
MAC TECHNICAL MEMORANDUM 43

SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC

Michael Jo Fischer

Michael O. Rabin

February 1974

This research was supported in part by the National Science
Foundation under research grant GJ-34671 and in part by the
Artificial Intelligence Laboratory, an Mal.To research
program supported by the Advanced Research Projects Agency,
Department of Defense which was monitored by ONR Contract
No. N00014-70-A-0362-0003.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

This empty page was substituted for a
blank page in the original document.

SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETICt

Michael J. Fischer
Massachusetts Institute of Technology, Cambridge, Massachusetts

and

Michael 0. Rabin
Hebrew University, Jerusalem, Israel

ABSTRACT

Lower bounds are established on the computational complexity of the
decision problem and on the inherent lengths of proofs for two
classical decidable theories of logic: the first order theory of
the real numbers under addition, and Presburger arithmetic -- the
first order theory of addition on the natural numbers. There is
a fixed constant c > 0 such that for every (non-deterministic)
decision procedure for determining the truth of sentences of real
addition and for all sufficiently large n, there is a sentence of
length n for which the decision procedure runs for more than zcn
steps. In the case of Presburger arithmetic, the corresponding

2cn
bound is 2 These bounds apply also to the minimal lengths of
proofs for any complete axiomatization in which the axioms are
easily recognized.

tThis research was supported in part by the National Science Foundation
under research grant GJ-34671 to M.I.T. Project MAC, and in part by the
Artificial Intelligence Laboratory, an M.I.T. research program sponsored
by the Advanced Research Projects Agency, Department of Defense, under
Office of Naval Research contract number N00014-70-A-0362-0003. The
preparation of the manuscript was supported by the Hebrew University and
the University of Toronto.

2

1. Introduction and Main Theorems.

We present some results obtained in the Fall of 1972 on the computational

complexity of the decision problem for certain theories of addition. In

particular we prove the following results.

Let L be the set of formulas of the first-order functional (predicate)

calculus written using just+ and= Thus, for example, ~[x + y = y + z]

v x + x = x is a formula of L, and Vx3y[x + y = y] is a sentence of L.

Even though this is not essential, we shall sometimes permit the use of the

individual constants O and 1 in writing formulas of L. We assume a finite

alphabet for expressing formulas of L, so a variable in general is not a

single atomic symbol but is encoded by a sequence of basic symbols.

Let 1J. = <N, +> be the structure consisting of the set N = {O, 1, 2, .•. }

of natural numbers with the operation+ of addition. Let Th("f) be the

first-order theory of'>(, i.e. the set of all sentences of L which are

true in "l. · For example, v'x 'v'y[x + y = y + x] is in Presburger

has shown that Th("1) is decidable [2]. For brevity's sake, we shall call

Th(1) Presburger arithmetic and denote it by PA.

Theorem 1. There exists a constant c > 0 such that for every decision

procedure (algorithm) AL for PA, there exists an integer n
0

so that for every

n > n
0

there exists a sentence F of L of length n for which AL requires more

2
cn

than 2 computational steps to decide whether FE PA.

The previous theorem applies also in the case of non-deterministic

algorithms. This implies that not only algorithms require a super-exponential

number of computational steps, but also proofs of true statements concerning

3

addition of natural numbers are super-exponentially long. Let AX be a system

of axioms in the language L (or in an extension of 1) such that a sentence

FE Lis provable from AX (AX f- F) if and only if FE PA. Let AX satisfy

the condition that to decide for a sentence F whether FE AX, i.e. whether

Fis an axiom, requires a number of computational steps which is polynomial

in the length IFI of F.

Theorem 2. There exists a constant c > 0 so that for every axiomatization

AX of Presburger arithmetic with the above properties there exists an integer

n0 so that for every n > n
0

there exists a sentence FE PA such that the

2cn
shortest proof of F from the axioms AX is longer than 2

a proof we mean the number of its symbols.

By the length of

With slight modifications, Theorem 2 holds for any (consistent) system

AX of axioms in a language Min which the notion of integer and the operation

+ on integers are definable by appropriate formulas so that under this

interpretation, all the sentences of PA are provable from AX. The ordinary

axioms ZF for set theory have this property.

The result concerning super-exponential length of proof applies, in this

more general case, to the sentences of M which are encodings of sentences of

PA under the interpretation, i.e. to sentences which express elementary

properties of addition of natural numbers.

The previous results necessarily involve a cut-point n
0

(AL) or n0 (AX)

at which the super-exponential length of computation or proofs sets in. It

is significant that a close examination of our proofs reveals that n0 (AL)

= O(IALI) and n0 (AX) = O(IAXI). Thus computations and proofs become very

long quite early in the game.

4

The theory PA of addition of natural numbers is one of the simplest most

basic imaginable mathematical theories. Unlike the theory of addition and

multiplication of natural numbers, PA is decidable. Yet any decision procedure

for PA is inherently difficult.

Let us now consider the structure fl= <R, +> of all real numbers R with

addition. The theory Th(/(.) (in the same language L) is also decidable. In

fact, to find a decision procedure for Th(k{) is even simpler than a procedure

for PA; this is mainly because IJ... is a divisible group without torsion. Yet

the following holds.

Theorem 3. There exists a constant d > 0 so that for the theory Th(.R,)

of addition of real numbers, the statement of Theorem 1 holds with the lower

dn bound 2 .

Similarly for the length of proofs of sentences in Th(.R,).

Theorem 4. There exists a constant d > 0 so that for every axiomatiza-

~ ~ tion AX for Th(#'\.) the statement of Theorem 2 holds with the lower bound 2 •

Corollary 5. The theory of addition and multiplication of reals (Tarski's

Algebra [3]) is exponentially complex in the sense of Theorems 3 and 4.

(This result was obtained independently by V. Strassen.)

Ferrante and Rackoff [1] describe decision procedures for Th(~) and PA

en 2dn
which run in deterministic space 2 and 2 (and hence in deterministic

en 2dn
time 0(2

2
) and 0(2

2
)), respectively, for certain constants c and d.

Any substantial improvement in our lower bounds would settle some general

open automata-theoretic questions on the relation between time and space.

n2
For example, a lower bound of time 2 for the decision problem for Th(R,)

5

would give an example of a problem doable in space S(n)

bounded by a polynomial in S.

en = 2 but not in time

Variations of the methods employed in the proofs of Theorems 1-4 lead

to complexity results for the (decidable) theories .. of multiplication of

natural numbers, finite Abelian groups, and other classes of Abelian groups.

Some of'these results are stated in Seccion 7 and will be presented in full

in a subsequent paper.

The fact that decision and proof procedures for such simple theories are

exponentially complex is of significance to the program of theorem proving by

machine on the one hand, and to the more general issue of what is knowable in

mathematics on the other hand.

2. Algorithms •

Since we intend to prove results concerning the complexity of algorithms,

we must say what notion of algorithm we use. Actually our methods of proof

and our results are strong enough to apply to any reasonable class of algo­

rithms or computing machines. However, for the sake of definiteness, we

shall assume throughout this paper that our algorithms are the programs for

Turing machines on the alphabet {O, 1}.

We proceed to give an informal description of these algorithms. The

machine-tape is assumed to be one-way infinite extending to the right from

an initial left-most square. At any given time during the progress of a

computation, all but a finite number of the tape's squares contain 0. An

instruction has the form: "i: If O then print x
0

, move M
0

, go to one of

i 1 , i 2 , •.. ; if 1 then print x
1

, move M1 , go to one of j 1 , j 2 , II Here

i, i 1 , i 2 , .•• , j
1

, j
2

, •.• are natural numbers, the so-called instruction

6

numbers; x
0

and x
1

are either O or 1; and M
0

and M
1

are either R or L (for

"move right" and "move left", respectively).

The possibility of going to one of several alternative instructions

embodies the non-deterministic character of our algorithms. Another type

of instruction is: "i: Stop." Instructions are abbreviated by dropping

the verbal parts. Thus, "3: 0, 1, L, 72, 5; 1, 1, R, 15, 3." is an example

of an instruction. A program AL is a sequence 1
1

, ..• , In of instructions.

For definiteness' sake we assume that the instruction number of I. is i and
1

that I is the instruction "n: Stop." Furthermore AL is assumed to be coded
n

in the binary alphabet {O, l} in such a way that "Stop" also serves as an

end-word indicating the end of the binary word AL.

* Let x E {O, l} be an input word. To describe the possible computations

by the algorithm AL on x, we assume that xis placed in the leftmost positions

of the machine's tape and the scanning head is positioned in the leftmost

square of the tape. The computation starts with the first instruction 11 •

A halting computation on xis a sequence C = (I. ,
11

, I.) of instructions
1

m

of AL so that i 1 = 1 and im = n. At each step 1 ~ p ~ m, the motion of the

scanning head, the printing on the scanned square, and the transfer to the

next instruction I. , are according to the current instruction I. The
ip+l ip

length £(C) of C is, by definition, m.

It is clear that a truly non-deterministic program may have several

possible computations on a given input x.

7

3. Method for Complexity Proofs.

Having settled on a definite notion of algorithm, we shall describe a

general method for establishing lower bounds for theories of addition which

are formalized in L. We do not develop our methods of proof in their fullest

generality but rather utilize the fact that we deal with natural or real

numbers to present the proofs in a more readily understandable and concrete

form. The refinements and generalizations which are needed for other

theories of addition will be introduced in a subsequent paper.

Theorem 6.
2n

Let f(n) be one of the two functions 2n or 2 Assume for

a complete theory T that there exists a polynomial p(n) and a constant d > 0

so that for every program AL and binary word x, there exists a

sentence F with the following properties. AL,x

(a)

(b)

(c)

F
AL,x

ET if and only if some halting computation C of AL on x

satisfies i(c) $ f(jxj).

I F AL, X I $ d-(I AL I + IX I) .

~F is Turing machine calculable from AL and x in time less than
AL,x

p(IALI + Ix!).

(We recall that all our objects such as F, AL, etc., are binary words, and

that lwl denotes the length of w.)

Under these conditions, there exists a constant c > 0 so that for every

decision algorithm AL for T there exists a number n0 = n0 (AL) so that for

every n > n0 there exists a sentence cr ET such that lcrl = n and every compu­

tation by AL for deciding cr takes more than f(cn) steps. Furthermore

8

Proof. There exists a number c > 0 and an m
0

so that form~ m0 we

have

p(2m) + f(c•(2dm + 1)) s f(m). (1)

Namely, let c < 1/(2d) and recall that p(n) is a polynomial, whereas f(n)

2n
is 2n or 2

Let AL be a (non-deterministic) decision algorithm for T. We construct

a new algorithm AL
0

as follows. We do not care how AL
0

behaves on an input

word x which is not a program. If xis a program, then AL0 starts by

constructing the sentence F = ~F x,x
The program AL0 then switches to AL

which works on the input F. If AL stops on F and determines that FE T,

then AL
0

halts; in all other cases AL
0

does not halt. Thus, for a program

x as input, ALO halts if and only if the program x does not halt on the input

x in fewer than f(lxl) steps. Note that by possibly padding AL0 with irrele­

vant instructions, we may assume that m
0

s IAL
0

1 s IALI + k, where k is

independent of AL.

Denote the binary word AL
0

by z and let a be the sentence ~F F z,z z,z

cannot be true, for if it were true, then ~F would be false and AL0 would
z,z

not halt on z, whereas the truth of F implies that z (= AL0) does halt on
z,z

the input z (even in at most f(lzl) steps), a contradiction.

Thus, a is true and hence AL
0

(= z) halts on z. The truth of a also

implies that every halting computation of AL
0

on z is longer than f(lzl).

Let m = lzl. By (b), we have

n = lal s 2dm + 1. (2)

Lett be the least number of steps that AL takes, by some halting computation,

9

to decide a. By the definition of AL
0

and the fact that fewer than p(2m)

steps are required to find a= ~F from z (this follows from (c) and
z,z

lzl = m), there is a halting computation of the program AL
0

on z

requiring fewer than p(2m) + t steps. By the truth of 0,

p(2m) + t > f(m).

Using (1) and (2),

t > f(c•(2dm + 1)) ~ f(cn).

Take n0 to be n = !al. Then n0 ~ 2dm + 1 ~ 2d(!ALI + k) + 1, so

n = O(!AL!).
0

The fact that the result holds for AL and every n > n
0

(with possibly a smaller constant c) is obtained by first padding AL
0

by

irrelevant instructions, and then padding the resulting a by prefixing a

quantifier 3xj of an appropriate length, where l3xj I = 1 + lj !. The

details are left to the reader. D

For utilizing Theorem 6 we need a method for constructing sentences

FAL,w with the properties (a) - (c). One such method is provided by:

Theorem 7. Let ,fl= <A,+> be an additive structure such that NS A,

and on N the operation+ is ordinary addition. Let f(n) again be one of the

2n
functions 2n or 2 . Assume that T = Th(~) is a theory of addition

(formalized in the language L) for which there exists c > 0 such that for

every n and for every binary word w, !wl = n, there exist formulas I (y),
n

J (y), S (x, y) and H (x) with the following properties.
n n w

(i) Is (x, y) I ~ en, !In(y)I ~ en, !Jn(y)I ~ en, and IH (x) I ~ en.
n w

(ii) I (b) is true in ifl for b E A if and only if b EN and b < fen/.
n

J (b) is true exactly for b = f (n).
n

(iii)

(iv)

(v)

10

2 S codes all binary sequences of length f(n) . Namely, for every
n

binary sequence BE {0, l}*, IBI = f(n/, there exists an a EA

that for i E: 0
2 S (a, i) is true in ,fl so N, ~ i < f (n) ,

n

if B(i) = 1, and S (a, i) is false if B (i) = 0, where for any
n

sequence B, B(i) denotes the i+lst element of S, 0 ~ i < I BJ.

H (x) is true for a EA if and only if the first f(n) symbols of
w

the sequence coded by a in the sense of (iii) has the form

S (x, y), I (y), J (y) and H (x) are Turing machine calculable
n n n w

from n and win a polynomial number of steps.

From such formulas S , I , J and H , a formula FAL with the properties
n n n w ,w

(a) - (c) can be constructed, so that T satisfies the conclusion of Theorem 6.

Proof. We shall describe, by use of sequences of length f(n) 2 , all

possible halting computations of length at most f(n) of a program AL on an

input w. Let C = (I. , ... , I.) be such a computation. Assume that AL has
1.l 1.m

k instructions; by our notational conventions every computation starts with

the first instruction 11 and the last instruction Ik of AL is: "k: Stop."

Thus in C, i 1 = 1 and im = k.

Let us adopt the convention that after the stop instruction, the scanning

head, the (stop) instruction, and the tape contents stay stationary and

unchanged at all subsequent time instants. Since m ~ f(n), the scanning head

never moves beyond f(n) squares from the initial left-most square of the tape.

We assume also that the Turing machine never attempts to shift its head left

off the beginning of the tape.

11

The progress of the computation Con the input w will be described by

stringing together f(n) instantaneous descriptions of the computation in

the following manner. Let W. be the first (left-most) f(n) symbols of the
J

* tape at time j, 1 ~ j ~ f(n). Then the string w1w2 ... Wf(n) =WE {O, 1}

codes all the relevant information concerning the tape contents during the

computation C. 2
We have !WI = f(n) . Also, Wm= Wm+-l =

To trace the motion of the scanning head and the

during the computation C, we define U. E {O, 1,
J

. . . ,

sequence of instructions
* P. q.

k} to be OJ i. 0 J
J

where pj + qj + 1 = f(n) and pj is the distance at time j of the scanning

head from the start square, 1 ~ j ~ f(n). Recall that i. is the instruction
J

number of the j
th instruction executed in C. Also i

m

stop instruction. Put U = u1u2 ... Uf(n)' We have IUI

. .. = k, the

* * The fact that the pair (W, U), where W E {O, 1} , U E {O, 1, ... , k} ,

!WI= !UI = f(n) 2 , describes a halting computation of AL on w, is equivalent

to a number of statements which say, roughly, that the first f(n) symbols are

the initial configuration; that the transformation from a block of f(n)

symbols to the next block is by an instruction of AL; and that U contains k

(the number of the halting instruction). More precisely, (W, U) codes a

halting computation of length at most f(n) of AL on w, where !wl = n, if and

only if:

(a) W(O) ... W(f(n)-1) = woP, p = f(n) - lwl.

(8) U(O) ... U(f(n)-1) = lOf(n)-l_

(y) If U(i) = 0 and i + f(n) < f(n) 2
, then W(i + f(n)) W(i).

Co)

12

If U(i) = q, i + f(n) + 1 < f(n) 2, 0 < q < k, W(i) = 0, and I is,
q

say, "q: 0 1 R k k · 1 ' ' ' l' .. ' ' t' '
", then W(i + f(n)) = 1,

U(i + f(n) + 1) = k
1

or U(i + f(n) + 1) = k
2

or etc. Similarly

for other instruction and tape-symbol combinations.

(E) If, for f(n) < i < f(n) 2 , U(i) IO, then exactly one of U(i - f(n)),

I 0, or U(i - f(n) - 1) I 0, or U(i - f(n) + 1) IO holds. Also,

if U(i) I 0, then U(i ± 1) = U(i ± 2) = 0.

U(i) = k for some 2
i, 0 $ i < f(n) . If U(i) = k and i + f(n)

2
< f(n) , then U(i + f(n)) = k and W(i + f(n)) = W(i).

From the assumption that (W, U) satisfies (a) - (s), it can be proved

by induction on 1 ~ j <

which follows from (W.,
J

f(n) that (Wj+l' Uj+l) is an instantaneous description

UJ.) by an application of the instruction I. whose
]. .

J

number appears in Uj. Also, (Wf(n)'Uf(n)) is a halting instantaneous description.

* * Thus, the existence of a pair (W, U), WE {0, l} , U E {0, 1, ... , k} ,

IWI = IUI = f(n)
2

, which satisfies (a) - Cs) is a necessary and sufficient

condition for the existence of a halting computation Con w with t(C) $ f(n).

Conditions (i) - (v) provide means for making statements about arbitrary

2 2 (0, 1) sequences of length f(n) , about integers 0 $ i < f(n) , and about the

integer f(n), all by use of formulas of L of size O(n). Also, the ordinary

ordering$ on N restricted to integers of size less than f(n) 2 can be expressed

by the length O(n) formula

x $ y -.. 3z[I (x) A I (y) " I (z) A x + z = y].
n n n n

13

Hence, the existence of (W, U) satisfying (a) - (s) can be expressed by a

sentence FAL = F with the desired properties (a) - (c). Namely, express ,w

0, 1, ... , kin binary notation by words of equal length p = lkl. Then,

via S (x, y), a single element a EA exists which codes W, and elements n

a1 , ... ,ap EA code U. The sentence F will start with quantifiers and

relativization:

➔ E A EB A E A E~ A E A E]. a y u £ s

x codes the sequence Wand x
1

, ... ,xp together code the sequence U.

clauses Ea ... Es express the corresponding conditions (a) - (s).

The

Thus,

for example, E is H (x); EB is H (x
1

) AH (x
2

) A ... A H (x) , where a w ul U2 u p
p

ul = 10
n-l

and u. = on 2 ~ j ~ p; and E is
J

, y

A ~S (x, y) A I (y + z)
n p n

➔ [S (x, y + z) +-+ S (x, y)]].
n n

The reader can supply the details of the construction of the remaining

expressions E~, EE and Er and verify that, altogether, the F thus formed
u .,, AL,w

satisfies (a) - (c) of Theorem 6. D

4. Proof of Theorem 3 (Real Addition).

We start by showing that for the theory Th(~) of real addition, there

exist formulas S (x, y), I (y), etc. as postulated in Theorem 7 with f(n) = 2n,
n n

thereby proving Theorem 3. Several of the results in this section will play

14

later on a role in the proof for PA.

Let F(x, y) be any formula and consider the conjunction

It is readily seen that G +-+ G1 where

Note that \G\ = 3•\F(x, y) \, whereas \G1 \ = \F(x, y) \ + c, where c is inde­

pendent of F(x, y). A similar rewriting exists for formulas F with more

than two variables and for conjunctions of more than three instances of F.

The above device is a special case of a more general theorem due to M. Fischer

and A. Meyer. It was discovered independently by several people including

V. Strassen.

Theorem 8. There exists a constant c > 0 so that for every n there is

a formula M (x, y, z) of L such that for real numbers A, B, C,
n

Also,

2n
M (A, B, C) is true+-+ A EN A A< 2 A AB= c.

n

\M (x, y, z)\ $ c(n+l) and M (x, y, z) is Turing machine computable from n
n n

in time polynomial inn.

Proof. The construction of M (x, y, z) will be inductive on n. For
n

20
n Owe have 2 = 2 and we define M

0
(x, y, z) as

[x = 0 A z = O] v [x = 1 A z = y].

2
k+l

From~ we get ~+l by observing that x EN and x < 2 if and only if

15

For this decomposition we have

Hence, ~+1 (x, y, z) is equivalent to

(Strictly speaking, a triple sum such as u
1

+ x
3

+ x
4

should be written as a

chain of sums of two variables, but we shall not do it here.) Now, l~+ll

~ 51~1, which will not do. However, by using the device preceding the

theorem, the five occurrences of~ can be replaced by a single occurrence

to yield ~+i· Thus, l~+l (x, y, z) I ~ l~(x, y, z) I+ c for an appropriate

C > 0. Hence, IM (x, y, z) I ~ c(n+l). n
(We assume c is chosen large enough

Actually, for the above bound to hold, it is necessary to show that

the number of distinct variable names in M does not grow with n, for to
n

encode one of v variables requires (on the average) a string of length

O(log v). In fact, 15 different variable names are sufficient to express

Mn. This is because the new variables introduced in constructing ~+l

from~ need only be distinct from each other and from the free variables

of~; however no difficulty arises if they coincide with variables bound

inside~- A closer look at the construction of ~+l shows that 12 new

variables are introduced, which must be distinct from the three free variables

of~• giving a total of 15 distinct names needed. D

16

Corollary 9. The formula M (x, 0, O) is true for a real number x if
n

2n
and only if x EN and x < 2

2n
The natural numbers x < 2 code all binary sequences of length 2n.

Namely, write x in binary notation

n
x = x(O) + x(1)·2 + ... + x(2n-1)•2 2 -l.

We use the function 2i to obtain element x(i) of x.

Theorem 10. There exists a formula Pow (x, y, z) such that for integers
n

a 2n
a, b, c for which Os a, b , c < 2 , Pow (a, b, c) is true if and only if

n

ba = c. Also, !Pow (x, y, z) I s d(n+l) for an appropriated> 0 and all n. n

Proof. Construct, by induction on k, a sequence Ek(x, y, z, u, v, w)

of formulas with the property that for integers a, b, c for which

2n
c < 2 and real numbers A, B, C, Ek(a, b, c, A, B, C)

2n
is true in <R, +> if and only if A EN, A< 2 , ba = c, and AB= C. Thus,

Ek has Mn built into it since

The case k = 0 is given by

[(x = 0 A Z = 1) V (x = 1 A z = y)] AM Cu, Vt w),
n

To obtain Ek+l(x, y, z, u, v, w) from Ek' we again use the decomposition

2
k+l

x = x1x2 + x
3

+ x4 of every integer Os x < 2 in terms of integers

Then we have

17

is a z 2 such that ~(x2 , z1 , z
2

, 0, 0, 0) etc. Whenever we have to write a

(X1)X2 X3 () product such as x1x2 or y •Y , we use the formula Ek 0, 1, 1, u, v, w.

In this way we can write the formula Ek+l (x, y, z, u, v, w). Using the usual

device of contracting a conjunction of instances of Ek into one occurrence,

we see that IEk+ll $ IEkl + d for some d > 0, and hence IEnl $ d(n+l) + c(n+l),

where c(n+l) is the bound on the length of M. As before, only a bounded
n

number of variable names are needed.

Recalling the definition of Ek(x, y, z, u, v, w), we see that

Pow (x, y, z) +-+ E (x, y, z, 0, 0, 0)
n n

has the desired properties. D

Theorem 11. There exists a formula S (x, y) of L which for x, y ER is n

in 2
true in <R, +> if and only if x and y are integers, x < 2 and y < 2 n, and

st
the y+l digit x(y) of x,

representation of x, is 1.

Theorem 7 for f(n) 2n.

counting from the low-order end of the binary

The formula S (x, y) satisfies the conditions of
n

Proof. That x and y are integers in the appropriate ranges is easily

expressible by formulas of size O(n). Recall that for the integers which

satisfy M
2
n(x, 0, 0), i.e. 0 $ x <

in
2 , the ordering$ is expressible by a

formula of length O(n).

18

Now x(y) = 1 if and only if there exists an integer z, 2Y ~ z < 2y+l

so that x ~ z and 2y+l divides x - z. This fact is easily expressible by

a formula Sn(x, y) of L using Pow2n and M2n.

That formulas I (y) and J (y) with the properties listed in Theorem 7 n n

exist is immediate. Thus to finish the proof of Theorem 3 we need the

following.

Theorem 12. For every binary word w, !wl = n, there exists a formula

2n
H (x) of L which is true in <R, +> for an integer O ~ x < 2

2
if and only

w

The formula H (x) satisfies the condi­
w

tions of Theorem 7.

as

Proof. Define for binary words u, by induction on !ul, formulas K (z)
u

follows.

K
0

(z) +-+ z = 0,

Kl (z) +-+ z = 1,

KuO(z) +-+ 3y [Ku (y) " z = y + y] ,

K 1 (z) ++3y[K (y) " z = y + y + 1] . u u

Clearly, if ~(z) is true, then, considered as a sequence, z satisfies

w(i) = z(i) for O ~ i < lwl, z(i) = 0 for i ~ JwJ. Using this K (z) and the
w

formulas Sn(x, y) and Jn (y), we can write the formula Hw(x) by

formally expressing the statement that for z such that 1\._,(z), x(i) =

19

Thus we have proved, for Th(.R_), the existence of formulas S (x, y),
n

In(y), Jn(y), and Hw(x) which satisfy the conditions of Theorem 7 for

f(n) = 2n. This completes the proof of Theorem 3.

5. Proof of Theorem 4 (Lengths of Proofs for Real Addition).

We now show that for Th(}l) proofs are also exponentially long. This

is an easy consequence of Theorem 3.

Let AX be a consistent system of axioms which is complete for Th(.~),

i.e. every sentence FE Th(/l.) is provable from AX (AX ~ F). Furthermore,

there exists an algorithm B which decides in polynomial time p(JGJ) for a sen­

tence G of L whether GE AX.

Let c be the constant of Theorem 3. For every polynomial q(x), there

. dn en exists a constant O < d so that from a certain point on, q(2) < 2 .

Construct a non-deterministic algorithm AL for Th(,l) as follows.

Given a sentence F, AL writes down (non-deterministically) a binary sequence

P. Then AL checks whether Pis a proof of F from AX or a proof of ~F from

AX. The computation halts only if one of the two possibilities occurs.

Because of the assumptions on AX, this check can be made in a polynomial

number of steps h(JPJ). Thus the whole computation, if it halts, requires

IPI + h(JPI) = q(JPI) steps. If every true sentence F would have a proof P

with IP! < 2dn where n = IF!, then for every such F there would be some halting

computation of length less than q(2dn), i.e. also less than 2cn for all

sufficiently large n, a contradiction.

20

6. Proof of Theorems 1-2 (Presburger Arithmetic).

The proof for Theorem 1 follows closely along the lines of the proof

of Theorem 3 and utilizes our previous results. In particular we note that

Theorems 8-10 apply, as they stand and with the same proofs, to PA. Note

also that the order$ on N is definable in PA using+. Throughout this

2n
section, let f(n) be 2

Theorem 12.
2

There exists a function g(n) ~ 2f(n) so that for

every n there exists a formula Prod (x, y, z) with the following properties.
n

For integers A, B, C,

Prodn(A, B, C) is true in '1 +-+ A, B, C < g(n) and AB= C.

There exists a constant c > 0 so that !Prod I $ c(n+l) for all n. The formula
n

Prod is Turing machine constructible from n in time polynomial inn.
n

Proof. We shall use the Prime Number Theorem which says that the number

of primes smaller than mis asymptotically equal tom/log m; hence bigger than
e

m/log2m for all sufficiently large m. 2
n+2

Thus, form= 2 , the number of

2n+2 +2 2n+l
primes p < m exceeds 2 /2n > 2 2

= f(n) . Let g(n) = TI
p<m

p, where p

2n+2 f()2
runs over primes, m = 2 ; then g(n) ~ 2 n since 2 $ p for all primes.

By use of the formula Mn+2 (x, y, z), we can write two formulas

Resn+2 (x, y, z) and Pn+Z(x) of length O(n) with the following meanings. Let

res(x, y) denote the residue (remainder) of x when divided by y. Then

2n+2
Resn+Z(x, y, z) +-+ [y < 2 A res(x, y) = z];

21

2n+2
Pn+2(x) +-+ [x < 2 and xis prime].

The formula Resn+2 is written in Las

z < y /\ 3 q 3w[Mn+2 (y, q, w) /\ x = w + z] .

2n+2
We recall that for any q and w, Mn+2 (y, q, w) holds if and only if y < 2

and yq = w.

The formula Pn+2 (x) is, simply,

By formally saying that x ~ 1 is the smallest integer divisible by all

2n+2
primes p < 2 , we can write a formula Gn+

2
(x) which is true precisely for

X = g(n). Now Prod (x, y, z) is true if and only if
n

2n+2
x, y, z < g(n) /\ Vu[u < 2 ➔ res(x,u)•res(y,u) = res(z,u)]. (3)

2n+2
Namely, this implies that xy = z (mod p) for all p < 2 , which together

with x, y, z < g(n) is equivalent to xy = z. Now, by use of Gn+2 (x),

Mn+2(x, y, z) and Resn+2 (x, y, z), the above relation (3) can be expressed

by a formula Prod with the desired properties. D n

Exponentiation can be defined just as in the proof of Theorem 10 except

that we now use Prod (x, y, z) instead of M (x, y, z) to obtain a sequence of
n n

formulas Ek(x, y, z, u, v, w). For integers a, b, c, A, B, C for which

2k a '7
0:::; a< 2 and O:::; b, c < g(n), Ek(a, b, c, A, B, C) is true in., if and

only if A, B, C < g(n), ba = c, and AB= C. Also IE' I = O(n).
n

22

Having now multiplication up to g(n) and exponentiation 2i up to

2n+l
i < 2 expressed by formulas of length O(n), we can code sequences of

2n+l 2
length 2 = f(n) in exactly the same manner as in Section 4. This com-

pletes the proof of Theorem 1 by again appealing to Theorem 7.

The proof of Theorem 2 now follows exactly the lines of the proof of

Theorem 4 given in Section 5.

7. Other Results.

The techniques presented in this paper for-proving lower bounds on logical

theories may be extended in a number of directions to yield several other

results. We outline some of them below without proof; they will be presented

in full in a subsequent paper.

Theorem 13. Let O'C. be any class of additive structures, so if

Jl. =<A,+> E (l'(_, then+ is a binary associative operation on A. Let Th(Ol)

be the set of sentences of L valid in every structure of O'(. Assume /J(_ has

the property that for every k EN, there is a structure .Ak = <~, +> E {l(_

and an element u E ~ such that the elements u, u+u, u+u+u, ... , k·u are

distinct. Then the statement of Theorem 1 holds for Th(Ot) with the lower

dn
bound 2 for some d > O.

Theorem 3 is an immediate corollary of this result, taking ot to be the

class of just the one structure I<.= <R, +>. Some other classes to which the

result applies are:

23

(1) The complex numbers under addition.

(2) Finite cyclic groups.

(3) Rings of characteristic p.

(4) Finite Abelian groups.

(5) The natural numbers under multiplication.

The proof of Theorem 13 extends the ideas of Section 4. The element n-u

is used as the representation of the integer n, and u itself is selected by

existential quantification.

Special properties of certain theories permit us to obtain still larger

lower bounds on the decision problem. For example, we get a lower bound of

2cn
2 for (4), the theory of finite Abelian groups. This is obtained by encoding

n
integers up to 2

2
by formulas of length O(n) just as in Theorem 13, but

instead of representing a sequence by an integer, we let the structure

itself encode the sequence. Let i, be a finite Abelian group. Then element

s(i) of the sequences encoded by lJ is 1 if and only if l:, contains an element

x of order p., where p. is the i+1st prime. The necessity of using primes
1 1

as indices instead of integers considerably complicates the analog of Theorem 7.

Another example where we get still larger bounds is (5), the theory of

multiplication of the natural numbers (MULT). That MULT is at least as hard

as PA is immediate, for the powers of 2 under multiplication are isomorphic

to "7, and the property of being a power of 2 can be expressed in MULT (assuming

we have the constant 2; otherwise we use an arbitrary prime). In fact, the

2cn

bound can be increased yet another exponential to 2
2

by using the encoding

24

which associates a sequences to a positive integer n, where s(i) = 1 if and

only if qi divides n, where qi is the i+lst prime in some fixed (but arbitrary)

ordering of the primes. Again we are forced to use the primes as indices,

and again the analog to Theorem 7 is considerably complicated.

Acknowledgement

The authors gratefully acknowledge several helpful ideas and suggestions

of A. Meyer, C. Rackoff, R. Solovay, and V. Strassen which lead to and are

incorporated in the present paper.

References

1. J. Ferrante and C. Rackoff, "A decision procedure for the first order
theory of real addition with order," Project MAC Technical
Memorandum 33, M.I.T., Cambridge, Mass. (May 1973), 16 pp.

2. M. Presburger, "Uber die Vollstandigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige
Operation hervortritt", Comptes-rendus du I Congres des
Mathematiciens des Pays Slaves, Warsaw (1930), pp. 92-101, 395.

3. A. Tarski(with the assistance of J.C.C. McKinsey), A Decision Method
·for Elementary Algebra and Geometry, 2nd ed., University of
California Press, Berkeley and Los Angeles, 1951.

BIBLIOGRAPHIC DATA
SHEET l

l. Report No~, GJJ 46 71 + N00014- 12·

70-A-0362-0003 ~1~~ iN-41
4. Titk .111d Sul>titk

Super-Exponential Complexity of Presburger Arithmetic

7. Author(s)

Michael J. Fischer and Michael O. Rabin
9. Pcrfmrning Organization Name and Address

PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY:

545 Technology Square, Cambridge, Massachusetts 02139

12. Sponsoring Organization Name cind Address

Office of Naval Research
Department of the Navy
Information Systems Program
Arlington, Va 22217

15, Supplementary Notes

16. Abstracts

Associate Program Director
Office of Computing Activities
National Science Foundation
Washington, D. C. 20550

3. Recipient's Accession No.

s. Report Date : Is sued
February 1974

6.

8. Performing Organization Rept.

No. MAC ™'"'43
10, Project/Task/Work Unit No.

11. Contract /Grant No,s, GJJ 46 7 l

N00014-70-A-0362-0003

13. Type of Report & Peri9d
Covered : Interim
Scientific Report

14.

Lower bounds are established on the computational complexity of the decision
problem and on the inherent lengths of proofs for two classical decidable theories of
logic: the first order theory of the real numbers under addition, and Presburger
arithmetic -- the first order theory of assition on the natural numbers. There is a
fixed constant c > 0 such that for every (non-deterministic) decision procedure for
determining the truth of sentences of real addition and for all sufficiently large n,
there is a sentence of length m for which the decision procedure runs for more than

en
2 stepso In the case of Presburger arithmetic, the corresponding bound

2
cn

is 2 .
These bounds apply also to the minimal lengths of proofs for any complete
axiomatization in which the axioms are easily recognized.

17. Key Words and Document Analysis. 17a. Descriptors

17b. Identifiers 10pcn-Fndcd Terms

17c. COSATI Field/Group

18. Availability Statement

Unlimited Distribution

Write Project MAC Publications
FORM NTIS-"C.\:i (Rt::::V 3-7?/

19. Security Class (This
Report)

LNC LASS IF !ED
2U. Security Class (This

Pa1;c
!JNCLASSJFIED

THIS FORM MAY BE REPRODUCED

21. No. of Pages

25
22, Price

USCOMM-OC 14952-P72

