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Abstract:

There are languages which can be recognized by a deterministic (k+1)-headed
one-way finite automaton but which cannot be recognized by a k-headed one-way
(deterministic or non-deterministic) finite automaton. Furthermore, there
is a language accepted by a 2-headed nondeterministic finite automaton which

is accepted by no k-headed deterministic finite automaton.
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1. Introduction and Definitions

We consider the class of languages recognized by k-headed one-way
finite automata (k-FA's). These devices consist of a finite-state control,
a single read-only input tape with an endmarker $, and k one-way reading
heads which begin on the first square of the input tape and independently
move towards the endmarker under the finite-state control. The language
accepted by a k-FA is precisely the set of words x such that there is some
computation of the k-FA beginning with x$ on the input tape and ending with
the k-FA halting in an accepting state. The deterministic variety of
k-FA's will be denoted as k-DFA's. The notion of a multihead finite
automaton was apparently first described by Piatkowski [6], and was soon
thereafter extensively studied by Rosenberg [1,7].

We assume that the finite control cannot detect coincidence of the heads.
Such a capability increases the class of languages recggnized by multi-
head automata somewhat. For example, the language fOn" n 2 1] can be
recognized by a 3-DFA which can detect coincidence (this was pointed out to
the authors by A.R. Meyer), but cannot be recognized by any k-FA without this
capability [3]. As it turns out, however, our proof that k+l heads are more
powerful than k heads holds even if the devices are allowed to detect
coincidence.

Let Rk (respectively RQ) denote the class of languages recognized by

D
k=FA's (respectively, k=DFA's). It is well-known that R, = R., and easy to see
1

1
*
that Rg - Rg (consider the language [x2x | x ¢ (0,1} 1). Rosenberg [1]
claimed that Rg 7 R£+1 for k 2 1, but Floyd [2] pointed out that Rosenberg's
informal proof was incomplete. Subsequently, Sudborough [3,4], and later

Ibarra and Kim [5], proved that R2 s R3 and Rg & Rg. The main result of this

paper is that RE F R2+1 and Rk 7 Rk+1 (actually, that RE+1~Rk # @) for all
k = 1. That is, we show that "k+l heads are better than k" in the sense that
there is for each k, a language L which can be recognized by a (k+1)-DFA
which can be recognized by no k-FA (even if the k-FA can detect coincidence).
Our proof uses a counting argument and some observations due to Rosenberg
about possible sequences of head movements.

We also show that RE & Rk for k = 2; adding nondeterminism to multihead

finite automata strictly increases the class of languages they can recognize.




We actually show that
Ry- (U R # 6
1<k<e

there is a language recognized by a 2-FA but by no k-DFA,

2, The Hierarchy Theorem

Consider the language Lb’ defined for positive integers b, over
the alphabet (0,1,%)

¥*
L = [wl*wz...*wa | (w, €{0,1} ) A (v, = Yopt1-4) for 1 <1 < 2b),

Theorem 1. The language Lb is recognizable by a k-FA if and only

1f b's (g).

Proof: Rosenberg has demonstrated this in the "if" direction; as the first
head traverses Wobt2-k? ** Yoy the remaining k-1 heads can be used to

compare these words with wk-l""’wl’ respectively. These k-1 heads can then
be positioned at the beginning of W and the same procedure used inductively
to verify that wk*"‘*w2b+1-k is in Lb+1-k’ Note that this procedure is

deterministic,
To prove the theorem in the other direction, we derive a contradiction

by assuming that a k-FA T accepts every word in ]__: for b > (12() and n sufficiently

large, where L: is the language

n
Ly = (9%, | w, € (0,1)™) A Wy =Wy 1 ,) for 1 <1 s 2b),

Specifically, we show that if M accepts every word in L; then T accepts

some word not in Lb' Since 1132 UJ L: the contradiction follows.
n

A confipuration of the k-FA M is a (k+1)=-tuple (s,pl,...,pk) where s is
the state of the finite control and pi is the position of the ith head (where
the left-most tape square is position number 1). The type of a configuration
(s,pl,...,pk) is the k-tuple (rpll(n+1ﬂ,...,rpk/(n+1)7); the ith element q;
of the type specifies that the ith head of ™ is on wq, or its following

delimiter in this configuration when scanning a word = in L:.

Let cl(x),cz(x),...,ci (x) be the sequence of configurations of the k-FA
X
M during an (arbitrarily selected) accepting computation of a word x e L:.

Here Ax is the length of this computation. Let dl(x),..., (x) be the

dg'
%




subsequence obtained by selecting ci(x) and all subsequent ci{x) such that
type (ci(x)) 4 type(ci_l(x)). Call dl(x),...,dﬂ, (x) the pattern of x. (While
x

the pattern of x depends on which accepting computation of x was selected,
n
b
be associated with one pattern in this fashion). The pattern of x describes

this does not matter to our proof; we require only that each word x ¢ L

the computation of I on input x in a rough fashion - we select only those
configurations where some head has just moved to the first character of some
subword w, of x. Using the fact that L; < k- (2b-1)+41, we see that the number

: ¢
P of possible patterns is less than

{5+ (26 1))y (2D-1)+1
where s is the number of states in M's finite-state control.
Now we classify the words in LE according to their patterns. There must

exist a pattern 31,...,&2 which corresponds to a set S_. of at least an/P

0
words.
Rosenberg observed that if b > (g) then for any computation of M on an

x = 1" there exists an index i such that wi* and w -i# (or wzbs if i =1)

b 2b+1
are never being read simultaneously. (If a pair of heads is reading such a
matched pair of subwords at some point during the computation, then at no
other time during the computation could that : pair of heads read some other
matched pair of subwords, The observation follows since there are only (g) pairs
of heads to consider.) The possible values for i are determined entirely by
the pattern of the computation. Let 10 be such a value for the pattern
&y,

Partition the words in S, into classes according to the string

0
w'a'x'wﬁ'f__.':':kv 'A"w' ‘;’t‘__.'-'s."gg o *“..
12 10—1 io+1 2b-10 2b+2--i0

of characters they contain, exclusive of the matched pair of subwords W

0
b=1) n
¢ < : zn( >
and w,, -1 Let Sl be a class which contains at least lsoll 2 /p

0
words, and assume n is large enough so that 151' = 2,
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Let x LFx,.. and ¥y = yl*...*yzb be two distinct words in S

= *
xl*xz o 2b

By assumption, then

1“

(xi = yi) =i ¢ {iu,2b+1-ia].

We elaim that the word

z =2 %,,.%

1

3 * *
Xy *xy "'*xzb-10*Y2b+1-10*x2b+2-10 LT

2b

obtained by replacing Yopt1-1 for X obtl-i in %, will be accepted by T
0 0

However, z £ LE since z; # the desired contradiction.

z *
0 2b+1-10

To prove that ™ accepts z we use a "cutting and pasting" argument on the
sequence of configurations c1(x),... and clty),..., to obtain a sequence of
configurations for M on z such that M accepts z, By construction, both

(x),... and ¢ (}),... contain the pattern dl"" 3% as a subsequence., Divide
the sequences c (x),... and ¢ (y),... into ) blocks each by beginning a new

block with each occurrence cf an element 31, as in the following figure.

block 1 block 2 block }
{ciCX)} = cl(x),... . ‘ciz(x},... Y e ciﬁ(x)""
, B
3 4L 4
[ci(y)] = cliy),... ¥ cj ) SR T cjn(y),...
j o AR Vo M
block 1 block 2 block %

By definition of 4 .+3 the subwords of x or y being read change only at the

1°*
interblock transitions; during any block they remain fixed, and since
[ci(x)1 and {ci(y)] have the same pattern during the ith block the heads are

reading corresponding subwords of x and y.




We construct an accepting computation for ™ of z by selecting successive
blocks from [ci(x)], except when ™ during that block would be reading

x2b+1-io (# z2b+1-io)’ in which case we select the corresponding block from

{ci(y)} (since Yortled = 22b+1_io). This sequence forms a valid computation

0
for z since the last configuration in block i for either {ci(x)3 or

[ci(y)} vields d as the next configuration of T, and by construction M

i+1
is never reading subwords io and 2b+1-in simultaneously, so that as far as T

is concerned, at any instant it cannot distinguish between z and one of x or v. _

In summary, the preceding theorem states that
L " g

1 o Rk+1 k?

5

D D =
so that Rk * Rk+1 and Rk & Rk+1'

3. Consequences of the Hierarchy Theorem.

We present several results which follow more or less directly from the

Hierarchy theorem.

Theorem 2. For every k = 1, there is a language Hk recognized by a 2-FA but
by no k=-DFA.

=T - (K T ;
Proof. Let Hk = Lb for b = {2)+1, where Lb denotes the complement of Lb'
By theorem 1, b% is recognized by no k-DFA since Rﬁ is closed under complementation.

However, a 2-FA can recognize Hk by guessing which matched pair of subwords

WesWoriq.g 3T unequal and then verifying this, =
Let
o » : i3 #
- {wlwwzJ.__*wzb | (6= 1) A (w, ¢ (0,1} for 1 <1i = 2b) A {di)(wi W2b+1-i}]'




==
Theorem 3. The language M is recognizable by a 3-FA but by no k-DFA.

Proof., To recognize M, send heads one and two to the beginning of some
(nondeterministically chosen) subword wi. Using head one to count
the number of words between w, and the endmarker, simultaneously position

i

head three at the beginning of w Use heads two and three

2b+1-1"

now to check that v, # Wobilei®

Om the other hand, if M £ Rz, then for any fixed b, the language
Mb =MnN {wl*...WZb [ (wi € [O,IY. for 1 = 1 < 2b))

would be in Ri as well, since this only involves counting up to 2b in additionm.

But then for any b the language Lb of Theorem 1 would be in RE, since Ib is
just the complement of Mb with respect to the regularset(wlﬁ...*w2b|(wi E(O,I1hfur

1 <i= 2b}, contradicting T heorem 1. )

The theorem can in fact be strengthened as follows:

Theorem 4, There is a language L which can be recognized by a 2-FA but by
D
no k-DFA, for any k. That is, (R,~|R)) # .
k

Proof: We just present the main idea here and leave the details to the reader,
as they are quite similar to those of the proof of Theorem 1.

= W = = 2b
Let L = {wy*w,*... %W, | ¢(vi, 1 < i < 2b)

(v, & (0,17 ¢ (0,17)) A [(F4,1) (v,
for any b = 1}.

]

xeEyA Wi =X dzAy ¥ 2)],

That is, each Wy consists of a "tag' field wi and a "value" field WI so that

W = wi ¢ w;. A word wl*... is in L 1iff there is a pair of words with the

same tag field but differemt value fields., Clearly L ¢ Rz.

D
To show L £ Rk’ consider the subset of L such that the tag field of Wy is
k
the binary representation of min(i,2b+l-i), As in the proof of Theorem 1, there
can be constructed a word in this subset of L which the k-DFA will reject,
uging the fact that there are many words having this tag structure such that

- ; I
Wy = Wora1og for 1 =i s b (and thus not in 1).
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