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A NOTE ON THE AVERAGE TIME TO COMPUTE TRANSITIVE CLOSURES 

An algori~hm which finds shortest paths between all pairs of 
nodes in an n node weighted, directed graph using an average 

of 0(n2•(log n)
2

) basic steps has been described by Spira [10]. 
A special case of the shortest path problem is the transitive 
closure problem for Boolean matrices. 

In this note we point out a simple restriction of Spira's 
algorithm which allows the computation of the transitive 

closure of a Boolean matrix in average time 0(n
2

•log n). 
(This ~ime bound for the average case was obtained independent
ly by D. Angluin [2] using ·a different algorithm.) In the 
course of verifying the restricted algorithm, we isolate a 
lacuna in Spira's original procedure - namely Spira's algorithm 
does not specify from which node to search when several nodes 

. are equidistant from a source. We describe a counter-example 
based on this lacuna showing that Spira's algorithm may run in 

O(n
3
)t average steps on certain ensembles of graphs when "tie

breaking" in the case of equidistant nodes is decided by a 
plausible but improper convention. With a proper tie
breaking procedure, Spira' s algorithm indeed can be shm,m to 

. 2 2 
run in 0(n ·(log n) ) steps on the average for a somewhat 
larger class of probability measures on graphs than he origin
ally claimed, although we do not prove this latter fact in the 
present note. 

2. DEFINITIONS AND PRELIMINARIES 

We assume the reader is familiar with the standard definitions 
of Boolean matrices and directed graphs as contained in [l]. 
In particular, a directed graph G is a pair (V,E), where 
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V = {1,2, ••• ,n} is a set of vertices, and E ~ V XV is a set of 
edges. The ad1acency set of a node i €Vis the set 
A(i) = {j s V (i,j) s E}. A node j is said to be reachable 
from i if there is a path from i to j. One representation of a 
graph (V,E) is then x n Boolean incidence matrix MG' defined 

by MG(i,j) = 1 if an~ only if edge (i,j) is in _E; otherwise, 

MG(i,j) = O. Th_e transitive closure. of a Boolean matrix M is 
i: 2 3 

defined by M =IV M V M ' V M V ••• , where I is the identity 
matrix. Note that M*(i,j) = 1 if and only if i = j or there is 
a path from node i to node j in the graph represented by N. 

A weighted directed graph is a directed graph whose edges 
have weights which are non-negative real numbers or positive 
infinity (oo). By }:"OSsibly adding arcs with weight oo, we may 

assume all n
2 

edges are present in the graph. The cost (or 
length) of ~- path is the sum of the weights of. its edges, and 
the minimum cost matrix C is then X n matrix such that C(i,j) 
is the minimum of the costs of all paths in the graph from i to 
j. We may identify an unweighted directed graph G = (V,E) with 
the weighted graph with nodes V such that all edges in E are 
assigned weight O and . al.l edges. in (V X V) - E are assigned 
weight oo. Thus if C is the minimum cost matrix of the weighted 
version of G, then C(i,j) = 0 if and only if M~(i,j) = 1. 

Hence any algorithm which computes the shortest distance matrix 
of a weighted graph can be used directly to compute the 
transitive closure of a Boolean matrix. 

The model of computing machine used is that of a random ac
cess machine in which address determinations have unit cost [1). 

3. A TRANSITIVE CLOSURE ALGORITHM 

We first informally describe our transitive closure algorithm 
and verify its correctness. The algorithm constructs the 
transitive closure of a matrix Mone row at a time; i.e., in 
graph terminology, it finds the set of nodes reachable from a 
given node. Observe that if there is a path from a particular 
node (say node i) to node j, then trivially there is also a 
path from node i to all vertices in the adjacency set A(j). 
Using this observation, we may produce the set of nodes 
reachable from node i by initializing a set variable L to the 
set A(i); then we repetitively add to L the adjacency sets 
A( j) of all nodes j which are in L. We halt when either L 
contains all nodes, or the adjacency sets of all nodes in L 
have been placed in L. It is easy to show by induction on the 
number of arcs in a path between i and any node reachable from 
i that when the algorithm is halted, L will equal the set of 
all nodes reachable from node i. 

We thus obtain the following algorithm ~(i) which computes 
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the set of nodes reachable from node i, given the adjacency 
sets A(j) (j = 1,2, ••• ,n). 

For efficiency, the set of reachable nodes is represented as a bit 
array L(j), where, at the conclusion of the algorithm, L(j ) = 1 if and 
only if node j is reachable from node i. We say node j is labelled at any 
stage in the algorithm if L(j) = 1 at tha t stage . A push-
down stack is used to contain those labelled nodes whose ad-
jacency sets have not yet been explicitly included in L. 
There are assumed to be two basic stack operations: push (i), 
which places node ion the top of the stack; and .E.2..2, which 
removes and returns the top node on the stack, if there is one, 
or E!'lPTY, if the stack is empty. We assume the sets A(j) for 
j = 1,2, ••• ,n are represented as lists. The variable CARD 
represents the number of labelled nodes , and is used to test 
whether all nodes have been labelled. 

th · ;'c 
Algorithm ~(i), which computes the i row of the matrix NG : 

(1) L(i) - 1 ) 
L(j) - 0 for j 1' i J (Initially, only node i is 
CARD - 1 
j - i 

(2) While j # EMPTY and CARD ,/, n do: 
(2a) For each node k € A(j) , if L(k) = 

then <lo: 

end 
( 2b) j ,_ .E.2.,2 

end 

L(k) - 1 
CARD - CARD+ 1 
push(k) 

(3) _M'.' (i,j) ,.... L(j) for j = 1,2, ••• ,n. 

0, 
(If node k on the 
adjacency list A(j) 
is not yet 
labelled, then 
label k .J 

Algorithm TC , which computes the transitive closure of the 
matrix N: ~ 

(1) Extract the adjacency lists A(j) (j = 1,2, ••• ,n) of the 
graph corresponding to M. 

(2) For i = 1,2, ••• ,n, do ~(i) . 

4. ANALYSIS OF THE ALGORITHM 

The time required by algorithm TC of course depends on the 
matrix on which it is computing:~ A time of '1(n3) operations 
is taken on the matrix corresponding to an n node graph con
sisting of an n-1 node clique nnd a single isolated vertex. 
The average time the algorithm takes over wide classes of 
graphs is O(n2•log n), as we now show. 

In the fo llowing, Mis an n X n Boolean matrix, and 
T(N) [T. (M)) is the time taken by algorithm TC [algorithm ~R(i)) 

l. ~ 
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on matrix M. If 9Jl is a 
matrices, then ~lTi('TTl)J 

probability distribution on 
is the average value of T(M) [T.(H)] 

l. 

will omit mention of~ when there is as M ranges over 9Jl. We 
no ambiguity. 

Two n X n \¾.ncidence ma~rices H, H' are called ~-degree 
matching iff 

That 

I:; M(i,j) 
j =1 

== T, M'(i,j) for each i == 1, • .• ,n. 
j=l 

~s, if A and A' are 
to Mand M' respectively, 

the adjacency lists of the graphs corres_ponding 
then IA(i)I = IA'~~)I for i = 1, ... ,n~. 

Theorem. Suppose '111 is any probability distribution of n x n 
Boolean matrices such that for any out-degree matching 
matrices M and M', 

Probp.bility (M) == Probability (M') in 51?. 
- 2 - 2 

Then ¾ =. O(n + min(n•E, n • log n)), where E is the average 

number of ones in the matric~s of 9Jl. 

Proof. We first make a few observations. For any matrix M, 
n 

·T(M) == O(n
2

) + I; T.(M) , 
i=l 1 

where the first term accounts for the extraction of the ad
jacency lis ts and all bookkeeping tasks. Hence, 

2 n -
T == O(n) + T, T., . 

i=l 1 

and it thus suffices to show T. s k·min(n•log n,E) for some 
l. 

constant k, and all i, 1 s i Sn. 
For the execution of algorithm R(i) on matrix M, let N.(M) ~ 1 

be the number of times the test "if L(k) = O" in step (2a) of 
the algorithm is performed; let N.('.TTI) be the corresponding 

1 
average value of N. (H) as M ranges over rm. Since T. (N) is 

1 l. 

clearl y proportional to N.(M), it is sufficient to show that 
l. - -

N. s k'•min(n•log n,E) for some constant k' independent of i 
l. 

and n. n 
Note that for any matrix M, ~ jA( j)j = E == the number of 

one's in M. 
made at most 
have N. (M) s 

l. 

j=l 
The test "if L(k) == O" in step (2a) of R(i) is 
once for each entry on any adjacency list, so we 
the number of l's in H. Thus N. s E. 

1 

*IA\ denotes the cardinality of a set A. 
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To show N. ::-; k' ·n log n, define 
1 

for each ct: (1,2, ••• ,n} ➔ 
n 

( O, 1, 2, ••• ,n}, the set ~ .= (M E: gn 
Ci 

~ M(l ,j) = ct(l) for 
j=l 

t = 1, ••• ,n} . For any fixed a any two matrices in~ are out-
ct 

degree matching and hence equiprobable in 9Ji by hypothesis. 
Thus, it suffices to .prove that there is a fixed k' such that 
N. O}l) ;,; k' •n-log n for the probability distribution iri which 

1 a . · · 
all matrices in !ln are equiprobable and all other-matrices a 
have probability zero. (Abusing notation slightly, we also 
refer to this distribution as gn .) · 

. . . ----" -·-- Ci 
Consider now another mechanism for building up the elements 

of Ma dynamically. For each j = 1,2, ••• ,n, choose, inde-

pendently and at random with equal probabilities, a set 
A0 (j) of ct(j) distinct elements of V. If M

0 
is the matrix 

corresponding to the adjacency lists A
0
(j), then Ni is equal 

to the expected value of Ni(M
0

) (since each element of 9Jia has 

an equal probability of being M
0
). 

We now modify algorithm R(i) .to be a probabilistic procedure P(i) 
which constructs M

0 
and sim~ltaneously runs ~(i) on it. L and 

A are set variables corresponding to the vector Land the lists 
A(j) in algorithm ~(i). 

Procedure P(i): 
(1) 1-- (i} ~ 

j ... i 
(2) While j I EMPTY and 111 In do: 

A._~ 

While IAI < a(j) do: 

end 

Choose, at random and with 
equal probabilities, a node Build up A0 (J) 
k E: V. 
If k ¢ A, then A ... AU {k} 

(2a) For each node k E: A, if kt L then 
L ... LU {k} and push(k). 

(2b) j ._ ~ 
end 
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By the above remarks, Ni is the expected number of times the test 

"if k r/;. L" is performed at step (2a) of procedure !(i). 

Notice that in the execution of f(i), once a node becomes a member 

of L U A it remains so at subsequent steps of the procedure. Moreover, if 

IL U Al = n just before an execution of step (2a), then at most IAI ~ n 

further executions of the test "if k <!. L" will be executed at step (2a) before 

!(i) terminates. 

Let Ni, be the expected number of times nodes are chosen at random in 

step (2) throughout the execution of f(i) until IL U Al = n. Since at any 

point in the execution of !(i) the number of times the test "if k r/;. L" has 

been performed is trivially at most equal to the number of times nodes have 

been chosen at random at step (2), we conclude that Ni~ Ni,+ n. 

But Ni, is nothing but the expected number of times nodes f rom the set 

( l, ••• ,n} must be chosen randomly (with repetitions) and put in the set 

LU A until LU A = (l, ••• ,n} . The expected number of random selections with 

repetition from the set (l, ••• ,n} until all elements have been selected is 

well known to be asymptotic to nlogen ([4], p·. 225), so N., = O(nlogn), which 
l. 

completes the argument. 
Spira or~ginally stated his result for graphs in which each 

edge weight was an independent non-negative real-valued random 
variable with the same distribution for each edge. We note 
that additional-probability measures on unweighted graphs to 
which the hypotheses of the above theorem apply include: 

(1) Boolean matrices in which entry N(i ,j) is an independent 

random variable which has probability p. of being equal 
l. 

to 1 (the probability may vary for different rows of the 
matrix and may depend on n), 

and 2 
(2) For every t, 1 ~ t ~ n the set 9Jlt of all Boolean 

matrices which contain exactly tones, with equal 
probability. 

5. A LACUNA IN SPIRA' S ALGORITHM 

Our analysis of the algorithms R(i) and TC for computing 
transitive closures was prompted by Spir~s analysis of his 
more general algorithm for computing minimum cost matrices. 
Indeed our a l gorithms may be obtained by restricting Spira's 
algorithm to the special case when all edge weights are zero 
or~, except that in this case Spira's algorithm leaves un-

r, 
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specified the order in which adjacency lists of labelled nodes 
are t o be searched. (Spir a suggests a search order based on 
minimum we ight s , but these will all be zer o i n the zero- oo c ase. ) 

It is natural to assume that any specificat ion o f the missing tie
breaking rule for choice among equal weight paths would lead to an efficient 
algorithm. This is not the c ase. We next describe transitive closure 
algorithm BADTC which is a specia l c ase of Spira 's algorithm i n which a t ie
breaking rcleis determined by using a first-in f irst-out queue ( instead of 
the last-in first-out pushdown stack of algorithm TC ) . However , the expected 
runni ng time o f BADTC is 0. (n3) . ~ 

~ 

We remark that the tie-breaking lacuna may be repaired easily in Spira ' s 
general algorithm for weighted graphs along the lines of the pushdo~ mechanism 
we used in TC. Spira ' s claim of an average r unning t ime of O(n2l og n ) may 
then be verified over a somewhat larger c l a ss o f probability distributions on 
weighted graph s than he originally claimed. We postpone further discussion of 
Spira ' s general algori thm t o a later paper . 

The a l gorithm BADTC is obtained by -performing BADR(i) for 
i = 1, • •• ,n wher e~R(i) c omput es the set of nod~eachable 
from node i. In ~(i), a bi t array L i ndicating "labelled" 
node s reachable from node i is used as in al gorithm R(i). 
I nstead of the pushdown s tore of nodes whose adj acen';;'y l i sts 
must be searched as in R(i), the aleorithm BADR(i) maintains 
a f i r st- in, .fir st- out queue of labelled nod~hose adjacency 
lists have not been completely searched . The queue operat ions 
a r e tail(j) whi ch inserts node j at t he tail end of the queue, 
and head which r emoves and takes the val ue of the f i rst e lement 
of t he queue, or retur ns the val ue EMPTY if the queue is empty . 
Finally, we assume the adjacency sets A(j) are stored as l i sts 
and the operation next(A(j)) r emoves and takes the va lue of 
the fi r st e l ement of the lis t , or r e t urns t he value ENPTY i f 
t he list i s empty . 

Algori t hm ~(i), which compute s the i th row of the matr ixM~: 



(1) L(i) .- 1 
L(j) .- 0 for j =f. i 
CARD+- 1 
j +- i 
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(2) Hhile j =f. EMPTY and CARD =f. n do: 
(2a) k +- next(A(j)) 
(2b) If k#EMPTY , then do: 

] Initially, only node i 
is labelled . } 

[ An element- from7f(j) will be 
labelled next. } 

tail (j) ?_ [ Return j to the queue if 
5 A(j) was still not empty.} 

If L(k) = O, then do:Jif the next-reachable-
L(k) ,_ 1 node k is not already 
CARD.- CARD+ 1 label led, then label 
tail (k) it and add it to the 
end queue.} 

end 

.(2c) j ,_ head 
end · 

,': . 
(3) M (i,j) ·<- L(j) for j = l, ••• ,n. 

Theorem: Let '.111 be the. uniform probability distribution on n x n 
Boolean matrices. For any n x n matrix M, assume that the 
adjacency lists A(j) for j = l, ••• ,n are sorted by increasing 
node index. Then the expected running time on '.Ill of algorithm 

BADR(i) is at least €• n
2 

for i = l, ••• ,n, and the expected 
~ing time of algorithm~ is at least €-n3 , for some 
constant e > O. 
Proof: A graph G corresponding to a matrix Min~ has 
on the average at least n/3 nodes on each adjacency list A(i) 
for i = l, ••• ,n and is strongly connected, as is easily veri
fied (cf. the remark in section 6 below). In particular, ap
plication of algorithm BADR(i) to such a graph G will cause 
node n to be labelled e~ually for i = l, •.• ,n since node n 
will be reachable from node i. 

Consider an application of algorithm BADR(i) to G for i # n. 
Let jO be the value of the variable j at~t execution of 

step (2a) at which the next-reachable-node-variable k is first 
set ton. Since IA(j 0)1 ~ n/3 and since n is the last element 

of A(j 0) (which by hypothesis is sorted in order of increasing 

node in<lex), j 0 must have been labelled, placed on the queue, 

and subsequently reappeared at the head of the queue at step 
(2c) at least n/3-1 times. 

Following each appearance of j
0 

at the head of the queue at 

_ . _ ~~~p __ (_~~!'-- ~--new _ element o~ A(j 0 )_ is selected at step (2a) and 
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added to the queue at step (2b) unless that element had pre
viously been placed on the queue. The queue discipline implies 

that the .e,th element of A(j
0

) will appear at the head of the 

queue at step (2c) in between each successive appearance of 
jO at the head of the queue, · starting from the .e,th appearance 

of j
0 

and continuing until either n _is labelled (after at 

least n/3 - t - 1 further appearances of j 0), or until the 

adjacency list of this t th element is exhausted. Thus, the 

.e,th element of A(j ) appears at the head of the queue at step 
0 

(2c) at least min(n/3- ,0,- l,n/3) =::. .n/_3- i-1 tirn~s. Since ___ _ 

there are at least n/3-1 elements of A(j
0

) before n, at least 
n/3-1 2 ,-

1 2.,(n/3 - t-1)= O(n) executions of step (2c) must occur. 
~1 

6. REMARKS 

The analysis of the algorithm which was presented in section 4 has implications 
for the properties of "random" graphs. For example, if :IJl is the uniform 
£robability distribution on n x n Boolean matrices [graphs], we know that 
N. (:Dl) = nlogen + o(nlogn). Thus, for an "average" graph G, algorithm R(i) 

i ~ 
halts after about nlogen edges from labelled nodes have been examined in step 
(2a). This occurs either because (1) node i is discovered to be connected to 
all nother nodes, or (2) all adjacency sets from all labelled nodes have been 
exhausted. However, case (2) does not occur on the average because more than 

O(nlogn) must have been examined in this case: G has on the average at least 
n/3 nodes on each adjacency set A(j) for j = 1,2, ••• ,n. Hence there are at 
least n/3 labelled nodes immediately adjacent to node i, and each has an 
adjacency set of at least n/3 nodes, giving a total of at least n2 /9 edges for 
labelled nodes to be examined in verifying case (2). Thus on the average the 
algorithm halts because of case (1). In fact, closer analysis shows that the 
probability that node i is connected to all other nodes is 1 - o(.!. ), and thus 

n 
the probability that a random graph in :IJl is strongly connected is 1 - o(l). 
Results similar to these, along with a more precise description of the behavior 
of "random" undirected graphs, have been described previously by P. Erdos and 
others [3], and the interested reader is referred to this work. 

Finally, we note that M. Fredman [6] has shown that Spira's algorithm may 
be modified to find the shortest distance matrix in 0(n2-log

2
n) average number 

of edge weight comparisons, but at a considerable increase in total running time. 
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