
MIT / LCS/TM-63 

ENCRYPTION SCHEMES 

FOR 

COMPUTER CONFIDENTIALITY 

Vera Pless 

May 1975 



Encryption Schemes for Computer Confidentiality 

I. Introduction 

With the ever-increasing amount of data stored on computers, the 

need for security in transmission and storage becomes greater ~nd 

greater [2]. We here consider some new stream enciphering schemes 

based on J - K flip-fl ops. The data is considered to be a stream of 

binary bi ts. There are two main types of ,encipherment schemes; one is 

a block scheme which divides the data into blocks and then enciphers 

and deciphers a block at a time, the other is a stream scheme which 

enciphers and deciphers bit by bit. The stream enciphering scheme has 

the advantage that both the enciphering and the deciphering occur in 

real time. Since the aim of this paper is to present some new stream 

enciphering schemes, we shall describe briefly a general stream 

enciphering scheme. 

If we let X denote the data set, i.e. X = (x1, x2 , ••• , ) and K 

denote a key which is a determined set of bits, K = (k 1, k2, ••• ), then 

the enciphered message Y = (y1, y2, ••• ) is equal to X + I( = (x 1 + k 1, 

X2 + k2, ••• ) where xi + ki is computed mod 2. Dec i phering is very 

simply accomplished by adding the key K to the enciphered message Y 

obtaining X as Y + J(. So we see that the important item .in an 

enciphering scheme is the key I(. It is assumed that an unauthorized 

person knows Yanda portion of clear text (that is a number of bits of 
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X) and so can determine the same number of bits of K. The problem is to 

prevent the unauthorized user from being able to determine all of K 

(hence all of X). 

Clearly this cannot happen when K is a random sequence of bits. Such 

a key, however, has the disadvantage that it can only be used once. To 

overcome this disadvantage and preserve the features of randomness, 

people have generated pseudo-random sequences or sequences of very long 

period. It is possible to generate a sequence of period (2' - 1) with 

an r-stage linear shift register [3). Hence the particular shift 

register plus an initializing vector which is pl aced in the shift 

register at the start forms the key in this particular case. However, 

as was shown in [SJ, the 1 ineari ty of the system enables one to solve 

for both the shift register and the initializing vectors with about 2r 

bits of clear text. For a general introduction to cryptography see 

[8]. 
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II. Non-Linear Schemes Using J-K Flip-Flops 

The enciphering schemes we propose below preserve the pseudo­

randomness properties of the shift register while removing the weakness 

due to linearity. This is accomplished by combining shift registers 

with J-K flip-flops. So we will first define a linear n-stage shift 

register with feed-back. 

X ,.., 

c, C 

The figure above is a diagram of an n-stage linear shift register 

with feedback, for brevity we will just call this a shift register for 

the rest of this paper. Each of the squares labelled x1, x
2

, ••• , Xn 

contains either a O or a 1. 

At periodic intervals, the contents of xi, i > 1, are transferred 
r. - I 

into xi_ 1 and the contents of x1 go out. The new content of Xn = L cixi 
i'= I 

where the ci are all specified, each is O or 1, and the addition is 

modulo 2. The word linear comes from this expression. If an 

initializing vector of n O's and l's is put into positions x1, ••• , Xn, 
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then the shift register generates a sequence of O's and l's. The 

longest period of this sequence is called ,the period of the shift 

register. It is not hard to show [J] that the longest period which an 

r-stage shift register can achieve is (2' -1). Further, if the 

characteristic polynomial (which determines the ci) of the r-stage 

shift register divides cx<2 - 1> -1) over GF (2), but no (x8 - 1) for s < 

(2' - 1), then its shift register has period (2' - 1). These sequences 

of length (2' -1) are called maximum- length shift register sequences. 

Even though no finite sequence is truly random, certain properties are 

associated with random sequences. In (3) it is shown that maximal 

length shift register sequences satisfy three natural randomness 

properties. In our encycling schemes we will be using maximum length 

shift register sequences of large period. 

Another device we must explain is a J - K flip-flop. This is a 2 

input, 2 output (where one output is the complement of the other) 

device which operates according to the following rules. We consider an 

ordered pair to represent the inputs (j, k). An input (O, 0) leaves the 

output unchanged, a (1, 1) input changes the output, a (0, 1) input 

produces a O output, and a (1, 0) input produces a 1 output. An 

important fact for the successful operation of the encryption schemes 

proposal is given as follows. Let RN denote the Nth output and (j,k) 

denote the Xth input. Then 
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This can be demonstrated by direct computation [7]. 

Hence two consecutive outputs are needed to compute one of j or k, 

which one cannot be specified, but if two consecutive outputs are 

known, one of these•is known also. 

Before we propose some encryption schemes we consider the 

following arrangement in order to analyze its strengths and weaknesses. 

S. R. 1 

F-F 
A 

S. R. 2 

In this arrangement, there are two shift registers denoted by . 

S.R. 1 and S.R.2 whose outputs constitute the j and k inputs to a J- K 

flip - flop. We here consider S.R.1 and S.R.2 to generate maximum length 

shift register sequences. This whole arrangement is considered as 

generating a key sequence K which it can do once initializing vectors 

are input into S.R. 1 and S.R.2. Clearly changing either S.R. 1 or S.R.2 

results in a new key. 

Remark 1: Notice as a consequence of~that two outputs of s_ are 

needed in order to determine either j or k. Specifically, an output of 
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01 (first O, then 1) specifies j as 1, 00 implies j = O, 10 (first 1, 

then 0) specifies k as 1 and 11 implies k = O. From this i t follows 

that a set of s consecutive j's can only be determined by a set of s + 

1 outputs of A whose firsts elements are O and that the set of s j's 

are all O. Similarly, a set of s consecutive k's can only be 

determined by a set of Cs+ 1) outputs of A whose firsts elements are 

1 and the set of s k's must be all O. 

First we discuss the strengths of this scheme. 

1) Even if the periods of s. R. 1 and S. R. 2 are of moderate sizes, it is 

possible to choose them so that the period of A is much larger. This 

is expressed precisely in the following theorem. 

Theorem: If S. R. 1 has period p1 / 1, S. R. 2 has period p2 = 1, 

g.c.d. (p1, p~ = 1, and p1 and p2 are odd, then~ has period p1p2 • 

Proof: Denote bys the period of A· Note thats cannot be 1, After 

the initialized conditions have been overcome, the output of A must 

repeat at p1p2 since g. c. d. (p 1, p2) = 1. Hence s I p1p2• Since 

g. c. d. (p1, p2) = 1, both pI and p2 divide s so that s 1s p1p2• 

The periods of irreducible polynomials of degree 12 through 20, 

where the degree gives the stage of the shift register, is given in 
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Table I. From this it can be seen that there are (144) x (630) ways to 

choose a 12-stage shift register of period 4,095, and a 13-stage shift 

register of period 8,191. These periods satisfy the conditions of the 

theorem so that t:_ would have period greater than 107• Similarly there 

are 27,594 x 24,000 choices for a 19-stage shift register of period 

524,287 and a 20-stage shift register of period 1,048,575 where A for 

this s ituation would have period greater than Sxl0 11 • 

2) A is very easy to implement since both shift registers and J - X 

flip-flops are easy to implement. 

3) System t:_ has good features in case an error occurs in the 

transmission of K. If the error is in a bit which has emerged from the 

flip-flop then it is a single error which does not affect any other 

bits. If an error occurs in the internal state of the flip-flop then 

it affects all bi ts as long as (j, k) is either (0, 0) or (1, 1). 

However, th·e error is corrected as soon as (j, k) is either (0, 1) or 

(1, 0) so that we either have a compl etely incorrect stream which could 

be easi ly detected or a completely correct stream. 

Remark 2: Assume S. R. i (i = 1, 2) has ri stages. The largest sequence 

of con secutive digits whi ch the output of A can determine for S.R.i has 

(ri - 1) consecutive zeroes. 

Proof: By the randomness properties of maximum-length shift registers, 
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the largest sequence of zeroes generated by S.R. 1 or S.R.2 has length 

Cr 1 -1) or (r2 -1) respectively [3]. The proof of Remark 2 then 

follows from Remark 1. 

The following is the most serious weakness. From the previous 

discussion of shift registers we know that a particular r -stage shift 

register can be determined by knowing 2r bits of clear text; r bits for 

the initializing vectors and r bits to solve the r linear equations. By 

remark 2, the largest sequence of consecutive bits for S.R.i which can 

be determined by the output of A has length (ri - 1). In the following 

very unlikely situation S.R. 1 and S.R.2 can be determined by 2r1 + 2r2 

bits of clear text. We assume the values of r 1 and r2 are known. 

Suppose the output of A has (r 1 -1) zero bits. Then S.R. 1 has a 

sequence of (r 1 -1) zeroes and so must have a one at each end of this 

sequence yi elding r 1 + 1 known bi ts. If the next (or preceeding) (r2 -

2) bits of output of i are zero, then we have a sequence of (r 1 -2) 

bits of S.R. 1 known and equal to zero. The sum of these is 2r 1 bits 

known for S.R. 1. This could be followed by a similar sequence of bits 

(with ones instead of zeroes) which determine S.R. 2. Thus there is a 

possible situation where 2r 1 + 2r2 bits of clear text of arrangement~ 

could break the key to both S.R.1 and S.R.2. 

Another weakness is that the randomness properties of the maximum 

length shift register sequences are not preserved in~- Namely if a 

one is output the likelihood is less than one half that the next output 
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will be a one. Similarly for a zero output. This is undesirable 

because it is more susceptible to a statistical attack than a random 

sequence. For these reasons we consider a modification of arrangement 

~ namely arrangement I• 

B ~-...__ _ _ 

F- F 

L s. R. 2 

This is an arrangement~ except for the alternator (denoted by A) after 

the flip-flop. The alternator eliminates alternate bits. 

Remark 3. If S. R. 1 has odd period p1, S. R. 2 has odd period p2, and 

g. c. d. (p 1, p2) = 1, then arrangment ~ has period p1p2• 

Proof: By the theorem the output of the flip-flop has period p1p2 

which is an odd number. Hence the sequence formed of every other bit 

of the output sequence has the same period p1p2• 

~ote that the alternator restores some of the randomness 

properties of the maximum length shift registers since two is 

relatively prime to p1p2 when p1p2 is odd. 
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Since the output of arraniement ~ cannot determine any digits of 

either S.R. 1 or S.R.2 by Remark 1, we could attempt to reconstruct the 

key by guessing the (2r 1 + 2r2)/2 = (r1 + r2) missing alternate bits. 

This requires 2r•r guesses and so represents a great deal more 

computation needed to reconstruct the key than for arrangement A. 

Arrangement~ has the disadvantage that it emits one digit for every 2 

cycles of the clock. The shift register must operate at twice the 

input stream rate. 

I I I. Some proposed encryption schemes. 

The first proposed scheme is arrangement£ below. 

S. R. 1 

C J-K A 

~ 
J-K A 

S. R. 3 

J-K A 

S. R. 4 

The 3 A's again denote alternators. 

Assume S. R. i has ri stages. Then to reconstruct the key one must 
r, + 'i s,. '4 

guess 2<2 
• 

2 
> alternate bi ts at least and this is too much to 
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calculate for r 1, r2, r3 , and r4 of even moderate sizes. Arrangement C 

is straightforward to simulate on a computer. It also has the 

disadvantage that it does not run in real time, however it i s easy to 

implement. 

The second proposed scheme Q combines all the unbreakabl e 

properties of arrangement f wi t h the advantage that it does run in real 

time. 

S. R. 1 

D J-K 

S. R. 2 

4 

S. R. 3 

J-K 3 

S. R. 4 

2 

S.R.S 

J- K 1 

S. R. 6 

S. R. 7 

J-K1---- __, 

S. R. 8 
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This is also unbreakable by linear calculation, and runs in real 

time. The final device with boxes labelled from 1 until 4 is a 

recycling counter and transmits the contents of i + 1 (mod 4) right 

after the contents of box i is transmitted. If the output of S.R. 1 is 

an odd number Pi and t he Pi's are relatively prime in pairs, then the 

output of Q is Ji Pi• Since four is relatively prime to fl Pi when the 
1:1 i=I 

Pi are odd the output maintains some of the randomness properties of 

the original shift register sequences. It is an open question whether 

the output is a pseudo- random sequence in the sense of [3) . 

The following is one possible way to choose S. R. i, (i = 1, ••• , 8) 

in arrangement D. From Table I we see that we can choose the 8 

polynomials as follows. 

S. R. i ri = stage period = c2r: - 1) # of choices factorization of Ca 

for S. R. i 

1 5 31 6 31 

2 19 524,287 27, 594 524, 287 

3 7 127 18 127 

4 17 131,071 7, 710 131, 071 
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s 9 511 48 7x73 

6 16 65, 535 2,048 3 S 17 257 

7 11 2,047 176 23x89 

8 13 8, 191 630 8, 191 

Note from C5 that the periods of the eight shift registers are odd and 

relatively prime in pairs so that the final period is their product 

which is greater than 1028• The number of different choices of these 

periods for the eight shift registers is given by the product of the 

numbers in column C4 which is greater than two times 1020• This is a 

number so large that even if a precise circuit and all the keys are 

given to an unauthorized person there is no possibility of successfully 

breaking a message by simply trying all the keys. Note that is is 

necessary to store less thcll}40,000 polynomials to obtain these more 

than 1020 choices. 

Table I below is given to illustrate the large number of 

irreducible polynomials which are available to generate maximal length 

shift sequences and where to find some of them. 

A gives the degree of the polynomial= stage of shift register 
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B = period of a maximal length shift register of degree A. 

C = number of irreducible polynomials of degree A and period B. 

This is given by the formula'€ (2A -1) /A where~ i s the Euler--e 

function [3). 

D = P means all C polynomials of degree A and period B can be 

found from the tables in the back of Peterson and Weldon [6]. 

E = factorization of B [computed on Macsyma [4JJ. 

Table I 

A B C D E 

5 31 6 p prime 

6 63 6 p 

7 127 18 p prime 

8 255 16 p 3 -5 ol 7 

9 511 48 p 7°73 
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10 · 1023 60 p 

11 204 7 176 p 

12 4, 095 144 p 

13 8, 191 630 p prime 

14 16,383 · 756 p 

15 32, 767 1,800 p 

16 65, 535 2,048 p 

17 131,071 7, 710 prime 

18 262, 143 7, 776 

19 524, 287 27,594 : prime 

20 1, 048, 575 24,000 

We can see from Table I that there is a very large number of 
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keys of relatively prime lengths available. These yield an output 

of period so long that it is difficult to break. Just thi s short 

table is enormously rich in keys and periods and yet a scheme 

using them has about 100 components. 

Another variation on these encycling schemes would be to use 

an n-counter, which is a set of interconnected J-K flip-flops, 

instead of a shift register. The mathematical theory of these n­

counters is presently being developed ([1) and [7]). The 

algebraic formulas for determining the output sequence is given in 

[7, p.9) There are both linear and non-linear n-counters and the 

non-linear ones would be more difficult to determine than a linear 

shift register. Using n-counters rather than shift registers 

would make the proposed schemes even more resistant to statisitcal 

attack. However, since the mathematical theory is so new, how to 

choose an n-counter with a very large period is still an open 

question. 
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IV. Conclusion 

In conclusion, we have proposed some stream enciphering 

schemes which use standard components and are easy to implement. 

These schemes appear to be difficult to break and we have made 

estimates in some instances of how difficult this is. These 

estimates have shown that these schemes require more computations 

than can economically be performed. We believe that these schemes 

would perform very well as data encryption schemes for computer 

confidentiality. 
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