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ABSTRACT 

A new method for establishing lower bounds on the 

number of multiplications and divisions required to compute 

rational functions is described. The method is based on 

combining two known methods, dimensionality and rate of 

growth. The method is applied to several problems and 

new lower bounds are obtained. 

key words and phrases: algebraic operations, analysis 

of algorithms, computational complexity, dimensionality, 

lower bounds, multiplications, optimality, polynomials, 

rate of growth, rational functions. 
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Combining Dimensionality and Rate of Growth Arguments for 

Establishing Lower Bounc'ls on the l'-iumber of :tul tiplications 

1. Introduction 

In this paper we describe a new rnethoa for establishing 

lower bounds on the number of multiplications and divisions 

re0t1ired to compute rational functions. If F is n field an<'1 

a 1 , ... ,an are algebraically independent (indeterminates) over 

F then, as usual, F(a1 , ... ,an) is the field of the rational 

functions of a 1 , •.• ,an over F. For various F ana H c F we 

shall consider algorithms over (F(a1 , ... ,a ), HU{a 1 , ... ,a }) , 
--------- - n n 

namely algorithms computing elements of P(a1 , •.. ,an) by 

applying chains of rational operations to elements of 

H U{ a 
1 

, • • • , an }. 

The probleM of establishinq lower bounds on the number 

of operations was tackled first using dimensionality arguments. 

',Tamely, describing the Method informally, it was proved that 

algorithms computing certain sets of rational functions had 

to use at least one multiplication or division to introduce 

one or several out of many of the inoeterminates appearing 

in the functions beinq computed. Using these arguments no 

lower bound greater than the number of. the indeterminates 

appearing in the functions can be established. These methods 

were used first for polynomials by Ostrowski [4] anc Pan [5] 

and later by Winograd [9] and [10] for sets of rational 
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functions which are linear in some of the indeterminates (note 

that multivariate polynomials are linear in their coefficients). 

Finally, Strassen [7] used these arguments for sets of arbi­

trary rational functions. The methods were mostly based on 

dimensionality arguments in linear algebra. A typical result, 

due to Pan, states that at least n multiplications and 
n . 

divisions are required to compute r a.x1 over a suitable 
. 1 l. l.= 

domain. 

Another approach, due to Strassen [8];used algebraic 

geometry to establish rate of growth arguments. This approach 

allowed Strassen to prove among other things that the 
n . 

computation of the set {E a~ll < j < n} requires at least 
i=l 1 

- -

n log
2 
~ roultiplications and divisions. 

Fur the case of the computation of bilinear forms 

special methods for estahlishing lower bounds were developed 

by, among others, Hopcroft and Musinski [3] and Brockett and 

Dobkin [2]. 

Our method will allow us, in certain cases, to combine 

dir1ensionality and rate of growth arguments, so as to find 

lower bounds which could not be obtained using the previous 

methods. Among other results we obtain lower bounds on the 

nuP1her . i n of multiplications required to compute a 1x,a2x , ••• ,nnx 

or the 
n a(i) 

polynomial l a.x for O < a(l) < ••• < a(n). 
. 1 l. 1.= 
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2. Previous results and other preliminaries 

Definition 1. Let 1: be a field and let D c E. An 

algorithm of length N over (E,D) is a sequence of instructions 

A of length N, each instruction of one of the followinq 

types: 

(1) A [i]: = input d; 

(2) A [i]: = Jt[j] wA[k] 

where i,j,k E {1, ••• ,N}, d ED, w E {+,-,x,:} and for 

i, j ,k appearing in (2) j ,k < i. Fe shall sometimes say in 

case (2) that instruction 

instructions A [ . ] J and 

A [i) (with a label i) refers to 

A [k] • 

With every A a partial function Eval (A) 

is associated and defined inductively by 

(l, .•• ,N)-+- E 

If A [i]: = input d; then Eval (A) [i] ~ d. 

If A[i]: = A[j]wA[k]; then if Eval (Alj], 

Eval (A) [k] , Eval (A) [j] w Eval (A) [k] ; are defined, 

then Eval (A) [i] ~ Eval (A) [j] w Eval (A) [k]. 

In other cases Eval (A) [i] is not defined. From here on 

we shall consider only algorithMs A for which Eval (A) -
is total, as there will be no interest in discussing the more 

general case. 

For a subsequence B of 

Comp ( B {~ (A) [i] 

A , "t'le define 

A[i]CB }. We shall 

also say that B computes {e1 , ••. ,em} (respectively e) if 
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{e
1

, ••• ,em} c Comp ( B) (respectively e E Comp ( B ). 

The definitions above are based on those of Winograd [9]. 

Example 1. To clarify the notions which have been 

introduced above we give a very simple example. Let 0 

denote, as usual, the field of rationals and let x be an 

indeterminate over O. Then the following algorithm over 

( 0 (x) , 0 U { x}) computes 1 + x + x~ + x~ = 

i 

1 

2 

3 

4 

5 

6 

7 

8 

A 

A [1]: = 

A [2]: = 

A [3]: = 

A [4]: = 

A [5]: = 

A [6]: = 

A [7]: = 

A [8]: = 

input 2; 

A[l]: A[l]; 

input x; 

A [3] x A [3]; 

A [4] x A [4]; 

A [5] - A [2]; 

A [3] - A [2]; 

A [6] A [7]; 

Eval (A) 

2 

1 

X 

x2 

x-1 
4 

X -1 
x=r 

Let F be an infinite field and let G be an infinite 

subfield of F. Let a 1 , •.. ,an be indeterminates over F. Por 

some sets H such that G c H c F we shall be interested 

in studying algorithms over (F(a1 , ••• ,an), HU {a1 , ••• ,an}). 

It will be useful to have a "pool" of parameters. To this 

ena we shall have an infinite sequence (c. lo < i < 00 ) of 
1 - -
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in<leterminates over F , . ..,rhich c'1oes not contain any elements 

from (a. 11 < i < n). Let 
l -

G , H , F denote 
C C C 

H(c0 ,c 1 , ••. ) ana F(c0 ,c1 , ••. ) respectively. Then any 

algorithm over (F(a1 , .•• ,an), HU {a1 , ... ,an}) can be 

considered to be over (Fc(a1 , •.• ,an), H U{a1 , ••• ,an,co,c1 .•. }) 

The purpose of introducing G and c 0 ,c 1 , ••. will become 

clear later. To simplify the notation, we shall write* for 

either x or : • Furthermore, \·Te shall sometimes write ~ for 

either {a1 , .•. ,an} or a
1

, ••. ,an, £ for either {c 0 ,cl' ... } or 

co,c1,··· etc. 

Our purpose is to be ahle to com,,½ine bvo distinct 

methods for establishing 1~1er bounds. To this ena we first 

divide the MDs (multiplications and divisions) into several 

classes. 

Let F C E and G C D. Th en E n F C .,. 9' and 

Ge n D .,,_ r, • We shall characterize MDs in algorithms over 

(E,D) according to ',,½}ether the operands belong to Ge , 
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Definition 2 MD A [ i J : = A [ i] * A [ k] in an 

algorithm over {E, D) W'lere r c E, G c D will be 

(1) strongly counted (a SCMD) if 

when* :: X then Eval {A) [j] E E - Fe and Eval {A) (k) E E 

- G c or ~{A) [ :i] E E - Ge and 

Eval {A) [k] E E - Fe ; 

when* - then ~{A)[j]E E Fe and ~ (A)[k] E E 

- Ge or ~(A) [j]E E - {O} and ~(A) [k]E E 

- F 
C 

(2) weaklv counted (a OCMD) if 

when * - x then Eval (A) [j], Eval(A) [k] E F -G ; 
- CC 

when* - then Eval{A) [j] EF -{()} and Eval(A) [k]EF -G; 
- · C - C C 

(3) not counted (a ~CMD) if 

when* - then Eval(A) [k] EG 
C 

We shall sometimes refer informally to 

Eval (A) [j] * :Cval (A) [k] instead of A [i]: = A [j] 11: A [k] 

and say that a 1 * cr 2 for a 0
2 

E E 
1' 

is a SCMD etc. 



Example 2. Set 

r, = 0 , H = 0 U { 
4 

/2} . 

over ( F(a
1

) ,H U {a
1

}). 

i A 

1 A [ 1] : = 

2 A [ 2] : = 

3 A [ 3] : = 

4 A [ 4] : = 

5 A [ 5] : = 

6 A [ 6] : = 

7 

F = lR ( the fie 1 d of re a 1 s ) , 

Then in the following alqorithm 

Eval (A) 

input 4. 2; 4.2 

" 4 

input /2 fi 

input al; al 

A [ 1] X A [ 3] ; 4.2a
1 

2 
A [ 2] X A [ 2] ; ff 

A [ 1] : A [ 3] ; 4.2/a
1 

A [4) is a NCMD, A [5] is a ~CMD and A [6] is a SCMn. 

Every MD is in exactlv one of the three classes. As 

every MD can be simulated by SCMDs and ASS (additions and 

subtractions) there is no way of establishinq nontrivial 

lower hounds on the number of ucr-ms or l'lCMDs appearing in 

arbitrary algorithms cof"lputing- certain rational functions. 

We would obviously prefer to give lower bounds on the total 

nunher of ;lDs, but we d0 not have good retho<~s for this. 

Instead, we shall give lower bounds on tlle number of ems 

(counted MDs) v1hich comprise hoth scms anr~ T-:'CMDs. 
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We start by citing a well known characterization of 

of algorithms without SCMDs [9]. 

Lemma 1. Every element computed by an algorithm A over 

n 
f + r 

i=l 
g .a., q, 

1 l ··1 
E G , f E F 

C C 

Proof. By induction on the length of A. 

([I Trivial 

!N+~ We only remark that if 

( 1) 

(fl+ Eq~ a.) * (f 2 + Eg~ 0.) is not a SCMD, 
· l l l 1 

then the result of this MD is of the form (1). n 

In the interest of makinq the exposition as clear as 

possible some of our proofs will not be completely formalized. 

For P-xample, in some proofs, instead of usinq a formal 

induction on the length of alqorithms we shall use more 

informal arguments. 

h-e quote now (using our formulation) the theorem which 

established the dimensionality arguments [7]. 

Theorem l (Strassen). Let A he an alqnrithm over 

using m < n SCMDs. Then there exists a (Zariski)-dense 

subset S of Fn, such that for every s E S there is an 

n x (n-m) matrix r over G of rank n-m, such that 
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'¥ 
1 

(~_) ~ { l/1 i ( r~ + ~} I 1 < i < t} can be coMputed without 

b = (b1 , ..• ,b ) is a sequence of indeterminates over F. 0 n-m · 

Although Strassen did not use our classification of 

MDs, his proof can be used for the above theorem. 

Remark 1. Similarly to Lemma 1, it can be shown that the 

elements of V' are of the form 

f + 
n-m 

E 
i=l 

g. b., g. E G , 
l. 1 1 

f E F . 

To show how Theorem 1 is used we present a slightly 

strengthened version of Pan's result. 

Corollary 1. Let x be an indeterminate over G and let 

F = G (x) • Then every algorithm over (G (x , !!_) , G U { x, ~}) 

which computes ~ a.xa(i) for O < a(l) < ••• < a(n) 
i=l 1 

requires at least n SCMDs. 

Proof. Assume that there exists A satisfying the assumptions 

of Theorem 1 which has only n-1 SCMDs. Then there exist 

s1,···,sn E G (x) and ql'"""'gn E G not all of them zero, 

n a(i} such that E (g. bl + s. ) X = S(x) bl + a(x} can be 
i=l 1 1 

computed without SCMDs. But, on the other hand, it is 

impossible by Remark 1 as S(x) E G(x) - G. n 
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Pora set 'l' and an algorithm A computing 'l' Fe 

shall denote by µn(!) and µ 0 (A) respectively the lower 

bound on the number of SCMDs which can be ohtained by an 

application of Strassen's theorem. Similarly, we shall 

denote by µ('¥) and µ(A) the number of CMDs required 

to compute '¥ by an algorithm A. 

In manv cases it is simpler to use Winograd's 

theorem [9) which can also he obtained as a corollary 

to Strassen's theorem. 

Corollary 2 (Winoqrad). Let A be an algorithm over 

(F(a1 , •.. ,an)' HU {a1 , •.• ,an}) computing !l> a+ cp where 

~ is t x n matrix ano cp at-vector of elements in F. 

FUrthermore, assume that there are m columns in <I> such 

that no nontrivial linear combination of them over G 

is in Gt (obviously it is in Ft) • '!hen A has at least 

µD (A) = m SCMDs • □ 
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3. Main results 

T.'1e shall now describe briefly and informallv the main 

idea behind our method. i,1e start with an algorithm A over 

(F (~) , H U ~) which computes 11' (~) • 'l'his algorithm has 

µ(A) CMDs (we want to find a lower bound on µ(A)), at least 

µn of them sc~ms. We transform this A into an aloorithn 

B over (F , HU c). This algorithm computes certain A and 
C -

11'(~) and is obtained from A bv (among other operations) a 

substitution of A for a which reduces at least µD SCMDs 

into NCMDs. Thus,weshallhave µ(B).::_µ(A)-µ
0

(A). ~-Je 

can now use rate of growth arguments to give a lower bounc, 

say µG (B), on the number of oms in B. Thus, µ (B) ~ µG (B) 

and µ(A)~ µD(A) + µG(B). We shall show that for some 

ll'(~) there are nontrivial lower hounds on µG(B) which do not 

depend on a particular B. Thus, we can establish a lower 

bound on µ ( ll') • 

The following is our main theorem: 

Theorem?. Let A 

n U { a
1

, ••• , a
1

. }\ coIT'<'"'J.tinq 11' {a) = { ljJ. (a) I l < j < t}. 
- J - - -

Then 

there exists an al ,.,rithm B over (F(c1 , ••• ,cn), EU{c 1 , ••• ,cn}) 

computing u = (ui(c1 , ... ,ci_1 ) 11 < i < n),:: = (vi(c1 , ..• ,cj__ 1 ) 

ll ~ i ~ n) ,~ = (Aill ~ i ~ n) and ll'(~) = {lj;j(!) ll ~ j ~ t} 

such that 
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( 1) µ ( B ) < µ ( A ) - µD ( A ) , 

( 2 ) Comp ( B ) c r, c ( fl U { a , ••• , an} ) (the set of rational functions 

( 3) 
n 

w1(u. ~- = u. + c. V. + E + c. V.) , 
l l l l j=i+l l. J J J 

( 4) ui, V. E F(c1 , ••• ,ci 1' , w ⇒ E G(c 1 , ••• ,cj_ 2 ), 
l. l 

(5) A is a permutation of ~ 

(6) If there were no SCDs (strongly counted divisions) in 

A , then v. = 1 , i = 1, ••• , n , 
l 

(7) If there were no CDs (counted divisions) in A, then 

Comp (B) E Gc[H U {a1 ,. ... ·,an}] (the set of polymomials in 

elements of HU {a1 , ... ,an} over Ge). 

Before provinq the t.hP-oren we shall prove some results 

v1hich will be useful in its proof. 

If A is an alqorith~ over (F (a), H U {a,c}) 1.vit11 out 
C - - -

SC 1ms, then bv Lerr.ma 1 every element computed h~, A is of the 

rorrn (1). ';:e shall shm·r that it is possihle to "reoraanize" 

A so as to ohtain B without increasing the nurnber of c•ms 

and ' 7hich cor.nute,s all the f's appearir,g in elements of the 

-form (1) and then all the other elements computed by A. 

To state the result formally: 
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LeMma 2. Let A be an alc;oritrm over (re(~), l'. U {£,~}) 

\'Ii thout scr1~)s. "_'hen t!,ere exists 2n c1loori tl1F1 B = a 1 a2 

(concatenation of b10 secruences of instructions a1 Dnf B~) 

over (Fe(~), H U {_£,~}) such that 

(1) µ(A) = µ(8) , 

( 2) Comr:; (I\) C Cori12, ([3) , 

( 3) Comp (P) r: F - :1 C 

( 4) {f If + l'.cr.a. E ~(A)} C Comp ( l::31) . 
·· i l 

Proof. r.:e note first tl1at hy Lemma 1 every element in Conm -
(A} has the forrn ( 1) • Pe shall first construct B

1 
, cy 

induction on the lenath of A. 

[]] a 1 is er-1pty. 

I tJ+ll Let A' consist o:: the first "'.'J instructions of A anc1 

let a1 satisfy the lemna for it. '''e shall noH defino. B
1

• 

There are several cases to ~e considered. 

(1) A [~J+l]: = input d; 

If d E F then add this instruction (changing th0 
C 

label if necessary) to B~ obtaining B1 ; otherwise, 

( 2 ) /\ [lJ+ 1 ] : = A [ j ] w A [ k ] ; 

then 

Eval (A) [j] = fj + 'f.crlai 

r:v al ( A ) [ k] = fk + I q~ a . ' 
· l l 

· 1 fj ,_Fl-: E:= ,... (8 1
) anu . ~ 1 . 
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There are several snhcases to be consi<lered: 

(a) w E {+,-}. In this case add the j~struction 
. J,-

computing f 1ulf to B' ohtaining Bl' 1 

(b) E { X , : } and j i k k w gl = = rrn = gl = . . . = qn = 

Then add or A [n+l] to cl' 1 

obtaining B
1

• 

( ) (: f } ..:] { j j k k} ~ ro} c ul .: ,x,: anu g 1 , ... ,gn' g 1 , .•. ,gn r, . 
Then either qi= ... = g~ = 0 or 

k k 0 • If, k k 0 gl = . . . = gn = say ql = . . . = a = ·n 

then fj r: G (otherwise this would be a SCMD) 
C 

an~ add the instruction computing fjwfk to B~ 

obtaining s1 . 

0 • 

r.,e saw that in all the e1ree subcases we added the instruction 

f ~ w f k B I 1 d h 1 th ..:] to 1 , 0ut we treate. t em separate y so , e real,er 

could convince himself that no CMDs were added. 

:row it is possihle to add instructions, which are not 

crms to B
1 

which compute all the elements of 

Corollary 3. Let B = s
1
s

2 
satisfy the conditions of Lemma 

2 and let f E Comp (B 1 ), g O,g1 , •.. ,gn E Ge 

possible to construct B' = s1 s1 _5 B2 over 

such that 

(1) g0 f + ~giai E Comp (B1 _5 ) , 

(2) µ(B') = µ(B) • 

Then it is 

(F (a) ,H U{9_,~}) 
C -
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Proof. B' is obtained from B by (informally) inserting 

between s1 and B
2 

instructions which are not CMDs and 

which compute 

n 

g
0

f + Eg.a. 
l. l. 

using f which was computed by 

Proof of Theorem 2. Instead of proving the theorem formally 

by induction on (say) length of A we shall show how to 

transform every A into an appropriate B satisfying the 

theorem. 

We consider the first SCMD A [i]: =A [j] *A [kl. Let 

cr 1 ~ Eval (A) [j], cr
2 

~ Eval (A) [k]. Then at least one of 

and 

where 

cr 2 , denote it by a , has the form 

(1) f EG(H), 

(2) g
1

, ••• ,gn EG, 

(3) {gl, ••• ,gn} 'f- {O}. 

f + Eg.a. 
l. l. 

If both operand;have this form and satisfy condition (3) 

let By (possibly) permuting the vector a and 

using the same symbol,~' to denote the permuted vector, 

we may assume that g
1 

~ 0 . We shall consider two cases: 

(1) If cr
1 

* cr
2 

_ cr
1 

x cr
2 

or cr - o
2 

then consider 

the equation f + Egiai = g 1c 1 and define v 1 ~ 1 • 

(2) If al * 02 ol:cr2 and 0=01 then consider -

the equation f + Eg.a. = 
l. l. glvlcl and define vl ~ a2 (we 

know that 02 E F - {O}) . 



16 

Solving the appropriate equation for 

the solution A1 we have 

1 

a 1 and naming 

1 
g 2 ai where 

u = 1 gi = -gi/gl . 
~ 

Denote by A the algorithm obtained from A by 

taking all the instruction up to, and not including, the first 

SCMD, This algorithm obviously has no SCMDs and therefore 

~ 
using Lemma 2 and Corollary 3 we may transform A into 

s1s1 _5s2 where B1 and B2 satisfy the conditions of 

Lemma 2 and s1 _5 computes u1 ,v1 and A1 • Thus we may 

assume that A is already in the form s1 s1 • 5s2 , and A 

is an algorithm over (F(c1 ,~) , FU {c1 ,~}) • 

We construct now A1 from A by (informally) sub-

stituting A1 for More formally, we drop instructions 

with input a 1 and each instruction which refered to one of 

them will refer to the instruction which computed A1 . Thus 

A1 is an algorithm over (F(c1 ,a2 , .•• ,an) , HU {c1 ,a2 , ••• ,an}). 

We note first that Eval (A 1 ) is total, namely there are no 

attempts in A1 to divide by zero. To show this it is 

enough to show that if ~(a1 ,a2 , ••• ,an) E F(a1 ,a2 , •.• ,an) - {O} 

then ~(A1 ,a2 , ..• ,an) E F(c1 ,a2 , •.. ,an} - {0} • But this 

follows immediately because: 

(1) if ~(a1 ,a2 , ••• ,an} is not a function of a 1 

then ~(a1 ,a2 , ..• ,an) = ~(A1 ,a2 , ... ,an) , 

(2) if ~(a1 ,a2 , ... ,an) is a nontrivial function of 

a 1 then ~(A1 ,a2 , .•. ,an) is a nontrivial function of c 1 . 
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We also see that µ(A 1 ) ~ µ(A) - 1. First we note 

that the instruction in A1 which corresponds in an obvious 

way to the first SCMD in A is a NCMD. Indeed there are two 

cases corresponding to the two equations above: 

(1) in this case the SCMD is transformed into 

(2) in this case the SCMD is transformed into g 1c 1 

which can always be computed without CMDS. 

In addition we note that any operation in A which was 

not a CMD is transformed into an operation in A1 which is 

not a CMD. Thus the number of CMDs has been reduced by at 

least one. To show this we only remark that if 

ip(a1 ,a2 , ••• ,an) E G then 1'J{A
1

,a
2

, ••• ,an) E G. 

Finally, we summarize for the reader that. A 1 computes 

u 1 , v 1 , A1 , V(A1 ,a2 , ••• ,an) and µ(A
1

) ~ µ(A) - 1. 

Let us now consider the first SCMD in A1 • Once again 

we consider cr1 •cr2 and at least one of cr 1 and cr 2 , 

denote it by cr, has the form 

(1) 

(2) 

(3) 

f EG(H U {c
1
}), 

g2, ••• ,gn E G(cl), 

{g2,···,g} 1,0~ n . 

n 
f + E g.a. where 

2 1 1 

If both operands satisfy these conditions, pick the second 

one. Similarly to above we consider an appropriate equation 

which would reduce this SCMD into an operation which is not 
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a CMD and construct an algorithm A2 over 

which computes 

n 1 
ul,vl,Al - u + clvl + 1: g.a. , 

1 2 l. l. 

n 2 
u2 ,v2 ,A2 = u2 + c2v2 + 1: g.a. 

3 l. l. 

where u 2 ,v2 E F(c1 ) (actually u 2 ,v2 E G(H U {c1 }) ), 

2 gi E G{c1 ) and µ{A 2 ) ~ µ(A 1 ) - 1 < µ(A) - 2 . 

We proceed in this manner m < n times, until there 

are no SCMDs left. Then Am computes u 1 , ••• ,um, 

v 1 , ... ,vm, A1 , ... ,Am and ~(A1 , •.. ,Am, am+1 , •.. ,an) 

over (F(c1 , ... ,cm, am+l'"""'an) , H {c1 , •.• ,cm, 

am+l'"""'an}). A1 , •.• ,Am can be written in terms of 

am+l'"""'an as following: 

n-m 
A. = s. + l Y· . am+J· 

i i j=l i,J 
( 2) 

now bl~ a +1 , ••. ,b ~ a m n-m n we may say that is an 

algorithm over 

which computes 

defined by 

(F (b
1

, ••• ,b ) c n-m , H U {b
1

, ••• ,b }) c n-m 

where r = (y. . ) is 
l.,J 
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y .. from equation (2) ; 1 < i < m 
l., J 

y .. = 
l.,J 

1 m < i < n 

0 . m < i < n , 

r is an n x (n-m) matrix of rank n-m and from 

here using Strassen's result it is possible to show that 

Now we set 

u. = 0 v. = 1 i = m+l, ••. ,n 
l. l. 

i 
0 i m+l, ••• ,n j i+l, ••• ,n g. = = = 

J 

A. = c. i = m+l, ••• , n . 
l. l. 

Thus we have the following system of equations 
~ A. = u. + c.v. + 

l. l. l. l. 

and where we introduce 

n 
I 

j=i+l 

~ 
A. 

l. 

i -
g. A. 

J J 

instead of 

i=l, ... ,n 

A. 
l. 

as we are 

, 

actually dealing with a permutation of A. • 
l. 

This system 

being an upper diagonal can be very easily solved so as to 

give the solution claimed by the theorem. The last 

algorithm constructed was t\n and it was over 

j=i 

j1'i 

We substitute in it c. for a. , j = m+l, ••• ,n obtaining 
l. l. 

the required algorithm B (we can of course assume that it 

computed um+l' ••• , un, vm+l' ..• , vn, Am+l '·• •• ,An) • Finally 
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it also follows easily that if ~(~) E F(~) - {O} then 

~(A) E F - {O} and there are no attempts in B to divide 
- C 

by zero. 

Corollary 4. Under the assumptions of the theorem there 

exists 8 over (F c , H u c) computing u = cu. I 1 < i < n) 
l. - -

V = (v. I l < i < n) , A= (A. 11 < i < n) and - l. 1 - -
'¥ (A) = { ~. (A) I 1 ~ j < t} such that 

J - -

µ(B) ~µ(A) - µ
0

(A), 

Comp ( B) E G ( H U {a, •.. , a } ) , 
c m n. 

A. = u. + c (. ) v. + I w~ (u. + c ( . ) v.) , 

, 

(1) 

(2) 

(3) 

(4) 
l. l. l 1 1 j=i+l l. J . l J J 

ui,vi E F(c1(l)' 000 'c1(i-l)) ' wt E G(c1(i)' 000 'c1(i-l)), 

(5) 1:{l, ..• ,n} ~ {l, ..• ,n} is a permutation, 

( 6) if there were no SCDs in A then 

i=l, ... ,n, 

(7) if there were no CDs in A then 

v. = 1 , 
l. 

Proof. Follows from Theorem 2 by giving the permutation 

of A explicitly. 

Corollary 5. Under the assumptions of Theorem 2 we may 

assume that there exist a= (a. ll < i _< n) , 
1 -

~ • (Sill~ i ~ n) s.t. B computes ~,~,A and '¥(A) and 

l<k<n 

where 
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a\ (k) E F (c\ (1), • • • ,c\ (A (k_)-l)) , 

8 1 (A (k)) E F (c 1 (l), ••• ,c 1 (A (k)-l)) -. {O} , 
. t ~~·, ,_' 

-,4 f,I . ..
1 

_,, ) ~ 

y 1 (k) E G (c\ (1), ••• ,c\ (A (k)-2) )' - {of·, 
,·, 

·v· ~ 

-~ / , 

k ~ >.(k) ~ n 

and 

(1) if there .were no SCDs in. A then 

B \ (). (k)) • l , 

(2) if there were no CDs in A then 

~ (B) E Gc(H U {a1 I • • ~ I •n> J. 

Proof. We use the form for A derived in Corollary 

two cases 

(1) 

13\ (X (k)) a v). (k) 

• w).(k) 
y\(k) k ' 

. . 

4 and discuss 

(2) k+l n {wk , ••• ,wk}• o. Let >.(k) • k and set 



•· 
< !f .... (J(lt)-,::;,~ .. •·tf:llol'f ~<«il ,fJ 

. . . ~- ... ·, 

!.!~1'1:t A n.J: ;e~ M, ~, •~ l'J: · UJ . . 

\ J ;• 'tti>tJ · I ., :,, .· '. . .. I 

·•~•ib hwl. ti y:rttJ. lo~ .al: t~•vi':t- ! • .• ., aa:, d · •l~'l~ 

····~ -

. . . -

:tn bM 1 t; (:ftl "'4: . ii _,\t~c...«~;~,J lt:) 
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4. Applications 

From now on we assume that F = G (x) , H = G U {x} 

where x is an indeterminate over G. In this case we 

shall also write sometimes explicity 

Furthermore we shall discuss only the case ~(~) = ¢~ + ¢ 

where ¢ is a txn matrix and ¢ at-vector of elements 

in F (compare with Corollary 2). In order to be able to 

deal more uniformly with this case we set a 0 ~ c 0 and 

write ¢a+ ¢c0 = ¢~ + ¢a0 (thus, say multiplications by 

elements from G(a
0

) = G(c
0

) won't be CMDs). Defining 

now a tx(n+l) matrix i by 

" {¢i 
<I>i,j = <I> •• ; 

l., J 

we may say that ""' - <I>a 

j=O 

otherwise 

" where a = 

If we set A
0 

= c 0 all our results up to this point follow. 

We could have been more formal and replaced everywhere F 

by F(a
0

) etc., but it would serve no useful purpose. 

For an element p of G [x] 
C 

(the set of polynomials 

in x over elements of G) we shall denote by a(p) the 
C 

degree (in x) of p. 
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Definition 3. Let i = (i. . ) 
]. , J 

be 

a matrix in G[x] • Then define Sp(i), the sparsness index 

" of <I>, as following 

- a ( <1> i , 
1 

( O ) ) , a ( <1> i , 
1 

( O ) ) I 1:{ 0 , 1 , ••• , n} + { 0 , 1 , ••• , n} 

is a permutation such that 

Example 3. Let t=2, n=3 and 

then 

4 
X 

5 
X 

1 

:) 
4 

X 

5 
X :) 

If the first row is rearranged in the order of descending 

degrees then it becomes 4 3 
X , X , 

the second row: 5 2 
X , X , X, 1 • 

Theorem 3. Let A compute 

3 
X +l, 

Thus 

over 

x. Similarly for 

Sp($) = acx5)-a(x2 )=3 

(G(x,a) , G U {x,~}) . 

Without CDs (thus necessarily ~ c G[x]) • Then 

l.l (A) ~ l1 0 (~~} + fJ.og 2 Sp ($)7 provided that either 
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n 
(1) 

A II aa (k) All <Ii. are monomials of the form 
l., j k-1 k 

" A 

(2) For every i the degrees of <Ii. O, ... ,cti. 
l., l. ,n 

are distinct. 

Lemma 3. Under the assumptions of Theorem 3 the rational 

" functions A are polynomials in x which do not vanish 

for x=O . 

Proof. Let 0 < k < n. Then is a polynomial in X 

the form 

If we substitute x=O into we obtain a nontrivial 

polynomial in ct (A(k)) • 

Lenuna 4. Let B compute p E Gc[x] over 

without CDs. Then µ(B) ~ flog 2a(p)l 

Proof. Well known. '7 

Proof of Theorem 3. By Corollary 4 there 

" "" , (£ (Ao, ... ,An)) , computes ~, ~A = s.t. 

(G (x) ,G U {x}) 
C C 

exists B which 

µ ( B) µ(A)-µ
0

(A), < -
and it is enough to show that at least one of the (n+l)+t 

A "" polynomials A , ¢A has the degree which is at least -
Sp(~). W.l.o.g. we may assume that a($. ) < a(i. 1 ) 

l.,O - l., 

< • • • < a ( ~ . ) and Sp ( i ) = max { a ( $ . ) - a ( i . 1 ) , .•• , - - i,n i,n i,n-

or, 

of 
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a(¢. 1 )-a(¢. 0 ), a($. 0 )}. Leto< k<n be such that 
1, 1, 1, 

,., ,,, ,,, 
Sp(¢)= a(¢. k)-a(¢. k-l> (for completeness: 

l., 1, 

a(¢. 1 ) ~ O). We can write 
i,-

n 
" q :e 2 

j=O 
A.¢ . . = ql + q2 J l.,J 

q = 
1 

k-1 
2 

j=O 

,,, 
A.¢ . . 

J l., J 

n 
q2 = 2 A. 

j=k J 

where 

¢. . 
l.,J 

and we shall show that at least one of the polynomials (in x) 
,., 

q, Ao, A1 , ••• ,An has the degree at least Sp(¢) • There are 

two cases: 

" (1) a(q) > Sp(¢) and the result follows. 
,,.., 

(2) a (q) < Sp(¢) • As by Lemma 3 

" Sp(¢) 

,,.., 

It follows that a(q1 ) ~ a(¢i,k) Thus for some j , 

O < j .'.:. k-1 , 

a (Aj) > a (q 2 ) - a (~i,j> > a c$i,k> - a c$i,k-l> > spc~> 

and the result follows. D 

Corollary 5. If under the assumption of Theorem 3 A 

computes ~ a.xa(i) ~ for O < a(l)< ••• <a(n) 
. 1 l. 1= 

then µ(A)> n + flog 2 max{a(n) -a(n-1), ••• ,a(2) -a.(1) 

,a.(1)}7. 

Proof. Immediate as by Corollary 1 µ
0 

(A) = n • □ 
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Let p (x) E G(x). 'Ihen for every integer E and a 

sufficiently large integer N there is a unique sequence 

(Tr. IE < j < N) c G such that 
J - -

p(x) 
N 

= r ir. xj + r(x) 
E J 

mere Trj E G and r(x) = r 1 (x)/r2 (x) mere r 1 ,r2 are 

polynomials satisfying a(r1 ) - a(r2 ) < £ 

Definition 4. Let a= (a(l), ••. ,a(m)) te an increasing 

sequence of integers, and let E = (p1 (x), .•• ,pm(x)) be a 

sequence of elements in G(x) • Then E is a -normal if and 

only if the determinant 

is not zero where p. = 
l. 

i 
det (Tra(j)) i=l, .•. ,m, j=l, •.. ,m 

N 
r Tr~ xj + r

1 
./r2 . like above. 

j=a(l) J ' 1 
'

1 

Fbr a sequence a like al:x::>ve ~ define µ(~) ~ 

min { CMDs required to compute a sequence ~( q 1 , ••• , qm) c G ( x) 

I (q1 , • .• ,qm) is a-normal} 

Theorem 4. Let A te an algorithm without SCDs over 

(G(x,a) , G U{x,~}) computing the sequence a 1p 1 (x), •.. , 

anpn(x) where p 1 (x) , ••. ,pn(x) is a sequence of rational 

functions having an ~-normal sul:sequence for some a= 

Proof. After applying Corollary 4 (we can assume that 

1 (k) = k) we have an algorithm B computing (among others) 

the sequence <¾Pk I 1 < k < n) mere 
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for 1 < k < n. 

W.l.o.g. (p1 , ... ,pm) was a-normal. We can expand 

A.p. = 
l. l. 

N 
l i~ (c) xj + rl . (x) /r2 . (x) 

J - ,1. ,1. j=a(l) 

where -i ,r . 
J 

E G(c) , r
1 

. , r
2 

. E G(x, _c) , 
- ,1. ,1. 

a cr1 . > -
' l. 

a (r2 ,i) < a(l) • 'lbus det(ir! (j)) is a rational 

function of c 1 , .•• ,cn and it will suffice to show that it 

is a nontrivial function. From the above it follows that 

i i 
= ,r j c A ( i) y i ( c 1' • • • 'c A ( i) -2) + ,r j I'; i , j ( c 1 ' • • • 'c A ( 1) -1) 

using the -well known formula concerning expansion of a 

determinant the elements of Wlich are sums of pairs -we have 

-.1. det (,r.) 
J 

and from here cy induction on n and analyzing n it is 

possible to show that indeed -i det (,r.) t- 0 • 
J 

Thus 

C¾Pk I 1 < k < m) is a-normal and the result follows. D 

A slightly weaker version of the following result 

was stated by Shaw and Traub [6] and used by them to prove 

the optimality of one of their algorithms. 
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Corollary 6. Let A compute (a1x 1 , ... ,anxn) over 

(G(x,~) , G U {x,~}) under the restrictions of Theorem 4. 

Then µ(A) > 2n-l • 

Proof. 'As mere cl>. • = cS. .xj 
l.,J l.,J 

then by Corollary 2 µ0 (A) = n . 2 n The subsequence (x , ... ,x) 

of length n-1 of 2 n (x,x , ... ,x) is (2, •.• ,n) normal and 

therefore B computes a (2, ••• ,n)-normal sequence 

We shall show that if B computes a 

(2, .•• ,n)-normal sequence, say (p1 , •.• ,pn_1 ) then 

µ(B) ~ n-1 and the result will follow. 'Assume that only 

t < n-1 CMDs appear in B • Then if y 1 , •.. ,y 1 E Gc(x) 

are the results of these CMDs then 

W1ere 

( cS • 
J 

in X 

l 

P· = .I g .. y. + cS • 
]. 

J=l l.,J J J 

g .. E G and cS • E G [x] 
l.,J C J C 

were computed without CMDs) • 

we have 

p. = 
]. 

i 

l gi,J' YJ· 
j=l 

i=l, ... ,n-1 

and are linear in x 

Dropping terms linear 

i=l, ••• ,n-1 

(2, •.• ,n) - normal and therefore 

linearly independent. Thus it cannot be spanned by a linear 

combination of l < n-1 elements y 1 , ••• , Yi . Thus 

µ(B) > n-1 and the result follows. ~ 

'As the next application of our method we sketch 

briefly how we can prove Brodin's result [l] that Horner's 
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rule is uniquely optimal. 

Theorem 5. (Borodin) Horner's rule it the only algorithm 

mich uses n IDs and n-1 ASs (additions and subtractions) 

n i (G(x,~) U {x,a}), and to compute E ~ X over , G 
i=l n xi thus is the uniquely optimal algorithm computing E a. 

i=l l. 

Proof. (sketch). It is known that n SCMDs and n-1 ASs 

are required. If -we apply our method of sul:stitution to 

Horner's rule (wiich can be described informally as 

we 
n 
E 

i=l 
(-c 

A. 
l. 

Ea. 
l. 

n i r a. x = ( .•• ( a x + a 
1

) x + . • • + a 1 ) x ) 
i=l i n n-

note that l ( 1) = n , ... , l (n) = 1 , B computes 

n 

= 

i 2 
Ai (x) X = -(c X + cl) X + ( - C3 X + c2) X + ••• + 2 -

+ cn-1) 
n-1 + n and A X X C X = cl X = C n n n 

-ci+l X + C. i=l, ... ,n-1 
l. 

Let now A be an arbitrary algorithm computing 

i 
X mich has exactly n CMDs (all of them necessarily 

SCMDs). Thus µ{B) ~ µ(A) - n = n-n = 0 and therefore 

i EA. (x) x , A1 (x) , ..• , A (x) are necessarily linear in 
i n 

x. In addition to this using the facts that A had no 

WC~IDs or NCMDs and exactly n-1 ASs it is relatively 

easy to show the claimed result. D 

A special case of the following "decomposition" 

theorem was first proved bf Winograd [11). 
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Theorem 6. Let A over ( F(a) , H U a) compute 

'¥ 1 (~) u 'i' 2 \lhere 'i' 1 (~) c F(a) and '¥2 CF. Let 

µ ('¥ 2) be (as usual) the minimum number of 01Ds required 

to compute 'i' 2 over ( F(~) , H U ~) • 'lhen 

µ (A) ~ µD (A) + µ ('¥2) = µD ('¥1 (~)) + µ ('¥2) • 

Proof. laing 'lheorem 2 we obtain B computing ~, 

'¥ l ( ~) U '¥ 2 • Th us µ ( 'i' 2 ) < µ ( B ) < µ ( A ) - µ D ( A ) and 

the theorem follows. u 

We now give an example without making the assumptions 

appearing at the beginning of this section. 

Exam12le 4. Let A be an algorithm over (JR (a) , Q u {p,~}) 

m n 2 21/M computing p E a. without CDs where p = and 
i=l l. 

n 
M > (m+l) 2 We shall show that µ(A) > n + r1og 2 ml. -
Assume that µ(A) < n + 11og2 ml < log2 M . Then (compare 

with Lemma 4 ) it is possible to conclude that -we may 

think of P as if it were an indeterminate over O • Now, 

using essentially the same method \<hich Strassen [7] used 

to prove that an algorithm computing 
n 
E 

i=l 

2 a. 
l. 

over 

( lR(a) , JR U a) requires at least n MDs, -we can show that 

The corresponding B computes pm EA. 2 
l. 

\<hich 

is a polynomial in p over 0 
C 

While proving Theorem 2 

~ noted that if iµ (~) E F(~) - {O} then 1/1 (~) E Fe - {O} 
n 

Thus E A. 2 is a nontrivial polynomial in p and pm EA. 2 
. 1 l. l. 1.= 

is a polynomial in p of degree m at least. Thus 

µ(B) ~ ~log 2 ml and the result follows. 
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5. Conclusions 

We have described a new method for establishing lower 

bounds on the number of multiplications and divisions. 

Although most of the applications were given in a rather 

restricted setting (linear functions of indeterminates were 

considered) the basic theorem was formulated in a gneeral 

framework. Actually some common but unnecessary assumptions 

were made (e.g. it was not necessary to assume that 

a 1 , ••• ,an were indeterminates, and weaker assumptions ~uld 

have been sufficient). As the rate of growth arguments do 

not handle divisions as easily as multiplications, our 

results were also deficient in this manner. It seems to 

us that at least some of our results can be strengthed by 

studying A and ,c~) more carefully. It seems that the 

method, also very useful in some cases, is inherently 

limited to proving lower bounds of the form O(n). We would 

like to mention also that it seems that inherently the same 

method can be used to handle additions and subtractions. 

Unfortunately, rate of growth arguments for additions and 

subtractions are almost nonexistent. 
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