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ABST'RACT 

A set, V1 of points in the plane is triangulated. by a subset, T, of tbe 
straight line segments lthose endpoints are in V, if T 1a a. maximal subset 
such that the l.ine segments in, T intersect. only at the1:r: end.points. The 
weight of any tz:iangula.-tion is the~ oi' the Euclldea.n length~ of' the 
line segments in the triangu1ation. We examwu.t two problems involving 
triangulations. We d1scuss sevel:'a1 aspects o:f the problem of finding a 
m.inimllDI weight t.rhngulati.on among all triangulations of a set. of points 
and glve counterexampl,ea to two p11blished solutions to this problem.. 
Secondly, we sho~ that the problem of de~ermining the existence of a 
tr ia.ngula. t ion in a. g:1 ven subset of the st raigh -t line segiuent s whose · 
endpoints are in V is NP-Complete~ 
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Ch.apter l - Introduction 

l .l Geomet.r1c Compl,erlty 

Colll.putational geo1I1etry problruas f'l:'equent.ly a:c1se 1n many real-:world 

and theoretical circumstances. Solutlons to many of these pro bl.ems have 

been kno~"'ll. f'oT centuries. Only recentl71 howeve-r, have the ti.me and. spa.ca 

complerlt.ies o:f geonietric :problems begun to be exa.mined. A large port.i.on 

of th:1s work has been done by M. Sbam.os [12, 13tl4] t tdl.o has given effici.ent 

.algoz1:t.bnia for a number of tbe fundamen.t.al geotnet-r1e problems~ 

The complexity of geome-tTie ~blem.s is important not only because of 

the real nature of many of the probl.em.s bu't also because of the 1.nsight.s 

provided on tbe int:t:1ns1c na.t-ure of computation~ For insta.nce,. cons.ider 

the problem of i'ind.ing the mildmum weight spanning tree of a set of points 

1n the Euclidean plane and the corresponding graph-theoretic proble111 of 

finding a. minimum weight spa.m1fng tree in an arbitrary graph~ It has been 

shown that the ge,omet.r:lc problem, :for n points 1n the plane, can be solved 

in -tma O'(n log n) 1 loibereas the best ,algorithm presently known £or t.be 

graph-theoretic ve:csion :cequires time 6(n2) f'or a graph with n vertices 

[l,12]. This sugge:s,t.s tha.t t.he e.lgehraic and ge:ometrlc versions of a 

probilem may have sttbstantially different com-p1ex1t1oo~ In contrast, we 

note that both the algebraic and geometric versions of the Tra.vellng 

Salespwson Problem and the Stainer Tree Froblem. have been sho1m. to be 

NP-Complete [7, 8, 9, 11]. At. this -tuie theze re1ttains a large amount of 

mystery about what seometry eant.riwte~ to a problem in terms of its 

co111ple:rlty Due to the recent emergence of the field there 1s a luge 

class of problems which remain open. The p:rilllary concern of this thes:t.s 
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will be with several related probleJ!6. in geo etric co plerl ty. 

1.2 The Trlangw.at.1on Concept 

The conoept of a sat of points in the plane being tz::ial!lgU].ated may be 

for ,u1ated. as follows; Let V be a se-t of' n dist.1nc:t. l)Oint.s 1n. the plane. 

We as.sume tha.t. these points are not. all col11near and tha..t n .?. ). The 

n points in V will be eallea. vertices_. Let L oe the set. of' ( 2 ) st:ra.1gh.t U.ne 

segments between v,ertices 1n V ~ The elentent.s ,o.t· L ue edges. Two edges,, 

e1 and ez properly inters,ect if e1 is not equal to e2 and if e1 and. e2 

int,eraec.t at a point which is not an endpoint of both el and e2 A 

tria.ngula.tion of V is a maximal subset, T, of L such that no two edges 

of T pro,pe:rly intersect.. Theze a:re several useful pcopert1es of triangu

lations which follow direcily fro~ this defirdtion1 

l. Ea.ch edge in the oonve:i-: hull of V is in T. 

2. Each interior face of the straight-line planar graJlh.1 as 

determined by V and T .• is a triangle. 

:,. Each edge in L is eithm:' in T or properly intersects a.n edga in T 

4. If y1y2 is an edge in T :with endpoints y1 and_ 12 1n V and y1:,2 

is not an ed.ge on the convex hull of V, then 1n each hal.f-phna 

as detel'Illined by a line passing throu,gh Yi and Yzt the-xe must 

exls t a vertex w in V such t.hat edges YlW and y 2 w are 1n T .ui.d. 

there does not erlst a -fom::th vertex u in. V which lies on, or 

int.e:rioir to, triang e y1y2v. 

We will ma..'lj;:a use of these properties throughout this pa.per. 

Triangulat.1ons ha'l/e an .a.ppli.eat.1on :Im the app~ox1mat1on of function 

value.s for a function of two va:ria.bl.es when the value of' the function is 
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known at some m.unber o:f arbitrary IJoints~ One method in.volves finding a 

triangulation of the, set of points. lfhere the function values a.re known [5]. 

To approximate the- value of t.he funotio-n at. an.other point. sa.y p, we find 

tbe triaDgle in which p l1es with respect to the triangulation and then 

approximate the funoti,on • va.lue at p by linear interpolation of the function 

values a.t the vertices of the triangle· in lrid.ch p lies~ 

The remaining, two sections of th.is chaptex desaibe the two :problems 

ooncermng triangula.f.iona in whi.ch we are interested~ 

1. 3 The Minimum 'eight Triangulation Problem 

The r.d.nimum: "&reight triangulation :problem is as follows: G1veo a set 

of po1.nts 1n the plane, V, and the set of edges, L, whose endPoints are in 

v, a weight can be assigned to each e-d.ge .1.n L1 the weight of a.n edge being 

equal to the Euclidean distance bet.ween its endpoints The weight of a. 

t-riangul.ation, T, is then defined t.o be the sum of the weights of a.11 of' 

th~ edges in T We are 1nt~rest-ed in dis~overing an. efficient algoo:-ithm 

f ,or finding a triangulation. of minimwn weight among all of 'the triangu

lations of V" This proble will "be referred to as MllT throughout tbis 

paper. 

An example ls shown in Figure 1.. There a.re fi,re vertices to be 

triangulated The three triangulatlons sho.m are the only triangul.ations 

of those vertices. The mfnil;nim weight triangulation is gi~en in la1 

because IAC I + IAD I < IBD + IADI .and IAOI + IADI < IBDI + IBEI, and 

the three tria.ngula.t-1.ons agree on all other edges. 



9 

F1gure 1: Three triangulations of a aet of points in the plane 

(a) 

B B B 

A 

E 

(b) 

C A 

E 

(c) 

C 

The minimu weight t:rla.ngula.tion problem. has been studied !)1"ev1ously 

by Duppe and Gottschalk [6] and Shamos and Hoey [12]. We note that ot.ber 

criteria. for the .. .goodness" of a t:riangulation .might be better sui.t.ed to 

cei-taln applicat1ons and may be eas1e-r to find. Or1ter1a. concerntog the 

size of the aximu or 1111nimum angles 1.n a triangulation and how they apply 

to the :finite element et.hod are discussed by Babuska and Azi-z [2] and 

.Bram bl.e and Zlama.l [4 J. 

In chapter 3 we present countere:xa.•rrp,les t ,o t.wo algori thn!s pxoposed 

for solving MWT and give counterexamples to several ,conjectures eoneerni.ng 

m1n1roum weight triangulations. A discussion of a dynamic programm.tne; 

approach to th s problem 1s also p:resented. 

l 4 The Tria.ngu.la. tlon Existenee Pro bil.em 

In this problem we axe concerned ·with determin.1.ng when. a. triangulation 

of V exists in some given subset of L~ That. is, given a set ,of vertices, V • 

and a. subset E of L, does there exist a subset. T of E such t.ha.t. T 1s a 

t iangulation of V? This problem 'Nill be :referred to a..s TRI. 
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An efficient algorithm for solving this problem might. 'be useful in 

att.acking other problems involving triangulations. For instance1 in oux: 

work on nrr t we considered a 1natro1d. apPJroaoh to t.he pro bl.em~ A desirable 

property was to be able to, tell efficiently if a subset of L contained a 

t.riangulat1on. of V. It al)pears reasonable tha.t o,ther a:pplic:a.tions of 

triangulations may also have cause to use SQCh an a.lgoxithin. 

In chapter 4, we, sho,w- that TRI is NP-Co pleta. hence it is prol:a.ble 

that it is not possible to find a.n efficient algoritrua for determining 

triangulation existence. 
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Chapter 2 - Fre.1.1.mlnaries 

2 ., 1 NP-Co.111:pleteri.ess 

A recurring theme throughout this paper is tbe notion of a. problem 

being ?IP-Complete. We will gi.ve an informal discu.ss1on of this subject, 

here and Tefer the reader to, Aho, Hopcroft and Ullman. [l] for s:peciflos 

The set Ji£_ is defined to consist. of all languages Nhich can l:::e 

recognized by a. nondete:cmim.stie Turing I11achbe of pol;ynom1a1 time 

complexity. Similarly, the set .l_ consists of all languages which can 

be recognized by a det•erministic Turing :ma.ch1ne of polynomial time 

complexity. It is not presently known if '.P 1s pro,l)erl;y contained in NP. 

A language M
0 

in ?JP 1.s defined to be NP-Complet~ if the following 

condition is sa.tisfiedi If we have a deterministic algorith!i2 for 

recognizing M
0 

of time complexi.ty T(n) ~. n, ·then for each language M in 

1iP, we can e:ff',ect:lvely find a deterministic algorithm for recognizing M 

of' time complexity T('P(n)) where p is a polynomial depending o·n M [1]. 

Thus, if' an_y MP- Co p1ete language 1s in P then the s •ets P and NP are equal. 

A language M over alphabet I! is. polynomially reducibl~ to a language 

M0 , over alphabet E if there is a. determ.i.nist1,c. algorithm which, wben given 

a string w over A produces a. string w
0 

over l: in time polynoill1al in the 

length ,of 'H such that w is in M if and onl.y if w0 is in M0 ,. 

The method that He will use to show that a language M
0 

is IP-Complete 

1s to show that: 

1. ~ 0 is in NP 

2. There ax1sts a language which is NP-Comple·te khlch is 

polynomially Yeduci ble to M0 • 
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A language foT ~hich the second condition can be shcwnt but not necessa.rUy 

the first, is said to be NP-Hard. A large number of co~binatorial and 

optimization problems have been shown to be l'P-Cmnp-lete (1,8]. 

2.2 Def1n~tions 

A 1:lrief desm.:ipt.io,n of Vorono1 diagrams is. given here. The inter,ested 

reader is d:1rected to Shamas [12,1:3,14] a,nd Rogers [lo] f'or formal 

,definitions and results. Consider a fin.ite set of vertices, V, ln the 

-plane. Surrounding each vertex, w, there is a maximal conve.x polygon 

called the Vorono:1 polygon associated nth w. This polygon 1s defined 

to consist of each point., p, 1n the plane such that no ve1:tex ,of Vis closer 

to p than is w. The Voronoi po,lygons for ea.ch vertex in V partition the 

"Dlane, forming a network of' convex polygons called the Voronoi. di~am 

of v. The straight-line dual of the Voronoi diagram of Vis a. planar 

.graph with vertices V; where a. line segment (an edge) exist.s between two 

vertices if' and only if the Voronoi. polygons of those two ve.rtices share 

an edge. \le will refer to these conce'Pte in chapter 3. 

There are several other useful def1n1 tions. 

Suppos,e V is a set •Of vertices and T is a. set of edges whose endpoints 

are 1n V. A path Q in T 1s de ined to be a 11st of vertices of V, 

(p1 , p2, ••• , lie) such that each edge Pilli+l of the path, for ls i ~ k-1, 

is in T. A circuit 1s a path in which k > 3 and Pi and ~ are the same. 

An elementary circuit. 1s a. circuit in which each of the veJ:tices 

PJ. t Pz. •• , • , Pk-l is dist net. 
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2.3 Notations 

Throughout this paper either ,of the· notations AB or [A. BJ will be 

us,ed. to refer to an edge whose endpoints. a.re vertices A and B. Which 

notation is used will depend u.pon which 1s clearer .in the given situation. 

The coordinates of a point 1n t.he plane W:111 be enc:lo,sed. :tn 

parentheses.. For example,, the origin is ( 0 1
10) .. 

When applica.ble a i!uat of edges oe.twaen v,oo:tices of V will be denoted 

a.s follows· If" Q and R are sets of' vertices of V, then Q, x R :represents 

the set of all edges [q1 r] such tha1. q_ is in Q. and. r i5 in R. 

The symbol V denotes a set of v~tices to ibe trhngula.ted throughout 

this paper. 
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Cbapte~ 3 - The MWT Probtera 

This eh.apter provides eounterexa.m:ples to two algorithms conjectured to 

solve MWT. These lead to several. ob:serva.tions about. "HT. A dynamic 

programming approach to MWT :1s discussed. Throughout thi:s chapter L 

ls the set of all edges whose endpoi_nts a:re 1n v. 

:3.1 The Duppe-Gottschalk Algorithm 

The first of the algorithms purl)orled t.o solve MWT was published. by 

Duppe and Gottschalk [6) Uttf'ortunately·, tbett paper was llr1tten in a very 

J.nformal manner and the explanation t.hey give of their &lgoritb.ll!i is 

ambiguous For these reasons we have two different. versions of their 

algorithm. The first version is a.s follo'H'st 

1. Set Lo + L, To+ f and 1 +- O. 

2. While Lt + ~ do 

21 Let R be an ed~e of lea.st weight in L1 

12. TH-1 + T1 u {w} 

23. L1+1 L1 - {w} - {me: L1 I .and, ...- proper y 1nterseet} 

24. i 1 + 1 

:3.. T +- Tt 

The ,claim is tha-t. T is a 111inimlm v,eight tr1angu1ation of V In FigUre 2 we 

give a set of vertices khi.ch shows tba.t the t~iangulation produced ls 

not necessarily a m.in:1- wn_ weight tr:langulat.ion. In tha.t example, we a:re 

concerned only with the edges not on the convex hull of the ertices sl ce 

the conve.x hull is 1n every txiangulatlon~ he edges not on the convex 

hull in the triangu1at1on produced by this algorithm ate BD and :BE which 

have a combined weight over 187 units. However, the 1nter1or edges in the 
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Figure 21 Counterexample· to the Du.p:pe-Got.tschalk Algorithm. 

Edge lengths of int,erior edges (relative to the given coordinates) 

Edge BD 75 units 
Edge CE t < 85 uni ts 
Edge AC s < 85 uni ts 
Edge BEz > ll2 units 
Edge AD a > 127 units 

Figure 3t Countere:xample to the Shamos-Hoey algorithm .• 

B B 

---
A A 

D D 

(a) (b) 

E1 (1601 0) 

C 
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minimum weight. triangulation are ~E and AC which have a combined veight of 

under 172 units, Th1s algorithm was independently proposed by R. Rivest. 

The second version of their .algorithm is s!mply a. modif'ica.tion oft.he 

first version. The folloiling stat.ements are added to the algorithm gh·en 

a.bov·e between statements 23 and 24: 

231. Let y be an edge of lea.st weight in Li+l Nhich has a co~nmon 

endpoint with w. If' no such y ensts then ,jump to step 24. 

232 L1+1 + L1+ - {rn € L1+1 I m and y properly intersect and the 

weight of m exceeds the weight 0£ y} 

Tbe example in Figure 2 is also a countere:xampie to this version. In that 

example the version two algorithm produces the same triangu].atio,n as the 

f1rst version. It may be that the two ver:eions a.re equ1val.ent., which would 

remove uch of' the ambiguity from the Duppe-Gottsehalk paper. However, sucb 

an equivalence was not apparent to us. In any case, neither i.rersion of the 

algorithm al~a.ys produces a m1nimu.m weight triangulation. 

J.2 The Shalilos-Roey Algorithm. 

The second algorith purported to find minimum weight tr1angulat1ons 

was published by Sham:os and Hoey [12]. Their algori.tmn is as follows,. 

1. Construct the Voronoi diagram for the set of vertices V. 

2. Let T eonstst of the edges in the straight-line dual of the 

Vorono~ diagra,~. 

They claill'I that T 1s a. minimlllll weight tr1e.ngula.tion of v. We note that 

if m.ore than three Voronoi edges meet in a .single point then the dual of 

t.he Voronoi diagram is not a t.riangula.tion, blt only a network of convex 

polygons which must then be triangulated by another method. Ignoring 
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this detail, we note the correctness. of this algorithm, as fer as 

produc.ing a minimum weight tr1angulatio,n is concerned, 1s partially based 

on the work ,of Du:ppe and Gottschalk, That th:1s algorithm doe's not al'Kays 

produce a minimum :weight triangula.t..1on :1s shown 1n Figure :,. The m.inimwn 

weight triangu.la.tion is shown 1n 3a and the triangulation produced by 

the Sha.mos-Hoey algo•rithm. is given in Jb. The Vor,ono1 edges a:re given 

as broken lines. in J:b.. Th· s e·xam.ple al o shows tha.t the Shamas-Hoey 

algori.t.hm 1s not equivalent to the Duppe--Gottschalk. a gorithm since, in 

this example, the Duppe,-Gott-sehalk algozithm does produce the minimum 

"Weight triangu1ati.on, Such an equivalence was implied in the paper by 

Sha.mos and Hoey [12 ,. 

As an 1nt,eres,ting obsarvat.1o , we note that Sha.mos and Hoey g· ve an 

6'{n log n) l.ower round :fox f1nd1ng an_y i:.r1angu.la.tion of a set of n points 

in the "Dlane: [ 2]. This bound fol 1ows from the reduc.tion of a one

dim,e:nslonal sort.ing problem. to the problem ,of finding an;y triangulation 

of a given set of points. he Sha.mos-Hoey algorithm, slightly modified 

to handle the case of greater than three Voronoi edges eeting at. a single 

point., achieves this lowe::i:: bound. 

3. :3 Observa.tions about ·'WT 

~here are several observations about mi imWII weight triangulations 

~hioh rollow from the co nterexamples for the two p:rooosed algorithms. 

The first observatio is t.hat the shortest edge not on the convex 

hull of V is not alKa.ys in a minimum weigh t.rta.ngul,at:ion of • The 

countere'lr.am-~ le to the Dup:pe ot.tschalk algorithm shoks th1s. In that 
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,examt1le - Figure 2 - edge BD 1s the shortest edge not on the convex hull 

and it snot in the minim.UlU weight triangulation. 

A second o'bser'rfation is that a minirl'lum 11ei-ght triangulation does not 

always contain a :min.1mum we1.ght s:parm!ng tree. The example in Figure 4 

illustrates this. The minimum weight tri.angu.lation of the four v~tices 

is given 1.n 4a and the minm'lliil we.ight spanning tJ:e.a, 1s given in 4b. We 

note that this observation alone 1s sufficient to show that the Sh.amos

Hoey algorithm does not always produce a m.1nitnu.m weight triangulation 

since a minimWll weight spanning tree of a set of ~ertices is always a 

subgraph 1n the dual of the Voronoi diagram of those vertices [12]. 

In a.ddltion to these observations we had conject.ured that every 

triangulation contains a Hamiltonian circuit and. in fa.ct, that. 8\fery 

rninimWt:1 weight tr1angulat.1on contains a inirdmum weight .Ha111llto,nian circuit. 

However, in FiguXe 5, ffe g~ve a Jl!li.n1mwn weight t~iangulation wMcb does 

not. even include a. Hamiltonian circu1t, much less one of minimum ii.I-eight. 

3.4 Thie Dynani.ic Programming Approach 

One possible algorithmic a.pproa.,eb to find~ m1n1m\Ull weight. tr1angu

lat:1ons 1s dynamic programming [3]. We have examined this possibility 1n 

sol'l'le deta.1. This .section discusses such a.n approach and what we perceive 

to be the 1najor difficulty with it 1n terms of o,btaining e. polynom1al 

time algorithm. 

Before proceeding, we need to develo,p the noti.on o.f a restricted 

minimum weight triangulation. Corudder a planar region, R1 which 1s 

bordered by an elementary circuit 1rhose edges are in L. We require that 

no two edges. of this circuit properly intersect R need not be a. convex 
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Figure 4., The m1.n1mum weight spannin,g tree is not aJbra.ys 1n the im.mwa 
weight tr1angul&t1on 

B 

Al----------- -------:-
C 

D 

(a.) 
IBD I < IAC I< IBC I : IDC 

(b) 

Figu:ce 51 The mln1mwq ·weight triangulation does not always conta.1.n a 
Hamiltonian circuit. 
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region. Let Va be the :s,et of v:ertlces of V that lie in R a.nd. let~ be 

the et of edges of L -wh.ie lie ent.irely 1n R . A restricted triangulation 

of V is defined t.o be a. max1mal. su. bset • TR, of ½ such that no two edges 

of TB properly intersect. A restricted ldn1nrwil weight triangulation of' 

VR is the :restricted triangulation of VR of least weight. Ve· note that 

lf R is a. convex region then the defini tioos of minimum weight triangu~ 

la.tion and restricted minimwn. weight triangulat.1on coincide for VR. 

We may now formulate a. dynamic programming approach to the problem 

a.s follows., We know that t.he convex hull of V must be included in any 

tria.nguJ.at1on of V. Define B to be the planar region interior to (and 

including) the conv,ex hull of V. Now consider paths of the fon:i 

(P]_, Pzr ••• , Pit) with k 2: 2., where the folloldng five conditions holds 

l. Each p1 is in 'If ■ 

2. P]. am PJc lie on the convex hull of V. 

J. Each p1 , except p1 and Pk• is not on the convex hull. of V ~ 

4. The path does not intersect- 1ts,elf in any 11a-y. 

5. If kw 2 i.hen P]. and pk axe not adjact.mt verlii;e.s on the convex 

bull of V. 

We lfill call such a path a. splitting pa.th of R beca.us~ it splits R int.o 

two strictly smaller, although not necessarily convex, :ceglon.s. Now, let 

T be a m1n:unUM weight tr1angulation of V. As long a.s ,VI 2:: 3, there exists 

at 1east. one apli.tt.ing path Q whose edge~ are 1n T I.f we knew: Q then 

the mini:mum. 14:eigh.t t.r1angul.a:tion of V c,ould be calculated from the 

:restricted minimwn "Height. triangulations o:t the two subsets of vertices 

of V 1n ,each of the regions tha.t Q breaks R into. These :restrict.ed 

minimum weight triangulations could be found recursively in a similar 
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ms.nner ~ The d:1:ff'iculty lies in :finding a splittillg l)ath Q whose ea.gas 

are in T. 

One possibility is to con:sider each poss.1.'bl.e pat.h which splits R 

into two strictly smaller :regions. However, w-it.h O'(IVI) vertices 1nt.erior 

to the convex hull of V • t.his would mean exaiaining 6'( IV I ~) sequences 

of vertices of V to find each possible splitting path. Hence, in or-der to 

obtain a polynomial. time algorithm using this approach the number of 

sp !tting paths that need to be ,considered must be limited. 

Let us emmine spl.itting paths in T more closely. Let z be the vertex 

in V with ma.llest x-coordina.te. Note that z, is on the convex hull of ·v. 

There are t.lio cases i.o conside.r·1 

Case 1 t The only edges in T Ki th z as an endpo'.lnt are the edges 

connecting z to the ,;,ertices adjacent to it on the con,rex 

hull. Let w1 and w2 be the vertices adjacent to z ,on the 

eonve:x huJ.1 . Then, by the defi:nition of a triangulation, 

edge w1w2 must be in T and path Q. (w1 , w2) is a. s-Plitting 

path of R. 

Case 2z There ls. an edge· zy1 in T such that Y'l is not w1 or w2 • If 

Y1 lies on the convex. hull of V then Q. "" (z, y1_) is a. 

spl1tting pa.th of R as desired. Hence, suppose Yl does not 

lie on the convex hull of V The x-coord1nate of Yi is 

larger than the ·x-coo:rdinate of z. Si.nee T is a triangu

lation of V there is an edge Yi.Yz 1n T Mhere the x-coordinate 

of y2 is la:rger than the x-coordinate of YJ.. And so on. 

Thus, thei:e is a splitting pa.th Q ""' ( z • Y1 , Y2, • • , Yk) 

in T where the x-ooordinate of Yi :is less tha:n the 
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x-eoordinate of Yi+l fo:r each i, 1 ~ i ~ k- • 

Putting cases and 2 together ke find that it is sufficient to consider 

splitting paths of the follo.d.ng forras, 

1. Q.,. (w1, w2) where H'l and v2 a.re the vertices a.d·acent. to z on 

the convex hull of V. 

2. Q • I • f Yk) where for each 1, 1 s- 1 ~ k-1,. the 

x-coordinate of y1 is less than the x-eoordina.te of Yi+l• 

lising the above observation, if there are cr ( IV I) vertices not on the 

Pl{ IVI) convex hull of V, then only u 2 splitting paths for R need to be 

considered. While this is certainly an 1.mprove.ment over a ( IV I! ) , 1 t 1,s 

still exponent.!a.l as oppoeed to polynomial. 

Unfortunately• we have not. been a.ble to further reduce the number 

of splitt.ing pa.tbs that need to, be considered. The a.jOl:' obs,ta.,cle 1s a 

lack of specific knowledge a.bout the structure of minimum -weight triangu

lations. We bave had little success 1n discovering specific properti,es 

of minimum weight triangulations. Without such properties providing 

a good characterization of minimum weight triangulations the dynamic 

programming approach appears limited a.s far as obtaining a polynomia.l 

time algorithm is concerned. 



Chapter 4 - TRI is, NP-C0111plete 

In this chapter we show that TRI is NP-Co ple.te. The major portion 

of the cha.pter is devoted to show1ng that the probl.em of conjunctive 

norm.al form sa:t.isi'1a.. bil.1 ty ( C..lilF-Sa t1.sf1.a. bll i ty) is polynomially redue1 ble 

to, TRI. CNF-Satisfiability 1s an NP-Complete problem [l] ,. 

4.1 Intuition and Overview 

AssW11e that we ha.Ye an instance of the CNF-Satisfiability problem. 

That is, we have cla.u.ses Ci, 02;, , ••• , CJt each of which is a Sll.lill of 

li tera1s drawn from the varia.ble.s ..:.i_ t ~, • • • 1 Xn. The proble-111 1s to 

determine 1f there is a. truth assignment tot.hen varia.hles such that. 

ea.ch clause is satisfied. From the k clauses we wll.l eonst.ruct a. set of 

vertices,t V I and a sat of edgea 1 E1 'khose endpo1n-ts a:re in V such that 

there ia a subset T of E txiangulati.n.g V if and only if the set of cl.a.uses 

ls satlsf1.a]:ile. Throughout this cha.pt.er a t.riangula.tion of V l\llll refer 

to a subset T of E whose edges are a t%1angula:lion of' V 

The brl.lding block 1n our eonstruet.1on will be, a set of vertices and 

edges which we ldll refer t ,o as a switch. A rectangular array of these 

sntches Ril1 be employed, w: th one switch for each var1.a.b1e--clause pair. 

This array- of switches will a.l::so be :referred to as the network. We let 

51.j rep,re.sent. the switch for variable x..i:,. and clause Cj. Switch 5:1.j will 

be one of three types depend1ng on 'Hhether ~ is in C j or xi is in C j 

or neither is in Cj• We not.e i:.hat the sHU.ehes are numbered in an x--y 

fashion as opposed to standard m.atriX" n'll.til.ber1ng. That is, switch S1,1 is 
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is in tbe 1th column of switches going from left to right and. in the jth 

row of switches going f~om bottom to top. 

In any triangula.tion of this .ar.ray of sHit.chas we may regard two 

streams of information to be flowing throush each swit.ch on.a stream 

flowing ve~ti.cally a.nd the other froni left to r ·ight horizontall.y. The 

vertical. strea.ni of infoma.tion flowing through s1j ,carries a truth value 

for variable Xi• For ea.ch vaz:ial:ile1 xi, t.be same trttth value must be 

flowiJl8 vertically through each switch S1j• where 1 ~ j !> k. The horizontal 

stream. of inforina:t.ion leaving switch Sij on the right 1ndicat.es whet.b~ 

or not clause Cj is sati:sf1ed by the a.ss1grun.ent o:f the truth values {as 

detet:mined. by vertically florlng information for each variable) to the 

variables xi, xz, ••• • x1 This 1bfol'111a.tion. 1may then f':Low 1nto the left 

side of slfi.t.ch S1+1
1 
j• our construct on forces the 1nf.orm.ation flowing 

into, the left side o:f ea.ch switch s1 j to be .. not. satisfied'' and the 

inforrna.tio flowing out of t:he right side of each switch Snj to l:e 

usatisfied.. Wb.at. informa.tio•n is flowing throu_gh a switch depends o,n 

how the swltch is triangulated. 

Now consider a tl:Utth assignment, H, t.o the variables such that each 

clause is satisfied Then, there e.rlsts a triangu.la.tion of' the siidt.ehes 

such that the vert.ica flowing in.fo1:m.ation supports Hand, for each clause 

c j, there 1.s a s-witcb, _sij• such that the truth assignment to xi satisfies 

C jt ca.using the horizontal flowing information about C j to eha.&"'lge from 

"not sa.tisfied11 to "sa.t1sfied11
• 

Conversely, consider a truth assignment, , wh ch does not satisfy 

every clause Then there is no triangulation of the switches such that 

the vertical fl.owing inforil1at1on supports. H and yet for each clause Cj, 
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the horizo ta.l flowing infoo:ma.tion changes frol!l. ''not satisfied" to 

0 sa.tisiied1
• 1n some switch S1j1 

The constructio,n is such that the array of switches may be t.riangu

lat,ed li and only if' there is a. truth assignment to the variables which 

sat.isfies each 0£ the clauses. 

4.2 Description of a Switch 

Before giving a. '.formal speeli'ication of the sets V" and E Me Wlll 

deseri oo the structure of a svi:t,ch. Each switch will consist of the 

ve.rt1ces and edges given in Figure 6. Note that -the coordinates of the 

vertices a.re given relative to E as the origin. In Figure 7 is a 

pictorial representation of a switch. An enlarged vier, of the center 

portion of ,a sNitcb is show in Fignre 8. 

Various w~rtices of ea~h .switch are class1f1.ed a.s follo,wss 

Frame v:ertices1: E1.,E2,E3,E4,F ,G,R,I.J .L,M.N .P.Q.R,S 

Terminals: A~_,A2 ,J31 ,B2 ,C1,C2,D1,Dz 

Matched 'Pair_ of tern1nals1 A1 and A2 , B1 and B2 , c1 and c2 , 

n1 and n2 

When it is appropriate we will su"Oerscript. the v,ertices of a switch. 

For exa.'llple ,:-1.j is vertex in s:witch Sij• Not,e that each :swit.ch is 

symmetric in structure with respect to the lines x - 50 and y .50 (the 

lines relative to E1) ■ 



Figure 6; Switch Specifications 

Each switch consists of the following vertices. The coordinates of ea.ch 
vertex are given relative to E1~ 

E4 L 
(0,100) (37,100) 

M s 
{0,6:3) (3'/ ,63) 

A2 D1 
(47,57) (53,57) 

B2 
(43,53) 

Cz 
(43,47) 

D2 A1 
(47, 1.,3) (5J,4J) 

tr p 

( o, 37) (37,37) 

E1 F 
(o, o) (J? .O) 

Each sH1tch consists of the following edges1 

J 
(63,100) 

R 
(63,63) 

C1 
(57,53) 

:81 
(57,4?) 

Q 

(63,1?) 

G 
(63.0) 

E3 
(100,100) 

I 
(100.6:3) 

H 
(100, 37) 

Ez 
(100,0) 

Frame Edgesz E1F, E1r:, FP, FN. NP, E2G, EiH, Cm, CQ,, HQt E3I, EJ.3 1 

IJ 1, IR, JR., E4L, E4M, IM, LS, MS 

Non-frame Edges i FR, GS, HM, HS, IN, IP, JP I LQ, MQ., iR, 

A1G 1 A1Q, A1H• A1I, A1C1, AiAz, A1S, A1!2, A1C2, A1D2, Ai_P, A1F 1 

B1G1 Bi_Q 1 B1H. B1l• BiR, BiL, B1D1, Bi_Azt B1M, 13 C2, Bi_.U, I3iD2 , Bi_P, B1F, 

C1Q, C1H, C1l, C1R, C1J, C1L, C1S, C1A2, C1M, C1B2, C1N, C1D2, c1F, 
D1H, D1t, D1R, D1J, D1t 1 D1S, D1A21 D1B2, D1C2, D1P', D1D2 , 

A2Q, A~, A2J, A~, AzS• Att, A~, A2Cz, 

BzH: I :B2I. :Bil' :BzJ' I Il 2L, BzS' B2•l, l3zN' .B~' ll2G t BzDz, 
C2Q, CiH C2I • C2J, CzS, Ctt, CzN I C-z?, C,J!, c 2G, 

D2G, D2Q, DzB, Di•t, n2 ;, D~t D:z:F 



Tb• e1strt, Ulll.& 1.a Tfl'tlce• 1D • cnt.r ,..U•n of •• ffitah an 
tb• tcunala. Figure 6 8 lhow ib lat.la at the• 'JC\.1oa,■ .. 
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Hga:n 81 u enlaz'g-4 11. • of 1h• outer portion. of a 1'11teh 

F G I" G 
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4.3 Specification of V and E 

As :pre·viously stated ow:- construction consists of a :re,ctangulaz 

a:rray o:f sw-itches with one switch s 1 j for each v&1:iable x1 , clause ,c j 

pa.1:r. A.djacant switches in this netliOrk will coincide on appropriate 

f'ram.e vertices. Such frame vertices will thus ha.ve two labels. For 

instancet E½1 and E~ refer to the a.all& vertex. Vertex E1 ,of switch 

s1 j will have coordinates ( 100·(1-1), lOO··(j I)). 

To ful.fill the definition of a 'triangulation ·we ne,eti to iaod:1fy the 

swi-tches :in the outermost rows a.nd colwm.s of the netv:o:rk. These 

switches Rill be ident.ical. to regular SH'itehes except they will have one 

add1 t.lon.al. vertex ( called a ~ecial vertex) and s.ever-al additional. ,edges 

These speeial sld.t,ches are specified as fo,llows, 

• Each switch s1 j,. for 1 s: j :S; k, contains a special vertex, T1 J, 

with coordinates ( 0, lOO·(j-1) + 50) and the edge5 

{Tlj} x U,llj Nlj, A~j• B~j} 

2. Eac switch S11• for 1 s 1 :Sn, contains a. .special vertex, u11
1 

w:l.th coordinates ( 100·(1-1) + 50, Qi) and the edges 

{uil} X {Fil, Gil Ail. :afl' c½l, D~1} 

J... Each swi.toh Snj• f'or l ~ j 5 k, contains a special verte;c, 

with coordinates ( lOO·n, 100-(j l) + .50) and the edges 

{vnj1 x {Hnj Inj cnj Dn1j} 
. J • , l ' 

nj 
V ' 

4. Each switch sik, for 1 s 1 ~ n. contains a S]:)ecial vertex., w1k, 

wit.h coordina.te3, ( 100·(1-1) + 50, l0O•k ) and the edges 

i ik Llc 1k 1 ik ik {W K} x {J' • L. , A2 • B2 , c1 , D_i } 
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The frame is defined to be a set consisting of the frame ed~es of each 

switch 1n the netwo~k and each edge of the network Kh.ich has a fra~e 

ve;etex a.s one endpoint.. and a special vertex as the other endpoint. 

We note that no edge with a terminal as an endpoint 1s included in the 

4.3.2 The Inte~switch Edges 

In &ddition to the edges within each switch there need to be edges 

in E whose end.points lie, in different. switches., These edges wil be 

called interswltch edges. Only termina.J.s will be endpoints of intersldtcih 

edges and these edges w-111 lie only between adjacent switches~ It 'Nill 

ba shown later that. between a.ny (hor1zontuly or vertically) adjacent 

pair of switches, exactly one interswiteh edge will be present 1n any 

triangulation~ Intuitively, the chosen edge will ca:r:ry information :from 

one switch to the other~ 

Vertical inters1-1it~h edges may be specified as follollis: 

For ea.ch i a.rtd j pair I with 1 s i 5. n and 1 ~ j < k, the following 

edges are placed in E1 

{A~\ Cij } X. IAi.J+l. c~• j+l} and f B~j I DijJ X {Bi' j+1_ n½• j+l} 

Intuitively., these edges will carry the vertical flowing 1n:forma.t1on 

about the truth values o,f the variables, with the A-C edges carrying 

"false" and. the B-D edges carrying "true". 

he horizontal int.erswitch edges between two adjacent switches s1j , and 

Sl+l, j will way depending on t.be na.t.ure of switch Sij• For this reason 

we classify each switch as being one of three posoible types: 
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A slrl.tch S1j is ,a neutral switch 1f and only 1f x:1 ~ C and ii O · 

A switch S1j is a t)Ositive switch if and ,only if x1 t: C j 

A swi teh Sij is a: nega:t.1 ve sH'i tch if and only 1f Xi E C j 

HoTlzontal interswitch edges may be specified as follows; 

1. For each 1 and j pair, with 1 s; i < n and 1::; j ~ k, such tha switch 

S1j -s a neutral switch the folloll1.ng edges are placed in E1 

{Aij Btj} X {A2+l1 j 1 B~+l1 j} and {Cij• Dij} ,c {C~ ,j D~+l,j} 

We define t ,erminal.s Ai and B1 to be Clause- false and terminals 

C and D1 t ,o be Cla.us,e- true 1n a neutra switich. Intuitivelyt 

these inte:rswitch edges and tho~e specified in 2, 3J 4 and 51 

will car.cy the horizontal flowing inf orm.at~on, a l;,out the clau,ses,, 

rd.th edges with a Cl.a.use false endpoint earxyin,g "not satisfied" 
' 

and edges with a. Clause-true endpoint c-arrying 1•,sa.tisfiedn. 

2. 'For e,aeh i and j pair, with 1 s 1 < n and 1 ~ j s k, such that switch 

S1j is a positive Sii tch the following edges are ple.c,ed in Ea: 

{Aij} X {A½+l.j, B½+l.j} and {:Bfj, Cfj, Dij} X {c½+l,J, Di+l,,j} 

Ve .iefine terminal A1 to be Cla.use-fal~e and termiru:.s Bi, 1C1 a.id 

D1 to be Clause-true in s. positive, switch. 

). For each 1 and j pair, with 1.s; i < u anQ. l ~ j s; k, such tha.t switch 

S~j is a negative switch the follolfi:ng edges are placed in E: 

{Bij} X {A~+l J, ~~+l,j} and {Aij, ctj, Di} X {C~+l,j, D~+l,j} 

We define terminal B1 to "be Clause-false and terminals Ai, C1. 

and. D1 to be Clause-true 1n a negative suit-ch. 

4,. For each j with ls: j S" k such that switch S115 is a posit ve 

slfitch,edge [vnj, ~l is placed in E. 
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5. For ea.C"h j with 1 ~ j s k, .such that :switch Snj is a negative 
nj nj 

sntch1edge [V , A1 ] is placed 1n E 

4.3. 3 The Sets V a.nd E 

Set V contains all frame vertices, terminals and s:pecial. vertices of 

eaeh switeh in the network. 

Set E contains all of the edges of' each sw.ttch in the netwo:r,i;::, as 

well as the interswit.ch edges as specified in the previ.ous section. :We 

note t.ha.t the :frame is included in J and that no, ·edge in E ia:-operly 

lntro:seet.s any edge of the frame. 1'his means that. .a.ny triangulation of 

V must contain all of the edges in the frame 

Finally, we note that the construction cau be ,done in time polynomial 

in n and k, There are .n• k sidtc-hes in the network. Eaoh switch may be 

constructed in a constant a.mount of time. Inters-wit.ch edges exist only 

between ad.Jacent pab:s of sidtches. There are O'( n-k ) such pairs. 

Th,g vertical interswitch edgea axe the same for each ad.ja.cent pair of 

switches, hence, they can be constructed in constant time for any given 

pa.ir., The horizontal interswitch edges f'or any pair of adjacent switches 

depend only on the -type of the left SKi tcb in the pair and, hence, can be 

constructed in constant time for any given pair o.f switches. Thus, the 

sets V and E ca be cons t:c uct ed. in time CJ' ( n • k ) • 
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4.4 Proof that a solution to TRI yields a solut.1.on to C!lF-Sat1sf1.abU1ty 

In this s·ection we assume that T is a. su.bset of E and 1s .a. t:r:1.a.ngu

lation of V. ke show that there 1:a a. truth a.s,signmen.t to the vax1ables 

xv, .... , Xn, such that each clause CJ., ••• 1 Ck is satisfied ,. Thia trut.h 

a.ss:!gnmen t 1d.ll be o,btained fr,om T. 

4.4.1 Preliminaries 

As sta. ted earlier the frame must be! inclu.ded in T. This means that 

the non-fram.e edges 1n 'T ust.1 

1. Co plete the 'tria.ngula.t.ion of ea.ch ~witch 1n the network .. 

2 , Connect the swi tehes together 1n a anner which ylelds a 

triangulation of V 

As we shall. sho~, the triangulation T must fulfill these conditions vlth 

a very particulax structu:re .. 

A terminal a., in swl.tch SiJ is defined to be East-connected ln 

triangulation T if and only if t.here exists an edge a.~ 1n T such tha.t 

a .a properly interseets edge [I1 j H1j J Mow considex edge [l :lj, Hij ]• 

Since this edge is not in · t.her,e must be an edge 1n T wh:i,ch properly 

intersects [I1 j, H1 j] . By our construction., ea.ch such ed~e has a. tem.inal 

of S1j as an end~int. This ea.ns that. there m st be at lea.st one 

East-connected terminal per switch in a.ny tria.ngulati.on of V. Similarly-, 

we ,can define and imply the existence of at least one West-connected, 

one, North-connected and one South-connected terJninal per switch in any 

tr1angula.t1on. o:f V. A connected te:rminal 1s a. terminal tba.t is. at. lea:st 

one of East-connec:ted, West-connected., orth-connec.ted or Sout.h-connec.t.ed. 
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In chapter l \fe stated the following property 0£ tz1angulat1ons.z 

I:f edse Yl.Yz is 1n triangulation T and :ls not on the convex hull of '11 1 

then in each half-plane, as determined 1by a line passing thxough Yl and 

y2 , ther.e rnust. erlst .a vertex w in V such that edges ;y1v a:nd y2v are 1n T 

and there does not exist a fourth. \rertex 1n V nhich lies on, or· interior 

to, triangle :r1y2w, Tb.at ist Y1Y2 is an edge in the boundary cf two o:f 

th·e tr1a.ngu.la.r faces of the straight-line pla.na.r graph determined by V 

and T . ( on.a face in each ha.lf' ... plane as detem1.ned by the line through y1 

and Yz). 
Th:ts J)ropert.y will be used 1n the following proof as foll,ows f 

In gen ral, there will be an edge YiY2 in T and a. specified half-plane. 

Consider the set of vertices, P, such tba.t for each vertex win Pt 

1. w lies in the specif:led half-plane •. 

2 Edges Y'iff and y2w are in E. 

),. Ho other vertex 0£ V lies on, oo: interior to1. triangle YlYffk• 

If there .is onl;y one vertex ff in P then edge Y1Y2 in T forces edges 

y1w and y2w to 'be in T by the property of tri.e.ngulati.ons stated above. 

This is denoted by Y1Yz---;i..y1Y2"• 

If there are two vert1ees, zi. and z21 1n P then w will use the following 

notation: 

1. Y1Y2Z1 
• 
~ 

2. Y1YzZ2 
·• 

Typically, the first choice of y1y2Zi will lead to a situation ubere an 

edger is forced to be in T and yet t.here is al.ready an. edges 1n T such 
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that. r and s. properly inters,ect. Such a contradiction will. be denoted. 

n # to s 11
• In the proof in the next sect.ion an edge 1s said to be 

finally enumerated 1f 1t doesn't iead to a contradiction if placed :in T. 

It may be that IP ;::; 2 and no vertex in P leads to a. cont1:a.d.lc-t1an, but 1 

t.ha.t there exists a vertex 13 in V su.ch that for ea.ch w in PI y1 w ~y1 lWYy 

Intu:itivel.y1 edge y1y2 ·1n T f-orces edge )"tY:3 into '!' but the ":force11 l:'equires 

two steps. In this case- we write }'tY2 Ly1yy A typical. exrun.plei is -that 

edge [A~j I N1 j] is in T. Tb.en P c: { At-1 • j, Bj-l I j I c}-l, j Di-l di i£ 

i > 1. or P ... {T1 j} if 1 a • • In either ca.se1 for any w in P, edge [Atj • w] 

in T fOJ:·ces edge [Aij, M !.j] to ioe 1n T Hence, we write AzN...!,. Alf 

4 .,4.2 The Switch Triangulation Theorem 

Theorem l I Given any triangulation of V there are e.xaet.ly two eonneeted 

tearlnals in each sllitch and., furthermore,, :for each swltch tho e 

two terminals are a matched pa.1r of term.1.na s 

Proof 

Consider any trlangu.lat1.on. T of V and any swi:tch s1 j in the net.work.. At 

least one term1nal of s 1 j is Eas't-connect.ed. Only terminals A1 , B1 , o1 

and n1 in. s1j may be East-c.om1ecte<1.. 

Case 1: Suppose terminal A1 1s East-connected in s1 j. Then there is a 

vertex Z 1n V such that A1z is in T and A1z properly inte.rsec.ts line 

segment IH of s1j. Because of our construct:lon Z is one of A~+l,j, 

El+l .j, Ci+l I j or D~+l, j li' 1 < n •en:" is vnj if 1 .. n Th.en, 1n s
1
j, 

Al Z ~ Al ZH 

A
1
H-A

1
RQ 

Al Z _...,. Al~I 



Ai I ~ A1 IP 

A1P-A1PF 

A1Q and A F force A1G 

IP ----;.IPE1 

PB1 ~ PB1 D2 

IJ3i - cboi~e 

1. IB111 

BiR ~D1EF # to PB1 

2. IB1c2 

B1 c2 --> choice 

1. B1 CiI fl: to PE1 

2, B1CzN 

B1N ~B1ND2 

NDz ---+NDzP 

rc2 -re~ 
IN ----;.INC:1 

NCl -No1:a2 

c1 B2 ____.., cholce 

1. C111zM 

c1M ~ a1,,A2 

cl A2 ---,i, cl A2S 

o1s -o1sH # to A1I 

2. C1B2I 

B2I -...B2ID1 

:BA_-Bz1l1R 

¥ ~BzRN 
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RN ~R iAz 

RA.2 -),RA2J 

Aif LAz1 

A~ ----+A.i1S 

A2S and A2J :f'orce A~ 

• • If A1 is East-co:nnect,ed then A1 is South-c,onnected and A2 is 

North-connected and West.-oonneeted. 

Because ,of t.he aymmet.ries o.f the swit.eh we also hav,e: 

1 If D1 i.s East-connected then D1 is North-connected and D2 1.s 

South-connected and West-c.mmected 

2. If A2 is West.-eonneoted then A2 1s Horth-connected and. A1 is 

South-connected and East-connected., 

:,. li D2 is Wes.t-eonneeted then D2 ie South-connected aDd D1 is 

orth-connected and Ea.st-connected~ 

In the above proof the non-inter:sldtcb: edge which axe f1J:Lally 

enberated (along Hiib: the frame edges of' s1 j) constitute a trlangu-
. 

lat!o,n of Sij• This tr.tangulat'on is called an A~triangula.U.on and 

is pictured in Figure 9. In an. A-triangulation we say that terminal. 

A1 is East-exposed and South-exposed and term.inal A2 is West.-e,:posed 

and North-eJ<P(lsed. Analo,goual·y ,, eorre.spond1ng to Di and D2 being the 

connected terminals of Sij• there is a set of non-interswitch edges 

called a. D-triangula.tion. This t:riangttla.t1on 1s sho;m 1n Figure 10. 

In a D-triangula.tion termina.1 n1 1s East exposed and North-exposed 

and terminal D2 is W,est.-exposed and South-exposed., 

Cage 2 t Suppose terminal Bi is East-connected in s1 j ,. Then there is a 

vertex. Z in. V such ·that Bi_Z is 1n T ana. l31Z properly intersacts line, 
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figQre 91 Tbt A•tr1anplat1on 

Tll•1 follonng Ng • an 1n an A-tr1ugl:alatl 111 

lach ftaae adce, 

A1P, •iF• A1a, A1Q, A1B, , 1I, Bi.I, :sic2, 1:1.11, BiAz, BiP, 

C1I, C1E2, C1N11 J>iI• D]_R, D].~1 l,!J., A,:J1 ',J,,, A,JJ, Att1 1.2',, 

B,Jt.. Bz:W. BaJ, czi. c~. D,Jf, DzP, IP. ' .• D. 



F~ 101 Th• D-t.rlugalat1.o:a 

th• foll•llllls edpa are ill a D•vSangulatio 1 

B&ah ttaae ad&•, 
A1Q• il1H• A1C2, Ii.I, 9i11 Bi,C2, C1R• C181 ,C11t, C1il.z1 ot_B21 

Di.H, Jlil, °tlt, ll1J• 0iL, Di_S,, 4,P• ¼}(, ¥• B'/}t• 

CiJ'-, C::i-1, llzR, D2'( 9 D:zN, D'IJ1 D,#, D2G, D~., HS• MQ, Ill. 
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segment IH in Sij• l3ec.a.use of om:- con.structi.on Z is one of A!+l,j, 

B~+ltj, c~+l,.j or n½+l,j unless :1 an in which case Z is vnj. Then, 

1n switch s1 j. B1 z~ :s1 ZI. 

Consider which ter inal is West-connec.ted 1.n s1j. From ease 1, st ce 

Bi is East-connected r;e kno,w that :1t. is not A2 or D2 • Hence, S'.:1.p:pose 

it 1s c2 • Then Cz1 and C~ must be in T. ·Then, 

az-, ~choice 

l. c2~::e1 

}~¾ -,,.Mli_H # to B1 I 

2 cz1s 

c2s --+C2SG 

Il1 I ~ choice 

1 B1Ic2 

IC2 ~lCzN # to CzM 

2. :S1IR 

]\R ~llj__RF # to SG 

. ·• c2 is not West-connected, hence, B2 is West-connected. 

Now, in switch Sij' 

B
1 

Z --;i. B1 ZI 

BiZ-->B1ZH 

B
1 
H----¼ B1HQ 

B
1
I~choice 

1, Bi_IC2 

ICz __,..Ic2';i-
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C-;! ~ choice 

l. Czl'Dl Ii t.o IC2 

.2. c,p 
C,f 2 ~c,G 

C2G ~c2cs 

2. CzNBI 
N~ ~ NB1D2 

BiD.2-4- E1DzP 

J3i P ~ Bi PI # to :e1 H 

2. B1m 

BlR~ Bi_BF 

B1Q and. B1F f orc.e Bi G 

• • :s1 is the only Ea.st- conneeted and the only South- connected te:cminal. 

Furthermore, since ~ is West.-connect,ed, by the .symmetries of' the 

switch. ana..logoui:sly to the above , we can sho,w that Bz is the ,only 

West-eonne,cted and the only No:rt:h ... conneoted terminal~ Tbis shoKs 

that non- frame edges, Bz1:, B2s, llzL, BzJ, B2N, Eif and PJ are all in T. 

All that. rema.1:ns 1s to show th.at. the region bordered by the vertices 

P, J,, R and F can indeed be triangulated.. This can be d,one with edges 

JR ,, JC,2, CzP, C:zA2• A,2J, A2D1, D:tJ, D1R, D1Dz,, Dtl• D'2Ci, C1R1 C1F, 

C1Av A1F A1D2, DiF, PF. DzP, D1P and CzD1. 

• If B1 is East- connected then B1 is Sout.h connected and B2 is 

North-connected and W:est-conne·cted. 

Because of the symmetries of the switch we a~so have= 
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If' c1 is East-comwcted then c1 is t,io,rth-connected ,and c2 is 

South-connected and West-connected~ 

In the above proo:f the non ... int.erswitch edge9 which are fi.na.lly 

enumsrated (a.long with the frame edges of s1) constitute a triangu

lation of Sij• This triangu.lation is called a B-triangulation and 

is pictured in Figure ll. In a.. :B-triangulation terminal. BJ. is 

East-exposed and South-exposed and terminal B2 is Y'est-ex;posed 

and North-exposed Analogously, corresponding to c1 and c2 being the 

connected terininals of :Sij' there ls a set of non-intersw.tch edses 

ealled a C-trla.ngula.t:ion. This b:iangula.t..1on is shown 1ll. Figure 12. 

In a. C-triangulatlon terminal c1 is East-expo,Sed and North-exposed 

and te:rminal c2 is West-·exposed and South-exposed. • 

• p. Given any triangulation of V there are exactly two connected tennl.nals 

per sR"itch and they are a rnatched. paiJ:: of' terndnlls. 
□ 

The following co:rollary i'ollows immediately from the above theorem 

and our eai-:lter remarks about the n.on-fia.me edges in T: 

~orollary la If s1 and Sz a:re adjacent switches in t.he network and. T is 

a triangulation of V • then there is exactly one intersldtch edge. in. 

T whose endpoints a.re a teni.inal 1n s1 and a. terminal in s2• 

4,.l,i,..j The Ma.ill Result 

In the specifications of 1nterswiteh edges we defined vaxious 

tel:llli.nals to be Clause-true and Clause-:fa1sa, For convenience!, those 

definitions a.re restated he:re: 



The followbg, eige■ •• lD a B-trl.ugulatle -1 

· oh tr-u ... , 

A.1F• A1C1, 41D2, B1F• JiC, l]:tl, IJ_B, BJ.I• BJ.fl,, 

01F, 011, C1Dz, DiR, Di,J1 Ii,,¼, Di_C21 11:LP, DJ.D2• AiJ, ½f!z• 

~J, 92t, ¥,, ¥, y, B,JJ, CiJ, Cl!• »,JI,, D?J, D#', FR, JP. 



Flpz• l2 r Tbl C-tnupl&tlon 

fhai f llD~ -«•• an 1n a C-t.r1upl&'tle 1 

Kub tru.edga,, 

AtG• A1Q, A1A2, A1S 111 -'1Bz• A.1»2• 8iQ, l:iL, BJ.Ji, liAz, 

C1Q, C1H, C1I, C1B, CJ,J, C1L• DJ.L• Ilt'-2, 1~1 A~, AaQ, 

¥• BzG, B!1)2, CzS, Ci4, C,:i, C'J! • O'J!, C2G, Dr, CS, LQ,. 
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ln a neutral switch, tex-m1na1s A1 a.nd B1 axe Clause-fals.e anii 

ter inals C and n1 a:r,e Clause-true • 

In a posi ti 'Ve sw1 tch, terminal A1 is Cla.use-i'a.lse and terminals 

13i, c1 and D1 are Clause-true. 

In .a negative switch, t ·ermina1 l3i 1s Clause-false ,and ~e-rminaJ.s 

Al' c1 a.nd D1 are Clause-true. 

The following three leramas. are useful in pToving t.he ma.in result.1· 

Lemma. lm In any given triangulation of V for each 1, ls 1 ~ n,, either 

t.he conneeted teminala a.re· B's and D s fo:i: all S:1j• or the connected 

tintuinals are A''s or cts for all S!J• 1:. jsk. 

Proof 

The result fo lows irrun,edia.t.ely fr~m our construction. of vertical 

intarswiteb. edges, tbeorem 1 and corollary l D 

L•emma 21 In any gi:v,en triangula.tion of V 1, the West-connected terminal 

in each switch S j is A½J or B}j ,and the East-connected teminal. 

1n ea.ch swi teh Snj· 1s Clause-true, for l s j :5: k. 

Proof 

The resu.lt follows immediately fro!'ll our construction of special sntches 

and. inte switch edges. 

Le'Ell.lJla. 3r In any given tria gulation of V, for each j, l s j.:S: kt there 

exists an i, with 1 ~ 1 ~ n 1 such that the Ea.st-connected terminal 

of s1 j :1s either A1 or B1 and it 1s Clause-true. 

Proof 

Consider any j such that l ::; j ~ k, and suppose the lemma doesn't ho d. 

By leinma. 2, the West-connected erminal 1n s1 j is A2 o,r ::a2• Then the 

East-conne -ted terminal is A1 or B1• By assumpt.ion His Clause-:false. 

□ 
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Then, by our construction and corollary , the West-connected t~inal. 1n 

s2 j is A2 ox B2• Inductively then, the East-connected terminal in snj is 

eit.her A1 or B1 • By assumption, 1t 1s Clause-fal:se. This contradicts 

leilllila. 2 •. 
□ 

I-o~· consider the following tTutb assignmen~s to the variables x.., ••• 1 x 1 - .L n 

x1 is true if the South-connected terminal 1n s11 is Bi or D2 

x1 is false if the South-connected terrn.inai in s11 is A1 or c2• 

TheorE! __ 2 , For each j, l ~ j sk, the clause C j i3 satisfied by tbis truth 

assignment. to the variables. 

Proof 

Consider· any j such that 1 ~ · ~ k. By leinma. J, there is an i such tha: t.he 

Ea.st-connected terminal of s1j 1s e11tber A1 or B1 and it is Clause-true., 

Case 11 The connected terminal is ·Bi• Since it. is Clause-true this must 

be a positive swit•ch, so Xi.. is in C j• But then Bi_ is the South

connected terminal and by lemma 1, the South-connected terminal of 

s11 is Bi or D2 Then, by OlU' assignment x1 1s t.rue and C j is 

satisfied. 

Case 21 The connected terminal is A1 • Since 1t is Clause- true t.bis must 

be a negative switch, so ~ is. in Cj Eut the A1 is the South

eonnected terminal a:nd by lemma l, the South-c•onnected tez:Dlinal of 

s11 is A1 or c2 ., 'Then, by our ass1gntll!ent ~ is false and C j is 

satisfied. 

Therefore, f'rom a triangulation T oi' V, with T a subset of E, we have 

obtained a trut.h assignment to the variables Xi ••• , xn such tha.t 

each of the clauses ie1 , • .• ~ ¾ is satisfied. 

□ 
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4,.5 Proof' that. a solution to CNF-Satisfiability yields a solution to TRI 

Assume th.at Hi, ••• , Rn is a truth asaignm.ent to xi, .. , =<n such 

that each of t.:he claus,es e1 , • , Ck 1s satisfied We will is ow that 

there ls a subset, T, of E, such that the ,edg,es in T triangulate V. Init1ally 

we note that a set I T ,. consisting of edges meeting the following requirem.ents 

'iilll suffice as a triangulation of V. It 1s clear that T need only include; 

1. The edges 1n the frame. 

2.. The e.dges in a triangulation of each switch 1n the network. That 

is, for each switch, the edges in either a.n A B, C or D-t.riangu-

1,ation. 

:,. For each adjacent pair of switches an edge whose endpoints are 

tbe appropriate exposed terminal.a of those switches. (The exposed 

terminals having been dete·rmined ~ the triangulations specif:1ed 

in 2~) 

4. For &a.ch special vertex in V ., an edge uhose endpoints are the 

spacial vertex. a.nd the appropriate exposed tem1nal of the switch 

'n which the specia.l veJ:tex ls located. 

The r ,em.a.inder of this se,cti.on 1.s devoted to specifying a set- oi' edges which 

meets the above requirements. Initially we place the fiame in T and again 

note that no edge in E prope,r_y intersects any· edge in the frame. The 

frame edges thus present no further difficulty. 

4- ,. 5.1 The T':r ian gu1 at.ion of Each swi t.ch 

Po:r each clause. Cj, we define Wj to be the least i such t.ha.t :xi is 

in C j or x1 is i · C j and the truth assigmnent of H1 t.o x1 ca.uses C j to be 
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satisfied. Then, swit.ch s1 j is tria.ngula ... ed 1n T as follows: 

For 1 s W j• if' H1 is true then s1 j is Il-triangulated 

else s1 j is A-triangulated. 

For i > W' j• if H1 is t:rue then S ij !s D-trianguJ.ated 

else s1 j ~s iC-tr1angulated. 

The exposed te....l1Jlina1s of ea.eh s'Ki tch are determined by the t:r:iangulation 

speci.:fied for each switch. 

4.5.2 Interawitch Edges, 1n T 

Theorem 3: For ea.ch i and j pair, with l:::; 1 'Sn and 1 s j s k-1• t.here is an 

edge in E whose endpoints .are the 1 orth-eXJ)Osed ter in.al of Sij and 

the South-exp-osed terminal of s1 , j+l. 

Proof 

Consider a:ny i and j pair such that 1 s 1 s n a.nd 1 s j s: k-1. 

Case 1: The No:rth-exposed termina.l of s1 j is B½j or Dij• This implies 

that H1 ls true, hence, the Sou.th-exposed terminal. of s1-,j+l is 

Bf' j+l or n!, 5+-1. But, by our interswitch edge specifications, 

each of the four edo-es: [Bij RJ,j+lJ [B1j ni,j+lJ 
O 2 f -l, I • 2 I 2 f 

[Dij :s1, j+l] and [Dij ni, j+l] is in E i• 1 I . lf 2 '•. • 

Case 2: The North-exposed -terminal of sij is A½j or cyj. 'Ihe proof 

1a completely analogous to the one fo"J: ca.se 1. 
□ 

TheOTem 4J For ea.ch i and j pair, with l .:s; 1 ~ n-1 and 1 s: j ~ k I ther,e is an 

edge in E whose endpoints are the East-exposed terminal of s1 j and, 

the West exposed. terminal of Si+l,j• 
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Proof 

Consider any i and. j pair such that 1 s i ~ n- 1 and l :!".:. j ~ k. 

Cas~ 1: l > W. 
J 

ij 
Because i > W j' the East-exposed ter 1na.l of s1j ls eithex c1 ,ox 

n\j and the Yest- expo,sed. te·rminal of s1+l ,j is either c½+l,j or 

n½+l.j• But, by our in:tersvitch edg,e spec:1ficat1ons· ea.ch of the 

four edges [ Cij• c½+i, j] , [ cfj, D~+l.J] , [ D1jt o!+l, j J , .am 

[ nlj D1+1 , j ]I 1s 1n E l • 2 ·. . • 

Case 21 i C wj 

1· 
~ubcase 11 The East-exposed terin1:nal of s1 j is 131 J. By the def1n1t1on 

of W j this s:wi tch is ei the.r a pos1 t ive or negative switch. A sSU\Jil.e 

that. it is a negat.1ve sw!. tch: 1 hence ~ . is in CJ. But since Bij ls 

the East-exposed term:inal, n1 1s true. But this contradicts the 

defin.1.tiio o,f W j• There: ore, this is a positive switch. Sinc,e 

i+l > Wj, the liest- exposed terminal of si+l, j 1s either c~+l, j or D~+l,j 

But, ~ our inters kit.ch edge specificationa both of the edges 

I[ B1 j ci+l, j] and [ ij ni+l, j J a.re 1n E 
l 2 1 1 2 · • 

Subcase 2: The East-exposed i.ertninal of s 1 j is Afj• Sim11.uly to 

subcase 1 we can show that this is a negative switch and that the 

desired edge e:xist.s in E. 

Case 3= 1< j 

Subce.se l: he Ea.st-exposed terminal ,of s1j 1s l{j. 
Subcase a: Switch s1 . is a neutral switch. Because 1+1:; W j the 

. . J 

'est-exposed. term.inal of Si+l,j is either Al+l.j or :e~+l, j• By 

t.he interswitch specifications 'both of' the edges [ Bij A~+l. j] and 

[Bij, B½+l j] are 1 E. 
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Subcase b: Switch Sij is ,a positive switch. This means that Xi is in 

Cj• Because Bij is the East-exposed terminal of s1j, the truth value 

of H1 is true But this Ji\e.ans that C j is satisfied by the assignment 

of H1 to x1 • This is a contradict.ion of the definition of' W j. 

Henee, Sij is not a positi•e switch. 

Subcase c1 Switch s1 j is a negative switch Because 1+1 s-W j• the 

West-eX!)osed terminal of Sl+l,j is eit.har A~+l,j or B}+l1j. But, 

by our interswitch edge speci:fications for s1j,, a negative sldtch, 

each of the edges1 [Bfj• A½+l, j] 1 [ByJ, B~+l. j] is in E. 

Subcase 2J The Ea.st-sxposed terminal of S1.j is Afj• 

The :proof 1s analogous to that :foi: s.ubcase 1, with the roles of 

subcas,es b anii c reversed. 
D 

Hence, fo:r each pair of adjacent. switches the:r,e is an edge in E ;;hose 

endpoints axe the appropriate exposed term:1na.ls of those swlt.ches. Each 

of these edges is placed into T. 

4 •. 5. 3 Additi.onal Special Sw1 teh Edges 1n T 

Theorem 51 For ea.ch special vertex in V there is an edge in E "Hhose 

Proof 

endpoints are the special vert.ex and. the appropriate exposed 

terminal of the s1rd. t.ch in which the, s:pecial vertex 1s located. 

case 1, The special vertex is u
11 w1 th l. :S i ~ n • By our basic Sile c ifica tlons 

of special switches each of the edges [u11 
A:i

1
], [uu, B~] 1 

[uil clt] and [u11 • ·n!1J ls in E. Thu.s, whichever terminal is 

exposed 1n s11 the des.ired edge is in E. 
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Case 2· The spec1a1 vertex 1s w1k with l ~ 1 s: n. By om: basic 

specifieations o.f special switches ea.ch o:f the edge.s [Wik, _AfkJ , 

[1_,ikt_ Bzik] • Wik cik] d [uik Dik] i- --t- E Th ·•i h " ,, -1 an " , 1 s .. 1.n .. . us, wu c ever 

term1nal is exposed in Sik the desired edge is 1n E .. 

Casa 3: The special vertex 1s Tlj with ls j .s k. :Because 1 ~ W j• the· 

W,sst-exposed terminal is either A½j or B~j. But, by our basic 

. - l' l. 
specifications of special srrit,ches, both of the edges [T J, A2.1], 

and [T1 j. B~j] are in E. Thus, whichever terminal is exposed in 

s1 j the desired edge is in E. 

Ca.se 4: The special. vertex is vnj with ls j s k. 

Subcase l · n >W • 
. J 

Because n >VJ' the East-exposed terminal of Snj is either Cij or 

Dij• By our basic speelflcatio,ns of special switches each of the 

edges [vnj. cfiJ and [vnj., DfjJ i .s in J. Thus, wh.1.chever terminal 

is exposed in Snj the desire-d edge is 1n E. 

Sut:case ?· n IO:I W. 
J 

Subcase at -- he East-axposed terminal of switch Snj 1s Brj. Then 1. 

from case 2 of the proof of theorem 4. this is a,i;>ositive switch. 

Bu by our lll.t.ers!dtch edge specli!ca.tions (part 4) the edge 

[ Vnj • Er.lJ is in E ~ 

Su:bca.se b1 The East-exposed terminal of swrit.cb Snj is A~j. Then. 

from case 2 of the proof of theorem 4, U1.1s is a. negative switch 

But by our inters··iteh edge specifications (part 5) the edge 

[vnj, Afj] :ts in E. 
□ 

Hence. for ea.ch special vertex in V there is an edge in E whose endpoints 
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axe the special vertex and the appropriate exposed ter-mina.1 of the siilitch 

that thei special ve~tex is a part of. Each of these edges is paced in T. 

We have now specified a set of edges T which ls a subset o:f E and 

which satlsfies the foux requirements g1ven a-s being sufficient for a 

triangulation of V. Hence. the set T is a t.riangulation of v. 

This completes the proof th.a.t C?IF-Sat:isf1ability is polynomially 

reducible to TB.I • 

~.6 Finisbi.ng Up 

Theo,rem. 6 ~ TRI 1s NP-Complete 

Proof 

I.n the first five sections of t.h1s chapter 1re have show that 

CNF-Satisf"lability, a know NP-Co plete problem, 1s polyno ially 

reducible to TRI. All that :remains, is to show that TRI i.s in fP. 

Consider an instance of' TRI as sp-e-e1f1ed by the sets V ,and E. We 

kn,:,w that. a eet T is a trla.l'l.gi.lla.tion of V if' and only 1.~ the :following 

two prope~ties hold for T ,. 

1. o two edges in T properly interseet. 

2. For every ed_ge, e, whose endpoints are vertices, of V, either 

e is in T or e pi:operly inte:r·.sects some edge 1n T. 

Hene-e, given the sets V and E, ve nondeterministically choose the set 

T and then verify that these tvo properties hold. To test for pa:-operty 

2 l ~equires tim.e 6(1TI ) and testing for property 2 may be done in tilne 

6( IV I?, l1T I ) • Therefore I TRI 1s in NP and hence, TRI is NP-Complete• 

D 
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Chapter 5 ... Conelusio 

5.1 Summary 

This thesis has examined two problems involving triangulations of 

a set of points 1n the plane: the pr,oblen of f1nd1ng a minimum. weight 

triangulation g v,en all of the edges between t.he points a.rul the probletn. 

of detemining the existence, of a triangulation 111 a given. subset of' the 

edges~ Ke discussed several as ects of the MWT problem and gave 

counterexamples to two published al.gcz1thms for .tt. We ha\"e shown that. 

'TRI 1s fP-Complete·. We eonjecture that MWT is a.lso NP-Co:mplet,e. This 

is based on a comparison of' these two triangulation problems v!th the 

corresponding Ha.milt.onia.n circuit problems and the con:esponding 

spanning tree proble s~ lloth of the e:o•rresPonding Hamiltonian circuit 

pr,oble:ms (that 1s1 the problem of erlstenc•ei given some of the edges and 

the proble · of minimum weight given all of the ,e.dge·s) a.re tP..Complete. 

In compa:rison, there axe efficient algoz:ithms f'ol' bo,th of the spanning 

tree problems. ThereforeJ beeau,se TRI is iP-Co , plete, we would find. it 

very surprising if MWT was not also NP-Complete. 

We should not.e th.at as we have stated it, we would expect only that 

.WT be NP-Na:ro. However, 1,-e can change the problem s ightly to ask if 

there 1s a. tl:·iangu1ation of V with weight s m., We would then expect th.at 

this problelJI is NP-Complete. The difficulty with the or'1ginal version 

of MWT which is not pre5ent 1n the .new version 11es in showing that the 

problem is in llP. The same corn.ment can of course be ma.de a.b:) t the 

Ha.m.iltonian cttcuit p:roble1 ,3 mentioned above. 
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5.2 Open Problems 

In addition to the need to resolve the status of MWT there are 

severa..l other open problerns invo ving mlnilllwo weight triangulations. 

The f'ixst of these problems is t.o show th.at a shortest edge beti4'een 

point.a in Vis in a minimum weight triangulat.ion of V If a shortest 

edge lies on the eonvex hull of V then 1t is 1n each minimum weight 

t.ziangula.tion by the definition o,f a. txiangu1ation. :But what li a 

shortest edge doe1:1 not lie ,on the conyex hull? We conj,ecture that in 

this case also a. shortest ,edge must 'be in e.. minimWII weight triangulation 

This woble should n1ot be ,eonfuse with the e)(M.ple given e.alier which 

showed that.. the shortest edge not on the convex hull was not necessarily 

in a. ·mini um weight triangulation. In that example the shortest edge 

among all of the euges was on the convex hull. 

A second proble111 is to bound the weights of the triangulations 

produced by the Duppe-Gottachalk and Sha.mos-Hoey algorithms with respect 

to a :minimum weight triangulation. We know that for arbit:raxy tr1a:ngu

lat.lons this ratio may be a.s .la:cge as O'(jVI ). A .further problem is to 

detex:mine under what conditions either of the two algor:ithms does produce 

a minimum weight triangulation. Thes e questions will be especially 

important if w'T is indeed NP-Co~plete. 

Another problem vould 'be tio determine the accuracy of the functional 

ap:proxima ~ons Hh1ch are obtained f'rom a minimum weight triangula.t1on as 

opposed to other triangulations, F'or instance, the Sha.mos-Hoey algorithm 

produces a triangulation with the property that the circumcircle of each 
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triangle conta.1.ns no points of V except the vart.ices of that tria.ngle. 

Ye would like to know if this propert.y ma.ti.es the triangul.atio,n produced 

by t.beir aJ.goirHh:m. especially good for approximations. 
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