the East-exposed terminal of Sy;, the truth value
of Hy 1s true, But this means that Cj is satisfled by the assignment
of Hy to x3. This 1s a contradiction of the definition of Hj.
Hence, Sij is not a positive switch.

Subcase c: Switch Sij is a negative switch, Because 1+1:;Hj, the
West-exposed terminal of Sy, s is either 43143 or B3*1ed, But,
by our interswitch edge specifications for Eij' a negative switch,
each of the edges: EBij, A%+1'j] . [B%j, B%+1'j] is in E,

Subcase 2: The East-sxposed terminal of'sij is Aij.
The proof 1s analogous to that for subcase 1, with the roles of

subcases b and ¢ reversed.

Hence, for each palr of adjacent switches there is an edge in E whose
endpoints are the appropriate exposed terminals of those switches. Each

of these edges 1s placed into T.

L,5.3 Additional Special Switch Edges in T

Theorem 5: For each special vertex in V there is an edge in E whose
endpoints are the special vertex and the appropriate exposed
terminal of the switeh in which the special vertex is located.

Proof

Casel: The speclal vertex is Uil with 1s i< n, By our basic specifications

of special switches each of the edges i A{I]. wd, B{l],
w1, cil] ana [U?, D3] is in B, Thus, whichever terminal is

exposed in S44 the desired edge is in E,
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Case 2: The special vertex is N’lk with 1<i<n. By our basle
specifications of special switches each of the edges [Hik, A%k] R
[h’ik. Bg{ i o [Wik, Cik] and [Wik, Dik] is in E. Thus, whichever
terminal 1s exposed in 54, the deslred edge is in E.

Case 3: The speclal vertex is le with 1< j=k. Because 1S W 3 the
West-exposed terminal is either A%j or B%j. But, by our basic
specifications of special switches, both of the edges [T19, A37],
and [le, B%j] are in E, Thus, whichever terminal is exposed in
Slj the desired edge is in E,

Case Li: The special vertex is V™ with 1< j<k.

Subgcase 1: n >Wj

Because n>W 3 the East-exposed terminal of Snj is elther c‘l‘j oxr
D‘i‘j. By our basic specifications of special switches each of the
edges [VPY, C%j] and [v?, Di‘j] is in E. Thus, whichever terminal
is exposed in Snj the desired edge is in E,.

Subcase 2: n=W 3

Subcase a: The East-exposed terminal of switch Sn.i is ng_ Then,
from case 2 of the proof of theorem 4, this is a positive switch,
But by our interswitch edge specifications (part 4) the edge
v, 809] is in .

Subcase bi The East-exposed terminal of switch Sp; is AQJ. Then,
from case 2 of the proof of theorem 4, this is a negative switch,
But by our interswitch edge specifications (part 5) the edge

[v®, aPd]4s 4n B, o

Hence, for each speclal vertex in V there is an edge in E whose endpoints
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are the special vertex and the appropriate exposed terminal of the switch
that the special vertex is a part of., Each of these edges is placed in T.
We have now specified a set of edges T which is a subset of E and
which satisfies the four requirements given as being sufficient for a
triangulation of V. Hence, the set T is a triangulation of V.
Thls completes the proof that CNF-Satisfiability is polynomially

reducible to TRI.

4,6 Finishing Up

Theorem 6: TRI is NP-Complete.
Proof

In the first five sectlions of this chapter we have shown that
CNF-Satisfiability, a known NP-Complete problem, is polynomially
reducible to TRI. All that remains is to show that TRI is in NP.
Consider an instance of TRI as specified by the sets V and E. We
know that a =et T is a triangulation of V if and only if the feollowing
two properties hold for T:

1. No two edges in T properly intersect,

2. For every edge, e, whose endpoints are vertices of V, either

e 1s in T or e properly intersects some edge in T,

Hence, given the sets V and E, we nondeterministically choose the set
T and then verify that these two propertlies hold. To test for property
1 requires time G(ITIE) and testing for property 2 may be done in time

CKIVIgITI). Therefore, TRI is in NP and hence, TRI is NP-Complete.
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Chapter 5 - Conclusion

5.1 Summary

This thesis has examined two problems involving triangulations of
a set of points in the plane: the problem of finding a minimum welght
triangulation given all of the edges between the points and the problem
of determining the existence of a triangulation in a given subset of the
edges. We discussed several aspects of the MWT problem and gave
counterexamples to two published algorithms for it. We have shown that
TRI is NP-Complete, We conjecture that MWT is also NP-Complete. This
is based on a comparison of these two triangulation problems with the
corresponding Hamiltonian circuit problems and tbe corresponding
spanning tree problems, Eoth of the corresponding Hamiltonian circuit
problems (that is, the problem of existence given some of the edges and
the problem of minimum weight given all of the edges) are NP-Complete.
In comparison, there are efficlent algorithms for both of the spanning
tree problems. Therefore, because TRI is NP-Complete, we would find it
very surprising if MWT was not also NP-Complete,

We should note that as we have stated it, we would expect only that
MWT be NP-Hard. However, we can change the problem slightly to ask if
there is a trlangulation of V with weight sm. We would then expect that
this protlem is NP-Complete, The difficulty with the original version
of MWT which is not present in the new version lies in showing that the
problem is in NP. The same comment can of course be made about the

Hamiltonian circuit problems mentioned above.



5.2 Open Problens

In addition to the need to resolve the status of MWT there are

several other open problems involving minimum weight trianzulations.

The first of these problems is to show that a shortest edge between
points in V is in 2 minimum weight triangulation of V. If a shortest
edge lies on the convex hull of V then it is in each minimum weight
triangulation by the definition of a triangulation. But what if a
shortest edge does not lie on the convex hull? We conjecture that in
this case also a shortest edge must be in a minimum weight triangulation.
This problem should not be confused with the example given earlier which
showed that the shortest edge not on the convex hull was not necessarily
in a minimum weight triangulation. In that example the shortest edge
among all of the edges was on the convex hull,

A second problem is to bound the welghts of the triangulations
produced by the Duppe-Gottschalk and Shamos-Hoey algorithms with respect
to a minimum weight triangulation. We know that for arbitrary triangu-
lations this ratio may be as large as O(|V|). A further problem is to
determine under what conditions either of the two algorithms does produce
a minimum weight triangulation. These questlons will be especially
important if MWT is indeed NP-Complete.

Another problem would be to determine the accuracy of the functional
approximations which are obtained from a minimum weight triangulation as
opposed to other triangulations. For instance, the Shamos-Hoey algorithm

produces a triangulation with the property that the circumecircle of each
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triangle contains no points of V except the vertices of that triangle.
We would like to know if this property makes the triangulation produced

by their algorithm especially good for approximations.
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