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(ii) An Overview of OWL 

Abstract 

We describe the motivation and overall organization of the OWL language for 
knowledge representation. OWL _consists of a memory of concepts in terms of which all 
English phrases and all knowledge of an application domain are represente<:i, a theory of 
English grammar which tells how to map English phrases into concepts, a parser to 
perform that mapping for individual sentences, and an interpreter to carry out procedures 
which are written in the same representational . formalism. The system has been applied to 
the study of interactive dialogs, explanations of its own reasoning, and question answering. 
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An Overview of OWL 

I. Overview and Motivation 

We have undertaken the design and implementation of a new computer language 

for knowledge representation, called OWL. We have become convinced that recent progress 

in Linguistics and in Artificial Intelligence (Al) now suggests a set of principles which are 

worth implementing as part of a programming language to make them uniformly accessible 

for our further work. 

For a computer program--as for a person--it ts more tffecttve to know how to do 

something than to be able to figure it out. The AI field has made important progress under 

an · opposite set of assumptions: that all knowledge of the domain should be expressed in 

propositional form and that a program's actions should be directed by a general-purpo~e 

problem solver operating on propositions representing the application world. Such a 

problem solver would: always figure out what to do next based on the state of the world 

and its set of general principles. At the same time, most programs which have been used. 

for their ability to perform in an application domain rather than for their pedagogic clarity 

have used a very different form of organization: the knowledge of how to perform the 

task was implicitly built into the steps of the program. Of course, such an organization is 

generally accompanied by inflexibility, difficulty of extension, incomprehensibility and 

unprovability of the program, and many other ills. If, however, we could express the 

description of the procedural knowledge of the program in the same formalism as its 

declarative knowledge of the domain of application, then both would be equally accessible. 
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This is precisely what is done in OWL--the program is just another aspect of the 

description of the application world, and knowledge of how to solve specific problems of 

that world can be explicitly embedded in the description. 

We have taken English as the basts for our knowledge representation formalism. 

The . greatest attraction of this approach is that it almost trivially satisfies our need for 

expressive power. After all, native speakers of English can usually communicate their 

knowledge of any domain of interest in English,1 perhaps augmented by specialized 

notations and vocabularies particular to the domain. Because we choose a computer 

representation which is designed to be similar to the natural language employed by a 

computer-naive user of one of our programs, we expect that the translation process from 

English sentences to our internal structures will be straightforward. Once we succeed m 

translating the English phrase into our internal representation, that will allow all of OWL's 

activities, includlng understanding the sentence in semantic detail, resolving references, 

mapping the sentence onto some capability of the system for acquiring new knowledge or 

answering on the basis of old, etc., to make use of · the same representational formalism. 

This, in turn, will help us to make the complete operation of the program accessible for 

explanation to, and modification by, someone who may well understand the domain of 

application but not our computer technology. 

1 Wr. limit ourselves to "left-hemisphere knowledge," which docs not include visual skills or 

manipulative E-kills where local muscle/nerve training is an es~ential component. Thus, our dnmainf; 
arc rcst.rictcd to reasoning tasks where the necessary data about a problem can be acquired 

verbally; e.g., medical diagnosis and treatment of the type which could be done by consultation over 
the t.clcp,honc (probably not, for example, diagnosii. of skin disease, where vii.ual inspection if; a 
critical skill), automatic program writing, question answering. 

- - - - -- - - - - -- - -- - - - -- - -- - - --- - - -
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Arguments for English as a programming language have been made since the 

early 1960's, yet it has not been universally acclaimed as desirable. The principal objections 

to basing a programming language on English (or any natural language) center on the 

i~nate ambiguity of natural language and its lack of conciseness when contrasted with 

special mathematical notations. The second problem is rapidly resolved if we extend our 

definitior:i of natural language to allow the incorporation of new notations. After a 11, the 

natural language of a physics text is hardly the literary English of the day. The first 

problem has both a trivial and a difficult component: pure syntactic ambiguity, as created 

by the existence of homonyms for instance, is simply controllable, whereas ambiguity arising 

from the fact that what one (literally) says is not what one actually means is, of course, 

difficult. Our response is simply that we wish to begin by representing precisely what one 

says, and we will allow the determination of the meaning of each utterance to be part of the 

problem that_ the system is to solve. 

During the past few years, we have implemented the following components of a 

complete system based generally on the above ideas: 

A Linguistic Memory System (LMS) [Hawkinson 1975), which is a memory (data 
base) of concepts in which all knowledge in OWL resides. LMS can be 
viewed as a semantic network, with a somewhat unusual interpretation of its 
nodes and arcs. 

A theory of English grammar which specifies how any utterance of English can 
be represented in terms of LMS concepts. 

A skeletal world model, · organized as a taxonomy of concepts, and intimately 
related to the theory of English grammar. 

An augmented transition network parser to translate English utterances into their 
OWL representations. 

A generator to perform the inverse transformation to the parser. 
An interpreter which carries out procedures represented in the OWL formalism. 
An explainer which provides English explanations (via the generator) of 
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pr.ocedures and data dependencies known to the interpreter, as well as results 
of previous executions of those procedures. 

These components are at differing stages of development. We are pursuing a b~eadth-first 

approach to implementation, where we try to have some version of each of these 

components before trying to have the "ultimately" correct version of any of them. 

In terms of the above components, we have been building the following 

programs: 

Programwriter, which takes a declarative specification of simple programs which 
need to be written and designs, optimizes, and codes them. The scope of its 
capal;>ilities includes programs to maintain bank balances and sell tickets for 
scheduled events [Long 1977). 

Susie Software, which is another automatic programmer, for writing manipulation 
programs for the blocks world. It is a research environment for developing 
a discourse model which lets Susie engage the user in a dialog concerning 
the program it is trying to write [Brown 1977). 

Proctor, a • program which helps a business manager to design a procurement 
system. It is an "unstructured" questionnaire which provides a framework 
for a manager to think about his system requirements [Bosy j 1976). 

A Digitalis Therapy Advisor, which makes clinical judgments about the condition 
of a patient who is receiving the drug digitalis, makes further therapeutic 
recommendations, and can interactively explain its reasoning steps to the user 
[Swartout 19771 

A question answering system for a relatively simple data base. 

We will give an overview of LMS, the theory of grammar, and the interpreter, 

and discuss other modules as they relate to those central components. 

j 
• 
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II. The Linguistic Memory System 

· The OWL LMS is a semantic network with a single primary data type, the 

concept, and a secondary data type, the symbol. Symbols are merely strings of characters 

which denote senses of English words and affixes and have no -innate significance. 

Concepts represent the meanings of an· words, phrases, clauses, sentences, etc. of English as 

well as any needed non-linguistic entities. It is very important to note that, whereas in a 

traditional semantic network each node of the network represents a single word or item, in 

LMS each node represents any of the higher-level constructions mentioned above. Thus, 

where a typical semantic net would identify the meaning of a sentence as some subnet of 

the whole network, LMS identifies it as a single node of the network. 

II.A The Es.sehtial ·structure of Concepts 

Concepts, the nodes of LMS, have structure. In fact, we wi11 concentrate on ·the 

essential structure of a concept as the primary organizational facility of LMS. 

Every concept is defined by a pair, (genus specializer), the ~ssence of that concept. 

The genus is another concept, and the specializer is either a concept or a symbol. The 

genus specifies the general type of the concept; if the genus of concept C is B (i.e., if 

C = ( B specializer)), then we imply that C is-a B, or C is a kind of B. 2 C is ca lied a 

2 
The .general implication of is-a or is a kind of (AKO) linh is that "something" (properlit>.£, 

features, place · of classification, ways to treat, etc.) is inherited by C from B. We will define this 
more precisely later. 
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specialization of B, and B is called a generalization of C. The specializer serves to 

distinguish this concept from all other concepts with the same genus; it does not by itself 

define the concept.3 The genus and the specializer together identify a concept. 

We want to interpret all the concepts in LMS as forming a single taxonomy or 

tree-like classification system in which the genus points "up" in the taxonomy. To do so, we 

must designate a single concept, SUMMUM-GENUS, whose genus is itself. That condition makes 

SUMMUM- GENUS the root of the tree. Further, we insist that no loops may occur in the 

expression of concepts in terms of themselves or each other (with the above exception for 

SUMMUM- GENUS). Then, all concepts will form a tree structured classification: starting from 

any concept in the conceptual memory and successively moving to its genus will always lead 

to the root concept SUMMUM- GENUS in a finite number of steps. That number will be called 

the genus depth. of the concept. We also introduce a notational convenience. So far, we 

have only allowed a concept to be written as (genus specializer). But clearly, the depth of 

parenthesization for writing any concept will be at least its genus depth, and this is terribly 

inconvenient. Thus, we allow equivalence declarations, such as A = (B C), which allows any 

appearance of A to stand for an appearance of (B C). A is called the label of (B C). 

The notion of derivative subclassification [Hawkinson 1975) complicates this 

picture somewhat. It assures that all specializations of a concept are classified the same way 

the specializers themselves are classified in the conceptual memory. For example, if in the 

3 For example, we may represent "dog house" as (HOUSE DOG) and "dog tail" as (TAIL DOG), and 
although both concepts are specialized by DOG, they are clearly different. 
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taxonomy both DOG and PIG have genus ANIMAL, then we classify (TAIL DOG) and (TAIL PIG) 

unde( (TAIL _ANIMAL). The generalizer of a concept (A B) is the _ most specific specialization 

of A whose specializer is a generalization of B, or, if there are none of these, just A itself.4 

. The genus of a concept is thus always either its generalizer or the generalizer of its 

generalizer, etc. By moving along the successive generalizers from any concept, we must 

finally reach SUMMUM-GENUS, and the number of steps required is called the generalizer deptla 

of the concept. 

We have now described some of the essential structure of each concept, thus each 

node, of a conceptual memory. Before we turn to arguing for the utility of this structure to 

represent knowledge, let us see. what the essential structure of the nodes already implies for 

the seman~ic network as a whole. In our current implementation, every concept is directly 

linked to its generalizer and specializer. Every concept is not, however, linked _directly to its 

genus, since the genus can easily be computed from generalizer and specializer links. A 

typical, but very small, conceptual memory taxonomy is shown in Figure I. 

11.B Attachment 

In the previous section, we presented the essential structure of a concept in LMS. 

The act of creating a new node in LMS is called specialization, and we say that we 

4 An intermediate concept in t.he taxonomy, such as (TAIL ANIMAL) in our example, ii. 

automatically created by I.MS whenever more t.han one concept. may be classified under it. Thus, 
the ~enerali1.er of a concept, and hence the number of t.imes t.hat we need to move from a concept. 
to iti: gcncrali1.er in order to reach its genus, will depend dynamically on what other concepti. arc in 
tlic taxonomy. 
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NOUN 
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MASSrOUN 
. WATER 

SCALE 

LHEIGHT 
._l --(HEIGHT JOHN) 

. WEIGHT 
---- -COUNT-NOUN 

TREE 
..... I --(TREE APPLE) 
ANIMAL 

DOG._l .--F 100 

PIG 
PERSON 

1--JOHN 
L_ PROFESSOR 

APPLE 
TAIL 

t_ --(TAIL ANIHAl} 

t:(TAIL PIG) 
(TAIL DOG) 

L(TAIL F 100) 
ADJECTIVE 

~EMPTY 
L-rRUE 

VERB 
---MODAL 

'-1--Wlll 
- --AUXILIARY 

L-sE 
---NON-MODAL-AUXILIARY 

tTRAC-Go 

L_HIT 

ACT 
"----ATTACH 

Figure I. A Sample Conceptual Memory Taxonomy 

This figure shows the classification ·or some of the concepts used in this paper into a small 
conceptual memory taxonomy. The taxonomy is a tree which is shown in the figure by succcsi-ivcly 

indenting branches, as in an outline. · Note that derivative subclassification causes the subtree 

under TAIL to he organized in a similar way to the subtree under COUNT-NOUN. This sample is of 
course very small and sparse; the taxonomy we currently use has nearly three thousand conccpu. 
and a correspondingly more complex organization. 
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specialize a genus, G, by a specializer, s, to form the concept (G S). As we shall argue, any 

phrase of English can be suitably encoded as a single concept (though of course it may be a 

very complex one). When we wish to reason with a concept, however, we will find it 

convenient to introduce an epistemologically distinct meta-level representation. For example, 

if the concept C encodes the sentence "John Smith is a good man" and we wish to represent 

our belief that C is true, we cannot merely encode with O that "That John Smith is a good 

man is true," because now the question of o's truth is open for discussion. 5 We retreat to a 

formal meta-level to mak~ statements about elements of our universe of discourse which are 

to be taken at face value rather than be subject to interpretation. With such an ability for 

meta-level description, we see that if C is marked as TRUE at the meta-level, then that is a 

stronger statement than D. From the former, the Interpreter may conclude e's truth 

absolutely, while from the latter, only conditionally on o's truth. 

· The act of attachment creates a directed link in LMS between two nodes. We 

write [A BJ and say that Bis attached to A. Unlike specialization, attachment creates no new 

concepts. It merely establishes an (unlabelled) link from A to B. The meaning of that 

connection will depend completely on what A and B are and on whatever is interpreting the 

connection. We give a few illustrative examples of attachment here: 

All concepts B whose generalizers are the concept A are automatically attached to A 
and are called its indexed branches because they are classified directly under 
A in the specialization taxonomy. 

5 J t is not merely ·the representation of truth that is at issue here. A similar treatment is 
necessary for supposition, hypothesis, "possible futures," and in fact all the fondamcntal knowledge 
on the hasis of which OWL operates. Of course the effect of the meta- level statements that we 

allow could alternatively he introduced by suitable conventions for the Interpreter. For example, 
we could adopt the convention that any statement about which no qualifying information is known 

is true. We prefer, however, to make such a convention part of the Interpreter and not part of the 
i-cmantics of LMS. 
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Some concepts (C A) are attached to the concept A and are called its indexed 
aspects. For example, (AGE JOHN) may be attached to JOHN and encodes JOHN's 
AGE aspect. 

Note that both of the above forms of attachment are easily recognizable because t~e 

concept to which attachment is made appears as the generalizer or specializer, respectively, 

of the attached concept. They derive from the essential structure of concepts and serve 

much the same purpose for the conceptual memory as do index entries in a book's index. 

These attachments do not really bear information; they are established when the taxonomy 

is built and are not subject to interpretation or change. Thus, the use of .attachment, a 

meta~level operation, is appropriate. 

Values may be specified by attachment: e.g., [(AGE JOHN) 49]. 
Attributes or descriptors may also be attached: e.g., [JOHN MIDDLE-AGED],. 

[(AGE JOHN) (EQUAL (TO (AGE MARY}))] 

Characterizations may also be specified by attachment: e.g., [JOHN PROFESSOR]. 

This second set exemplifies storage of information (facts in the object domain), yet we are 

representing such information at the meta level. This is because we intend that reasoning 

be based on these facts without further verification. We are willing ·to guarantee their 

truth in this domain of application. 

Ill. How English Phrases are Represented as Concepts 

In this section, we shall first argue informally that the combination of concepts 

through specialization provides a mechanism capable of representing English phrases. We 

will then extend our notion of specialization to deal more rigorously with some problems we 

encounter. 



An Overview of OWL u 

IILA What Does an English Expression Say? 

We view English phrases as expressions built up by combination. To explore 

what forms of combination are necessary, we examine some modes of communication in 

English and see how they ·are achieved by combining words and phrases. · 

1) Designating. We use a conventional · name for a concept which the listener 

may be assumed to know. In its simplest form, the conventional name is a word of English, 

e.g., "apple," which we represent in OWL by APPLE = {FRUIT "APPLE").6 But we need many 

more conventional names than we have words in our language. So, we permit the 

formation of conventional names as combinations (pairs). One member of the pair 

indicates the class of the concept, the other provides a distinguishing, or specializing, 

element to make the pair uniq\Je. For example, "apple tree" is a conventional name formed 

by specialization. In LMs, ·we represent it as {TREE APPLE). Note that no st,:ong distinction 

is made between conventional names that are compound words and those that are phrases 

in English. Compare "fire hydrant," (HYDRANT FIRE),and "fireman", {MAN FIRE). 

2) Identifying. We identify an unnamed concept by combining its class and 

some (restricting) modifiers. For exam_ple, "tall tree," {TREE TALL), and "the apple tree in my 

yard", {{{TREE APPLE) THE) (IN {YARD MY))}. 7 The difference between identifying and 

6 "APPLE" is the LMS nQtat.ion for the symbol "apple". The concept { FRUIT IIAPPLE") ii. LMS's 
notation for the English concept apple. 

7 Some linguii-t.s might. feel that this phrase should have a different structure, such ai. 
( ( ( TREE APPLE) {IN {YARD MY))) THE). We do not claim to have the final answer to all r.uch 
structural questions, hut our formal ism allows us to capitalize on whatever insights linguir.ts may 
have. Where structures arc in dispute, we have chosen what seems best to us. 
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designating is often slight. In designating, we assume that the hearer already knows the 

concept, whereas in identifying, we ask him to come to know it from what he knows of its 

compone_nts and whatever else we may later tell him. Thus, a "shoe tree," which we might 

initially accept as an identifying compound without a conventional designation, may come 

to· designate a concept if shoe trees become a popular consumer item. Just as compound 

words develop from conventional names that are phrases, the latter develop from 

identifying phrases. 

3) Specifying a grammatical or interpretive aspect. Chiefly by word 

· affixes, English marks phrases and gives clues to their use in forming sentences and to 

their proper interpretation. For example, for "books," ( BOOK -s ), the -s is a grammatical 
, ,. 

marking for plural on the base concept BOOK. In "hitting," (HIT -ING), and "to jump," ( JUMP 

TO), the -ING and TO play a similar role. This form of marking is called inflection. In LMS, 

inflection is expressed by . specializing the concept to be inflected by the affix (or other 

marker). 

4) Specifying a semantic aspect. We also represent semantic aspects by 

specialization. For example, "size of apple," (SIZE APPLE). 

5) Predication. When we want to say something about an object or action in a 

factual or hypothetical context, we use predication. Jespersen [1933] calls this nexus: 

If we compare the red door and the barking dog, on the one hand (junction) aml on 
the other the door is red and the dog barks or the dog is barking (nexus), we find that 
the former kind is more rigid or stiff, and the latter more pliable; There is, as it were, 
more life in it. A junction is like a picture, a nexus is like a drama or process. ln a 
nexus something new is added to the conception contained in the primary: the difference 
between that and a junction is seen clearly by comparing, e.g. 
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The hlue dress is the oldest. 
The oldei;t dress is hlue. 
A dar;icing woman charms. 

A charming woman dances. 

13 

In our terms, a junction identifies or designates. A nexus, or predication, makes a statement 

and depends on interpretation for its meaning. 

In LMS, we introduce a new notation to express predication: subject I predicate. 

For example, Jespersen's sentence "the oldest dress is blue" becomes 

( (DRESS OLDEST) THE) / BLUE. For uniformity of representation and implementational 

convenience, however, we will implement predication in LMS using specialization by 

adopting the following convention: The predication A / B will be implemented as 

( ( B NEXUS. ) A). 

6) Itemization. To specify a group of things related in some simple way, we 

itemize them. Particular types of itemization are: sequences, conjunctions, dis junctions. 

sums, products, contrasting pairs, etc. For · example "red, white and blue," "3+5+9," and 

"input/output" are all itemizations. LMS introduces an external notation for such 

itemizations but implements them by a conventional use of specialization and attachment. 

The details are unimportant and will not be pursued here. We should add, however, that 

we feel the notion of sequence to be fundamental. 

7) Naming. Thjs important mechanism of English will play a major role in our 

representation formalism. Language often uses context to say concisely what might 
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otherwise require a verbose specification. In particular, we often use part of a compound to 

name the whole: GENERAL for (OFFICER GENERAL), CAPITAL for (LETTER CAPITAL), and EMPTY 

for (CONTAINER EMPTY). In each of these cases, ·the specializer in context names the whole 

concept. We shall encounter more general uses of naming below. 

111.8 Kinds o.f Specialization 

Our treatment of· specialization as outlined above is inadequate for some subtler 

issues of representation. Although we have identified several uses of compound formation 

in English communication, we have represented them all by the same specialization 

operation. We form, in a completely similar manner, compound phrases like "the dog," ( OOG 

THE), "sheep dog," (DOG SHEEP), "small dog," (DOG SMALL), and "dog in the yard," 

( DOG (IN ( YARD THE))). For these examples, no problems arise because we can recapture 

from the specializer itself what kind of compound we have formed. But that will not 

generally be "the case, as we shall see below. In this section, we introduce seven distinct 

kinds of specialization to enrich our representation scheme. 

The English phrase "fat man" is ambiguous. In its ·common meaning. it stands 

for a man who is overweight to some degree. The same phrase, however, also describes a 

professional circus performer of great girth, with whom we associate characteristic forms of 

dress, behavior, etc. In terms of the modes of communication listed above, we are either 

(I) designating the circus performer by his conventional name or (2) identifying the man 
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who is overweight by his genus and a distinguishing characteristic.8 OWL is unique in 

that we make a procedural distinction between these two senses of "fat man." In the first 

case, "fat" is combined with "man" to identify a pattern in memory, and then that pattern is 

· used to find the referent. In the second case, "man" alone is used to find a pattern in 

memory, and then items which match this pattern are further checked to see if they pass 

the pattern designated by "fat." We could imagine a skinny fat man only in the first sense, 

as referring to the circus performer. But our representational scheme, as presented so far, 

offers only (MAN FAT) for "fat man," and fails to distinguish the two senses we have 

discussed. 

To preserve the desired distinction ·between these readings of "fat man," we will 

mark every specialization with its meta-type, which indicates the relation between the 

concept and its genus.9 We will represent our overweight man by a restrictive 

specialization, (MAN*R FAT). A restriction (A:1cR B) may always be paraphrased as "an A 

which is B,'.' e.g., "a man who is fat," and a restriction always represents a concept which is a 

kind of _its genus with the additional attribute which is its specializer. Note _that a tall fat 

man, ((MAN*R FAT):1cR TALL) is not the same as a fat tall man, ( (MAN*R TALL)*R FAT), either 

in real life or in conceptual memory. In a stereotype, (A*T B ), the specializer has some close 

8 In spoken language, lhe compound represenling the conventional name is spoken almoi,.t as if it 
· were the compound word "fatman." This addit ional clue is not available to us via written 

language. 

9 We arc introducing a minor inconsistency here, because we change the meaning of "genu,; .. 
i,.omewhat. Ry the rules of LMS, the genus of the concept (Aii:R B) is A*R, yet we will refer here io 

A, the c.onccpt's linguistic genus, as its genus. 
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relation to the genus but is not necessarily a property of it. Consider not just our circus 

performer, (HAN11rT FAT), but also (HYDRANT11rT FIRE), where the relation between "fire" and 

"hydrant" is a complex one: "a hydrant which is a source of water with which one can put 

out a fire." 

The seven OWL_ meta-types and their notational suffixes are: 

ll<R · restriction 11tA aspect 
,..T stereotype 11tX inflection 
,..5 species *P partitive 
11r I instance 

(A11rS 8) represents a subspecies of A, where 8 is often just a symbol. This 

represents a Linnaean classification system in which we assume that different subspecies of 

A form mutually exclusive categories. This is a powerful tool for database search. ( A11r I 6) 

represents an instance of A. Instances, as species, are mutually exclusive.10 We thus 

provide a distinction between classes and individuals by distinguishing instances from 

species. 

An aspect specialization (C.-:A 8) is a kind of its genus C, which is closely 

associated with its specializer 8. For example, "height of John," ( HE IGHT.-:A JOHN) and 

"John's leg," (LEG*A JOHN). Aspects also play the traditional role of programming language 

variables. For example, if we have a recipe for pancakes which calls for one egg, that egg 

will be represented by (EGG*A (RECIPE*T PANCAKE)). 

lO Some systems further divide ini.tances into manifestations: e.g., "the young Churchill." We 

would handle this as (CHURCHILL*R YOUNG), where CHURCHILL = (MAN*I "CHURCHILL"). 
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An inflection, (A*X B ), is used to specify a grammatical or interpretive aspect. It 

has the unusual behavior that it inherits properties not only from its genus, as all other 

specialization types do, but also from its specializer. In fact, properties inherited from the 

specializer override any inherited from the genus. For example, "books," (BOOKitX -S), ts 

ph.iral even though BOOK is singular, because -s carries the plural property. 

The partitive, (A*P B ), is like a semantic version of inflection. The partitive 

· inherits properties from both its genus and specializer, where context determines the 

appropriate interpretation. Thus, one may first open and then eat a can of beans, first 

opening the can and then eating the beans. 

The above is a short sketch of our approach to representation. A much more 

complete treatment will be found in [Martin 1977). 

111.C Parsing 

To translate from strings of English words to their representation, we use an 

augmented transition network parser based on [Woods 1970). The OWL parser uses no 

registers but maintains a constituent stack of concepts with each phrase for which a 

transition network (TN) is being followed. On every arc is an OWL concept which must 

be matched for that transition to apply and a set of combining Junctions which manipulate 

the matching concept and constituent stack. 

It is the task of the combining functions to compose OWL concepts representing 
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parts of a phrase into the concept representing the whole phrase. The role of the TN is to 

invoke the combining functions in the appropriate sequence. The parser operates 

nondeterministically (via backtracking). Failure leading to backup may occur either because 

the input string fails to meet word-order constraints (i.e., no match can be found for any arc 

from a non-terminal node of a TN) or because a combining function rejects a proposed 

phrase. The conceptual memory contains (expressed via attachment) strictly enforced 

constraints on case slots of all grammatical concepts. Using these constraints, the combining 

functions control all compositions such as adjectival and adverbial modification c!,nd case 

assignment for verb phrases. The word-order constraints of the TN's plus the concept­

formation constraints in the conceptual memory (as they are used by the combining 

functions) thus express our grammar. 

Two mechanisms of special interest should be mentioned: the use of naming to 

postpone the introduction of ambiguity, and bidding. Because many English words and 

phrases have alternate interpretations in LMS (e.g., our "fat man" example), if we were to 

split our computation nondeterministically every time alternative interpretations of a phrase 

were available, we would spend a lot of processing effort carrying all those interpretations 

along until all but one could be eliminated. Further, if more than one interpretation 

succeeded and the sentence parsed ambiguously, we would have a difficult task localizing 

the cause of the ambiguity. To avoid these problems, we take a "wait and see" approach 11 

and try not to choose the appropriate interpretation until some further constraint forces that 

11 Thii; technique is motivated by [Waltz 1972] and also applied in a parser by Marcui; [1975]. 
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choice. Postponing the choice is accomplished by use of the naming mechanism introduced 

above. In .our "fat man" example, we say that conventionally we will fo_rm the restriction 

(MAN*R FAT) as the interpretation of the phrase and we will have in the knowledge base an 

indication that (MAN*R FAT) names (MAN*T FAT). In this case, the distinction may never have 

-to be drawn during parsing, since no grammatical decisions wi11 depend on it, and it wilt be 

some later step of reasoning in the system that may have to choose the "circus performer" 

interpretation. 

In a typical situat_ion where grammatical distinctions arise early in parsing, we 

take a slightly different approach from the previous example. The word "drinks" is either 

the plural of the noun "drink," as in "We had a few drinks," or the third person singular of 

the verb "drink,''· as in "Joe drinks beer at dinnertime." Here, rather than choosing one of 

these as a primary interpretation, we create the neutral (DRINK*>< -S} and say that it names 

both (DRINK*X PLURAL-NOUN) and (DRINK*X THIRD- PERSON-SINGULAR- VERB). To make this 

scheme work, every combining function_ must succeed not only when the concepts given to it 

may be directly combined but also when . any concepts named by the given ones may be 

combined. Matching of concepts on TN arcs is similarly augmented. Further, rules like the 

above for "drink" generalize, and OWL encodes those generalizations rather than specific 

naming rules for each concept.12 

Bidding is another mechanism for deferring a choice among alternatives and 

12 Thc!-c naming gcncrali:r.ations arc called productive naming rules. They arc applied by the 
normal inheritance mechanism of LMS, so of course they may be overridden by more specific 
information in any particular case. 
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a voiding undue nondeterminism. Its application is best seen when considering the 

attachment of prepositional phrases. For example, in "I rode along the highway in my 

limousine," we may eliminate "the highway in my limousine" as implausible and attach the 

prepositional phrase to the predicate (or predication). By contrast, in "I liked the phone in 

my limousine," the prepositional phrase clearly belongs with "phone." We cannot always 

make sU<:h a · definitive judgment: "I saw the man beside our house" places either me or the 

man beside the house. From further context, the ambiguity may be resolved: "As I 

approached, I saw the man beside our house." We treat this problem by suspending a patti 

in parsing at a point where it is about to take an arc transition for a prepositional phrase 

until all possible paths leading to taking such a transition for that same phrase are 

identified. Then, a conflict-resolving routine is called to permit any number of the possible 

interpretations to proceed. That routine will, in general, invoke the Interpreter to try to 

decide which interpretation(s) are best. Its success will depend on the sophistication of 

world knowledge in the conceptual memory and on the existence of appropriate strategies 

available to the Interpreter to apply that knowledge. A more specific mechanism which 

similarly addresses the problem of "selective modifier placement" is presented in [Woods 

1973). We have not yet made any significant use of this bidding strategy. 

IV. Reasoning 

We have implemented an initial version of an Interpreter for OWL, which is the 

basis of the system's ability to reason. It is a large program with many interesting 



An Overview of OWL 21 

capabilities, of which we will here describe only the central ones. Sunguroff [1976) describes 

the implementation details of the current version, Brown [1977) is concerned with use of the 

Interpreter for dialog and the handling of failure, Long [1977] gives another view of the 

Interpreter's use for automatic programming, and Swartout [1977] discusses the Interpreter's 

record-keeping and updating . capabilities and their relation to explaining program 

behavior. 

So far,. we have interpreted OWL concepts as static entities, mere tra.nslations of 

English phrases. The system's action when given the sentence "Prescribe an appropriate 

dosage of Digitalis for Mr. Jones" cannot be merely to translate that sentence into its 

internal representation and then stop. But how is it ·to know what the procedural meaning 

of some sentence is? 

If an OWL concept has a METHOD aspect, then it is called a PLAN and is something 

which the Interpreter can carry out. When the Interpreter is called (its·argument is the call), 

it performs the following steps: 

I) It tries to match the call to a known plan in the knowledge base. The search 
for. a -matching plan proceeds "upward" from the call, so that the most 
specific plan which matches will be selected.13 

2) It checks that" any required properties on the cases (variables) of the plan occur 
also on the concepts which will be matched to them. · 

13 This is a very important idea. With it, we can embed completely specific plans to solve 
any problems which we know will arise often and will be critical to the system'i. perforrnanr,e. 
\\/e also m:c it to express plans when their choice ii. dictated not by a reasoned choice hut hy 
r,onventii,n in the · application area. If a specific plan is unavailable, slightly mMe general 
plans will he attempted, and only if all such plans arc found inapplicable will the i;ystern 

resort to some general deductive scheme. We have noted that only when a great majority of 
specific plans for a 1lomain is available will the system'11 performance be at an "expert" level. 

Tliis ·al!,rccs with our observations that human experts seem to have large portions of their 

orilinary profc!-!-ional behavior "precompiled" into fixed routines. 
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3) It creates a new event, to record the initiation of execution of the selected plan, 
and binds all the matched variables. 

4) If the plan contains a PRE.RE.QUISITE. aspect, it checks if it is already TRUE. and if 
not, then it tries to make it true. This subgoal step of course once again uses 
the Interpreter. 

5) It carries out the steps of the ME.THOD, either in parallel or in sequence, 
whichever is specified. 

We attempt always to use the Interpreter to solve subproblems of an initial 

problem so that the general matching and reasoning resources we build up will be available 

at a II levels. For example, if X i_s a prerequisite which is not yet satisfied, we merely ca 11 the 

Interpreter with the call (GE.T~T X). Classical goal-directed behavior can be achieved by use 

of the PRINCIPAL-RESULT case on a plan, which identifies the teleological goal of the plan. 

Then, if a GET is unable to find a plan by its upward search of the concept tree, it may 

. search for a matching principal result and select the plan which promises that result. One 

other important aspect of the Interpreter is that after every step of interpretation, it 

dispatches to its next step through the main top-level loop. There, failure-handling and 

advice-giving procedures may always be .invoked to redirect the course of computation by 

"backing off" from unproductive lines (if they can be recognized). 

We are continuing to refine our understanding of the representation of English 

phrases in the format notation of OWL and the use of a complex Interpreter which works 

within that formalism to perform all reasoning tasks which arise in language processing 

and various application areas. 
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