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ABSTRACT 

Lower bounds are established on the computational complexity of the 
decision problem and on the inherent lengths of proofs for two 
classical decidable theories of logic: the first order theory of 
the real numbers under addition, and Presburger arithmetic -- the 
first order theory of addition on the natural numbers. There is 
a fixed constant c > 0 such that for every (non-deterministic) 
decision procedure for determining the truth of sentences of real 
addition and for all sufficiently large n, there is a sentence of 
length n for which the decision procedure runs for more than zcn 
steps. In the case of Presburger arithmetic, the corresponding 

2cn 
bound is 2 These bounds apply also to the minimal lengths of 
proofs for any complete axiomatization in which the axioms are 
easily recognized. 
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1. Introduction and Main Theorems. 

We present some results obtained in the Fall of 1972 on the computational 

complexity of the decision problem for certain theories of addition. In 

particular we prove the following results. 

Let L be the set of formulas of the first-order functional (predicate) 

calculus written using just+ and= Thus, for example, ~[x + y = y + z] 

v x + x = x is a formula of L, and Vx3y[x + y = y] is a sentence of L. 

Even though this is not essential, we shall sometimes permit the use of the 

individual constants O and 1 in writing formulas of L. We assume a finite 

alphabet for expressing formulas of L, so a variable in general is not a 

single atomic symbol but is encoded by a sequence of basic symbols. 

Let 1J. = <N, +> be the structure consisting of the set N = {O, 1, 2, .•. } 

of natural numbers with the operation+ of addition. Let Th("f) be the 

first-order theory of'>(, i.e. the set of all sentences of L which are 

true in "l. · For example, v'x 'v'y[x + y = y + x] is in Presburger 

has shown that Th("1) is decidable [2]. For brevity's sake, we shall call 

Th(1) Presburger arithmetic and denote it by PA. 

Theorem 1. There exists a constant c > 0 such that for every decision 

procedure (algorithm) AL for PA, there exists an integer n
0 

so that for every 

n > n
0 

there exists a sentence F of L of length n for which AL requires more 

2
cn 

than 2 computational steps to decide whether FE PA. 

The previous theorem applies also in the case of non-deterministic 

algorithms. This implies that not only algorithms require a super-exponential 

number of computational steps, but also proofs of true statements concerning 
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addition of natural numbers are super-exponentially long. Let AX be a system 

of axioms in the language L (or in an extension of 1) such that a sentence 

FE Lis provable from AX (AX f- F) if and only if FE PA. Let AX satisfy 

the condition that to decide for a sentence F whether FE AX, i.e. whether 

Fis an axiom, requires a number of computational steps which is polynomial 

in the length IFI of F. 

Theorem 2. There exists a constant c > 0 so that for every axiomatization 

AX of Presburger arithmetic with the above properties there exists an integer 

n0 so that for every n > n
0 

there exists a sentence FE PA such that the 

2cn 
shortest proof of F from the axioms AX is longer than 2 

a proof we mean the number of its symbols. 

By the length of 

With slight modifications, Theorem 2 holds for any (consistent) system 

AX of axioms in a language Min which the notion of integer and the operation 

+ on integers are definable by appropriate formulas so that under this 

interpretation, all the sentences of PA are provable from AX. The ordinary 

axioms ZF for set theory have this property. 

The result concerning super-exponential length of proof applies, in this 

more general case, to the sentences of M which are encodings of sentences of 

PA under the interpretation, i.e. to sentences which express elementary 

properties of addition of natural numbers. 

The previous results necessarily involve a cut-point n
0

(AL) or n0 (AX) 

at which the super-exponential length of computation or proofs sets in. It 

is significant that a close examination of our proofs reveals that n0 (AL) 

= O(IALI) and n0 (AX) = O(IAXI). Thus computations and proofs become very 

long quite early in the game. 
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The theory PA of addition of natural numbers is one of the simplest most 

basic imaginable mathematical theories. Unlike the theory of addition and 

multiplication of natural numbers, PA is decidable. Yet any decision procedure 

for PA is inherently difficult. 

Let us now consider the structure fl= <R, +> of all real numbers R with 

addition. The theory Th(/(.) (in the same language L) is also decidable. In 

fact, to find a decision procedure for Th(k{) is even simpler than a procedure 

for PA; this is mainly because IJ... is a divisible group without torsion. Yet 

the following holds. 

Theorem 3. There exists a constant d > 0 so that for the theory Th(.R,) 

of addition of real numbers, the statement of Theorem 1 holds with the lower 

dn bound 2 . 

Similarly for the length of proofs of sentences in Th(.R,). 

Theorem 4. There exists a constant d > 0 so that for every axiomatiza-

~ ~ tion AX for Th(#'\.) the statement of Theorem 2 holds with the lower bound 2 • 

Corollary 5. The theory of addition and multiplication of reals (Tarski's 

Algebra [3]) is exponentially complex in the sense of Theorems 3 and 4. 

(This result was obtained independently by V. Strassen.) 

Ferrante and Rackoff [1] describe decision procedures for Th(~) and PA 

en 2dn 
which run in deterministic space 2 and 2 (and hence in deterministic 

en 2dn 
time 0(2

2 
) and 0(2

2 
)), respectively, for certain constants c and d. 

Any substantial improvement in our lower bounds would settle some general 

open automata-theoretic questions on the relation between time and space. 

n2 
For example, a lower bound of time 2 for the decision problem for Th(R,) 
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would give an example of a problem doable in space S(n) 

bounded by a polynomial in S. 

en = 2 but not in time 

Variations of the methods employed in the proofs of Theorems 1-4 lead 

to complexity results for the (decidable) theories .. of multiplication of 

natural numbers, finite Abelian groups, and other classes of Abelian groups. 

Some of'these results are stated in Seccion 7 and will be presented in full 

in a subsequent paper. 

The fact that decision and proof procedures for such simple theories are 

exponentially complex is of significance to the program of theorem proving by 

machine on the one hand, and to the more general issue of what is knowable in 

mathematics on the other hand. 

2. Algorithms • 

Since we intend to prove results concerning the complexity of algorithms, 

we must say what notion of algorithm we use. Actually our methods of proof 

and our results are strong enough to apply to any reasonable class of algo

rithms or computing machines. However, for the sake of definiteness, we 

shall assume throughout this paper that our algorithms are the programs for 

Turing machines on the alphabet {O, 1}. 

We proceed to give an informal description of these algorithms. The 

machine-tape is assumed to be one-way infinite extending to the right from 

an initial left-most square. At any given time during the progress of a 

computation, all but a finite number of the tape's squares contain 0. An 

instruction has the form: "i: If O then print x
0

, move M
0

, go to one of 

i 1 , i 2 , •.. ; if 1 then print x
1

, move M1 , go to one of j 1 , j 2 , II Here 

i, i 1 , i 2 , .•• , j
1

, j
2

, •.• are natural numbers, the so-called instruction 
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numbers; x
0 

and x
1 

are either O or 1; and M
0 

and M
1 

are either R or L (for 

"move right" and "move left", respectively). 

The possibility of going to one of several alternative instructions 

embodies the non-deterministic character of our algorithms. Another type 

of instruction is: "i: Stop." Instructions are abbreviated by dropping 

the verbal parts. Thus, "3: 0, 1, L, 72, 5; 1, 1, R, 15, 3." is an example 

of an instruction. A program AL is a sequence 1
1

, ..• , In of instructions. 

For definiteness' sake we assume that the instruction number of I. is i and 
1 

that I is the instruction "n: Stop." Furthermore AL is assumed to be coded 
n 

in the binary alphabet {O, l} in such a way that "Stop" also serves as an 

end-word indicating the end of the binary word AL. 

* Let x E {O, l} be an input word. To describe the possible computations 

by the algorithm AL on x, we assume that xis placed in the leftmost positions 

of the machine's tape and the scanning head is positioned in the leftmost 

square of the tape. The computation starts with the first instruction 11 • 

A halting computation on xis a sequence C = (I. , 
11 

, I. ) of instructions 
1 

m 

of AL so that i 1 = 1 and im = n. At each step 1 ~ p ~ m, the motion of the 

scanning head, the printing on the scanned square, and the transfer to the 

next instruction I. , are according to the current instruction I. The 
ip+l ip 

length £(C) of C is, by definition, m. 

It is clear that a truly non-deterministic program may have several 

possible computations on a given input x. 
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3. Method for Complexity Proofs. 

Having settled on a definite notion of algorithm, we shall describe a 

general method for establishing lower bounds for theories of addition which 

are formalized in L. We do not develop our methods of proof in their fullest 

generality but rather utilize the fact that we deal with natural or real 

numbers to present the proofs in a more readily understandable and concrete 

form. The refinements and generalizations which are needed for other 

theories of addition will be introduced in a subsequent paper. 

Theorem 6. 
2n 

Let f(n) be one of the two functions 2n or 2 Assume for 

a complete theory T that there exists a polynomial p(n) and a constant d > 0 

so that for every program AL and binary word x, there exists a 

sentence F with the following properties. AL,x 

(a) 

(b) 

(c) 

F 
AL,x 

ET if and only if some halting computation C of AL on x 

satisfies i(c) $ f(jxj). 

I F AL, X I $ d-( I AL I + IX I ) . 

~F is Turing machine calculable from AL and x in time less than 
AL,x 

p(IALI + Ix!). 

(We recall that all our objects such as F, AL, etc., are binary words, and 

that lwl denotes the length of w.) 

Under these conditions, there exists a constant c > 0 so that for every 

decision algorithm AL for T there exists a number n0 = n0 (AL) so that for 

every n > n0 there exists a sentence cr ET such that lcrl = n and every compu

tation by AL for deciding cr takes more than f(cn) steps. Furthermore 
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Proof. There exists a number c > 0 and an m
0 

so that form~ m0 we 

have 

p(2m) + f(c•(2dm + 1)) s f(m). (1) 

Namely, let c < 1/(2d) and recall that p(n) is a polynomial, whereas f(n) 

2n 
is 2n or 2 

Let AL be a (non-deterministic) decision algorithm for T. We construct 

a new algorithm AL
0 

as follows. We do not care how AL
0 

behaves on an input 

word x which is not a program. If xis a program, then AL0 starts by 

constructing the sentence F = ~F x,x 
The program AL0 then switches to AL 

which works on the input F. If AL stops on F and determines that FE T, 

then AL
0 

halts; in all other cases AL
0 

does not halt. Thus, for a program 

x as input, ALO halts if and only if the program x does not halt on the input 

x in fewer than f(lxl) steps. Note that by possibly padding AL0 with irrele

vant instructions, we may assume that m
0 

s IAL
0

1 s IALI + k, where k is 

independent of AL. 

Denote the binary word AL
0 

by z and let a be the sentence ~F F z,z z,z 

cannot be true, for if it were true, then ~F would be false and AL0 would 
z,z 

not halt on z, whereas the truth of F implies that z (= AL0) does halt on 
z,z 

the input z (even in at most f(lzl) steps), a contradiction. 

Thus, a is true and hence AL
0 

(= z) halts on z. The truth of a also 

implies that every halting computation of AL
0 

on z is longer than f(lzl). 

Let m = lzl. By (b), we have 

n = lal s 2dm + 1. (2) 

Lett be the least number of steps that AL takes, by some halting computation, 



9 

to decide a. By the definition of AL
0 

and the fact that fewer than p(2m) 

steps are required to find a= ~F from z (this follows from (c) and 
z,z 

lzl = m), there is a halting computation of the program AL
0 

on z 

requiring fewer than p(2m) + t steps. By the truth of 0, 

p(2m) + t > f(m). 

Using (1) and (2), 

t > f(c•(2dm + 1)) ~ f(cn). 

Take n0 to be n = !al. Then n0 ~ 2dm + 1 ~ 2d(!ALI + k) + 1, so 

n = O(!AL!). 
0 

The fact that the result holds for AL and every n > n
0 

(with possibly a smaller constant c) is obtained by first padding AL
0 

by 

irrelevant instructions, and then padding the resulting a by prefixing a 

quantifier 3xj of an appropriate length, where l3xj I = 1 + lj !. The 

details are left to the reader. D 

For utilizing Theorem 6 we need a method for constructing sentences 

FAL,w with the properties (a) - (c). One such method is provided by: 

Theorem 7. Let ,fl= <A,+> be an additive structure such that NS A, 

and on N the operation+ is ordinary addition. Let f(n) again be one of the 

2n 
functions 2n or 2 . Assume that T = Th(~) is a theory of addition 

(formalized in the language L) for which there exists c > 0 such that for 

every n and for every binary word w, !wl = n, there exist formulas I (y), 
n 

J (y), S (x, y) and H (x) with the following properties. 
n n w 

(i) Is (x, y) I ~ en, !In(y)I ~ en, !Jn(y)I ~ en, and IH (x) I ~ en. 
n w 

(ii) I (b) is true in ifl for b E A if and only if b EN and b < fen/. 
n 

J (b) is true exactly for b = f (n). 
n 
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(iv) 

(v) 
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2 S codes all binary sequences of length f(n) . Namely, for every 
n 

binary sequence BE {0, l}*, IBI = f(n/, there exists an a EA 

that for i E: 0 
2 S (a, i) is true in ,fl so N, ~ i < f (n) , 

n 

if B(i) = 1, and S (a, i) is false if B (i) = 0, where for any 
n 

sequence B, B(i) denotes the i+lst element of S, 0 ~ i < I BJ. 

H (x) is true for a EA if and only if the first f(n) symbols of 
w 

the sequence coded by a in the sense of (iii) has the form 

S (x, y), I (y), J (y) and H (x) are Turing machine calculable 
n n n w 

from n and win a polynomial number of steps. 

From such formulas S , I , J and H , a formula FAL with the properties 
n n n w ,w 

(a) - (c) can be constructed, so that T satisfies the conclusion of Theorem 6. 

Proof. We shall describe, by use of sequences of length f(n) 2 , all 

possible halting computations of length at most f(n) of a program AL on an 

input w. Let C = (I. , ... , I. ) be such a computation. Assume that AL has 
1.l 1.m 

k instructions; by our notational conventions every computation starts with 

the first instruction 11 and the last instruction Ik of AL is: "k: Stop." 

Thus in C, i 1 = 1 and im = k. 

Let us adopt the convention that after the stop instruction, the scanning 

head, the (stop) instruction, and the tape contents stay stationary and 

unchanged at all subsequent time instants. Since m ~ f(n), the scanning head 

never moves beyond f(n) squares from the initial left-most square of the tape. 

We assume also that the Turing machine never attempts to shift its head left 

off the beginning of the tape. 
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The progress of the computation Con the input w will be described by 

stringing together f(n) instantaneous descriptions of the computation in 

the following manner. Let W. be the first (left-most) f(n) symbols of the 
J 

* tape at time j, 1 ~ j ~ f(n). Then the string w1w2 ... Wf(n) =WE {O, 1} 

codes all the relevant information concerning the tape contents during the 

computation C. 2 
We have !WI = f(n) . Also, Wm= Wm+-l = 

To trace the motion of the scanning head and the 

during the computation C, we define U. E {O, 1, 
J 

. . . , 

sequence of instructions 
* P. q. 

k} to be OJ i. 0 J 
J 

where pj + qj + 1 = f(n) and pj is the distance at time j of the scanning 

head from the start square, 1 ~ j ~ f(n). Recall that i. is the instruction 
J 

number of the j
th instruction executed in C. Also i 

m 

stop instruction. Put U = u1u2 ... Uf(n)' We have IUI 

. .. = k, the 

* * The fact that the pair (W, U), where W E {O, 1} , U E {O, 1, ... , k} , 

!WI= !UI = f(n) 2 , describes a halting computation of AL on w, is equivalent 

to a number of statements which say, roughly, that the first f(n) symbols are 

the initial configuration; that the transformation from a block of f(n) 

symbols to the next block is by an instruction of AL; and that U contains k 

(the number of the halting instruction). More precisely, (W, U) codes a 

halting computation of length at most f(n) of AL on w, where !wl = n, if and 

only if: 

(a) W(O) ... W(f(n)-1) = woP, p = f(n) - lwl. 

(8) U(O) ... U(f(n)-1) = lOf(n)-l_ 

(y) If U(i) = 0 and i + f(n) < f(n) 2
, then W(i + f(n)) W(i). 
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If U(i) = q, i + f(n) + 1 < f(n) 2, 0 < q < k, W(i) = 0, and I is, 
q 

say, "q: 0 1 R k k · 1 ' ' ' l' .. ' ' t' ' 
", then W(i + f(n)) = 1, 

U(i + f(n) + 1) = k
1 

or U(i + f(n) + 1) = k
2 

or etc. Similarly 

for other instruction and tape-symbol combinations. 

(E) If, for f(n) < i < f(n) 2 , U(i) IO, then exactly one of U(i - f(n)), 

I 0, or U(i - f(n) - 1) I 0, or U(i - f(n) + 1) IO holds. Also, 

if U(i) I 0, then U(i ± 1) = U(i ± 2) = 0. 

U(i) = k for some 2 
i, 0 $ i < f(n) . If U(i) = k and i + f(n) 

2 
< f(n) , then U(i + f(n)) = k and W(i + f(n)) = W(i). 

From the assumption that (W, U) satisfies (a) - (s), it can be proved 

by induction on 1 ~ j < 

which follows from (W., 
J 

f(n) that (Wj+l' Uj+l) is an instantaneous description 

UJ.) by an application of the instruction I. whose 
]. . 

J 

number appears in Uj. Also, (Wf(n)'Uf(n)) is a halting instantaneous description. 

* * Thus, the existence of a pair (W, U), WE {0, l} , U E {0, 1, ... , k} , 

IWI = IUI = f(n)
2

, which satisfies (a) - Cs) is a necessary and sufficient 

condition for the existence of a halting computation Con w with t(C) $ f(n). 

Conditions (i) - (v) provide means for making statements about arbitrary 

2 2 (0, 1) sequences of length f(n) , about integers 0 $ i < f(n) , and about the 

integer f(n), all by use of formulas of L of size O(n). Also, the ordinary 

ordering$ on N restricted to integers of size less than f(n) 2 can be expressed 

by the length O(n) formula 

x $ y -.. 3z[ I (x) A I (y) " I (z) A x + z = y]. 
n n n n 
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Hence, the existence of (W, U) satisfying (a) - (s) can be expressed by a 

sentence FAL = F with the desired properties (a) - (c). Namely, express ,w 

0, 1, ... , kin binary notation by words of equal length p = lkl. Then, 

via S (x, y), a single element a EA exists which codes W, and elements n 

a1 , ... ,ap EA code U. The sentence F will start with quantifiers and 

relativization: 

➔ E A EB A E A E~ A E A E ]. a y u £ s 

x codes the sequence Wand x
1

, ... ,xp together code the sequence U. 

clauses Ea ... Es express the corresponding conditions (a) - (s). 

The 

Thus, 

for example, E is H (x); EB is H (x
1

) AH (x
2

) A ... A H (x ) , where a w ul U2 u p 
p 

ul = 10
n-l 

and u. = on 2 ~ j ~ p; and E is 
J 

, y 

A ~S (x, y) A I (y + z) 
n p n 

➔ [S (x, y + z) +-+ S (x, y)]]. 
n n 

The reader can supply the details of the construction of the remaining 

expressions E~, EE and Er and verify that, altogether, the F thus formed 
u .,, AL,w 

satisfies (a) - (c) of Theorem 6. D 

4. Proof of Theorem 3 (Real Addition). 

We start by showing that for the theory Th(~) of real addition, there 

exist formulas S (x, y), I (y), etc. as postulated in Theorem 7 with f(n) = 2n, 
n n 

thereby proving Theorem 3. Several of the results in this section will play 
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later on a role in the proof for PA. 

Let F(x, y) be any formula and consider the conjunction 

It is readily seen that G +-+ G1 where 

Note that \G\ = 3•\F(x, y) \, whereas \G1 \ = \F(x, y) \ + c, where c is inde

pendent of F(x, y). A similar rewriting exists for formulas F with more 

than two variables and for conjunctions of more than three instances of F. 

The above device is a special case of a more general theorem due to M. Fischer 

and A. Meyer. It was discovered independently by several people including 

V. Strassen. 

Theorem 8. There exists a constant c > 0 so that for every n there is 

a formula M (x, y, z) of L such that for real numbers A, B, C, 
n 

Also, 

2n 
M (A, B, C) is true+-+ A EN A A< 2 A AB= c. 

n 

\M (x, y, z)\ $ c(n+l) and M (x, y, z) is Turing machine computable from n 
n n 

in time polynomial inn. 

Proof. The construction of M (x, y, z) will be inductive on n. For 
n 

20 
n Owe have 2 = 2 and we define M

0
(x, y, z) as 

[x = 0 A z = O] v [x = 1 A z = y]. 

2
k+l 

From~ we get ~+l by observing that x EN and x < 2 if and only if 
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For this decomposition we have 

Hence, ~+1 (x, y, z) is equivalent to 

(Strictly speaking, a triple sum such as u
1 

+ x
3 

+ x
4 

should be written as a 

chain of sums of two variables, but we shall not do it here.) Now, l~+ll 

~ 51~1, which will not do. However, by using the device preceding the 

theorem, the five occurrences of~ can be replaced by a single occurrence 

to yield ~+i· Thus, l~+l (x, y, z) I ~ l~(x, y, z) I+ c for an appropriate 

C > 0. Hence, IM (x, y, z) I ~ c(n+l). n 
(We assume c is chosen large enough 

Actually, for the above bound to hold, it is necessary to show that 

the number of distinct variable names in M does not grow with n, for to 
n 

encode one of v variables requires (on the average) a string of length 

O(log v). In fact, 15 different variable names are sufficient to express 

Mn. This is because the new variables introduced in constructing ~+l 

from~ need only be distinct from each other and from the free variables 

of~; however no difficulty arises if they coincide with variables bound 

inside~- A closer look at the construction of ~+l shows that 12 new 

variables are introduced, which must be distinct from the three free variables 

of~• giving a total of 15 distinct names needed. D 
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Corollary 9. The formula M (x, 0, O) is true for a real number x if 
n 

2n 
and only if x EN and x < 2 

2n 
The natural numbers x < 2 code all binary sequences of length 2n. 

Namely, write x in binary notation 

n 
x = x(O) + x(1)·2 + ... + x(2n-1)•2 2 -l. 

We use the function 2i to obtain element x(i) of x. 

Theorem 10. There exists a formula Pow (x, y, z) such that for integers 
n 

a 2n 
a, b, c for which Os a, b , c < 2 , Pow (a, b, c) is true if and only if 

n 

ba = c. Also, !Pow (x, y, z) I s d(n+l) for an appropriated> 0 and all n. n 

Proof. Construct, by induction on k, a sequence Ek(x, y, z, u, v, w) 

of formulas with the property that for integers a, b, c for which 

2n 
c < 2 and real numbers A, B, C, Ek(a, b, c, A, B, C) 

2n 
is true in <R, +> if and only if A EN, A< 2 , ba = c, and AB= C. Thus, 

Ek has Mn built into it since 

The case k = 0 is given by 

[(x = 0 A Z = 1) V (x = 1 A z = y)] AM Cu, Vt w), 
n 

To obtain Ek+l(x, y, z, u, v, w) from Ek' we again use the decomposition 

2
k+l 

x = x1x2 + x
3 

+ x4 of every integer Os x < 2 in terms of integers 

Then we have 
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is a z 2 such that ~(x2 , z1 , z
2

, 0, 0, 0) etc. Whenever we have to write a 

( X1)X2 X3 ( ) product such as x1x2 or y •Y , we use the formula Ek 0, 1, 1, u, v, w. 

In this way we can write the formula Ek+l (x, y, z, u, v, w). Using the usual 

device of contracting a conjunction of instances of Ek into one occurrence, 

we see that IEk+ll $ IEkl + d for some d > 0, and hence IEnl $ d(n+l) + c(n+l), 

where c(n+l) is the bound on the length of M. As before, only a bounded 
n 

number of variable names are needed. 

Recalling the definition of Ek(x, y, z, u, v, w), we see that 

Pow (x, y, z) +-+ E (x, y, z, 0, 0, 0) 
n n 

has the desired properties. D 

Theorem 11. There exists a formula S (x, y) of L which for x, y ER is n 

in 2 
true in <R, +> if and only if x and y are integers, x < 2 and y < 2 n, and 

st 
the y+l digit x(y) of x, 

representation of x, is 1. 

Theorem 7 for f(n) 2n. 

counting from the low-order end of the binary 

The formula S (x, y) satisfies the conditions of 
n 

Proof. That x and y are integers in the appropriate ranges is easily 

expressible by formulas of size O(n). Recall that for the integers which 

satisfy M
2
n(x, 0, 0), i.e. 0 $ x < 

in 
2 , the ordering$ is expressible by a 

formula of length O(n). 
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Now x(y) = 1 if and only if there exists an integer z, 2Y ~ z < 2y+l 

so that x ~ z and 2y+l divides x - z. This fact is easily expressible by 

a formula Sn(x, y) of L using Pow2n and M2n. 

That formulas I (y) and J (y) with the properties listed in Theorem 7 n n 

exist is immediate. Thus to finish the proof of Theorem 3 we need the 

following. 

Theorem 12. For every binary word w, !wl = n, there exists a formula 

2n 
H (x) of L which is true in <R, +> for an integer O ~ x < 2

2 
if and only 

w 

The formula H (x) satisfies the condi
w 

tions of Theorem 7. 

as 

Proof. Define for binary words u, by induction on !ul, formulas K (z) 
u 

follows. 

K
0

(z) +-+ z = 0, 

Kl (z) +-+ z = 1, 

KuO(z) +-+ 3y [ Ku (y) " z = y + y ] , 

K 1 (z) ++3y[ K (y) " z = y + y + 1 ] . u u 

Clearly, if ~(z) is true, then, considered as a sequence, z satisfies 

w(i) = z(i) for O ~ i < lwl, z(i) = 0 for i ~ JwJ. Using this K (z) and the 
w 

formulas Sn(x, y) and Jn (y), we can write the formula Hw(x) by 

formally expressing the statement that for z such that 1\._,(z), x(i) = 
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Thus we have proved, for Th(.R_), the existence of formulas S (x, y), 
n 

In(y), Jn(y), and Hw(x) which satisfy the conditions of Theorem 7 for 

f(n) = 2n. This completes the proof of Theorem 3. 

5. Proof of Theorem 4 (Lengths of Proofs for Real Addition). 

We now show that for Th(}l) proofs are also exponentially long. This 

is an easy consequence of Theorem 3. 

Let AX be a consistent system of axioms which is complete for Th(.~), 

i.e. every sentence FE Th(/l.) is provable from AX (AX ~ F). Furthermore, 

there exists an algorithm B which decides in polynomial time p(JGJ) for a sen

tence G of L whether GE AX. 

Let c be the constant of Theorem 3. For every polynomial q(x), there 

. dn en exists a constant O < d so that from a certain point on, q(2 ) < 2 . 

Construct a non-deterministic algorithm AL for Th(,l) as follows. 

Given a sentence F, AL writes down (non-deterministically) a binary sequence 

P. Then AL checks whether Pis a proof of F from AX or a proof of ~F from 

AX. The computation halts only if one of the two possibilities occurs. 

Because of the assumptions on AX, this check can be made in a polynomial 

number of steps h(JPJ). Thus the whole computation, if it halts, requires 

IPI + h(JPI) = q(JPI) steps. If every true sentence F would have a proof P 

with IP! < 2dn where n = IF!, then for every such F there would be some halting 

computation of length less than q(2dn), i.e. also less than 2cn for all 

sufficiently large n, a contradiction. 
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6. Proof of Theorems 1-2 (Presburger Arithmetic). 

The proof for Theorem 1 follows closely along the lines of the proof 

of Theorem 3 and utilizes our previous results. In particular we note that 

Theorems 8-10 apply, as they stand and with the same proofs, to PA. Note 

also that the order$ on N is definable in PA using+. Throughout this 

2n 
section, let f(n) be 2 

Theorem 12. 
2 

There exists a function g(n) ~ 2f(n) so that for 

every n there exists a formula Prod (x, y, z) with the following properties. 
n 

For integers A, B, C, 

Prodn(A, B, C) is true in '1 +-+ A, B, C < g(n) and AB= C. 

There exists a constant c > 0 so that !Prod I $ c(n+l) for all n. The formula 
n 

Prod is Turing machine constructible from n in time polynomial inn. 
n 

Proof. We shall use the Prime Number Theorem which says that the number 

of primes smaller than mis asymptotically equal tom/log m; hence bigger than 
e 

m/log2m for all sufficiently large m. 2
n+2 

Thus, form= 2 , the number of 

2n+2 +2 2n+l 
primes p < m exceeds 2 /2n > 2 2 

= f(n) . Let g(n) = TI 
p<m 

p, where p 

2n+2 f( )2 
runs over primes, m = 2 ; then g(n) ~ 2 n since 2 $ p for all primes. 

By use of the formula Mn+2 (x, y, z), we can write two formulas 

Resn+2 (x, y, z) and Pn+Z(x) of length O(n) with the following meanings. Let 

res(x, y) denote the residue (remainder) of x when divided by y. Then 

2n+2 
Resn+Z(x, y, z) +-+ [ y < 2 A res(x, y) = z ]; 
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2n+2 
Pn+2(x) +-+ [ x < 2 and xis prime]. 

The formula Resn+2 is written in Las 

z < y /\ 3 q 3w[ Mn+2 (y, q, w) /\ x = w + z ] . 

2n+2 
We recall that for any q and w, Mn+2 (y, q, w) holds if and only if y < 2 

and yq = w. 

The formula Pn+2 (x) is, simply, 

By formally saying that x ~ 1 is the smallest integer divisible by all 

2n+2 
primes p < 2 , we can write a formula Gn+

2
(x) which is true precisely for 

X = g(n). Now Prod (x, y, z) is true if and only if 
n 

2n+2 
x, y, z < g(n) /\ Vu[ u < 2 ➔ res(x,u)•res(y,u) = res(z,u) ]. (3) 

2n+2 
Namely, this implies that xy = z (mod p) for all p < 2 , which together 

with x, y, z < g(n) is equivalent to xy = z. Now, by use of Gn+2 (x), 

Mn+2(x, y, z) and Resn+2 (x, y, z), the above relation (3) can be expressed 

by a formula Prod with the desired properties. D n 

Exponentiation can be defined just as in the proof of Theorem 10 except 

that we now use Prod (x, y, z) instead of M (x, y, z) to obtain a sequence of 
n n 

formulas Ek(x, y, z, u, v, w). For integers a, b, c, A, B, C for which 

2k a '7 
0:::; a< 2 and O:::; b, c < g(n), Ek(a, b, c, A, B, C) is true in., if and 

only if A, B, C < g(n), ba = c, and AB= C. Also IE' I = O(n). 
n 
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Having now multiplication up to g(n) and exponentiation 2i up to 

2n+l 
i < 2 expressed by formulas of length O(n), we can code sequences of 

2n+l 2 
length 2 = f(n) in exactly the same manner as in Section 4. This com-

pletes the proof of Theorem 1 by again appealing to Theorem 7. 

The proof of Theorem 2 now follows exactly the lines of the proof of 

Theorem 4 given in Section 5. 

7. Other Results. 

The techniques presented in this paper for-proving lower bounds on logical 

theories may be extended in a number of directions to yield several other 

results. We outline some of them below without proof; they will be presented 

in full in a subsequent paper. 

Theorem 13. Let O'C. be any class of additive structures, so if 

Jl. =<A,+> E (l'(_, then+ is a binary associative operation on A. Let Th(Ol) 

be the set of sentences of L valid in every structure of O'(. Assume /J(_ has 

the property that for every k EN, there is a structure .Ak = <~, +> E {l(_ 

and an element u E ~ such that the elements u, u+u, u+u+u, ... , k·u are 

distinct. Then the statement of Theorem 1 holds for Th(Ot) with the lower 

dn 
bound 2 for some d > O. 

Theorem 3 is an immediate corollary of this result, taking ot to be the 

class of just the one structure I<.= <R, +>. Some other classes to which the 

result applies are: 
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(1) The complex numbers under addition. 

(2) Finite cyclic groups. 

(3) Rings of characteristic p. 

(4) Finite Abelian groups. 

(5) The natural numbers under multiplication. 

The proof of Theorem 13 extends the ideas of Section 4. The element n-u 

is used as the representation of the integer n, and u itself is selected by 

existential quantification. 

Special properties of certain theories permit us to obtain still larger 

lower bounds on the decision problem. For example, we get a lower bound of 

2cn 
2 for (4), the theory of finite Abelian groups. This is obtained by encoding 

n 
integers up to 2

2 
by formulas of length O(n) just as in Theorem 13, but 

instead of representing a sequence by an integer, we let the structure 

itself encode the sequence. Let i, be a finite Abelian group. Then element 

s(i) of the sequences encoded by lJ is 1 if and only if l:, contains an element 

x of order p., where p. is the i+1st prime. The necessity of using primes 
1 1 

as indices instead of integers considerably complicates the analog of Theorem 7. 

Another example where we get still larger bounds is (5), the theory of 

multiplication of the natural numbers (MULT). That MULT is at least as hard 

as PA is immediate, for the powers of 2 under multiplication are isomorphic 

to "7, and the property of being a power of 2 can be expressed in MULT (assuming 

we have the constant 2; otherwise we use an arbitrary prime). In fact, the 

2cn 

bound can be increased yet another exponential to 2
2 

by using the encoding 
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which associates a sequences to a positive integer n, where s(i) = 1 if and 

only if qi divides n, where qi is the i+lst prime in some fixed (but arbitrary) 

ordering of the primes. Again we are forced to use the primes as indices, 

and again the analog to Theorem 7 is considerably complicated. 
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