
't
MASSACHUSETTS

LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

(formerly Project MAC)

A N01E ON THE AVEP.AGE Tlrv£ TO CQVPlJTE
TRANSITIVE CLOSURES

p I A. BLON-IARZ
M. J, FISCHER

A. R. MEYER

SEPTEMBER 1976

MIT /LCS/TM-76

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

MIT/LCS/ TM-76

A NOTE ON THE AVERAGE TIME TO COMPUTE TRANSITIVE CLOSURES

P.A. Bloniarz
M.J. Fischer
A.R. Meyer

September 1976

Massachusetts Institute of Technology
Laboratory for Computer Science

(formerly Project MAC)
Cambridge, Massachusetts

02139

P.A. Bloniarz
M.J. Fischer1'*

•'·
A.R. Meyer"

Revised July 1976

A NOTE ON THE AVERAGE TIME TO COMPUTE TRANSITIVE CLOSURES

An algori~hm which finds shortest paths between all pairs of
nodes in an n node weighted, directed graph using an average

of 0(n2•(log n)
2

) basic steps has been described by Spira [10].
A special case of the shortest path problem is the transitive
closure problem for Boolean matrices.

In this note we point out a simple restriction of Spira's
algorithm which allows the computation of the transitive

closure of a Boolean matrix in average time 0(n
2

•log n).
(This ~ime bound for the average case was obtained independent
ly by D. Angluin [2] using ·a different algorithm.) In the
course of verifying the restricted algorithm, we isolate a
lacuna in Spira's original procedure - namely Spira's algorithm
does not specify from which node to search when several nodes

. are equidistant from a source. We describe a counter-example
based on this lacuna showing that Spira's algorithm may run in

O(n
3
)t average steps on certain ensembles of graphs when "tie

breaking" in the case of equidistant nodes is decided by a
plausible but improper convention. With a proper tie
breaking procedure, Spira' s algorithm indeed can be shm,m to

. 2 2
run in 0(n ·(log n)) steps on the average for a somewhat
larger class of probability measures on graphs than he origin
ally claimed, although we do not prove this latter fact in the
present note.

2. DEFINITIONS AND PRELIMINARIES

We assume the reader is familiar with the standard definitions
of Boolean matrices and directed graphs as contained in [l].
In particular, a directed graph G is a pair (V,E), where

*Department of ·Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 545 Main Street, Cam
bridge, Massachusetts 02139, U.S.A.

**Department of Computer Science, University of Washington,
Seattle, Washington 98195, U.S.A.

t A function f is O(g(n)) iff there is a constant c > 0 such that
f(n) ~ c•g(n) for all sufficiently lar~~ n.

This report was prepared with the support of the National Science Foundation
under research grant no. GJ- 43634X, contract no. DCR74-12997-A01.

-2-

V = {1,2, ••• ,n} is a set of vertices, and E ~ V XV is a set of
edges. The ad1acency set of a node i €Vis the set
A(i) = {j s V (i,j) s E}. A node j is said to be reachable
from i if there is a path from i to j. One representation of a
graph (V,E) is then x n Boolean incidence matrix MG' defined

by MG(i,j) = 1 if an~ only if edge (i,j) is in _E; otherwise,

MG(i,j) = O. Th_e transitive closure. of a Boolean matrix M is
i: 2 3

defined by M =IV M V M ' V M V ••• , where I is the identity
matrix. Note that M*(i,j) = 1 if and only if i = j or there is
a path from node i to node j in the graph represented by N.

A weighted directed graph is a directed graph whose edges
have weights which are non-negative real numbers or positive
infinity (oo). By }:"OSsibly adding arcs with weight oo, we may

assume all n
2

edges are present in the graph. The cost (or
length) of ~- path is the sum of the weights of. its edges, and
the minimum cost matrix C is then X n matrix such that C(i,j)
is the minimum of the costs of all paths in the graph from i to
j. We may identify an unweighted directed graph G = (V,E) with
the weighted graph with nodes V such that all edges in E are
assigned weight O and . al.l edges. in (V X V) - E are assigned
weight oo. Thus if C is the minimum cost matrix of the weighted
version of G, then C(i,j) = 0 if and only if M~(i,j) = 1.

Hence any algorithm which computes the shortest distance matrix
of a weighted graph can be used directly to compute the
transitive closure of a Boolean matrix.

The model of computing machine used is that of a random ac
cess machine in which address determinations have unit cost [1).

3. A TRANSITIVE CLOSURE ALGORITHM

We first informally describe our transitive closure algorithm
and verify its correctness. The algorithm constructs the
transitive closure of a matrix Mone row at a time; i.e., in
graph terminology, it finds the set of nodes reachable from a
given node. Observe that if there is a path from a particular
node (say node i) to node j, then trivially there is also a
path from node i to all vertices in the adjacency set A(j).
Using this observation, we may produce the set of nodes
reachable from node i by initializing a set variable L to the
set A(i); then we repetitively add to L the adjacency sets
A(j) of all nodes j which are in L. We halt when either L
contains all nodes, or the adjacency sets of all nodes in L
have been placed in L. It is easy to show by induction on the
number of arcs in a path between i and any node reachable from
i that when the algorithm is halted, L will equal the set of
all nodes reachable from node i.

We thus obtain the following algorithm ~(i) which computes

-3-

the set of nodes reachable from node i, given the adjacency
sets A(j) (j = 1,2, ••• ,n).

For efficiency, the set of reachable nodes is represented as a bit
array L(j), where, at the conclusion of the algorithm, L(j) = 1 if and
only if node j is reachable from node i. We say node j is labelled at any
stage in the algorithm if L(j) = 1 at tha t stage . A push-
down stack is used to contain those labelled nodes whose ad-
jacency sets have not yet been explicitly included in L.
There are assumed to be two basic stack operations: push (i),
which places node ion the top of the stack; and .E.2..2, which
removes and returns the top node on the stack, if there is one,
or E!'lPTY, if the stack is empty. We assume the sets A(j) for
j = 1,2, ••• ,n are represented as lists. The variable CARD
represents the number of labelled nodes , and is used to test
whether all nodes have been labelled.

th · ;'c
Algorithm ~(i), which computes the i row of the matrix NG :

(1) L(i) - 1)
L(j) - 0 for j 1' i J (Initially, only node i is
CARD - 1
j - i

(2) While j # EMPTY and CARD ,/, n do:
(2a) For each node k € A(j) , if L(k) =

then <lo:

end
(2b) j ,_ .E.2.,2

end

L(k) - 1
CARD - CARD+ 1
push(k)

(3) _M'.' (i,j) ,.... L(j) for j = 1,2, ••• ,n.

0,
(If node k on the
adjacency list A(j)
is not yet
labelled, then
label k .J

Algorithm TC , which computes the transitive closure of the
matrix N: ~

(1) Extract the adjacency lists A(j) (j = 1,2, ••• ,n) of the
graph corresponding to M.

(2) For i = 1,2, ••• ,n, do ~(i) .

4. ANALYSIS OF THE ALGORITHM

The time required by algorithm TC of course depends on the
matrix on which it is computing:~ A time of '1(n3) operations
is taken on the matrix corresponding to an n node graph con
sisting of an n-1 node clique nnd a single isolated vertex.
The average time the algorithm takes over wide classes of
graphs is O(n2•log n), as we now show.

In the fo llowing, Mis an n X n Boolean matrix, and
T(N) [T. (M)) is the time taken by algorithm TC [algorithm ~R(i))

l. ~

-4-

on matrix M. If 9Jl is a
matrices, then ~lTi('TTl)J

probability distribution on
is the average value of T(M) [T.(H)]

l.

will omit mention of~ when there is as M ranges over 9Jl. We
no ambiguity.

Two n X n \¾.ncidence ma~rices H, H' are called ~-degree
matching iff

That

I:; M(i,j)
j =1

== T, M'(i,j) for each i == 1, • .• ,n.
j=l

~s, if A and A' are
to Mand M' respectively,

the adjacency lists of the graphs corres_ponding
then IA(i)I = IA'~~)I for i = 1, ... ,n~.

Theorem. Suppose '111 is any probability distribution of n x n
Boolean matrices such that for any out-degree matching
matrices M and M',

Probp.bility (M) == Probability (M') in 51?.
- 2 - 2

Then ¾ =. O(n + min(n•E, n • log n)), where E is the average

number of ones in the matric~s of 9Jl.

Proof. We first make a few observations. For any matrix M,
n

·T(M) == O(n
2

) + I; T.(M) ,
i=l 1

where the first term accounts for the extraction of the ad
jacency lis ts and all bookkeeping tasks. Hence,

2 n -
T == O(n) + T, T., .

i=l 1

and it thus suffices to show T. s k·min(n•log n,E) for some
l.

constant k, and all i, 1 s i Sn.
For the execution of algorithm R(i) on matrix M, let N.(M) ~ 1

be the number of times the test "if L(k) = O" in step (2a) of
the algorithm is performed; let N.('.TTI) be the corresponding

1
average value of N. (H) as M ranges over rm. Since T. (N) is

1 l.

clearl y proportional to N.(M), it is sufficient to show that
l. - -

N. s k'•min(n•log n,E) for some constant k' independent of i
l.

and n. n
Note that for any matrix M, ~ jA(j)j = E == the number of

one's in M.
made at most
have N. (M) s

l.

j=l
The test "if L(k) == O" in step (2a) of R(i) is
once for each entry on any adjacency list, so we
the number of l's in H. Thus N. s E.

1

*IA\ denotes the cardinality of a set A.

-5-

To show N. ::-; k' ·n log n, define
1

for each ct: (1,2, ••• ,n} ➔
n

(O, 1, 2, ••• ,n}, the set ~ .= (M E: gn
Ci

~ M(l ,j) = ct(l) for
j=l

t = 1, ••• ,n} . For any fixed a any two matrices in~ are out-
ct

degree matching and hence equiprobable in 9Ji by hypothesis.
Thus, it suffices to .prove that there is a fixed k' such that
N. O}l) ;,; k' •n-log n for the probability distribution iri which

1 a . · ·
all matrices in !ln are equiprobable and all other-matrices a
have probability zero. (Abusing notation slightly, we also
refer to this distribution as gn .) ·

. . . ----" -·-- Ci
Consider now another mechanism for building up the elements

of Ma dynamically. For each j = 1,2, ••• ,n, choose, inde-

pendently and at random with equal probabilities, a set
A0 (j) of ct(j) distinct elements of V. If M

0
is the matrix

corresponding to the adjacency lists A
0
(j), then Ni is equal

to the expected value of Ni(M
0

) (since each element of 9Jia has

an equal probability of being M
0
).

We now modify algorithm R(i) .to be a probabilistic procedure P(i)
which constructs M

0
and sim~ltaneously runs ~(i) on it. L and

A are set variables corresponding to the vector Land the lists
A(j) in algorithm ~(i).

Procedure P(i):
(1) 1-- (i} ~

j ... i
(2) While j I EMPTY and 111 In do:

A._~

While IAI < a(j) do:

end

Choose, at random and with
equal probabilities, a node Build up A0 (J)
k E: V.
If k ¢ A, then A ... AU {k}

(2a) For each node k E: A, if kt L then
L ... LU {k} and push(k).

(2b) j ._ ~
end

-6-

By the above remarks, Ni is the expected number of times the test

"if k r/;. L" is performed at step (2a) of procedure !(i).

Notice that in the execution of f(i), once a node becomes a member

of L U A it remains so at subsequent steps of the procedure. Moreover, if

IL U Al = n just before an execution of step (2a), then at most IAI ~ n

further executions of the test "if k <!. L" will be executed at step (2a) before

!(i) terminates.

Let Ni, be the expected number of times nodes are chosen at random in

step (2) throughout the execution of f(i) until IL U Al = n. Since at any

point in the execution of !(i) the number of times the test "if k r/;. L" has

been performed is trivially at most equal to the number of times nodes have

been chosen at random at step (2), we conclude that Ni~ Ni,+ n.

But Ni, is nothing but the expected number of times nodes f rom the set

(l, ••• ,n} must be chosen randomly (with repetitions) and put in the set

LU A until LU A = (l, ••• ,n} . The expected number of random selections with

repetition from the set (l, ••• ,n} until all elements have been selected is

well known to be asymptotic to nlogen ([4], p·. 225), so N., = O(nlogn), which
l.

completes the argument.
Spira or~ginally stated his result for graphs in which each

edge weight was an independent non-negative real-valued random
variable with the same distribution for each edge. We note
that additional-probability measures on unweighted graphs to
which the hypotheses of the above theorem apply include:

(1) Boolean matrices in which entry N(i ,j) is an independent

random variable which has probability p. of being equal
l.

to 1 (the probability may vary for different rows of the
matrix and may depend on n),

and 2
(2) For every t, 1 ~ t ~ n the set 9Jlt of all Boolean

matrices which contain exactly tones, with equal
probability.

5. A LACUNA IN SPIRA' S ALGORITHM

Our analysis of the algorithms R(i) and TC for computing
transitive closures was prompted by Spir~s analysis of his
more general algorithm for computing minimum cost matrices.
Indeed our a l gorithms may be obtained by restricting Spira's
algorithm to the special case when all edge weights are zero
or~, except that in this case Spira's algorithm leaves un-

r,

- 7-

specified the order in which adjacency lists of labelled nodes
are t o be searched. (Spir a suggests a search order based on
minimum we ight s , but these will all be zer o i n the zero- oo c ase.)

It is natural to assume that any specificat ion o f the missing tie
breaking rule for choice among equal weight paths would lead to an efficient
algorithm. This is not the c ase. We next describe transitive closure
algorithm BADTC which is a specia l c ase of Spira 's algorithm i n which a t ie
breaking rcleis determined by using a first-in f irst-out queue (instead of
the last-in first-out pushdown stack of algorithm TC) . However , the expected
runni ng time o f BADTC is 0. (n3) . ~

~

We remark that the tie-breaking lacuna may be repaired easily in Spira ' s
general algorithm for weighted graphs along the lines of the pushdo~ mechanism
we used in TC. Spira ' s claim of an average r unning t ime of O(n2l og n) may
then be verified over a somewhat larger c l a ss o f probability distributions on
weighted graph s than he originally claimed. We postpone further discussion of
Spira ' s general algori thm t o a later paper .

The a l gorithm BADTC is obtained by -performing BADR(i) for
i = 1, • •• ,n wher e~R(i) c omput es the set of nod~eachable
from node i. In ~(i), a bi t array L i ndicating "labelled"
node s reachable from node i is used as in al gorithm R(i).
I nstead of the pushdown s tore of nodes whose adj acen';;'y l i sts
must be searched as in R(i), the aleorithm BADR(i) maintains
a f i r st- in, .fir st- out queue of labelled nod~hose adjacency
lists have not been completely searched . The queue operat ions
a r e tail(j) whi ch inserts node j at t he tail end of the queue,
and head which r emoves and takes the val ue of the f i rst e lement
of t he queue, or retur ns the val ue EMPTY if the queue is empty .
Finally, we assume the adjacency sets A(j) are stored as l i sts
and the operation next(A(j)) r emoves and takes the va lue of
the fi r st e l ement of the lis t , or r e t urns t he value ENPTY i f
t he list i s empty .

Algori t hm ~(i), which compute s the i th row of the matr ixM~:

(1) L(i) .- 1
L(j) .- 0 for j =f. i
CARD+- 1
j +- i

-8-

(2) Hhile j =f. EMPTY and CARD =f. n do:
(2a) k +- next(A(j))
(2b) If k#EMPTY , then do:

] Initially, only node i
is labelled . }

[An element- from7f(j) will be
labelled next. }

tail (j) ?_ [Return j to the queue if
5 A(j) was still not empty.}

If L(k) = O, then do:Jif the next-reachable-
L(k) ,_ 1 node k is not already
CARD.- CARD+ 1 label led, then label
tail (k) it and add it to the
end queue.}

end

.(2c) j ,_ head
end ·

,': .
(3) M (i,j) ·<- L(j) for j = l, ••• ,n.

Theorem: Let '.111 be the. uniform probability distribution on n x n
Boolean matrices. For any n x n matrix M, assume that the
adjacency lists A(j) for j = l, ••• ,n are sorted by increasing
node index. Then the expected running time on '.Ill of algorithm

BADR(i) is at least €• n
2

for i = l, ••• ,n, and the expected
~ing time of algorithm~ is at least €-n3 , for some
constant e > O.
Proof: A graph G corresponding to a matrix Min~ has
on the average at least n/3 nodes on each adjacency list A(i)
for i = l, ••• ,n and is strongly connected, as is easily veri
fied (cf. the remark in section 6 below). In particular, ap
plication of algorithm BADR(i) to such a graph G will cause
node n to be labelled e~ually for i = l, •.• ,n since node n
will be reachable from node i.

Consider an application of algorithm BADR(i) to G for i # n.
Let jO be the value of the variable j at~t execution of

step (2a) at which the next-reachable-node-variable k is first
set ton. Since IA(j 0)1 ~ n/3 and since n is the last element

of A(j 0) (which by hypothesis is sorted in order of increasing

node in<lex), j 0 must have been labelled, placed on the queue,

and subsequently reappeared at the head of the queue at step
(2c) at least n/3-1 times.

Following each appearance of j
0

at the head of the queue at

_ . _ ~~~p __ (_~~!'-- ~--new _ element o~ A(j 0)_ is selected at step (2a) and

-9-

added to the queue at step (2b) unless that element had pre
viously been placed on the queue. The queue discipline implies

that the .e,th element of A(j
0

) will appear at the head of the

queue at step (2c) in between each successive appearance of
jO at the head of the queue, · starting from the .e,th appearance

of j
0

and continuing until either n _is labelled (after at

least n/3 - t - 1 further appearances of j 0), or until the

adjacency list of this t th element is exhausted. Thus, the

.e,th element of A(j) appears at the head of the queue at step
0

(2c) at least min(n/3- ,0,- l,n/3) =::. .n/_3- i-1 tirn~s. Since ___ _

there are at least n/3-1 elements of A(j
0

) before n, at least
n/3-1 2 ,-

1 2.,(n/3 - t-1)= O(n) executions of step (2c) must occur.
~1

6. REMARKS

The analysis of the algorithm which was presented in section 4 has implications
for the properties of "random" graphs. For example, if :IJl is the uniform
£robability distribution on n x n Boolean matrices [graphs], we know that
N. (:Dl) = nlogen + o(nlogn). Thus, for an "average" graph G, algorithm R(i)

i ~
halts after about nlogen edges from labelled nodes have been examined in step
(2a). This occurs either because (1) node i is discovered to be connected to
all nother nodes, or (2) all adjacency sets from all labelled nodes have been
exhausted. However, case (2) does not occur on the average because more than

O(nlogn) must have been examined in this case: G has on the average at least
n/3 nodes on each adjacency set A(j) for j = 1,2, ••• ,n. Hence there are at
least n/3 labelled nodes immediately adjacent to node i, and each has an
adjacency set of at least n/3 nodes, giving a total of at least n2 /9 edges for
labelled nodes to be examined in verifying case (2). Thus on the average the
algorithm halts because of case (1). In fact, closer analysis shows that the
probability that node i is connected to all other nodes is 1 - o(.!.), and thus

n
the probability that a random graph in :IJl is strongly connected is 1 - o(l).
Results similar to these, along with a more precise description of the behavior
of "random" undirected graphs, have been described previously by P. Erdos and
others [3], and the interested reader is referred to this work.

Finally, we note that M. Fredman [6] has shown that Spira's algorithm may
be modified to find the shortest distance matrix in 0(n2-log

2
n) average number

of edge weight comparisons, but at a considerable increase in total running time.

-10-

REFERENCES

[lJ Aho, A.V., J.E. Hopcroft, & J.D. Ullman (1974) The Design
and Analysis of Computer Algorithms. Massachusetts:
Addison-Wesley.

[2] Angluin, D. Private communication.
[3] Er.dos, P. & J. Spencer (1974) Probabilistic Methods in

Combin?torics. New York: Acade_mic Press.
[4] Feller, W. (1968) An Introduction to Probability Theory

and its Applications. New York: Wiley, Vol. 1, 3rd edi
tion.

[SJ Fischer, M.J. & A.R. -Heyer (1971) "Boolean Matrix Multi
plication and Transitive Closure." Twelfth Annual Symp.
on Switching and Automata Theory, 129-31.

[6 J Fredman, N. L. (1975) "On the Decision Tree Complexity of
the Shortest Path Problems." Sixteenth Annual Symp. on
Foundat-ions of Computer Science, 98-9.

[7] Furman, .M.E. (1970) "Applications of a Method of Fast
Multiplication of Matrices in the Problem of Finding the
Transitive Closure of a Graph." Dokl. Akad. Nauk SSSR
194, 3. (Soviet Hath. Dokl~ 11, 5 (1970), 1252.)

[8] Munro, I. (1971) uEfficient_ Determination of the Transitive
Closure of a Directed Graph." Information Processing
Letters, 1, 2.

[9] O'Neil, P., & E. O'Neil (1973) A Fast Expected Time
Algorithm for Boolean Hatrix Hultiplication and Transitive
Closure, in Courant Computer Science Symp. 9: Combinatorial
Algorithms (ed. R. · Rustin)~ 59-68. New York: Algorithmics
Press.

[lOJ Spira, P.M. (1973) "A New Algorithm for Finding Shortest
Paths in a Graph of Positive Arcs in Average Time

2 2 O(n log n). 11 SIAM J. Computing, 2,1, 28-32.
[11 J Strassen, V. (1969) "Gaussian Elimination is not Optimal."

Numer. Math. 13, 354-6.

