
MIT / LCS/ TM-71 

ON THE WORST-CASE BEHAVIOR 

OF 

STRING - SEARCHING ALGORITHMS 

Ronald Rivest 

April 1976 



On the Worst-Case Behavior of String-Searching Algorithms 

* Ronald L. Rivest 
M.I.T. Laboratory for Computer Science 
Cambridge, Massachusetts 02139 
April 1976 

ABSTRACT: 
Any algorithm for finding a pattern of length kin a string of length 

n must examine at least n-k+l of the characters of the string in the worst 

case. By considering the pattern 00 •.• 0, we prove that this is the best 

possible result. Therefore there do not exist pattern matching algorithms 

whose worst-case behavior is "sublinear" inn (that is, linear with constant 

less th.3!1._....?ne), in contrast with the situation for average behavior (the 

Boyer-Moore algorithm i s known to be sublinear on the average). 

KEYWORDS: string-searching, pattern matching, text editing, computational 

complexity, worst-case behavior. 

* This report was prepared with the support of the National Science Foundation 
grant no. GJ-43634X, contract no. DCR74-12997-A01. 





-1-

I. Introduction 

Lets= s1s 2 •• • sn denote a string of length n over some finite alphabet I:, 

and similarly let p = p1p2 ••• pk denote a pattern of length k over the same 

alphabet . The "string-searching problem" :i,s to determine if the pattern occurs 

in the string - that is, if 

(ij)(l $ j $ n - k + 1) A (p1p2 • • • pk sjsj+t• •• sj+k-l). 

We denote this occurrence asp$ s. 

Several efficient algorithms exist for determining whether p $ s, given a 

pattern p of length k and a strings of length n . For example, the algorithm 

of Knuth, Morris and Pratt [3 ,4] first constructs (in time O(k)) a finite 
* * state automaton to recognize the regular set!; p~ (see [1] also) ~ Then 

p $ s iff the automaton accepts s, which can be determined in time O(n). The 

entire algorithm runs in time O(n+k) . As an example (which we shall use 

later)~ for p = 0101 the automaton of Figure 1 would be constructed. Here we 

assume that I;= {0,1} . State 1 is the initial state and state 5 is the only 

accepting state. 

~~ 
1 

1 0 1 

Figure L 

Clearly the locations o f all the occur rences of pins can also be determined 

from the behavior of the automaton. 

Recently, Boyer and Moore published an algorithm (2] which is significantly 

faster t han the Knuth-Morris-Pratt algorithm on the average. The l atter 

algorithm examines every character ins exactly once, whereas the Boyer-Moore 

algorithm looks at only some fraction c < 1 of the characters on the average; a 

typical value for c might be .24 when pis a five-letter English word. The 

worst-case behavior of the algorithm is non-linear inn and k, although a 

slight modification of their algorithm due to B. Kuipers results in a linear 

worst-case time algorithm as well. (Knuth [5] has shown that the average 



-2-

number of times a character ins is examined by the modified algorithm is 

bounded above by 6; the proof, however, is very complicated.) The Boyer

Moore algorithm requires that the strings be stored in some sort of random

access memory in order to achieve any savings. Their procedure examines 

sk, then sk-l' and so on, until an sj such that sjl-pj is found. 

Then some of the initial characters of s may be deleted and the process repeated 

with the shorter strings. If the examined (matching) subsection sj+i•••sk 

of s occurs nowhere else in p , the first k characters of s may be skipped, 

even though only k-j+l of them have been examined . Otherwise some smaller 

number may be discarded, reflecting the next possible alignment of sj+i••·sk 

with some subsection of p. Another heuristic is also used: the latest 

occurrence of s. in p (hopefully 
J 

characters from scan be deleted 

preceding p.) is used to determine how many 
J 

before s. aligns with some character in p. 
J 

In the best case we find that ski pk and that sk occurs nowhere in p; then 

k characters of scan be skipped at the cost of examining just one. 

The focus of this paper is on the worst-case behavior of such pattern

matching algorithms. We answer (in the negative) the conjecture that a pattern

matching algorithm can exist whose worst-case behavior is "sublinear" in the 

same sense that the Boyer-Moore algorithm is sublinear in its average behavior. 

More precisely, we show that for every pattern p and for every correct algorithm 

A which determines if p~s for arbitrary strings s, there exists a strings 

which causes A to examine at least ls\-lpl+l characters of s. This result is 

given in section 2 of this paper. In section 3 we show that this lower bound is 

the best possible by considering an algorithm for the pattern p = oo ••• o. 

2. The Worst-Case Lower Bound 

The approach models the method Rivest and Vuillemin used to prove the 

Aanderaa-Rosenberg conjecture [5]. Fix the pattern p and let A be any 
p 

algorithm for determining whether p ~ s for any strings. Let w(A ,n) denote 
p 

the ma~imum number of characters ins examined by algorithm A for any string 
p 

sin f.1; w(A ,n) is the worst-case cost function for algorithm A. 
p 

Theorem 1. (Vp)(VAP)(Vn)(w(A,n) ~ n - k + 1), where k = IPI• 
Proof: In fact we shall prove the stronger statements that w(A ,n) ~ w(A ,n+l) p p 



-3-

for all n and that w(A ,n) = n for infinitely many n, such that these p 
values of n occur not more thank apart . 

Let f(p,n) denote \(s I s € rf1 A p ~ s} I, the number of strings of 

length n which contain pas a substring. The following result is immediate 

from [5]. 

Lemma 1. If f(p,n) ~ O(mod\;,I), then w(Ap,n) = n. 

_!he proof of Lennna 1 will not be given here; we only remark that it follows from a 

calculation of f(p,n) using a decision-tree representation of A • If w(A ,n) <n then 
- p p 

f(p,n) = O(mod\I:\) follows. 

In order to calculate f(p ,n) we make use of the finite state automaton 
* * constructed by the Knuth-Morris-Pratt algorithm for recognizing I: pI; . Let 

the states of this fsa be numbered so that state 1 is the initial state, 

state i (for 1 ~ i ~ k) is arrived at whenever a string ending in p1p2 • •• pi-l 

has been read (and this is the largest such i), and state k+l is the 

accepting state. There is a transition labelled p. from state i-1 to state i 
l. 

(for 1 ~ i ~ k); all other transitions leaving state i-1 arrive at some state 

numbered strictly less than i. 

Let g (n, i) denote \{s I s €~and the fsa on sends in state i} \. 
p 

Then g (n,k+l) = f(p ,n). The fsa will be used to derive a set of linear 
p 

recurrences for the vector g = (g (n,l),g (n, 2), ••• , g (n,k+l)). In fact 
- - n P p P 
gn+l = T•gn, where Tis a k by k matrix whose (i,j) entry is the number of 

symbols in LJ Which cause a transition from state j to state i. For example, 

for p = 0101 the corresponding matrix T = (t . . } is 
1J 

1 0 1 0 0 

1 1 0 1 0 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 2 

In general, the sum of each column is \I:\,ti i-l = 1: for 2 ~ i ~ k+l, and , 
tij = 0 if j < i-1. Also, tk+l,k+l = IE\ . To initialize the recurrence we 

have g0 = (1,o,o, ••• ,o). 

Since we are interested in f(p,n) = g (n,k+l) only with respect to its 
p 



-4-

residue modulo lr:I, we consider the reduced recurrence gn+l = T'•gn(modl!;I), 

where the entries of T' are those of T reduced modulo II:!. In fact T' is 

just T with the (k+l, k+l) entry replaced by O. We now observe that 

g (n,k+l) = g (n-1,k), so we will concentrate on the parity of g (n,k) from 
p p - p 

now on. The k by k upper left submatrix T" of T' maps g' = 
n 

= (g (n,l)(mod 1;,l), ••• ,g (n,k)(mod l;,I)) onto g' +l· 
p p n k 
Now T" induces a mapping from r = {O, 1, ••• , Lr:l-1} to itself. Furthermore, 

T" is easily seen to be invertible; sequentially adding row i to row i+l for 

i = 1,2, ••• ,k will reduce T" to an upper triangular form with l:Y.'.l -1 along the 

main diagonal (we assume that l:!:I > 1). 

Since T" is invertible, the directed graph G, whose vertices are elements 

of rand whose edges (x,y) are present whenever T"x = y, consists of a set 

of disjoint cycles. We need to show that the cycle containing g0 = (l,O,O, ••• ,O) 
th has a vertex whose k coordinate is nonzero at least once every k steps. 

We first observe that the all-zero vector Ok is not an element of the 

cycle, since it belongs to a one-element cycle (it is fixed by the linear 

mapping T"), and g' is not the zero vector. 
0 

Next we observe that for any vector x € r such that x . I 0 
k-i 1 

vector y = (T") x has yk # O. In general, for j > i; the 

and x. = 0 

if X ~ Ok, 

~ = O and i is the largest integer such that xi ,f. O, then (T"x)i+l = xi 

since the lower diagonal portion of T" is zero except for the subdiagonal, 

which consists entirely of ones. 

This completes the proof of 

Lennna 2. (Vn > k ) (~j)(O ~ j < k)(w(A ,n-j) = n-j ). p 

To finish the proof of Theorem 1, we need to prove that w(A ,n) is nondecreasing p 
in n. 

Lennna 3. (Vn)(w(A ,n) ~ w(A ,n+l)) p p 

Proof: 

Theorem 1 now follows directly from Lennnas 2 and 3. Cl 



-s-

3. An Upper Bound on the Worst-Case 

The lower bound of Isl - IPI + 1 proved in the last section may seem 

weak at first; one's first guess might be that w(A ,n) = n as long as 
p 

n ~ !Pl • This, however, turns out to be false, as we demonstrate in this 
k 

section by a careful analysis of an algorithm for the pattern p = 0. 

Theorem 2. k 
(p = 0 ) ⇒ (aA~ (w(Ap,n) = n - µ(n)), where 

(n) = {O if n = O(mod k+l) or n = k(mod k+l) 
µ n(mod k+l) otherwise. 

Proof: The algorithm AP works in a fashion similar to the Boyer-Moore 

algorithm. It is given below. 

k 
Algorithm AP for p = 0: 

Input: a string s 1 s
2 
••• s. 

- n 
Local variables: r,i,j 

Procedur.e: 
·c : = O; i : = O; j : = O; 

repeat if r + k > n then 

begin print ("p 1- s"); exit end; 

if sr+k. = 0 then j := j + 1 
- -J --

~ begin r : = r + k - j; 

i : = j; 

j := 0 

until i + j = k; 

print ("p ~sat position", r+l). 

Inductively the algorithm knows at the top of the repeat loop that 

positions sr+l'sr+2, • • • ,sr+i and positions sr+k-j+1, •• • ,sr+k are all zero; 

it next tests position sr+k-j and adjusts r,i, and j accordingly. Let 

c(m,i,j) denote the maximum number of characters in s that ~ needs to exanrl,ne, 

starting from some instant when m = n-r and i and j define the state of Ap's 

knowledge abouts as above. Thus w(Ap,n) = c(n,O,O) by definition. Furthermore, 



-6-

we have by construction that 

(*) {O if i+j = k or n < k c(n,i,j) = 
max(c(n,i,j+l), c(n-k+j,j,O)) + 1 otherwise. 

Define for integers m and i, 0 ~ i ~ k-1, 0 ~ m ~ k, 

/3(m, i) 

Lenma. 

{

o if m = k, 

= m+l if i > ~ -and m < k, 

m-i if i ~ m and m < k. 

_ to if i+j = k or n < k c(n,i,j) 
n-i-j-/3(m,i) otherwise, where m = n(mod k+l). 

Proof: By induction, as in the definition(*) of c(n,i,j). The leIIma is 

clearly correct if i+j = k or n < k. Henceforth, assume i + j < k ~ n. There 

are two cases to consider. Let m denote n(mod k + 1). 

Case 1. c(n,i,j) = c(n,i,j+l) + 1. 

Here the lemma follows directly as long as i+j+l # k; otherwise 

c(n,i,j+l) ~ c(n•k+j,j,O), so here we can appeal to case 2. 

Case 2. c(n,i,j) = c(n-k+j,j,O) + 1. 

Case 2a. n-k+j < k. 

Here we know that c(n,i,j+l) ~ c(n-k+j,j,O), so the lemma holds by case 1. 
(If both n-k+j < k and i+j+l = k then the lemma follows by the definition of /3.) 

Case 2b. n~k+j ~ k. 

Case 2b(l). i+j+l = k . 

Here we need to show that 

n-i-j-/3(m, i) = n-k+l-/3(n-k+j(mod k+l), j), or 

(**) /3(m,i) = /3(n-i-l(mod k+l), k-1-i). 

Case 2b(l)i. m=k. Here both sides of(**) are O, since n-i-1 = k-i-1 (mod k+l). 



-7-

Case 2b(l)ii. i>m andm<k. Both sides of (**) arem+l, since n-i-l(mod k+l) >k-i-1. 

Case 2b(l)iij.. i$mandm<k. Both sides of(**) arem-i, since0$m-i-l<k-i-1. 

Case 2b(2) . i+j+l < k. 

Here it suffices to show that 

n-i-j-~(m,i) ~ n-k+j-j-~(n-k+j(mod k+l),j), 

that is , that c(n,i,j+l) ~ c(n-k+j,j,O), so that we may appeal to case 1. 

This is equivalent to showing that 

(*-lri<) k-i-j ~ l+~(m,i) - ~(m+j+l(mod k+l),j). 

Case 2b(2)i. m = k. Here the right side of(***) is at most one. 

Case 2b(2)ii. i > m. The right side of(**""') equals since m+j+l < i+j+l < k. 

Case 2b(2)iii. i $ m. If m+j+l < k, then the right hand side of ('ki<'*) is -i. 

If m+j+l = k then it is l+m-i = k-i-j. If m+j+l > k then if m <kit is 

l+(m~i) - (m+j+l~k-1+1) = k-i~j ~ otherwise it i s one. 

This completes the proof of the lemmao Theorem 2 follows since 

~(n(mod k+l), O) = µ(n). 

k We conclude from theorem 2 that when searching for the pattern O in a 

strings e t1, we only need to examine at most n-k+l characters of s if 

D 

n; k-1( mod k+l) . The tmiform lower bound of theorem 1 can therefore not be 

improved. 

Conclusions 

We have shown that pattern matching in strings is inherently linear (with 

constant 1) in the length of the string. An open problem i s to prove the 

equivalent of theorem 2 for all patterns: (V )(:RA )(~n)(w(A ,n) = n-lpj+l) . 
p p p 

Acknowledgement 

I would like to thank Donna Brown for several helpful discussions, during 

one of which a weak version of theorem 2 was observed. 



-8-

References 

[1] Aho, A.V., and M.J. Corasick, Fast Pattern Matching; An Aid to 
Bibliographic Search, CACM 18 (June 1975), 333-340. 

[2] Boyer, R.S., and J. Strother Moore, A Fast String Searching Algorithm, 
Stanford Research Institute Technical Report 3 (March 1976). 

[3] Knuth, D.E., J.H. Morris and V.R. Pratt, Fast Pattern Matching in Strings, 
Stanford University Computer Science Department Technical Report CS-74-440 
(August 1974). 

[4] Knuth, D.E., J.H. Morris and V.R. Pratt, Fast Pattern Matching in Strings, 
(to appear in SIAM .J.. Computation). 

[5] Rivest, R.L., and J. Vuillemin, A Genetftlization and Proof of the 
Aanderaa-Rosenberg Conjecture, Rr.2£,. Z SIGACT .§.m. Q!!. Theory of Computing~ 
6-11. 


