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COMPUTING IN LOGARITHMIC SPACE, John C. Lind 

ABSTRACT 

The set logspace, of logarithmic space computable string functions 

is defined. It is easily seen that logspace = polytime, the set of 

polynomial time computable functions. logspace is shown to equal~, 

the smallest class of recursive string functions containing concatena­

tion and the equality function, and closed under explicit transform­

ations, substitution of a function for a variable and two restricted 

types of recursion on notation. The first is called recursion of con­

catenation and only allows top level concatenation of the value of the 

recursive call. The second, called log bounded recursion on notation, 

will only define string functions whose length is bounded by O(log n) 

on arguments of length n. Some additional closure properties of logspace 

are also described. 
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INTRODUCTION 

It is useful to be able to prove that a certain well defined class 

of recursive functions is identical to the set of functions computed by 

a particular type of abstract machine. Such a result provides a machine 

independent characterization of the functions computed by those machines. 

In addition if the means to define the type of machine includes some 

limitation to its computational resources.; as is often the case, then 

an upper bound on the computational complexity of that class of functions 

has been achieved. For example, R. W. Ritchie established [R) that the 
2 

class 6 in the Grzegorcyk hierarchy [G], which is the smallest class 

of number theoretic functions containing addition and multiplication and 

closed under limited recursion and certain substitution operations, is 

identical to those functions computed by a Turing machine which uses an 

amount of space bounded by O(n) on inputs of length n. 

In the case of functions computable by a Turing machine which uses 

an amount of space bounded by O(log n) on inputs of length n, there is 

additional motivation for such a result. It has been shown by Cook (c] 

that any recogn i tion problem decidable by a polynomial time bounded non­

deterministic Turing machine can be polynomial time reduced to that of 

recognizing sa tis fiabl e propositional fomulas, where polynomial time 

reduced means that the translation algorithm can be computed in determin­

istic polynomial time. In fact a large class of decision problems can 

play the role of satisfiabll i ty [K]. Such problems are called complete 

in non-deterministic polynomial time. Since it is easy to show that 

Turing machines using logarithmic space operate in polynomial time 

(Theorem 1) , logarithmic space reducibility is a refinement of polynomial 
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time reducibility. Neil Jones has discovered two decision problems 

which are complete in non-deterministic logarithmic space. In addi-

tion he states that all the polynomial time reductions he has examined 

in (c] and [K] are also logarithmi c space reductions [Jl]. Thus a 

machine independent characterization of deterministic logarithmic space 

computable functions would provide a progrannning tool for the description 

of other logarithmic space reduction algorithms. 

The main result of this paper is to show that the set of logarithmic 

space computable functions is identical to the smallest set of recursive 

string functions which (1) contain concatenation and the equality function, and (2) are 

closed under explicit transformations, substitution of a function for 

a variable and two restricted types of recursion on notation. Bennett [BJ 

and Jones (J2] have used recursion on notation to establish results 

about rudimentary functions. By restricting the form of recursion on 

notation so that we can only either combine the values of recursive 

calls by concatenation, or define string functions of length bounded by 

O(log n) on arguments of length n, we can maintain logarithmic space 

computability and still be able to describe all logarithmic space com­

putable functions. 



TERMINOLOGY AND NOTATION 

The following definitions make precise the notion of character string 

function which most of the functions discussed in this paper are. An 

alphabet is any finite non-empty set of elements called characters or 

symbols. A string x over some alphabet 1:. is any finite sequence, 

x. a
1
a 2 ••• an, of symbols in~. The string containing no symbols is 

called the empty string and is denoted A. The length of a string 

x. a a
2 
••• a over~ is written lxf and equals n the number of symbols 

1 n 

in X (the notation rAI will also be used to denote the cardinality of 

a set A, but the meaning should be clear from context). ~ is the only 

string of length o. The set of all finite strings over ~ including A is 

* denoted ~ • 

* n For any n ~ 1 the set ( 2'. ) is the set of n-tuples of strings over 

~. We will write n-tuples of strings with their components separated 

by blanks to suggest the convention which will be used to code them as 

input to a Turing machine. ••• x will be abbreviated n 

as xn throughout this paper and by definition has length lxnf • fx 11 + 

We will also use the abbreviation .x to 
J n 

represent xj xj+l ••• xn the last n-j+l components of xn. 

An n-place predicate over ~ is a subset P of ( ~*)n. We will say 

- - - * n P(x ) is true if x E P and false 1f x E ( ~ ) -P. The following 
n n n 

2-place predicates over any alphabet ~ will be used extensively through-

out this paper. Let x c a 1a 2 ••• an and y. b1b2 ••• bm be arbitrary strings 

over ~. The predicate xBy (read x begins y) will be true iff m ~ n 

and ai - bi for all 1 ~ i ~ n, i.e. xis composed of exactly the same 

symbols which begin Y• Similarly xEy (read x ends y) is true iff m ~n 



and ai. bi for all 1 Si~ n, i.e. xis composed of exactly the same 
+m-n 

symbols with which y ends. In general xPy (read xis-a-part-of y) is 

true iff m ~ n and there is some 1 ~ j ~ m such that a 1 s bi+j-l for 

all 1 ~ i ~ n. This means that x is composed of exactly the same symbols 

which occur in y starting with bj and ending with bj+n-l• If xBy and 

m - n then xis the same string as y and we write x.y, which is the 

equality predicate over any alphabet~. 

-* n+l An n-variable function over ~ is a subset f of ( ~ ) such that 

if x y € f then for any other x z e f with the same first n components, n n 

y.z. We say that y is the value off at X which is written f(x) - Y• 
n n 

That f is an n-variable function over~ * n * will be denoted f: ( ~ ) .. ~ • 

A characteristic function for an n-place predicate Pis an n-variable 

function p over the same alphabet~ as P such that p(x). A iff P(x) 
n n 

is false. If P(x) is true then the value of pat xis any string over 
n n 

;;£. not equal to A. Notice that every n-variable function is a characteristic 

function for some n-place predicate and that every predicate has many 

characteristic functions. Whenever lt is necessary we will associate an 

* n * n-placepredicate P with its standard characteristic function cp:(~) --. 2. 

such that given an enumeration of~, whenever Pis true cp has the value 

crl' the fl rs t symbol in ~. 

The concatenation function over any alphabet :E. will be the 2-variable 

function con over 27. such that if x • a 1a 2 ••• an and y • b1b2 ••• bm are 

* any strings in ~ then con(x y) • a 1a 2 ••• an bl b2 ... bm• We will almost 

always abbreviate con(x y) as xy (in order to avoid confusion,multiplica­

tion of numbers will always be written x • y). Note that x~. ~x. x and 

* that concatenation is obviously associative which makes~ into a monoid. 



Some of the character string functions in this paper interpret one 

or more of their arguments as the representation of a non-negative 

integer. We will agree that such functions will be over alphabets 

containing the symbols O and 1, and that non-negative integers will be 

represented in reverse binary notation where the least significant bit 

<f-
If K is some non-negative integer then K denotes the appears first. 

reverse binary coding of K. In addition we will use the notation <s> 

to be the non-negative integer for which the strings is a reverse 

binary coding• 

Some miscellaneous conventions follow. We will be using the numeric 

function log
2
n on non-negative integers with the understanding that if 

n • 0 then log
2
n is defined and log2o. o. The notation rxl will mean 

the smallest integer greater than or equal to x. 



DEFINITION OF logspace 

In order to formally discuss a Turing machine computation which may 

only require a number of temporary tape squares less than the length of 

the input,it is useful to define a special class of Turing machines which 

have a separate work tape. One such configuration, which we will call a 

work tape Tu ring machine, has the input placed on a two.way read only 

input tape, intermediate results written on a two-way read and write 

work tape,and the output appearing on a one-way write only output tape. 

input tape 1 1 I I I I I I I J I I I 1 1 I I I 

work tape 1 1 1 1 1 l I I i l l +IJ:' I 

finite 

control 

I I 

output tape ._I _.1__._...,I ___ I ..&.1 .... 1....._l _.l__._1 _.,_l._..f _.l......_J -'l__._-""l_l'---'-1 _,__.,_. 
W-+ 

We will assume that by convention the finite control for a work tape 

Turing machine is designed to never move the work tape head to the left 

of the initially scanned square. Such a restriction does not change the 

computations which can be performed by a Turing machine [H, p2.42]. 

Fonnally a work tape Turing machine (henceforth written WT'IM or 

simply machine) Mis an ordered 7-tuple of sets 

M. (I, W, V, Q, q0 , F, 3) 

where I, Wand V are the finite sets of input, work and output tape 

symbols respectively and p1 and Pw will be the input and work tape blank 
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symbols respectively; Q is the finite set of control states; q
0 

€ Q is 

the start state; F S: Q is the set of final states; and 

a: (Q-F)xixW + Qxf-1,0,+lJxWx{-1,0,+l}x(Vv [?1.J) 

ls the transition function. For convenience of notation 

$(q,l,w) • (ST(q,l,w), IT(q,i,w), WS(q,l,w), WT(q,i,w), OS(q,i,w)) 

where ST: (Q-F)xixW-+ Q ls the state transition function; IT: (Q-F)xixW ➔ 

t-1,0,+1} is the input tape transition function; WS:(Q.F)xixW ➔ W ls the 

symbol written on the work tape; WT:(Q-F)xixW ➔ {-1,0,+lJ is work tape 

t ransition function; and OS: (Q-F)xixW ➔ (V v [Al) is the symbol written 

on the output tape where 1 means no symbol is written and the write hea d 

is not advanced. It is agreed by convention that V does not contain the 

output tape blank symbol, i.e. M cannot write blanks on its output tape. 

When a WT'IM Mis placed in an initial configuration,the input tape 

contains a finite number of non-blank tape squares, the input tape head 

i s scanning a square somewhere to the left of the leftmost non-blank 

input square, the work tape and output tape are entirely blank with their 

tape heads placed in arbitrary positions and the finite control ls in 

the start state of M. The~ to a WT'IM M is the string over the inpu t 

tape alphabet composed of the symbols appearing on each square of the 

input tape beginning with the square to the right of the initially scanned 

square and ending with the square just before then-th blank to the right 

of the initially scanned square where n is some constant depending only on M. 

We will interpret the input to M as an n-tuple of string over I-!piJ 

where the components of then-tuple are separated by occurances of the 

input blank symbol /Ji• It is agreed by convention that a WT'IM never scans 

on its input tape to the left of the intltially scanned square (which 
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must be blank) or beyond then-th blank to the right of the initially 

scanned square. 

Beginning with an initial configuration a WT'IM M makes a sequence of 

steps o r ~ determined by i the transition function of M. Each move 

involves reading the current input and work tape symbols scanned and 

using this information together with the current control state to assume 

a new control state, write a new work tape symbol on the square scanned, 

move the input tape and work tape tape heads at most one square in either 

direction, and possibly write an output symbol on the output tape moving 

the tape head one square to the right if a symbol is written. 

Proceeding formally, an instantaneous description (henceforth ID) 

of a WT'IM M ls the ordered pair (k, o<) where k is the current position 

of the input head numbered from the left end of the input and 0( a rqcrs 

* such that, if W is the work tape alphabet thet1 r,s cE W and er lE, W. 

rC-s ls the entire (necessarily finite) contents of the work tape scanned so 

far and q is the current control state of M and er is the symbol on the 

square scanned by the work tape head. The ID of any lnl tial configuration 

for any WT'IM M is (O, q0p) where q0 is the start state of M and f'w 

ls the work tape blank symbol. 

* A computation. of a WT'IM Mon input x £, I is the finite sequence of 

ID's ld0, idl' •••, i~ such that: 

1. idO • (O, q
0
p) the ID of the initial configuration and 

2. Letting x. denote the j-th symbol of x numbered from the left 
J 

end of x wl th x0 - xlxf+l •Pi the input blank symbol, if 

* idk • (j, r<rlq,2s) where r,s 6- w ' G"1 4.. (Wu\).},) and!f"2 E W then 
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if WT(q,xj,a-2). 0 

then idk+l • (j+IT(q,xj,CT2), rq-1sT(q,xj,<r2)WS(q,xj,cr2)s) 

if WT(q,xj,a2). -1 

then idk+l. (j+IT(q,xj,cr2), rST(q,xj,cr2)a-1ws(q,xj,¢"2)s) 

if WT(q,xj,cr2) a +l 

then idk+l = (j+IT(q,xj,c:r2), rcr1ws(q,xj,cr2)sT(q,xj,q-2)un~(s)) 

where 

un?i.(s) { s 
- ~w 

if s-1,.').. 

if s.A 

extends the worktape representation with a blank if necessary. 

A halting computation of a WT'IM Mon input xis a computation 

id0 , id1, •••, i dN such that: 

1. ldN - (j, rqfs) where qf ~ F the set of final states of Mand 

2. For all k < N, if ldk. (j, rqs) then q -1,. F. 

The time used by Mon input xis denoted ~(x) and equals N,the length of the 

halting computation of M on input x. It is undefined if M does not halt 

on input x, i.e., if there exists no halting computation of M on input x. 

The space used by Mon input xis denoted sM(x) and equals the maximum 

number of worktape square scanned in the halting computation of M on 

input x. I t is undefined if M does not halt on input x. If id0 , idl' •••, l~ 

ls the halting computation of M on input x then 

* 5M(x) • of~ilrsl such that idk. (j, rqs), r,s E. W and q~ Q! 
The output of the halting computation of WT1M Mon input xis the 

string over the output tape alphabet V of M composed of the non-blank 

contents of the output tape when M halts. If id
0

, idl' ••• , idN is a 

halting computat i on o f Mon input x then define 
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where if idk = (j, rq~s) then out(idk). OS(q,xj,cr) the value of OS, 

the output symbol function, at this step in the computation of M on 

input x. 

Since by convention a WT'IM M will scan only as far as then-th 

blank to the right of the initially scanned input square for some n 

fixed by M, we can view M as computing an n-variable function over 

I-l,9i}, its input alphabet without the input blank symbol /3
1

• On input 

x. x 1~1x 2p1 ••• pixn (which henceforth will be written xn • x
1 

x
2 

••• x
0 

* to conform to the string notation for n-tuples) where each xj 6 (I.[p
1
f) , 

* n * M computes then-variable function ~:{{I-l/~J) ) ➔ V such that for 

all xn over I-!~15. 

{ 

Ou tpu 1-f (xn) 
~ (xn) • 

undefined 

if there is a halting computation 
of M on input x 

n 

otherwise 

Note that any of the xj•s in xn may be A,in which case there will be 

two adjacent blanks in the input to M. If M halts on any input x 
n 

over I-{pi\ then M computes a total function. The restriction that a 

WT'IM M interprets any input it starts on as an n-tuple over I-{f3ii for 

some fixed n determined by Mis not critical since none of the functions 

we will consider in this paper have an unbounded number of arguments. 

The addition of endmarkers to the input of M would eliminate this restriction 

but that technique seems unnecessary. 

An n-varlable function f over some alphabet I:. ls WT'IM computable 

lff there is some WT'IM M with input alphabet I~~ v {f3t~ and output 

alphabet V S ~ * n * such that M computes f: ( ~ ) ➔ ~ • 
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We now define logspace as the set of total WT'IM computable functions 

which use an amount of space bounded by O(log m) on inputs of length m. 

For definiteness, an n-variable function f over some alphabet ~ is a 

member of logspace (written f E. logspace) iff there exists some WT1M M 

which computes f and some constants K1 and K2 fixed by M such that 

for all x over Z:. 
n 

Note that x interpreted as a character string input to a WT1M has length 
n 

Jxnl • fx 11 + jx21 + ... + jxnl + n - 1. Similarly polytime is the set 

of total WT'IM computable functions which use an amount of time bounded 

by a polynomial in the length of the input. The n-varlable function f 

over some alphabet :E: is a member of polytime iff there is some WT'IM M 

which computes f and some polynomial p f ixed by M such that 1-1 (xn) ~ p( I x
0 
!} 

for all x over Z.. 
n 

Theorem 1: logs pace ~ poly time 

proof: If f £ logspace ls an n-varlable function over some alphabet 

%. then there is some WT'IM M which computes f and 

5M(xn) S Kl • log2 (xnf + K2 

for all xn over~ and constants Kl and K2 fixed by M. 

Let id
0

, •••, ldN be the halting computation of Mon some input 

x over ~. n The ID's id0 , •••, i~ must be unique, for if idi. ldj 

for some i < j~then because ID idk+l depends only on idk and the fixed 

input x according to the transition function of M, an inductive argument 
n 

shows idi • idj ➔ idi+m m idj+m for all m ~ N-j. Since j ~ N, j+k. N 

for some k there fore 

some q £ F. 
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But i+k < J+k. N which contradicts the condition in the definition of 

a halting computation that i~ be the first ID which contains a final 

state. Therefore since 1 and j were arbitrary above, idi I, idj for 

all i I, j. 

Let A be the set of all possible !D's of Mon input x. 
n 

A • f (.l, rqs) such that 

I A I 

(0~£:S;fxn/+1) I\ (q~Q) /\ (lrs/~5M(xn))! 

5M(x) 
• 5M(xn) • fwf n 

log2/w/ (K 1 • log2 /xn/+ K
2

) 
~ (/xn/ + 2) • jQI • (K 1 • log2 1xn1 + K

2
) • (2 ) 

K 1 • log2 /wl K
2 ~ ( / x n I + 2) • I Q I • (K 1 • f x n I + K 2) • I xn I • / W l 

~ p( /xn I> 

for some polynomial p of degree rK1 • log2 Jwll + 2 • Note that 

,ftd0 , ••• , i¾i ~A and that id1 I, idj for all i I, j implies that 

f {1d0 , • • ., idN }I • N + 1. Therefore 

11 (xn) • N ~ lltd0 , .. o, i~!( ~ (A( S p<fxnf) 

and since x was arbitrary we conclude that f € polytime for the same n 

WT'IM M. 

Corollary 2: If f c logspace is an n-variable function over some 

Kl 
alphabet ~ then there exist constants K

1 
and K

2 
such that jf(xn)f ~ / xnf + K

2 
forallx over~. 

n 

proof: By Theorem 1, f E. polytime hence there is a WT'IM M which computes 

f and a polynomial p such that 

for all x over L. 
n 

For any polynomial p there exist constants K
1 

and K
2 

such that 
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Kl 
p(z)~ z + K2 for all z (let K1 be greater than the degree of p and 

Kl 
let K2 equal the maximum value of p(z) before z dominates p). 

Therefore 
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DEFINITION OF £. 

We now turn to the task of defining a class of recursive string 

functions£ which will be shown later to be equal to logspace, the class 

of logarithmic space computable function. A standard inductive definition 

of;/., from the base functions con (string concatenation) and c (the -
standard characteristic function of the equality predicate) for any 

alphabet~, and the following functional operations will be used. 

* n * 
A function f:(~) ➔ ~ is an explicit transformation of the 

* n * function g : ( Z:. ) ~ 2:. if 

where each of the Ji is either some xj in xn or a constant string over 

~. It can be shown that f is an expl lei t transformation of g i ff f 

can be obtained from g by a finite sequence of substitutions of a variable 

for a constant, interchanging two variables, identifying two variables 

and adding a redundant variable [w, p16]. 

* n+m-1 * 
/\ function f: ( ~ ) ➔ ~ is defined by substitution of a 

function for a variable (henceforth simply substitution) from functions 

*n * *m * g: ( ~ ) -. ~ and 1'1: ( ~ ) ➔ ~ if 

f(;z--i 1 y i lx ) • g(X:-1 h(y) i lx ) • - m + n 1- m + n 

Explicit transformation and substitution can also be extended to 

operate on a predicate by applying the above functional operations to 

a characteristic function of the defining predicate to arrive at a 

characteristic function of the defined predicate. 

A function f: ( ~*)n+l ➔ ~* is defined by recursion on notation 

from functions g:("2:*)n _.. £* and h:(~*)n+3 ➔ ~* if f satisfies 



f(;- A) • g(x> 
n n 

f(x yi:r) .. h(x y rJ' f(x y) > 
n n n 

where~ ranges over symbols in~. 

* 
Note that for any arguments x y 

n 

in ~ , f(xn y) can be effectively determined given y .. ~ 1<r2•••4'"m in 

m+l steps by evaluating f(xn A), f(xn <r1), f(xn 4'14'"2), •••, and 

f(xn ll'i,~2•••~m) .. f(xn y). 

We will actually use the following two restricted forms of recursion 

on notation. The first will be called recursion of concatenation where 

h takes the special form h(x y <r z) • (z)h' (x y <r). In other words 
n n 

,'- 1 * 
f( ~·)n+ -+ 2. is defined by recursion of concatenation from functions 

g: ( ~*)n ➔ ~* and h': ( ~)n+2 ~ ~* if f satisfies 

f(x ),,) ... g(x> 
n n 

f(x ycr> • f(x y)h' ex y G") 
n n n 

where <X"" ranges over symbols in ~. 

The second special form of recursion on notation will be called 

log bounded recursion on notation (henceforth bounded recursion) where 

the length of the defined function f(xn y) is bounded by O(logfxn YI). 
For definiteness, f: ( ~*)n+l ➔ ~* is defined by bounded recursion 

from the functions g:(~*)n ➔ "i,.* and h:(~*)n+3 ➔ "1:..* if f satisfies 

f(x A) .. g(x> n n 

f(x y~) = h(x y ~ f(x y)) 
n n n 

I f(xn Y~ ~ Kl • log2lxn yj + K2 

where again <r ranges over symbols in '2: and K
1 

and K
2 

are some fixed 

constants. 

;I.,, is defined to be the smallest set of functions containing con­

catenation and the equality function, which is closed under explicit 



transformations, substitutions, recursion of concatenation and bounded 

recursion. Formally fe-£ iff there is some alphabet ~ and a finite 

sequence f 1, f 2, •••, fn of functions over~ such that f. fn and 

every f i is either con, the concatenation function over ~; or c •' 

the standard characteristic function of the equality predicate over ~; 

or f 1 is defined from some previous function in the sequence by an 

explicit transformation, substitution, recursion of concatenation or 

bounded recursion. 

We will say that an n-place predicate P over some alphabet ~ i s 

in ~ if some n-variable function I) over ~ which is a member of i/lf, is 

a characteristic function for P. If there is no ambiguity we will often 

write the predicate P where some characteristic function of P should 

appear. 



PROOF THAT f s; logspace 

The following lemmas establish that logspace contains the concat-

enation function and the equality function and is closed under explicit 

trans formations, substitutions, recurs ion of con catenation and bounded 

recursion. Throughout this section we will only give sketches of how 

a WT'IM might operate and assume that the reader is familiar enough with the 

construction of Turing machines to fill in the laborious details of 

how to actually construct a set of states and the octuples of a transl tion 

function which yield a WT'IM which operates as described. Appendix 1 

gives more detailed descriptions of some particular submachines used. 

Lemma 3: conE lQgspace, where con is the concatenation function over 

some alphabet ~. 

proof: Actually we will show that concatenation can be computed in 

unit space . 

We must exhibit a WT'D-i M which has output con(x y) on input x y 

* for a 11 x,yE. 2:: and ~(x y) .., 1. 

Let M have input alphabet £. U ~ti (where Pi is the input blank 

symbol) and output alphabet S. It can be easily seen that M can be 

constructed to operate as follows on input x y: 

1. M cop i es x onto i ts output tape symbol by symbol as it scans 

x on its input tape using no work space. 

2. M ignores the fi between x and yin the input,writing nothing 

on its ou tpu t tape or work tape. 

3. M now copies y from its input tape to its output tape symbol 

by symbol using no work space, 

y is reached,M halts . 

When the first blank after 



~ clearly produces con(x y). xy on input x y never writing on its 

work tape. Therefore M computes the concatenation function over ~ and 

for all x,y E.. ~ * 
where K 1 • K2 .- 1 and we therefore conclude that con'= logspace. 

Lemma 4: c E logspace, where c is the standard characteristic function 
2 -

of the equality predicate for some alphabet~. 

proof: We must exhibit a WT'IM M which has output c (x y) on input x y -
* and ~(x y) $ Kl • log2rx YI + K2 for all x,y E ~ and some fixed 

cons tan ts K 1 and K2• 

Such an M with input alphabet ~ IJ l,p
1
~ and output alphabet ~ and 

work tape alphabet io, 1, .Q, 1, A, B, cj (the symbols .Q and 1 are used 

for marking positions while copying or comparing for equality, see 

Appendix 1) can be constructed to operate as follows on input x y: 

1. M places an A marker on its worktape and then writes the 

reverse binary representation of /x/ on its work tape (see 

Appendix 1) using {1og2 1xll + 1 squares. 

2. M writes a B marker and then copies what is between t:he A and 

B markers on the other side of the B marker (see Appendix 1) 

placing a C marker at the end. 

3. M now returns the input head to the first blank before x and 

writes O•s between the A, Band C markers. (M will use the 

space between the A and B markers to store the reverse binary 

representation of the current position of the symbols in x and 

y being compared for equality and the space between the Band C 

markers as a counter. The string currently written on the work 
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tape between the A and B markers will be denoted AB and similarly 

for BC.) 

4. M now does the following: 

a. M advances the input head and if the symbol scanned is a 

blank M goes to step 5 below. Otherwise M remembers the 

symbol being scanned internally (see Appendix 1) and adds 

1 to (AB) (see Appendix 1). 

b. M then scans to the blank between x and y and advances 

symbol by symbol through y adding 1 to (BC} after each 

advance until (AB) equals (BC) (see Appendix 1). 

c. If the symbol being scanned in yon the input tape is not 

the same as the symbol remembered by Min the corresponding 

position in x then M halts having never written on its 

output tape. 

de M zeros BC and returns the input head to the first blank 

before x. 

e. M now advances symbol by symbot through x adding 1 to (BC) 

until (AB) equals (Be}. 

f. M then zeros BC and continues with step 4a above. 

s. If M has not halted during step 4 then xBy. In order to see if 

y has the same length as x, M advances through y symbol by 

symbol adding 1 to (BC)until (BC) equals (AB) ({AB) • f~f after 

step 4). If the next ipput square is not a blank then M halts 

without writing on its output tape. Otherwise, M writes <r
1

, the 

first symbol in an enumeration of 2:., on the output tape and halts. 

M clearly computes c (x y) and since no square to the left of the -
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A marker or to the right of the C marker is ever scanned and x y was 

arbitrary above 

5M(X y) ~ 2 • r1og2lxil + 5 

~ K1 • log2 fx YI + K2 for all x,y (E ~ 
, .. 

where K 1 "' 2 and K2 • 7, therefore c. €:. logspace. 

The following four lennnas serve to prove that logspace is closed 

under explicit transformations, substitutions, recursion of concatenation 

and bounded recursion. Each of the proofs is very similar in nature 

and we will be detailed only about the new aspects of each successive 

construction. The convention the XY denotes the string contained between 

the worktape markers X and Y will be continued. 

Lermna 5: logspace is closed under explicit transformations. 

proof: Let g€ logspace be an m-variable function over some alphabet 

~ computed by WT'IM Mg .. (~ u i,8
1
3, w, ~, Q, q

0
, F, ~) such that 

5M (ym) !::- c1 • log2 jymf + c2 for all ym over ~. 

g * n * 
Define f: ( ~ ) ~ ~ as an explicit transformation of g by 

f(xn) a g(ym) where each of the y 1 in ym ls either some xj in xn or a 

constant string over~. Note that this explicit transformation is 

fixed by the definition off and for some constant c
3

, /ym/ ~ m. {xnf + c
3

• 

We must exhibi t a WT'IM Mf which has output f(xn) on input x 
n 

5Mf (xn) ~ K1 • log 2 1xn1 + K2 for some fixed constants Kl and K2• 

and 

Mf will simulate M on the transformed input y generating the proper 
g m 

input symbol for each simulated step of M • 
g 

Such an Mf with input alphabet l: U ti:, 1\, output alphabet ~ and 



work tape alphabet WU Q U {o, 1, .Q, !, A, B, c} can be constructed 

to operate as follows on input xn: 

1. Mf writes an A marker and then m successive copies of \xn \ in 

reverse binary followed by ~ 3 + 1 on its work tape. 

2. Mf writes a B marker and then copies AB after it,followed by 

a C marker. 

3. Mf now writes q
0 

after the C and zeros BC and AB. 

tape now looks as follows: 

The work 

IAIOIOI ... 10101a101ol ... Jo101ct9J_ 
1.,_--Rl(l---•,I t• R >l 

for some c4 • 

(Mf will vse the space between A and B for the reverse binary 

coded representation of the current read position in the simulated 

input to M, the space BC as a counter and the space to the 
g 

right of C for the representation of the worktape and state of 

M with the state symbol occurring on the square just before 
g 

the currently scanned work tape square in the simulation of M .) 
g 

4. Mf now simulates the computation of Mg on the transformed input 

ym as follows: 

a. If the state symbol of Mg written on the work tape of Mf is 

in F then Mf halts. Otherwise Mf simulates the generation 

of the transformed input to M symbol by symbol counting 
g 

each symbol generated on BC until (AB}, the current read 

position of M, is reached on BC. This generation is done in g 

the following manner. Mf generates each successive argument 
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remembering internally which one is being generated. 

If the argument y i is xj for some j tt:. n then Mf scans 

across the input x starting with the first blank to the n 

left of x 1 until the j-th blank is scanned whereupon Mf 

produces xj symbol by symbol. If yi, the argument being 

generated, is a fixed constant string over Z::. then Mf 

produces that string from an internal representat ion of it 

symbol by symbol. In either case since the input to M 
g 

is a fixed explicit transformation of the input to Mf 

it can be generated one symbol at a time using the work 

space BC only to count symbols. By convention a WT'IM never 

scans beyond the first blank right of its last argument, 

hence (AB) • ('BC) before IBC I > R. 

When the proper input symbol for the next step of M is 
g 

remembered internally, Mf scans the representation of the 

worktape of M remembering the current state and work tape g 

symbol scanned in the representation of Mg. Mf uses this 

infonnation to perform the next step of the simulation of 

M. This includes changing the state, writing a new work g 

tape symbol, possibly changing the work tape scan position 

by moving the state symbol, possibly changing the value of 

(AB)(and hence the current simulated read position ofM) 
g 

by adding or subtracting 1,and possibly writing on output 

symbol on the actual output tape of Mf. (Since a WT'IM 

never scans to the left of the initially scanned work tape 
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square, there is no need to shift the -work tape represent­

ation of M to the right to acconnnodate adding symbols to g 

its left end.) 

c. Mf zeros BC and continues with 4a above. 

Mf clearly computes f(x) • g{y) on input x and the space used is n m n 

sMf (xn) ~ 2 • R + 3 + 5Mg (ym) + 1 

~ 2 • (m • log2 1xn1 + c4) + 4 + c1 • log21ym1 + c2 

Since f ymj 6 m • f~( + c3 implies that log2 1ymf ~ log2fxnf + CS for 

some constant CS and since xn was arbitrary above 

for all x over :i­
n 

where K1 • 2. rn + c1 and K2 • 2. c4 + c2 + c
1

• c
5 

+ 4 are fixed constants, 

therefore f E logspace. 

Lemma 6: logspace is closed under substitution. 

proof: Let g,h e; logspace be m and n-variable function respectively 

over some alphabet X. computed by WTTM•s 

M ... (~ u !pi!, w , l:.' Qg, qg, F , ~ ) g g g g 

Mh"' (~ V [/J1~, Wh, ~, Qh, qh' Fh, lh) 

- over ~ such that for all Ym and x 
n 

5M (ym) ~ 
g 

cl • log2jymJ + c2 

5M <x) 
h n 

~ c3 • log2fxn/ + c4 

for some constants c1, c2, c
3 

and c
4

• 

( ;* n+m-1 ~* Define f: L. ) -+ ~ by substitution of g into h where 



Note that by Lemma 2 
KS lg(-y )f ~ ,-YI + K for some constants m - m 6 

KS and K
6

, hence for some constants K
7 

and K
8 

We must exhibit a WT™ Mf which computes f and uses space 

5Mf (xi-1 Ym i+lxn) ~ K 1 • log2 lxi-1 ym i+lxn I + K2 for some fixed 

constants K
1 

and K
2

• 

Mf will simulate Mh generating the proper input symbol at each 

simulated step of Mh. 

in the j-th argument 

This will involve simulating M 
g 

of Mh ls needed ·to-r any j ~ i. 

if some s ymbol 

Such an Mf with input alphabet Iu{pii, output alphabet ~ and 

work tape alphabet l 1, o, l, Q, A, B, C, o} V Wg u Wh V Qg u Qh can be 

constructed to operate as follows on input xi-l Ym i+lxn: 

1. Mf initializes the work tape to look as follows using methods 

similar to those described in previous lemmas, 

where 

for some constant K
9 

and 

s -

~cl• log2IYmf + c2 + 1 

~ 5M (ym) + 1 
g 



(The space AB will be used for the reverse binary representation 

of the current read position in the simulated input to Mh, 

BC is a counter, CD will be used for the work tape and state 

representation of any computation simulation of M and the 
g 

space to the right of D will be used for the representation 

of the work tape and state of the simulation of Mh.) 

2. Mf now simulates the computation of Mh on input x 1_1 g(ym) i+lxn 

as follows: 

a. If the state symbol of Mh written on the work tape of Mf 

i s in F h then M f ha 1 ts • 

b. Otherwise Mf begins to generate the input to Mh symbol by 

symbol by scanning through the input tape of Mf starting 

with the first blank before x 1 and counting each symbol on 

BC. If (Be) equals (AB) then Mf remembers the input symbol 

scanned and continues with step 2e below. If the blank 

before the i-th argument is reached then Mf con tinues with 

step 2c below. 

c. Mf now simulates the computation of M on input y as follows: 
g m 

i. Mf scans the work tape and state representation of 

M in CD r emembering the current state and work tape g 

symbol scanned. If the currently simulated state of 

M is ii-. F then Mf continues at step 2d below. 
g g 

ii. Otherwise Mf uses t he state and symbol scanned infor-

mation together with the currently scanned input tape 

symbol of Mf (the simulation o f Mg can read the input 
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Ym in place) to update the representation of the work 

tape and state of M, possibly move the read head one 
g 

square and remember any output symbol produced at this 

simulated step of M • 
g 

iii. If there was an output symbol produced at this simulated 

step of~\ then Mf remembers it and adds 1 to <ac). If 

(Be) equals (AB) then M f continues with step 2e below. 

iv. Otherwise Mf continues with step 2ci above. 

d. Mf continues to generate the input to Mh by scanning the 

input tape beginning with the blank before the i+m-th 

argument, which is xi+l, counting each symbol on BC. When 

(BC) equals Q.B} then Mf remembers the symbol scanned and 

continues with step 2e below. 

e. When the proper input symbol for Mh has been remembered 

internally, Mf scans the representation of the work tape 

and state of Mh on its work tape and remembers the curN:!nt 

state and work tape symbol scanned. Mf uses this in fonna t ion 

to perform the next simulated step of Mh by updating the 

work tape and state representation of Mh, updating the current 

read position in AB and possibly writing an output symbol 

into the output tape of Mf. 

f. Mf now zeros BC, erases CD, places qg after C and continues 

with 2a above. 

Mf clearly computes f(xi-l ym i+lxn) and the space used ls 

5Mf (xi-1 ym i+lxn) ~ 2•R + S + 5 + 5Mh (xi-1 g(ym) i+lxn)• 
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Since 

for some constants K
10 

and K
11

, therefore 

~f (xi-1 ym i+lxn) ~ Kl • log2fxi-l ym i+lxnl + K2 

where K1 • 2.K 7 + c 1 + K10 and K2 • 2.K9 + c
1 

+ c
2 

+ Kll + 7 are fixed 

constants. We conclude therefore that f E. logspace since x
1

_
1 

Ym i+lxn 

was arbitrary above. 

Lemma 7: logspace is closed under recursion of concatenation. 

proof: Let g,h€ logspace be n and n+2-variable functions respectively 

over some alphabet ~ computed by WT'IM's 

Mg • <~ u 1-Pii, wg, ~, Q
8

, qg, Fg, ~
8

) 

Mh • (~ U !P1!' Wh, ~' Qh, qh' Fh, 6'h) 

such that for all x and x 
2 

over ~ 
n n+ 

5M (xn) £: cl • log2/~/ + c2 
g 

~h(xn+2)~ c3 • log2fxn+2/ + c4. 

-ir n+l * 
Define f:(~) ~ ~ by recursion of concatenation where f satisfies 

f(x A) _ g(x) 
n n 

f(x )'f) ... f(x y)h(x y q-, 
n n n 

where IT ranges over symbols in ~. 

We must exhibit a WT'IM Mf which computes f and uses space 

sMf (xn y) ~ Kl • logzlxn yj + K2 
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for some fixed constants K
1 

and K
2

• 

On input xn y, where y. ~1~ 2 ••• ~m-lctm, Mf will simulate Mg on 

input xn and then simulate Mh m times on inputs xn A CT"i, xn <r
1 

<r
2

, 

xn <Tl<r2 <r3, •••, xn <r1<r2 ••• ~-l ~ writing any output produced onto 

the output tape of Mf. 

Such an Mf with input tape alphabet 2:: () !~
1
!, output tape alphabet 

~ and work tape alphabet wg v wh u Qh u lo, 1, .2, .!., A, B, c, Dj can be 

constructed to operate as follows on input x y: 
n 

1. Mf initializes its work tape to look as follows using methods 

similar to those described previously, 

1 cf 0101 ••• 
R R 

fololoj 

where R • 

(The space AB will be used for the reverse binary representation 

of the current read position in the simulated input to Mh; 

BC will be the reverse binary representation of the current 

recursive position in y numbered from the left end of the 

whole input; CD will be used as a counter and the space to 

the righ t of D wil 1 be used as a work space for M and as the 
g 

representation of the work tape and state of the simulation of 

2. Mf now performs the computation of Mg in place on input xn 

using the space to the right of D as its workspace. Any output 

symbols produced by Mg are written on the output tape of Mf. 

When Mg halts M f erases all work tape symbols written by Mg 

to the right of D and places qh on the square to the right of o. 
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Mf also puts the reverse binary representation of fxnl + l in 

BC which ls the zeroth recursive position in y. 

3. Mf now simulates the computation of Mh m times on the inputs 

described above as follows, 

a. Mf increments BC and counts up on CO as it scans t he symbols 

of the input tape from the blank to the left o f x
1 

until 

the value <Be} is reached on co. If Mf is scanning a blank 

then Mf halts. Otherwise Mf zeros co. 

b. Mf now simulates the computation of Mh on the input 

x (f <r.2 •• •If. tr where k .. {BC) - l'x"j . 1 as follows: n 1 k-1 7< Inn 

i. If the current simulated state of Mh is in Fh then Mf 

erases the symbols of the representation of the work 

tape and the state of Mh to the right of D, replaces 

qh to the right of o, zeros CO and places the value 

0 in AB. Mf is now ready to start the next simulation 

of Mh and hence continues with 3a above. 

ii. Mf now scans across the input counting up on CD until 

(co) equals (AB). If during this scan Mf reaches (Be) 

on CO and (.AB) equals (BC) at this point then Mf remembers 

a blank. Otherwise Mf increments CO without moving the 

the input head and if (AB}does not equal (co) at this 

point then Mf remembers a blank. In any other case 

Mf remembers whatever symbol is being scanned. This 

serves to simulate the separation of the symbol at 

the current recursive position in y from the beginning 

Part of Y by a blank and to allow the simulation 



of the blank following cr-k which by convention is the 

furthest Mh will scan on its simulated input at this 

recursive level in Y• 

iii. Mf now scans acros s the representation of the work 

tape and state of Mh remembering the current state 

and work tape symbol scanned, using this infonnation 

with the remembered input symbol to update the repre­

sentation of the work tape and state of Mh, update the 

current read position in AB and possibly write an 

output symbol of Mh on the output tape of Mf. 

iv. Mf zeros CD and continues with step 3bi above. 

Mf clearly computes f(x y) on input X y and the space used is 
n n 

sM (x y) 5 3.R + 5 + a. (x) + max {a. (x <r.1<I"2 ••• <["k-l ~k)j. 
f n Mg n ls~m Mh n 

sc3 • log2 \xn y\ + c3 + c4 • 

Therefore since x y was arbitrary above 
n 

and we conclude that f E. logspace. 

for all x y over ~ 
n 

Lemma 8 : logspace is closed under log bounded recursion on notation. 

proof: Let g,h £ logspace be n and n+3-variable functions respectively 

over some alphabet~ computed by WT™'s 
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M = ( 2. V fP1l, w , ~, Qg, qg, F , lg) g g g 

Mh = (~ u fP{3, Wh, ~, Qh, qh' Fh, c\) 
such that for all X and x 3 over 1:. 

n n+ 

f(x A) .. g(x) 
n n 

f(x y!T) _ h(x y <:r f(x y)) 
n n n 

lt<x y~ !!= n cs • log2I xn yj + c6 

where <r ranges over symbols in ~. 
We must exhibit a WT1M Mf which computes f and uses space 

SM (x y) 1£: Kl • log2lxn YI + K2 for some fixed constants Kl and K2· 
, f n 

On input xn y, where y. <r1<r2 ••• q-m' Mf will simulate Mg on input 

xn and then simulate Mh m times on inputs xn A <r
1 

f(xn ~), 

xn crl <r2 f(xn Cfl), xn 4i<:r2 ~ f(xn ~<T2), •••, xn <I'i<r"2•••(T"m-l ~ f(xn Qj_ ••• <rm-1) 

writing the output of each successive simulation on the work tape of 

Mf and finally copying the output of the last simulation onto the output 

tape of Mf. 

Such an Mf with input tape alphabet~ V [fi~' output tape alphabet 

~ and work tape alphabet Wg V Wh U Qg U Qh v {o, 1, Q, .!_, A, B, C, D, E, F) 

can be constructed to operate as follows on input x y: 
n 

1. Mf initializes its work tape to look as follows using methods 

similar to those described in previous lemmas: 



where s ... I ix n YI cs / + c 6 + 1 

~CS. log 2lxn yj + c6 + 1 

since log
2 

ls a non-decreasing function. Also 

In addition R was constructed such that 

R • I ixn Yf I + 4 + 14sl 

~ ( I xn yJ • 4 • sl 
~ I I xn yf + 4 + sl 
~ If xn Yf + 4 + ma; 1jf(xn ~1<l"2•••Cf°k)f l I 

~k_m 

since log2 is a non-decreasing function. Also 

R S log2 lxn y I + S + S 

~ (Cs+l) • log2 jxn yJ +CS+ c6 + 7 

(The space AB will be used for the reverse binary representation 

of the current read position in the s imulated input to Mh~ BC 

will be the reverse binary coding of the current recursive position 

in y. CD will be used as a counter. DE will contain the output 

generated at the last recursive level. EF will contain the output 

beinp; generated at the current recursive level and the space 

beyond F will be used for the representation of the work tape 

and state of the simulations of Mg and Mh.) 



2. Mf now simulates the computation of M on input x as follows: 
g n 

a. Mf scans the representation of the work tape and state of 

M written to the right of F remembering the current state 
g 

and work tape symbol scanned. If the currently simulated 

state of Mg is a member of Fg then Mf continues with step 

3 below. Otherwise Mf uses the state and symbol scanned 

information together with the currently scanned input tape 

symbol (the simulation of M can read the input x in place) 
g n 

to update the representation of the work tape and state of 

M, possibly move the read head one square and remember any g 

output symbol of M on this step in the simulation. 
g 

b. Mf then scans across EF locating the first blank square to 

the right of E and writes the remembered output symbol for 

this step of M where if no output symbol was produced then g 

Mf leaves the blank. 

c. Mf continues with step 2a above. 

3. Hf puts the reverse binary representation of I xn/ + 1 in BC. 

4. Mh now performs m levels of recursion on Mh as follows: 

a. Mf increments BC, the recursive level, and counts up from 

0 on CD as it scans across the input tape until the value 

(Be) is reached on co. If Mf is scanning a blank then Mf 

continues with step 5 below. 

b. Otherwise Mf sets (AB) to O, copies the output of the last 

level of recursion from EF to DE, erases EF and the space beyond 

F and places qh on the square after F. 

c. Mf now simulates the computation of Mh on the input 



xn Cfi<r2 ••• ~-l ~ f(xn ~<r2 ••• ~_ 1), where again y ... --r1<T2 ••• ~ 

and km (BC) - jxnl - 1, as follows : 

1. If the current state of Mh in the work tape representation 

beyond Fis in Fh then Mf continues with step 4a above. 

ii. Otherwise Mf begins scanning through the input from 

the first blank square to the left of x counting up 
n 

from O on CD. If (BC> is reached on CD then Mf continues 

with step iii below. If (AB) is reached on CD then 

Mf remembers the symbol being scanned in the input and 

continues with step v below. 

iii. If (BC). <AB) then Mf remembers a blank and continues 

with step v below. Otherwise Mf increments CD without 

moving the input head and if (co) • (A~ then Mf remembers 

the symbol being scanned and continues with v below. 

Otherwise Mf increments CD again and if (en)= (AB) 

then Mf remembers a blank and continues at step v below. 

This all serves to separate q1~ 2 ••• ~_ 1, <li< and 

f(xn <fi<1"'2 ••• ~_ 1) with blanks as is required for the 

input to Mh. 

iv. Mf now proceeds to scan through DE which contains 

f(xn <Ti~ .. •~- 1) the output of the last recursive 1 evel 

continuing to count up on CD again until (AB) is reached, 

whereupon Mf remembers the symbol being scanned in DE 

on the work tape. By convention Mh never scans beyond 

the first blank to the right of its last argument, hence 

(co> - <AB) before DE is exhausted . 



v. Mf now scans the representation of the work tape and 

state of Mh remembering the current state and work 

tape symbol scanned• using this information with the 

remembered input symbol to update the represantation 

of the work tape and state of Mh, to update the current 

read position in AB and to remember the output symbol, if 

any, which was generated at this step of~-

vi. Mf then scans across EF locating the first blank square 

to the right of E and writes the remembered output symbol 

for this step of Mh if one was produced. Mf now 

continues with step 4ci above. 

5. Finally Mf writes EF onto its output tape and halts. 

Clearly Mf computes f(xn y) on input xn y and the space used 

(letting Cf range over symbols in %. ) is 

Since log2 is a non-decreasing function 

Therefore 

8M <x y) ~ 
f n 

3.R + 2.s + 7 + cl • log2lxn yj + c2 + c3 • log2 jxn yj + c4 

~ Kl • log2 lxn YI + K2 

where Kl • s.c_ + cl + c 3 + 3 and K
2 

.. s.c6 + s.c
5 + c2 + c4 + 26 are :, 

fixed constants. We conclude that f c logspace. 
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Theorem 9: £ S logspace 

proof: If f e L, then there is some alphabet ~ and a finite sequence 

f 1, f 2, •••, fn of functions over~ such that f = fn and every fi is 

either the concatenation function over~ or the standard characteristic 

function of the equality predicate over~, or fi is defined from some 

previous func tions in the sequence by an explicit transfonnati on, sub­

stitut ion of a function for a variable, recursion of concatena tion or 

bounded recursion. 

By Lemmas 3 and 4 logspace contains the concatenation function and 

the equality function over~, and by Lemmas S, 6, 7 and 8 logspace 

is closed under explicit transfonnations, substitutions, reaJrsion 

of concatenation and bounded recursion. 

that f e logspace. 

Induction over the f
1 

yields 
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ADDITIONAL FUNCTIONS AND FUNCTIONAL OPERATIONS FOR £, 

Our next major goal is to show that every logarithmic space computable 

function is definable in terms of the base functions and functional operations 

which define i,. This result will establish the equality of logspace and£. 

Before proceeding, it is useful to prove that;£ contains the following 

auxiliary functions and predicates, and is closed under certain additional 

functional operations. 

Lemma 10: t., con ta ins the following auxiliary functions over an arbitrary 

alphabet~, where we will let cr1 denote the first symbol in an enumeration 

of ~: 

(1) The identity function e(x) = x, 

constant functions cn(x) -
Y n 

* y for any y c z, and 

n-projection functions u
1

(xn) 

(2) Certain symbolic functions: 

notA(x) 
if X = A 

ifx/:A 

if X ... A r: lastchar(x) "' l .... 
* if x .. :yq- for some y 6 ~ and <f' E: ~ 

if z -1, ).. 

if z - A. 

(3) Certain numeric functions over alphabets which contain the symbols 

0 and 1: 

[~ if X =A 
ones(x). 

if X /. A. 
IX I 



• 

ones(x) produces a string which is the same length as x and 

is composed entirely of the symbol 1. In general we will 

n-define then-variable function ones (x ): 
n 

...,__ 
plusl(x) = (x) + 1 

plusl(x) produces a string which is the reverse binary repre­

sentation of m+l if xis the reverse binary representation of m. 

Similarly, monusl is self explanatory 

monusl(x) m (x) ! 1 

(where! indicates monus, proper subtraction) and 

4-. 
len(x) - IXI 

the reverse binary representation of the length of x. 

(4) Certain functions which interpret some of their arguments 

as numbers equal to the length of that argument: 

shorter(x y) • { ?,. 
l_ cr1 

if lxf ~ f YI 

if fxl ~ /Y/ 

skip(x y) - the substring of y remaining after the first 

lxl characters have been deleted • 

proof: Throughout this proof <:r will range over symbols in ~. 

(1) e(x) = xl an explicit transformation of concatenation. 

of e. 

(2) Define not A. by bounded recursion from c~ , and cf: 
1 



notA{A) .,. c~ c: ~ 
1 

3 notA(y~) = c.A (y <r not~(y)) .. A 

0 3 
Define lastchar by bounded recursion from c.A and u 2: 

0 
las tcha r(A) ... cA. .. A 

3 lastchar(yq-) = u 2 (y (r lastchar(y)) • <f' 

/ J.astchar(y)f ~ la-f • 1 

The switching functions is defined in three stages. First 

1 4 s
1 

is defined from cA, u
1 

and lastchar using bounded recursion 

and substitution such that 

s 1 (x y) C: \ ).. 

l 1astchar(x) 

s 1 (x ~) • c~ (x) ... A 

if y - ). 

if y /. A 

4 s
1
(x y(f) m lastchar(u

1
(x y tr s

1
(x y))). lastchar(x) 

Is 
1 
(x y)I !: (1astchar(x)f S 1 

1 3 3 Then s 2 is defined from c~, u
1

, u 3 and s 1 using recursion 

of concatenation and substitution such that 

if X .. A 

ifxl,_). 

== s 2 (x y)s 1(<r x) 

Finally since one of z or notA(z) must not be equal to A, 

scan be defined from concatenation, not~ and s
2 

using 



-44-

substitution and explicit transformations: 

s(x y z) = s 2(z x)s2(notA(z) y) 

(3) Assume for the rest of this proof that ~ contains the symbols 

0 and 1. 

0 2 
ones is defined f rom cA.. and c1 using recursion of concatenation: 

0 on es (A) • c A .., ). 
2 ones(y<r).,, ones(y)c1(y <r') m ones(y)(l) 

De f ine plusl in four stages. First plussym is 

C if X I, y (xy • 01 or xy • 
plussym(x y) .. 

if X - y (x - y 

from sand c using substitution and -
plussym(x y) = s(O 1 c (x y)) 

"' 

Then carry is defined such that 

( 01 carry(y) ... l if y contains no O•s 

otherwise 

• 0 or x 

explicit 

defined such that 

10) 

- y - 1) 

transformations, 

0 
from concatenation, c1, sand c. using substitution, explicit 

transformations and bounded recursion: 

carry(A) - c~. 1 

carry(y<r) - s(O 1 c (<r O)c (carry(y) 0)) - -
I carry(y)f S. {c~[ • 1 

We now define shortplusl, which produces all of the characters 

of plusl except the last 1 whenever the carry propagates all 

0 the way through the input, from c, plussym and carry using 

recursion of concatenation, explicit transfonnation and substitution: 



0 shortplusl(,\) • c.A.., A 

shortplusl(y~). shortplusl(y)plussym(<r carry(y)) 

Finally plusl is defined from shortplusl, concatenation, s, 

c and carry using explicit transfonnations and substitution so 

that an additional 1 is appended to shortplusl if the carry 

propagated all the way through the input: 

plusl{y) = shortplusl(y)s(l ~ c (carry(y) 1)) -
If y is not a proper reverse binary representation of some number 

then plusl(y) is some arbitrary string of O's and l's. Note 

that plusl(y) is the same length as y unless y = 11 ••• 11 (a 

string of l's) in which case 

lplusl{y)f .. I yf + 1. 

Similarly monusl is defined in four stages from concatenation, 

0 0 
c 1, cA, c~ ands using explicit transformations, substitution, 

re et1 rs ion of con catenation and bounded re cu rs ion: 

minussym(x y) ... s(O 1 C (X y)) 
"' 

decr(A) = 
0 ~ CA .. 

decr(y<r) = s(O 1 C (f1' l)c (decr(y) O)) .. 
/ decr{y)/ ~ 1 

minus l{A) = cl= '-. 

minusl(ycr) = minusl(y)minussym(~ decr{y)) 

monusl(y) ... s(O minusl(y) c (y O)) ... 

If y is not a proper reverse binary representation of some 



number then monusl(y) is some arbitrary string of O's and l•s. 

Note that lmonusl(y)j .. ,yr. 

0 The function len is now defined from plusl and c
0 

by bounded 

recursion and an explicit transformation: 

0 len(.i\.) ... c
0 

• 0 

len(y<n = plusl(len(y)) 

jlen(y)I f: log2 (Yj + 1 

where the bound on f len(y)f is arrived at by noting that plusl 

increases the length of len(y) by one symbol iff le:1(y ) is the reve:-se 

k binary representation of 2 - 1 for some k. 

1 
Define shorter from cA, c= and ones using recursion of con-

catenation, substitution and explicit transformations: 

shorter(x 1') - cl(x) • A 

shorter(x y~). shorter(x y)c (ones(x) ones{y)) -
1 

Finally skip is defined from c~, s, concatenation and shorter 

using substitution, explicit transformations and recursion of 

con catenation: 

1 
sk ip(x A) .. c).(x) ... A 

skip(x y<r). skip(x y)s(fZ' ~ shorter(x )Q")) 

Since all of the functions defined in this proof were either derived 

from the base functions of l. using the functional operations for which~ 

is closed by definition, or derived in -J: using the defining closure 

operations of -f., from functions with earlier such derivations in ;£, by 

induction we can conclude that all of the functions defined in this proof 



are members of ;f. 
Throughout the remainder of this paper we will be less explicit 

about the exact nature of the definition of a function in£. For 

n-
example the projection functions ui(xn) will be written xi for all n 

n-
and the constant functions c (x) will be written simply as y for all n. 

y n 

Also many occurrences of definition by explicit trans fonna tion, substitution, 

recursion of concatenation and bounded recursion will be left unanotated. 

The reader should be able to fill in the details of any definition 

claimed to be carried out in£. 

Lemma 11: ;l is closed under the following additional functional 

operations: 

(1) The Boolean operations /\, V, -,, ➔, and~; and the substring 

quantifiers 3xBy, 3xPy, 3xEy, \t'xBy, VxPy, and VxEy on predicates 

which have a characteristic function in ~. 

(2) Substring minimization, min xBy, on predicates which have a char­

acteristic function in t. 
(3) Definition by cases. 

proof: Let~ be some arbitrary alphabet and let <r range over symbols 

in ~. 

(1) * n * If r 1: ( ~ ) -+ i is a characteristic function of the predicate Rl 

over l:. then notl(r1(xn)) is a characteristic function of its 

negation -iR
1

• 

* k tc 
If in addition r 2: ( ~ ) -+ ~ is a characteristic function of the 

predicate R2 over ~ then r 3(xn yk) • r
1
(xn)r

2
(yk) is a characteristic 

function of the predicate R1 v R2, the disjunction of Rl and Rz-



Since negation and disjunction form a complete set of Boolean 

operations,(, is closed under all Boolean operations. 

R1 A R2, R1 --+ R2 , and R1~ R2 will be abbreviations for,(,Rl V --,R
2
), 

R1 V ,R2 and (Rl ~R2) A (R2_.Rl) respectively. 

Suppose R is some n-place predicate over~ contained in~ and 

define Q as then-place predicate over~ such that 

Q(xn-l y)~ 3zsy[R(xn-l z8• 
* n -fr 

Let r: ( ~ ) ~ ~ contained in £ be a characteristic function of 

-fr n * 
R an<i define q:( ~) ~~ by recursion of concatenation 

q (xn- 1 Yer-) • q (xn- 1 Y) r(xn-1 y~ • 

If R(xn-l z) ls true for some zBy then r(xn-l z) ~ A for some zBy and 

hence q(xn-l y) ~ l. Therefore q is a characteristic function of 

Q and £ is closed under 3xBy quantification. 

The followi ng formulas demonstrate how 3zEy, and 3zPy quantifications 

can be <iefined from 3zRy quantification for any n-place predicate 

Rover '2,. with a characceristic function in£: 

3zEy [~(xn-l z~ ¢> 3zsy[R(xn-l skip(z y))] 

3zPy [R(xn- l z~ ¢> 3zBy [ 3wEz ~(xn- l w)]] 
Using the usual reduction of universal quantification to existential 

quantification and negation we define \t'zBy, VzEy and '/zPy from 3zay, 

~qEy and 3qPy as follows: 

VzBy [R(xn- l z[I #-, 3zBy [ "'1R(xn- l zil 

'v'zEy [it(xn- l z)] #-, 3zEy [ .,R(xn- l zU 

'vzPy [R(xn- l z)J ~ ,3zPy [ -rR(xn-l z)] 
Therefore we conclude that;£ is closed under all of the substring 
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quantifiers. 

(2) Let R be some n-place predicate over ~ contained in £ and def ine 

;, n * 
mR:(z.) ➔~ as follows: 

First define premR as an n-variable function over~ such that 

premR(xn-l y) is the shortest substring z which begins y such that 

R(x°"1 z) is true and is y if no such z exists. n-

Now define mR to equal premR unless premR(xn-l y) - y and R(xn-l y) 

i.s false, in which case mR(xn- l y) • A. 

mR(xn-l y) .. sO. premR(xn-l y) (premR(xn-l y) .. yA,R(xn-l y))) 

Note that mR ~ ;f, and mR(xn-l y) • min zBy[R(xn-l zLJ. Therefore 

-;f. is closed under substring minimization. 

(3) Suppose f: ( ~*)n ~ I.* is defined by cases 

where each fi ~ ;f., each Ri ~ ~ and for every xn over ~ exactly 

one of the predicates R1, •••,\is true. Then we can define f 

in /. by 

f(xn) .. s(f1(xn) A R1(xn))s(f2 (xn) A R2 (xn)) ••• s(fk(xn) A \<xn)) 

since concatenation, s, each f
1 

and each Ri are members of£. 

Therefore;(. is closed under definition by cases. 
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Lemma 12: -£ contains the predicates xBy, xPy and xEy. 

proof: The following formulas show how these predicates can be defined 

from the equality predicate and the substring quantifiers 3zBy, 3zpy 

and 3zEy: 

xBy # 3zBy [x .. ;J 
xPy # 3zPy[x ... z] 

xEy ~ ;!zEy [x=z] 
Since by Lemma 11 £ is closed under the above substring quantifiers and 

equality is in t:, by definition, ~ contains the predicates xBy, xPy 

and xEy. 
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PROOF THAT logspace £ £, 

We are now prepared to carry out a symbolization of the computation 

of a WT'IM which computes some function contained in logspace using 

functions contained in£ and functional operations under which£ is 

closed. Normally a proof that some class of functions computed by a 

type of abstract machine ls contained within a particular set of mathema­

tically defined functions is called an arithrnetization. However, in this 

case ct is a set of recursive string functions rather than numeric functions, 

hence the description of the following proof as a symbolization seems 

more appropriate. 

Theorem 13: logspace Si i 
proof: Let f e logspace be an n-variable function over some alphabet 

r computed by WT'IM 

M = ( r lJ E.r''i ~, w, r, Q, qo, F, ~) 

such that for all x over [7 
n 

5M(xn) ~ Kl • log2rxnl + K2· 

Consider the alphabet !: = r V £p1~ U W IJ Q I.I tl, O, $i over which 

many of the functions in this proof are defined. Note that r ~ z=. 

We begin by defining a bounding function bM(xn) whose length is 

greater than the maximum number of steps in a computation of Mon input 

x over 
n 

over r 
r. Since M cornpu tes f IE, logs pace, by Corollary 2 for all x n 

K 

1-i(xn) SI xnf 3 + K4 

for some constants K3 and i-: 4 • ',ie can define ~ within £ as follows 

using K3 - 1 levels of recursion of concatenation. 

First a function mover~ is defined such that m(x y) is (YI 
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copies of x concatenated together. 

m(x A) = A 

m(x y~) = m(x y)e(x) 

We now define a function Busing a constant number of occurrences of m 

nested together by K3 - 2 applications of substitution of a function 

for a variable. 

B(x) = m(x m(x ••• m(x x) ••• )) 

Kr 1 nested 

occurrences of m 

m can he thought of as computing unary multiplication which means that 

fm(x x)j jxj 2
, fm(x m(x x))/ = /xf 3

, and in general 

j~(x m(x ••• m(x x) •• •2) l .. I xi k -...-----
k - l nested 

occurrences of m 

Therefore letting 

- n-
~1(xn) = B(ones (xn))~l•:•1~ 

K4 

we have defined b . within r/, and for all x over r S 1: 
~ K n 

l~1(xn)f =lxnf 3
+K4~1,1<xn)• 

Let Q c [qo, ql' ••• , qc~ and F. {h1, h2, ••• , ho! and define the 

predicates inQ and inF over ~ as 

inQ(w) ~ w .. q0 v w ... q1 v ••• v w.qc 

inF( w) ~ Wchl v w .. h2 v ••• v Wi:ho 

We will need to define then-variable function over~ 

which produces the input string to M complete with input blanks. 
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Io's in a computation of M will be symbolized as strings ov .. , r ~ 

This is done straight forwardly by symbol izlng the ID (k, C() as ~$o<. 

where, as before, t'" is the reverse binary representation of the number k. 

The following auxiliary functions defined within£ extract various 

parts of a symbolized ID y which is part of a computation of WT'IM M 

on input x over ff. 
n 

Ipos(y) = min wBy[$B(skip(w y)il 

Ipos(y) is the substring of y which is the reverse binary coding of the 

symbolized position of the input head of M. 

Let eq(x y) ~ xBy A "13vP(skip(x y) )[v .. il and define 

IscanA(xn y) • lastchar(min wB(ins,i_(xn))Gq(len(w) Ipos(y)U) 

Iscan'>i(x y) is the actual character of X over r7 at the symbolized 
n n 

input head position Ipos(y), unless (Ipos(y)) .. 0 or (rpos(y)) ') fxnj 

in which case Iscan~(x y) a). Since we want to simulate reading blanks 
n 

a~ the ends of the inputx, we define n 

Iscan(xn y) = s(Iscanl(xn y) fi Iscan~(xn y)) 

where /li is the input blank symbol. 

State(y) .. lastchar(min wBy [tnQ(lastchar(w))]) 

State(y) is the current state symbol contained in Y• 

Wscan(y) = lastchar(min wBy[State(y)lastchar(w)Py]) 

wscan(y) is the symbol following State(y) in y and hence is the ~Jrrently 

scanned symbol on the work tape symbolized in y. We shall agree to 

always append a f3w if there is no other character to the right of the 

state symbol in y after the state symbol has been moved, hence 

Wscan(y) I, A for all valid Y• 
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\./prescan(y) .. lastchar(min w'By[lastchar(w)State(y)Py]) 

Wbe~in(y) z skip(Ipos(y)$ (min wBy[(w)Wprescan(y)State(y) P~)) 

Wend(y) = skip((min wBy~tate(y)Wscan(y)Ew]) y) 

The above three functions are designed to extract the remaining portions 

of the symbolized work tape in y so that 

y. Ipos(y)$Wbegin(y)Wprescan(y)State(y)Wscan(y)Wend(y). 

We now define three functions which depend in detail on the structure 

of M, in particular the octuples which compose ~- Since r U f~1l' W 

and Qare finite and the transition function~ is defined over the domain 

(r" IJ f/\~) )( W >< Q it must be finite and we can use definition by cases 

to define Nex tiposM, NextW\i and Outsy°M, as will be described shortly. 

Let£ .. foct 1, oct2, ••• , oc~! and define the set fR1, R2 , ••• , ~J 
of predicates over ~ such that if 

O Ct . ,. ( q . , i . , W. t q ! , i t"j t Wj1 t W?;'j , 8. ) 
J J J J J J 

then R. is defined in£ by 
J 

R. (x y) ¢:> Sta te(y).qj A Iscan(x y) .. ij A Wscan(y) .. w .• 
J n n J 

If the WT™ M is well-defined there is at most one octuple in the transition 

function i for each combination of state, input symbol and -work tape 

symbol. Therefore at most one R. is true for any x y assuming that y 
J n 

is a valid symbolization of an ID in the computation of Mon input 

X 
n 

over r. Since we will be symbolizing computations of a WT™ M that 

computes a total function, exactly one R. will be true at each step of 
J 

the symbolization. 

Let oct. be as above throughout the following definitions. 
J 



if R1 (xn y) 

• • • 
if ~(xn y) 

Nextipo~(xn y) is the reverse binary representation of the next input 

position of M computing on input x over p after the ID symbolized by 
n 

y, where each 

monusl(lpos(y)) if it'j ... -1 

t.<x y) - lpos(y) if i t'j ... 0 
J n 

plus 1 (lpos (y)) if i?:j ... +1 

is one of the above three functions in i depending on the str~cture of 

$ as shown. 

if R1 (xn y) 

• • • 
if ~(xn y) 

NextW\i(Xn y) is the symbolization of the next work tape and state 

of M computing on input x after the ID symbolized by y, where each n 

Wbegin(y)(q!)Wprescan(y)(w!)Wend(y) 
J J 

if wt:. ,.. -1 
J 

g/xn y) "' Wbegin(y)Wprescan(y)(q!)(w!)Wend(y) if wr;. ... 0 
J J J 

Wbegin(y)Wprescan(y)(w!)(q!)addp(Wend(y)) 
J J 

if wt: 
J 

= +l 

is one of the above three functions in cf depending on the structure of 

d as shown and add~(v) = s(v fw v) adds a work tape blank to the 

symbolization of the next work tape if the state symbol is moved to the 

right end of the symbolized work tape. This assures that there is always 

some character following the state symbol in a symbolized ID yin order 

to insure that Wscan(y) I,, A for all y which occur in our symbolized 

computation of M. Since all WT'IM's are designed by convention not to 

attempt to move left of the initially scanned work tape square, no such 



mechanism is necessary for left transitions on the work tape. 

= t a-:· 1 Ou tsYI\-t (xn y) 

CTN 

• • • 
if ~(xn y) 

OutsYJl¼(xn y) is the outpu t symbol written on the output tape by M 

computing on input X over r for the move after the ID symbolized by n 

Y, where crj.,. 6j e f7 U f~:!. OutsYll\.t has the value A whenever some 

transition of M does not write an output symbol. 

We can now define the function NextIDM such that Nextif¾(xn y) 

is t he symbolization of the ID which follows yin the symbolized 

computation of M on input x over f1. 
n 

NextIDM(x y) C Nextipo~.(x y)$NextWT (x y) 
n Mn """Mn 

NextIDM serves to define a trace function IOM(xn y) which equals the 

symbolization of the fy(-th ID in the computation of Mon input x 
n 

over f'. 

I°M(xn A).,. 0$qof3w 

r~1 (xn y CT) ... Next II¾ (xn I~
1 
(xn y)) 

Both NextiposM and NextW)-1 were designed to lengthen the symbolization 

of an I l on l y i f a new input or work tape square is scanned. Thus the 

leng th of the symbolization of the work tape and state of M is bounded 

by sM(xn) + 1. Also since WT'n-t's do not scan beyond the blanks at the 

ends of their input, the length of the reverse binary represen t ation of 

t he curren t input position of M is bounded by Jlxn I+ if. There fore 

INI lrn~: (xn )I $ + sM(xn) + 2 

~ (Kl + 1) • log2lxnj + (K3 + 3) 

Sr (K 1 + 1) • los 2jxn yj + (K3 + 3) 
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and I~
1

(xn y) is properly definable by log bounded recursion on notation. 

The trace function IDM is now used to define Hal tsM and Ou Si. 

Halt5t,
1
(xn y) is the predicate over ~ which is true iff the jy/-th ID 

of the computation of WT1M Mon input x over f7 contains a haltin½ state. 
n 

Halt5t-t(xn y) # 3qP(I~(xn y)) [inF(q)J 

ou 11 (xn y) is the output of the symbolized computation of WT1N M on input 

X over rafter IYI steps. n 

Ou 1-I (xn l..) .. A 

ou 1/xn y.-, ,.. Ou'1.i(xn y)Outs.YTI¼(xn II¾(xn y)) er E. L. 

Since Outsy°l,i(xn y) e fi V {'.h1 Ou 11 (xn y) e p* for any ar8uments over r. 
An examination of the definitions of \i, Halt5M and Ou1'! reveals that 

for any xn over r 
f(xn) .. ou 11 (xn min yB(\i(xn))[HaltsM(xn y)]) 

In addition each stage in the construction of bM, HaltsM and Ou~ used 

only functions and predicates proven in previous sections to be in~ 

and functional operations for which 'i, has been proven to be closed. 

There fore \i, Hal tsM and Ou 11 are all contained in £ and we conclude 

that f e £. Since f was an arbitrary function in logseace, lo~space ~ 

has been established. 

Corollary 14: logspace,.. ;£, 

proof: I mm e d iate from Theorem 9 and Theorem 13. 

~ 
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FURTHER RES UL TS 

The following section contains additional closure properties of 

i. . logspace. 

We will need to de fine the following auxiliary functions in i!. over 

some arbitrary alphabet z. 
firs tchar(A) ... A 

firstchar(y<r) .. s(firstchar(y) <r y) 

jfirstchar(y)I ~ 1 

firstchar(y) is the symbol in~ which begins y. 

back(x y). firstchar(skip(skip(x y) y)) 

back(x y) is the /x/-th symbol back from the right end of y. 

revl(x )J .., A 

revl(x y4' .. revl(x y)back(x yf') 

revl(x y) is the string which contains the last fyJ symbols of x in 

reverse order. 

rev(x).., revl(x x) 

rev(x) is the string composed of the s ymbols of x in reverse order. 

Notice that rev ~ ;/!. 

A.n n+l-variable function f over ~ is defined from functions g, h
1 

anti h ') by two sided recursion of concatenation if f satisfies 

r<x ).) .. g(x> 
n n 

Theorem 15: ;f_ and hence logs pace is closed under two si ded recurs ion 

of concatenation. 

proof: Let f be defined by two sided recursion of concatenation from 

the functions g, hl and h2 contained in "t:. over some arbitrary alphabet 
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such that 

f(x >v .. g(x) 
n n 

Define the functions f 1 and f 2 from rev, g, h
1 

and h
2 

using recursion of 

concatenation such that f
1
,f

2 
€£ 

f 
1 
(x

0 
A) .. °A 

t 2<x ).) ... g(x) 
n n 

It is clear that f(xn y) • rev(f1(xn y))f2 (xn y), Therefore since rev '=.i':, 

we conclude that f 6 ~. 

An n+l-variable function f over~ is defined from functions g 

and h by backwards recursion on notation if f satisfies 

f(x A) _ g(x) 
n n 

f(x try) ,.. h(x er y f(x y)) 
n n n 

We can define a function f' by (forward) recursion on notation from 

g and h such that 

f' <x ") .. g(x) 
n n 

f' (x y(t) = h(x er rev(y) f(x rev(y)) n n n 

:-lotice that f(x y) m f'(x rev(y)). 
n n 

If g ,h €. -;I:_ and the fonn of definition by backwards recursion on 

notation off from g and his restricted by either 

h(x w y z). (z)h'(x w y) 
n n h' E. ~, or 

\r(xr y)I ~ K1 • log2 1xn yf + K2 for constants K
1 

and K
2

, 

then, since rev!!:: 't:., the above argument has infonnally proved thati:'is 
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clos ed under both backwards recursion of concatenation and backwards 

log bou nd ed recursion on notation, which we will simply state as: 

Claim 16: ;f_ is closed under backwards recursion of concatenation where 

if g,h' € £ then f sat i s fi es 

f (xn A) =- g(x) 
n 

f (x cry) - f(x 
n n 

y)h'(x<r 
n 

y) 

and f l:; ~ . 

Claim 17 : I:, is closed under backwards log bounded recursion on notation 

where if g ,h e £ then f satisfies 

f(x ').) • g(x) 
n n 

f(x <ry) .. h(x ~ y 
n n 

f(x y)) 
n 

lf(xn y)j ~ K1 • log2lxn YI + K2 

for some cons tan ts K 
1 

and K 2 , and f e t:,. 

The n +l-varibal e functions f
1

, f 2 , •••, fk over some alpha bet~ 

are def i ned by s i multaneous bounded recursion from the functions 

• • • 
f k (xn A) '"' gk (xn) 

f
1

(xn y~) : h
1

(xn y er f
1
(x

0 
y) ••• fk(xn y)) 

• • • 
fk (xn ye) - hk(xn y <r r 1(xn y) ••• fk(xn y) ) 

• • • 
jfk (xn y)\ ~ K lk • 108 2 \xn yf + K2k 

where (1" ranges over ~. 



-61-

Theorem 18: f. and hence logspace is closed under simultaneous bounded 

recursion. 

proof: Let the functions f 1, f 2 , •••, fk over some alphabet ~ be 

defined by simultaneous bounded recursion from the functions 

,, 0 ••• , gk and h
1

, h
2

, •••, h contained in £ accordino to the form .::,l' r,2, -le I"") 

in the above definition. 

We will define a function F over ~ U llF~ such that 

F(x y) = f 1<x y)#f2 <x y)u ••• ufk<x y)I. n n n n 

This requires that we define the extraction functions p 1, p 2, •••, pk 

in i., which obtain each of the k substrings before the IF•s in a string 

containing k fr's• 

p1(z) = min wBz[wiB~ 

pj+l(z) = min wB(skip(p1(z) ••• p/z)) z)[w1B(skip(p1(2) ••• p/z)) z~ 

Define G and Hin;/!. such that 

G(xn) = gl(xn)#g2(xn)# ••• #gk(xn)# 

H(xn y w z) h 1(xn y w p 1(z) p2(z) ••• pk(z)). 

Fis now defined in ;f.. by 

F(x A) = G(x) 
n n 

F(x y~) = H(x y ~ F(x y)) 
n n n 

Clearly F(x y) = f 1(x 
n n 

y) !! f
2 
(x y )# •• • i! f (x y ) f!. Hence 

n k n 

IF (x n Y) I ~ (K 11 + ••• + Klk) • log2lxn yr+ (K21 + ••• + K2k) + k 

Therefore Fe~. For each l~j~k 

t. ex y) = 
J n 

Hence f . € ~. 
J 

p.(F(x y)) 
J n 

Therefore "t:.. 

bounded recursion. 

and hence logspace is closed under simultaneous 



Theorem 19: Addition is a member of ;f, and hence is log space computable. 

proof: The following construction of add(x y) which has the value of 

the reverse binary representation of (x) + (y) is carried out in ~. 

= (01 carrysym(x y z) L if xyz=Oll v xyz-101 v xyz=llO v xyz=lll 

if XYZ=000 v XYZ=OOl v xyz..,010 y xyz=lOO 

carrysym(x y z) is the symbol representing the carry when the digits 

x, y and z are added. 

addsym(x y z) 
if XYZ=OOl V xyz=OlO ~ XYZ=lOO v XYZ=lll 

if xyz ... 011 V XYZ=lOl v xyz .. 110 v xyz,.,000 

addsym(x y z) is the symbol representing the least significant digit 

when the digits x, y and z are added. 

carry(x A) = 0 

carry(x y<r) = carrysym(firstchar(skip(y x)) q- carry(x y)) 

carry(x y) is the carry digit when x and y are added. Note that 

jcarry(x y)j ~ 1. 

Hence carry E -;!.. Similarly 

shortadd (x A) .. A 

shortadd(x y~) = shortadd(x y)addsym(firstchar(skip(y x)) er carry(x y)) 

shortadd(x y) is the sum of x and yup to the length of y. In order 

to add the remaining digits if IYI ~ lxl 

add(x y) = shortadd(x y)s(plusl(skip(y x)) skip(y x) carry(x y)=l) 

add(x y) has the value '<x) + (y) and has been constructed in I,. Therefore 

add E ;I:.. 
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Theorem 20: Multiplication is contained in£. and hence is log space 

compu table. 

proof: The fol lowing cons tr.1ction of mul t(x y), which has the value 

of th12 reverse binary representation of (x> • (Y} , is carried out in £. 
bitmult(x u w z) .. (w= l A lastchar(min vBx{jnes(v)=skip(u or.es(z))])=l) 

bitmult(x u \\' z) is not equal to). iff the \u\+1-st product in the sum 

o f the lzl-th column (numbered from the least significant bit) in the 

standard multiplication algorithm for computing (x). (Y} is a 1, where 

w is assumed to be the symbol in y such that uwBy. 

a dd col (x A z) • 0 

addco l(x u~ z) = s(plusl(addcol(x u z)) addcol(x u z) bitmult(x u ~ z)) 

addcol(x u z) is the reverse binary representation of the /u/-th subtotal 

in the lzl-th column in the standard multiplication algorithm for compciting 

(x). (y) , where it is assumed that uBy. Note that 

!add col (x u z)I ~ fplusl( ••• plus l(O) ••• )( \.... _____ ,../ 
-y 

lul nested 
occurrence s 
of plus 1 

~ ITurl 
~ log2fuf + 1 

~ log2 jx u zf + 1 

and hence addcol is defined properly within ;f. 

carry(x y ~) = 0 

carry(x y zQ") .. skip(l add(addcol(x y zq-) carry(x y z)) 

carry(x y z) is the reverse binary representation of the carry for the 

lzl-th column in the standard multiplication algo rithm for computing 

(x). (y). Note that 



I carry(x y z)I ~ jadd(len(y) 
\.., 

••• add(len(y) O)o••)I 
-v- _,/ 

lz I nested occurrences 
of add(len(y) *) 

~ 1, z' . 'YI I 
~ llZTI + l'lYTI 
~ 2 • log 2 jx y zf + 2 

and hence carry is defined properly within ~. 
multl(x y ~) = A 

multt(x y z¢) = multl(x y z)firstchar(add(addcol(x y z~) carry(x y z))) 

multl(x y z) is the first jzl symbols in the reverse binary representation 

of (x) • (y) • 

mult(x y) = min zB(multl(x y xy))[13wP(skip(z multl(x y xy))G, .. u] 
mul t(x y) has the value of the reverse binary represen.tation of (x). (y) 

and has been constructed within £ .. Therefore mul t € ,L. 



APPENDIX 1 

Appen d ix 1 was not written. For a description of Turinis machines 

which copy, add 1, obtain the binary represen tation of a number in unary 

anct other simple operations-> see any text containing an introdu c tion to 

Turing machines such as [HJ. 
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