
CAMBRIDGE 

MAC TECHNICAL MEMORANDUM 36 

A USER'S GUIDE TO THE MACRO CONTROL LANGUAGE 

Steven P. Geiger 

December 1973 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

PROJECT MAC 

MASSACHUSETTS 02139 



-1-

1. INTRODUCTIO~J 

Although there currently exist many languages USClt for 

p rocess-control, they are restricted to S?ecial-purpose 

applications. The ~aero Control Language is the base of a new 

language approach wl1ich combines the advantages of co~~ilation 

from a higher-level language with t he autonatic schec.uling of a 

pr e - programi:ted real-time system. This language has 1)een 

implenented on t he '1.I .~. Electrical =nginecring Je?artment's 

PDP-11/45 DELPHI systen, located in Cuildi ng 33-473. T~e 

primitives of the language are structured as macros :or the 

conputer's assembly lansuage. 

The purpose of t his ~uid e is to explain the syntax and 

semantics of the statements in the ~aero Control Language. The 

guide assumes t hat the reader is familiar with t he assembly 

language for the PDP-11. Although this gui de g ives step-by-step 

instructions on how to write and run '!aero Control Language 

programs, it assumes t i.at the reader is familiar with certain 

aspects of the DELPHI system. In particular, it is assumed that 

t he reader can log in and out of t he system, knows how to use the 

editor, and is somewhat faniliar with the 11n 11 sub-system of 

DELPHI (see DELPHI User 's ~anual). 



-2-

2 • DAI:MOIJ S 

The purpose of this section is to consider "dacPions", 

explain what they are and how to use them. 

2.1) Introduction to Daemons 

The central concept of this language is the "daernon" - i.e., 

a user-specified process exhibiting some "continuity". A d aemon 

is composed of two parts, each with its own user-declared measure 

of "continuous performance". The first part is some condition to 

be monitored. If this condition is "true", then the second part 

of the daemon will take some course of action. For exam?le, in 

moving a robot arm whose hand is holding a glass of water, it is 

desirable to keep the hand's angle with the horizontal, 8, equal 

to zero so as to avoid spilling the water. To accomplish this, a 

daemon would be created to monitor the angle e, and to take 

appropriate action if the glass begins to tilt. In English, the 

body of the daenon might rea<l as follows: "Recognize within 25 

milliseconds if 181>0.l; and within 100 milliseconds complete the 

corrective action of applying procedure P to the actuator 

controlling the robot's hand." Here, for angle monitoring, the 

measure of continuity is 25 msec - that is, due to the dynamics 

of the robot arm, recognition of the angle error within 25 msec 

of its actual occurrence will produce essentially the same 

results as if t h e angle were nonitored continuously. 
If a more 

sluggish arm were used, the daemon could monitor less frequently 



-3-

than every 25 msec and still have the same degree of 

"continuity". Similar comments can be made about the declared 

time of 100 msec for corrective action at the actuator end of the 

system. 

Thus, the daemon is the heart of a user-defined control 

loop. The programmer can specify as many daemons as he wishes, 

and in any order. To his eyes, all daemons run simultaneously, 

independent of the implementation uetails of the language. 

2.2) Creating Daemons 

A daemon is created with the following statenent: 

DAEl-10N dest,cond,expr,rec-within,serv-within 

dest - specifies the destination for the unique address 
or "name" of the daemon. After creating the 
daemon as specified, the system will put the 
daemon's name into this destination. This 
destination should be specified using the normal 
assembler destination addressing @odes. That is, 
"RS" specifies that the name will be put into 
register 5; "DLOC" specifies that the name will be 
put into the location "DLOC". 

cond - specifies the address of the code for the daemon 
condition to be monitored. The format for a 
daemon condition will be discussed later. Normal 
assembler source addressing modes are to be used 
for this argument. That is, "RS" specifies that 
the condition address is contained in register 5; 
"DCOND" specifies that the address is contained in 
location "DCOND"; and "#DCOND" specifies that 
"DCOND" is the address of the condition. 

expr - specifies the address of the code to be executed 
when the daemon condition is "true". This code, 
called the daemon's "expression", will be 
discussed in Section 2.4. Like cond, expr should 



-4-

be specified using the assembler's source 
addressing modes. 

rec-within - specifies the measure of continuity for the 
daemon condition. This measure is referred to as 
the "recognize-within" tine and will be discussed 
in Section 2.5. The "recognize-within" s hould be 
specified using the TIME PORMAT discussed in 
Section 3. 

serv-within - specifies the measure of continuity for the 
daemon expression. This measure is referred to as 
the "service-within" time and will be d iscussed in 
Section 2.6. Like the recognize-with in time, the 
"service-within" should be specified in TI:'lC 
FORMAT. 

2.3) Daemon Conditions 

It is up to the daemon condition to perform the appropriate 

monitoring tasks, and to reply either "true", the daea on 

expression should be run, or "false", the daemon expression 

should not be run. There is no special entry format for the 

actual code of the condition. The user is free to change 

registers O thru 5 at will - they need not be saved upon entry or 

restored upon exit from the condition. The use of register 6 

(the stack pointer) will be discussed in the section on STACKS. 

The condition can execute any Macro Control Language statement 

except START, WAIT, or ENDEXPR. To exit from the condition, the 

ENDCOND statement should be used. The format for this statement 

is simply: 

ENDCOND 



-s-

At this time, the system will test register Oto determine its 

action. If RO is positive, this means the condition has returned 

"true". If ~O is negative, this means the condition has returned 

''false". Whenever a condition has returned "false", it will be 

rescheduled to run at a later time. 

Users should obey the discipline just outlined. They should 

not attempt to execute the daemon expression themselves. They 

should~ attempt to re-execute the condition by branching to 

its beginning. It is desirable that all aaemon conditions be 

short and take little time to execute. Any "work" that takes an 

appreciable amount of time should be left for the daenon 

expression. 

2.4) Daemon Bxpressions 

The expression is the "workhorse" of the daemon. It is here 

where "corrective" actions are performed before control is again 

returned to the daemon condition. Like the condition, the 

expression has no special entry format and registers O thr u 5 may 

be used freely. The STACK restrictions that apply to conditions 

also apply to expressions. The only Macro Control Language 

statements that expressions may not execute are START and 

BNDCOND. Although the expression returns no truth value, its 

exit format is similar to the condition. That is, to terminate 

an expression's execution, use the ENDEXPR statement. The format 



-6-

for this statement is simply: 

ENDEXPR 

2.5) Recognize-within 

The recognize-within time specifies the measure of 

continuity for the daemon condition. Very simply, it directs the 

system to recognize the occurrence of the "true" condition within 

the specified time after· the condition actually becomes true. 

Practically, this time spec'ifies the frequency of the condition 

execution. For this specification to be meaningful, it is 

necessary that the time be larger than the actual code execution 

time of the daemon condition. If the user does not wish to 

declare any specific amount of time, he may instruct the system 

to use a default for the recognize-within time. Default is 

indicated by specifying a recognize-within tirae of "zero~. The 

length of default recognize-within time varies dynamically, 

depending on the number of daemons that need their conditions 

evaluated. The larger the number of such daemons, the larger the 

default time. 

2.6) Service-within 

The service-within time specifies the measure of continuity 



-7-

for the daemon expression. That is, it says to fully service (or 

execute) the daemon expression within the specified ar.iount of 

time after the recognition of a "true" condition. 
In a sense, 

this time can be used to specify how ''important" a particular 

expression is, with respect to other daenon expressions. This 

service-within time should be larger than the actual code 

execution time of the daemon expression. The user can specify a 

default for the service-within time in the same manner as fo r the 

recognize-within. In this case, the length of the default time 

depends on the number of daemons that need their expressions 

executed. 

2.7) Controls over Daemons 

As created with the DAl:.MON statement, a daemon is an idle 

process which will do nothing until "activated". It is said to 

be in a "deactivated" state. The usefulness in having control 

over daemon "activation" can be seen with the earlier example of 

a daemon keeping a robot's hand level. Suppose one wished to 

direct the robot to pour the water out of its glass. All 

attempts would be in vain unless there were some way to 

"deactivate'' the daemon that keeps the hand level. It would be 

desirable to keep the hand-leveling daemon in a "library" of 

daemons to be "activated" when wanted, and "deactivated" when no 

longer needed. Thus, all daemons in the ~aero Control Language 



-8-

are created in the "deactivated" state. 

used: 

To activate a daemon, the following statement should be 

ACTIVATE name 

name - specifies which daemon should be "activated". 
This argument uses the assembler's source 
addressing modes to reference the value returned 
through the "<lest" argur.ient of the DAE:1m~ 
statement. 

The action taken by the ACTIVATE statement depends on the state 

or "status" of the specified daemon. If the d ae11on is 

"deactivated" and idle (for example, after creation), its status 

becomes "activated'' and its condition is sched uled to execute 

immediately. If the daemon is already "activated", then the 

ACTIVATE statement performs no useful work. If the daeraon has 

been "deactivated" but has not yet finished executing its code, 

the statement will set the status to "activated", but will not 

interrupt the current execution of the daenon; the daemon will 

proceed as if it never had been "deactivated" in the first place. 

used: 

To "deactivate" a daemon, the following statement should be 

DEACTIVATE name 

name - specifies which daemon should be "deactivated". 
This argument has the same format as in the 
ACTIVATE statement. 

The action taken by the DEACT IVATE statement is quite simple. 

This statement s ets the "status" of the daemon to "deactivated". 



-9-

If the specified daemon were already "deactivated", this 

statement performs no useful action. 
If the daernon were 

executing either its condition or expression, this execution 

proceeds uninterrupted. However, both the Ei-mcmm and LWLXPH 

statements check the daemon's "status". 
If either statement 

discovers that the daemon has been "deactivatea", it will return 

the daenon to its original "idle" state. 

2.8) Daemon Status 

In the previous section it was mentioned that daemons have a 

"status", and that this "status" can be "activated", 

"deactivated", or "idle". The status of a daerr:on c.1n be accessed 

by a user since it may influence the control strategy to be 

followed. Thus the following statement is provided: 

STATUS name,dest 

name - specifies which daert1on the user is interested in. 
This argument has the same forMat as in the 
ACTIVATE statement. 

dest - s pecifies the destination for the value of the 
daemon's current status. The format of this 
argument is sirnilar to that of the "dest" argument 
of the DAEMON statement. 

The value returned by the STATUS statement is coded in bits. Bit 

0 (the lowest order bit) being 1/0 specifies that the daemon is 

activated/deactivated. If bit 1 is set, the daemon's condition 

is scheduled to run. If bit 2 is set, the daemon's expression is 



-10-

scheduled to run. If the user doesn't wish to test individual 

bits, tl1e following table can be used to understand the daemon's 

status: 

value 
0 
l 
2 

3 

4 

5 

meaning 
deactivated and idle, as after creation 
impossible, system error 
the daemon's condition is scheduled to run. 
However, after its execution, the daemon will return 
to the "idle" state since it is deactivated. 
the daemon is activated and its condition is 
scheduled to run normally. 
the daemon's expression is scheduled to run. 
However, after its execution, the dae11on will return 
to the "idle" state since it is ueactivated. 
the daemon is activated and its expression is 
scheduled to run normally. 



-11-

3. TI~E - A DISCUSSION 

A few statements in the Macro Control Language use the 

concept of ''time". The purpose of this section is to explain the 

representation of time to the us er, explain how to access the 

time-of-day, and to describe the TI~IE FO&'1AT ana its various 

options. 

3.1) Internal Representation of Time 

The ~aero Control Language works with 10 Lticroseconds as its 

basic unit of time. Two consecutive words inside the system 

represent the current time-of-day. The first word (lower 

address) contains the high order bits of the time- of- day, while 

the second word contains the lower order bits of t he time- of- day. 

The representation is a 32-bit unsigned number. This two word 

size accomodates approximately 12 hours of real t i me . The 

time-of-day is initialized to zero and be~ins counting with the 

execution of the START statenent (s ee Section 6.2). It is 

assumed that no user will be running for more than 12 hours at a 

time. If this should happen, an error message will noti fy the 

user that a "TIIIE OVERFLOW" has occurred. 

3.2) Accessing Time 

During t he course of his program's execution, the user may 



-12-

wish to access the current time-of-day kept by the systeu . Such 

an access of time would be useful for tining events external to 

the computer. For example, consider a researcher wno ,;ishes to 

determine the time required for a human subject to blin~ in 

response to a flash of light. Such a calculation is trivial if 

the computer can record the time at which it flashed the light 

and the time at which the subject blinked. Thus, the following 

statement is provided to give the user a copy of the current two 

word time-of-day: 

TIME dest 

dest - specifies where the two words of the time-of-day 
are to be placed. The addressing modes are 
restricted to the following subset: "Rn" specifies 
that the time-of-day is to be put into registers 
Rn and Rn+l; "X(Rn)" specifies that the 
time-of-day is to be put into locations X(Rn) and 
X+2(Rn); finally, "DLOC" specifies that the 
time-of-day is to be put into locations DLOC and 
DLOC+2. 

In all cases, the first word (lower address) will contain the 

higher order bits of the time-of-day. In the second option for 

dest, "X" may be blank. The user is reminded to prograc carries 

if doing arithmetic operations on the time-of-day, and to use the 

unsigned conditional branches after any comparisons of "times". 

3. 3 Tn1E P0~1i\T 

Certain statements, e.g. DACMON, require the use of 



-13-

arguments in "TIME FORMAT". Since the user must specify two 

words worth of time to the system, the TPm FOW-11\T was developed 

to aid him. There are three acceptable TIIlE FORMATS whi c h can be 

used. In the first two formats, the user must specify two wor d s 

of "time" data. In the last format, t he user can forge t that 

time consists of two words, s pecifying tine in conven i ent units. 

The three formats are as follows: 

(1) 

( 2) 

(3) 

<p> 

<p,q) 

<amount,:uni t> 

In the above formats, t he characters "<", ">", ": ", and "cor.1ma 11 

are required. 

In the first format, "p" is used as a pointer to a two-word 

time specified by the user. It is assumea that this "time" is 

given in two consecutive locations, with t he lower address word 

containing the high oraer bi ts of the tiue. The high order word 

will be accessed first (in case auto-increnent mode is used). 

Ther e are two notable exceptions to this r u le. First, if " p " is 

of t he fornat "#var", t he system a ssumes a high order wor d of 

zero and a lower order word of the number "var". Second, if "p" 

is auto-decrement mode , it is assumed t hat the first word 

"oopped" is t h e higher o r der word, while the s e cond word " popped " 

is the lowe r order word. 

In the second TI!lE FOR:-1AT , the user expl icitly s pecifics 



-14-

both words of the time. That is, "p" specifies the higher order 

word while "q'' specifies the lower order word. Any assembler 

addressing modes may be used for "p" and "o". The hi~her order 

word will be accessed first. 

The third TIME FORMAT allows the user to work \Ji th 

conventional time units. That is, if "unit" is USEC, ASSC, SLC , 

OIII, or HR, then the user is specifying his tirae in microseconds, 

milliseconds , seconds, minutes, or hours, respectively. Eere, 

"amount" specifies the tir.,e to be convcrtec, usins any legal 

assembler source addressing r,1ode. This third forr.~at si1ifts the 

burden of generating a two word time to the system. If "amount" 

is specified using the ir:unediate addressing rnode, this format is 

as efficient (in execution tirae and space) as the first two 

formats, since the conversion is done by the assembler itself. 

However, if any other mode is used, the conversion must be done 

at the expense of a larger physical program size and a longer 

execution time for the statement. 

example 

<LOC> 
<#10.> 

<(Rl)+> 

<R3> 
<#2,#100.> 
<Rl,-(R3)> 

<#10 . , :MSEC> 

- meaning 

- the two words of time are in LOC and LOC+2 
- the two words of time are: 000000 000012 
- access high order word first using mode (Rl)+, 

then access lower order word using mode (Rl)+ 
- the two words ·of time are in R3 and R4 
- the two words are: 000002 000144 
- the first word is in Rl and the second word 

will be "popped" using R3 
- the two words equivalent to 10 (decimal) 

milliseconds will be calculated by the 
assembler 

<A:1OUNT , : :UN> - at execution time, the data located in 
location "N1OUHT" is assumed to specify 
minutes and will be converted to a t wo-word 
time for the systen. 



-15-

4. PROGRl\,'1 CONTROL STATmtENTS 

The purpose of this section is to describe some statencnts 

which help control the execution of a program. 

4.1) PAUSC Statement 

When writing tir:1e dependent code a user r.iay wish to suspenJ 

the execution of this code for a specified amount of tine, and 

then have its execution resume. For example, consider someone 

trying to balance an inverted pendulum who needs to know its rate 

of fall. If angle position is the only value the computer can 

sample, then the rate of fall must be determined by taking two 

angle samples spaced in time. Thus, if the user samples the 

angle, pauses for a period of time, and tnen makes another angle 

sample, he can approximate the rate of fall by dividing the 

difference between the samples by the ar~unt of tir~ paused. 

This task can be accomplished with the PAUSE statement, whose 

format is as follows: 

PAUSE length 

length - specifies the "length" of time the code will 
remain idle before execution resumes. This 
argument should be s pecif ieu using TE1E FORMAT. 

Phrased more precisely , "length" is the amount of time the 

processor will ignore the code stream which executed the PAUSE 

statement. '.'.'he PAUSE statement has one very iRportant 

r estriction: '.:hen it is executed, the R6 stack should be free of 



-16-

important information since that information will be dGstroycci 

(see the section on S~ACKS). 

4.2) WAI7 Statement 

7he WAIT statement is a more general means to susoenu 

execution of a sequential progran. It is siLlilar to a PhLlSL in 

that normal execution of code is susoenued. 

"pauses II for a specified u.raount of time, 1·/;"\IT "waits II u:~til sor:-,e 

specified condition becomes true. The following exarjple will 

demonstrate the usefulness of the \·J.7\.IT statement. 

Suppose one is interested in controlling the teuperature of 

an oil bath. Using only a thermistor and a heater, a sinple 

control strategy involves turning tie heater on when the 

temperature is too low, and turning the heater off when the 

teNperature is too high. What follows are three sample 

programming approaches to implement thi~ ~eneral strategy. 

1) Create two daemons. 'i'ne first daemon will recognize 
when the temperature is too low, and then turn on tho 
heater. The second daemon will recognize when t he 
temperature is too high, and turn off the heater. This 
approach will work, but may cause the computer to 
thrash. For example, as soon as the first daenon turns 
the heater on, the temperature will not change 
noticeabl y. Thus, the daemon will again turn the 
heater on (even though it was already on). 

2) Create one daemon that will recognize when the 
temperature is outside an acceptable zone. When this 
occurs, apply a procedure that turns the heater on if 
the ter.1perature is low, or turns it off if the 
tenperature is high. Unfortunately, this ap-;-)roac:1 nny 



-17-

also cause thrashing. 

3) Create one daemon that will recognize whe11 the 
ter1perature is too low. When this occurs, apply the 
following procedure: turn the heater on; wait until t he 
tenperature gets too h i gh; turn the heater off. Such a 
daemon cannot thrash. It uses a WAI~ state:·:ent whose 
condition recognizes when the tenperature is too :1iij:1 . 
This approach requires that the heater is initially off 
when the daemon is activated. 

Example 3) above used a Wl\I'l' statenent. The format of this 

statenent is as follows: 

ivl\. IT cond,rec-within 

cond - specifies the condition to be tested, and uses the 
same addressing modes as the "cond" argument of 
the DAEMON statement. 

rec-within - specifies the measure of continuity for the 
Wl\IT condition. Its meanin9 anc format are 
similar to that of the daemon "recognize- within". 

The code for the lffiIT statement condition is similar to the 

DAEMON's condition. That is, there is no special entry fo r mat, 

and it is terninated with an EHDCOi:m stater,1ent. At that time HO 

is tested for "true" or "false". If "false", the condition will 

get rescheduled for execution at a later time. If "true", 

execution will return to the instruction located physically after 

the W\IT statement. 

The "recor;nize- within" for the W\IT stater.ent is completely 

analogous to the "rccognize-wi thin" of the DAF~'10N stn temen t. 

That is, it s necifies the measure of c onti~uity to be used for 

the \Jl\IT conu ition. l\s before , the user can instruct the systen 



-18-

to use a default for this value, by specifying t!ie vaL.ie zero . 

Like PAUSB, execution of WAIT restricts the RG Stack t o I..><~ 

empty. There is an additional restriction on the h'.\I r::.' statcnent, 

in that conc.litions cannot be nested. Thus, neither clac!7on 

conditions nor other wait conditions may execute a W.", I ' .. 

statement. If such an attenpt is made, program execution will 

terminate. Thus, only daer:ion expressions and the main proqr.:ir1 

(see Se ction 6) may execute a 1·mrr stntenent. 



-19-

5. IrJPUT/OUTPUT 

The purpose of this section is to describe the I /0 

statements of the Macro Control Language. 

5.1) Teletype I/0 

Any daemon can output to the teletype at any tine. However, 

if more than one daemon outputs messages, they may appear 

intermixed at the console due to the scheduling process fer the 

daemons. The user must do his own queuing for teletype use nmong 

his own daemons. It is also recommended that large messages not 

be output to the teletype. After the output buffer (50 

characters) is full, the Delphi system puts the whole job into 

I/0 wait until at least 15 new characters will fit into the 

buffer. The daemon scheduler does not know when such I/0 waits 

occur, and thus the response of the system may become sluggish. 

Any daemon can input from the teletype at any time; again, 

queueing must be done by the user. The scheduler does not know 

when the user intends to do teletype input. An instruction such 

as READCH puts the system into I/0 wait if there are no 

characters in the buffer yet . Such I/0 may degrade the system's 

response. Thus, the user is advised to check for characters in 

the input buffer before executing teletype input instructions. 

Such checking may be done by using NUMCH or interrupts when input 

appears in the buffer (See Delphi documentation). 



-20-

5.2) Real World Input 

Input from the physical process being controlled is obt~ine<l 

using the SENSE instruction. The format of this instruction is 

as follows: 

SEiJS:C 

line 

line,dest 

specifies the input port number whose value is to 
be sampled. This argument uses the nor~al 
assembler source addressing modes. 

<lest - specifies where the input value is to be put. 
Like all other "dest" arguments, this uses the 
assembler dest ination addressing modes. 

This single statement is used regardless of what kinu of device 

is connected to the specified input port. 

digital input, it will be read iffi!'!1ediately. 

If the port has a 

If the port has an 

analog input going through an A/D converter, a value is still 

read immediately. However, in the current hardware configuration 

(September, 1973) the A/D converter is be i ng multiplexed with "n" 

input ports (n=4). Thus , due to single convert times of 

approxinately 60 microseconds, the data read will be somew!1erc 

from zero to 60n microseconds old. 

The system uses only the lower 5 bits of "line" as t he port 

address. Higher order bits will be ignored . Port zero is 

reserved for the system's programr,1able clock. This clock may be 

read by the curious user, but it cannot be set. In the current 

interface, an input port consists of ten data bits which will be 

sanple<l upo n conrnand. For exanple, port #4 corresponds to one of 



-21-

the motor position sensors on the existing pen<lulu~ har <lwarc. 

This port is sharing an A/D converter with three other input 

ports. Sensing an unused port will return the value "zero''. A 

list of legal input ports will be kept in 38- 473. 

5.3) Real ~orld Output 

Output to the real world is accomplished with the SL:m 

statement. 'I'he format of this statenent is as follows: 

SEND line,value 

line - specifies the output port number to w~ich "value" 
is to be sent. As in the SENSE statement, this 
argument uses the asser.1bler' s source a ddressing 
modes. 

value - specifies the data to be sent to the specified 
output port. The format for this argument is 
specified in the followi ng BNF- like statement: 

value:= data I (PAUSE,time> I 

<rcount,(value(l),value(2) , ••• ,value(n)>> 

In the first option for "value", "~ata" s pecifies the actual 

output data, using normal assembler source addressing modes. For 

this case, the data is output to the appropriate port and control 

is returned to the instruction following the SEND statement. 

In the second option for "value", "time" specifies the 

amount of ti~e that the SEND statement will "pause" before 

control is returned to the next instruction. The argument "time " 



-22-

is specified using TIME FOR.."'iAT. The effect of this state:.:ent is 

the execution of a "PAUSE time" statement. No actual cata sets 

sent to the output port. 

The third option lets the user specify a string of output 

values, "value(!) , ••• ,value(n)", to be output sequentially, anJ a 

repetition count, "rcount'', governing how many tiDes the string 

will be output. The argument "rcount" is normally specified 

using the assembler's source addressing modes. If the count is 

zero, the string will not be output. If the count is one, the 

string will be output once. Any argument of the string, 

"value(i)", must be in the format of a legal "value''. These 

values will be output starting with value(l) and ending with 

value(n). The effect is similar to that of execution of the 

sequence: 

SBND 
SEND 

SEND 

line,value(l) 
line,value(2) 

line,value(n) 

If the count is two, after value(n) is output, the string will be 

repeated imr.1ediately with value(!) for a second pass. Thus, if 

the count is "m", the string will be output m times. The 

exception for the argument "rcount" is the option to repeat 

"forever". This option is specified by putting the single 

character"*" in place of the argument "rcount". Since the 

definition of "value'' is recursive, a repeated string of values 



-23-

can be used for any "value(i)". Nesting may be to any level, 

provided of course that the source statement fits on one line. 

It was mentioned that the effect of a "value" in this third 

forrn was "similar" to the execution of a sequence of SJ..::ID 

statements. As far as the world can tell, the effect is the 

same. However, there is a difference to the prograMmer. 

Executing a sequence of SEND statements will prohibit the 

particular daemon from doing any other useful work. However, 

this third output option actually creates n "teDporary output 

daemon" for the specified line number. Once the te~porary dae mon 

is created and activated, control returns to the instruction 

following the SEND statement. Thus, useful work can be done 

while a string of data is sent to a device. The daemon is called 

"temporary" because once the repetition count has decremented to 

zero, the daemon "disappears". This is inportant because only 

one temporary daemon can exist for a given output line at a time. 

Attempts to send two strings to the same port simultaneously will 

result in an error . 

In the current interface, an output port consists of a 

ten-bit data register. A port's register will be changed 

whenever output is directed to that specific port. Currently, 

port #4 is used to control the motors on the inverted pendulum. 

A list of legal output ports will be kept in 38-473. 



-24-

6. PROGRl01 FOfu".1AT 

The purpose of this section is to explain the format for a 

complete program with several daemons, and d iscuss a few re lated 

statements. 

6.1) Stacks 

The PDP- 11/45 is built around a stack orientation. Al l the 

Macro Control Language statements use the ma in stack governed by 

the stack pointer - register 6. For its use, the systen reserves 

stack space and sets up R6 to point to this stack. Throughout 

the execution of his program, the user is free to use this stack, 

provided he obeys the following restrictions. First, he may not 

specify any use of R6 in any Macro Control Language statement. 

This restriction comes from the simple fact that the :1acro 

Control Language statements "push" ite~s into the stack. Thus, 

any specification using R6 wil l cause unknown errors . Second, he 

must not have anything remaining in the stack at the time he 

executes either a PAUSE, \mIT, ENDCOND, or ENUEXPR statement. At 

these times, the stack pointed must point to the same location 

that it pointed to upoti entry to the daemon condition or 

expression. All Macro Control Language statements obey this 

discipline, and "pop" the stack when their execution is finished. 

If the user forgets this restriction and leaves something in the 

stack while executing one of the above statements, unpredictable 

effects will generally occur. The user is reminded that the JSR 



-25-

instruction "pushes" onto R6's stack. This item must be ''popped" 

before execution of one of the above statements. 

The user may use stacks without any of the above 

restrictions, provided that he reserves his own stack space and 

uses one of the first six registers (0 thru 5) as a stack 

pointer. He must initialize his stack pointer upon entry to jis 

condition or expression. All sharing of stack space by mul tiple 

daemons must be managed by the user. 

6.2) Starting a Program 

Somewhere in his program, a user r.mst include the following 

statement: 

START (stack) 

stack - an optional argument specifying how much system 
stack space should be reserved. The parentheses 
are not part of the s yntax, but are used to 
signify that the argument is optional. 

The START statement will be the first executable statement in the 

user's program, regardless of its physical location. This 

statement reserves space for the system stack governed by R6. 

1Jormally, l OO(octal) bytes are reserved for this stack. However, 

the user may override this by specifying the argument "stack". 

The DABMON statenent tenporarily uses 20(octal) locations in the 

stack. Thus, if more than 4 daemons could be created at the same 



-26-

time, a stack overflow would result unless nore stack space were 

reserved. Si@ilarly, the user could specify less stack space. 

The START statement initializes the system and defines the 

label "START". This statenent belongs to the "'.'•lll.L.J" program, and 

it creates a "daemon", with no condition, to represent this 

"HAIN" body of executable code. The service-within tine for tnis 

"daemon" is infinity, making the code "low priority'' conpared to 

real daemons. The START statement also initializes the 

time-of-day to zero, and starts the system clock. 

The statement located physically after the START statement 

will be the second statement to be executed. If the user should 

ever forget the START statement, address errors will occur on 

11
• CONTRL", as it will be an undefined symbol. If the START 

statement is executed a second tine (by branching to the label 

"START") the system will reset itself to its original internal 

state. That is, no daemons will exist and the time-of-day will 

be reset to zero. Multiple-definition errors will occur if more 

than one START statement exists per program. 

6.3) Finishing a Program 

Since the system treats the HAIN program as a daemon 

expression, the last executable statement (in time) of the :-lAIN 

program should be an ENDEXPR statement. The status of a running 



-27-

MAIN program is deactivated; thus, after the ENDEXPH statement is 

executed, the Ml\.IN program becomes "idle", and does not affect 

the execution of other daemons. The only way to re-activate the 

main program is to re-execute the START statement. 

The last physical statement of a complete program is the 

FINISH statement, whose format is as follows: 

FINISH (num) 

num - is an optional argument S?ecifying how ~any 
daemons (ordinary and teD?Orary) are to be created 
by the program. 

The FINISH statement is a non-executable pseudo-op. It sirnply 

provides "clean-up" directives to the assembler and replaces the 

normal ".END" pseudo-op. One of its tasks is to reserve space 

for all the daemon structures to be created. The assembler 

counts the number of DAEMON statements expanded, and adds to this 

the number of "temporary daemon" expansions (see the SEND 

statement). The FINISH statement then reserves space for this 

total number of daemons, and for the main program. The user can 

override this total by using the argument "nurn". 'fhis procedure 

might be necessary if a single DAEi·10N statement is used to create 

more t han one daemon, or if a single SEND statement with option 3 

for "value" is used for more than one output port. 

If the user forgets to include a FINISH statement in his 

program, an assembly error will result because the symbol 

".FIHISH" will be undefined. 



-28-

7. H.UIWING PROGRAHS 

The purpose of this section is to guide the user througn t he 

necessary steps to create, assenble and execute a p rog ram in t;1c 

f1ac ro Control Language. In this section the user is provided 

with sample command lines. In all the cornr:tand lines sr1own, 

underlined characters _are typed by the computer, not hv the user. 

Since DELPHI's assembler does not have facilities for 

macros, it is necessary to use DEC's 111\CRO assembler p rovid e d 

with their Disk Operating System (DOS). The user will never be 

running pure DOS, since DELPHI provides a Virtual DOS sub -system. 

To use the HACRO assembler, the user must keep his text files on 

the system's DOS disk. 

7.1) DOS Directories 

To use the Macro Control Language, the user nust have 

"write" access to DOS directory [40,<x>], where <x> is some 

integer greater than one. This guide will refer to the directory 

as [40,<x>], but the user should substitute his particular value 

for <x> in all the commands shown (i.e., [40,3]). IteP.'ls in a DOS 

directory are of the form (filename>.<extension>, where 

<filename> is a unique one to six _character name and <extension> 

consists of one to three characters. The standard extensions 

used by DOS are ".MC" for macro source files, ".BAK" for backup 

source files, 11 .LST" for assember listing files, ".OBJ" for 



-29-

object files, and ".LDA" for load files. 

To determine what files exist in his directory, the user 

should give the Delphi command: 

>list [40,<x>] 

This command will list the names of all files in directory 

[40,<x>]. Following each name will be the file length (in disk 

sectors), and the creation date of the file. 

To delete a particular file from his d irectory, the use;r 

should give the Delphi command: 

>delete <filename>.<extension>[40,<x>] 

This command will delete the file <filename>.<extension> from the 

directory [40,<x>]. Since ".Bi\K" files are created after 

editing, users are encouraged to delete all such files after use. 

Similarly, all ".LST" files and ".OBJ" files should be de leted 

after they are used. These files take disk space away from other 

users. Thus, the user is warned that all ".BAK", ".LST", and 

".OBJ" files may be periodical ly deleted by system programmers if 

the user becomes negligent. 

7.2) Editing 

To assemble a program, a user's program text must consist of 



-30-

upper case letters and must reside on the DOS disk with a ". !-lAC " 

extension in directory (40,<x>J. To create and/or cciit such a 

text file, use the Delphi command: 

>edit filename(40,<x>] 

where "filename" is a unique one to six character name for the 

user's file. Editing is essentially the same as with the normal 

Delphi editor. The only difference is an automatic case 

conversion of all characters entered from the console. That is, 

typing a lower case "a" enters an upper case "A", and vice versa. 

This enables the user to enter upper case letters without using 

the "SHIFT" key. As usual, ".BAK" files get created when 

re-editing a file. However, t!'lc ".B,"\K" files on the DOS disk do 

not get automatically deleted when the user logs out. Thus, if 

the user has no interest in the old file, he should execute the 

comman<l 

)delete filenarne.bak(40,<x>] 

to delete the file. 

7.3) Assembling 

To assemble his program, the user must use the Hl\CRO 

assembler in Virtual DOS. To use the assembler, first enter the 

Delphi corrunand: 



-31-

>dos 

Once inside Virtual DOS, the system will respond with a 

whenever it is at DOS command level (instead of the">" useci at 

Delphi command level). The user should note that DOS will echo 

lower case characters as upper case. The first Dm; corrn,1and 

should be: 

$LO 40 <x> 

This command specifies the user wishes to work in directory 

[ 40, <x>]. The next DOS command to be used calls the ;11\CRO 

assenbler: 

$HACRO (or $r-1) 

The assembler then types out its current version number, and 

responds with a"#". This character signifies that the assembler 

wants a command line. A typical command line would be as 

follows: 

!_filename<CTRLM1[40,l) ,filename 

This assembles the user's file, filename.MAC, with the system's 

macro file, CTRLM1.MAC[40,l), and creates an output file, 

filename.OBJ, to be used by the LINK Editor. If any assembly 

errors occur, they will be typed on the console. The user can 

abort an assembly by entering "CONTROL B", and the system will 

return to DOS command level. Otherwise, the assembler will 



-32-

respond with another"#" when finished. To exit from the 

assembler at this time, first enter "CONTROL B", and then "LI!IE 

FEED". This sequence will return the user to DOS cm~1an<l level. 

To exit from Virtual DOS, enter the following command w'.1ile at 

DOS command level: 

$QUIT (or £0) 

This will return the user back to Delphi command level. 

If the user is only interested in a source listing and 

symbol table, he should use the MACRO directive 

! , filename(CTRLM1[40,l] ,filename 

This will create the file "filenarne.LS'l'" which contains the 

program listing and symbol table. To list this file, the user 

should use the Delphi command: 

~p Anh filename[40,<x>] 

After getting his listing, the user should delete this listing 

file. To obtain only a symbol table, use the directive 

!,filename/NL(CTRLM1[40,l] ,filename 

The "/NL" option will not list the source program. To obtain 

both ob ject and listing files, use: 

!filename , filename(CTRLM1[40,l),filename 



-33-

For other listing options, see the documentation on ti1e iY ; : : : .r,CWJ 

c1ssembler. 

7.4) Link Editing 

Once a user has obtained an error-free object file, :1c i ~, 

ready to use the link editor. The link editor is cnllcd b~ 

giving the following command while at DOS co~mand level: 

$LINK (or $L) 

This can be done after leaving the :1ACRO asser,1bler, or c:1fter 

re-entering DOS and giving the "LO" command. After Lrt;K is 

called, it responds with its current version n~~ber and then a 

"#", as did MACRO. The only command the user should give to LI:JK 

is as follows: 

!filename<filename,CTRL01[40,l]/B:0/U/E 

This will create a file "filename.LOA" which can be executed at a 

later time. If any errors occur, the user has not followed all 

the directions up to this point. Normally, only a transfer 

address, low limit, and high limit will be typed on the console 

by LINK. Afte r LINK gives a new "# 11
, exit to DOS command level 

by giving t h e "CONTROL B11
, "LINE FEED" sequence as in =~cRo. The 

user shou l d t hen return to Delphi cor.unand level by giving the "Q" 

command. 



-34-

7.5) Executing a Program 

Once a ".LDA" file has been created, it can be executed by 

M, as a normal Delphi program. To specify the ".LOA" file, enter 

the command: 

>m filename[40,<x>] 

Once inside .\1, the fi rst command should be "a". This wil l attach 

the sensors and actuators to the user's process, lockin~ out 

other users. Then after the "a" command , enter t he "g" cornnand 

and the program will start executing the START statement. If a 

program terminates normally, an "END OF JOB" message will he 

given. 

If the user wishes to set breakpoints in his program, at 

least one must be set before starting his prograM. When the 

START statement is executed, the system checks whether or not any 

breakpoints are set. If none are set at that tiELe, the s y stem 

will prevent tracing from occurring, even if breakpoints are set 

at some later time. If one or more breakpoints are set when the 

START statement is executed, then the system will trace all user 

code, even if brcakpoirits are reset at some later time . The user 

should be warned that tracing slows the execution time of a 

program and may affect time-dependent code. 



-35-

8. Sl\.'11PLE PROGRN1 

This concludes the user's guide to the ~aero Control 

Language . The following is a simplified saMple progran to 

balance an inverted pendulum. 

l\.ssume that the problem can be split in two. Thut is, the 

"x" and "y" axes can be controlled independently. In the code 

that follows, the MAIN program creates all daemons, waits for the 

operator to press a "start-button", and then activates the axis 

daemons. It also activates a "DIFF" daemon which finds the 

angular velocities of the pendulum. The axis daemons use routine 

"CHECK" to determine if the absolute value of the angle is less 

than two degrees. If correction is necessary, these dae~ons use 

routine "FIX" to control the notors. The code supplied is 

simplified so that the reader can see a sample Macro Control 

Language program, without being bored by the details of balancing 

a pendulum. 

;DEFINITIONS 

XANGLE=l4 ;SENSOR PORT # FOR THE "X" ANGLE 
YANGLE=3 ;SENSOR PORT . # FOR THE "Y" ANGLE 

XPOSITION=4 ;SENSOR PORT # FOR THE II XII POSITION 
YPOSITIOH=7 ;SENSOR PORT # FOR THE "Y" POSITION 

X.'-10TOR=4 ;ACTUATOR PORT # FOR THE II XII MOTOR 
Y.'.'·lOTOR=l ;ACTUATOR PORT # FOR THE "Y" HOTOR 

BUTTON=l ;SENSOR PORT # FOR THB "START" BUTTON 



; i11AIN PROGRAM 
START 

;CREATE "X" AND "Y" DAEMONS 

-36-

DAEMON XDAEMON, #XCOND, #XEXPR, < # 5, : MSEC >, < # 1 O. , : !·1SEC > 
DAEMON YDAEi'1ON, #YCOND, #YEXPR, ( # 5, : HSEC >, ( if 10. , : :-lSEC > 

;CREATE AND ACTIVATE DAEMON TO FIND FALLING Rl\TES 
DAEMON DIFF, #CONDl, #EXPRl, ( #1, : MSEC >, < # 5, : :1SLC > 
ACTIVATE DIFF 

;WAIT FOR OPERATOR TO PRESS START BUTTON 
WAIT #WCOND,<#1, :SEC) 

; AC'rIVATE DAEMONS 
ACTIVATE XDAEMON 
ACTIVATE YDAEMON 

; END MAHJ PROGRAM 
I:.NDEXPR 

; 1vAIT CONDITION 
\vCOND: SENSE #BUTTON, RO 

TST RO 
BEQ \·7F ALSE 
ENDCOND 

WFALSE: I·1OV #-1,R0 
ENDCOND 

;CONDITION FOR DIFF 
CONDl: CLR RO 

ENDCOND 

DIFF 

;RETURN "TRUE" 

; RE'l'URH "FALSL" 

;SJ:.;T "TRUE" 

;EXPRESSION FOR 
EXPRl: SENSE 

SENSE 
PAUSE 
SENSE 
SENSE 
SUB 

#XANGLE, XTEMP ; GE'r VALUES 
#YANGLE,Y7EMP 

DIV 
;.10v 
SUB 
DIV 
HOV 
PAUSE 
ENDEXPR 

(T,:USEC) ;PAUSE 
#XANGLE,Rl ;GET VALUES 
#YANGLE,R3 

XTEMP,Rl ;CALCULATE DIFF'S 
R0,T 
R0,XDIFF 
YTEHP,R3 
R2,T 
R2,YDIFF 

(T, : USEC> ; DON I T THRASH 

; CONDITIOiJ FOR YDAE!10N 
YCOND: ~ov #YANGLE,Rl 

J:-1P CHECK 



-37-

;C01JDITI ON POR XDAEHON 
,{COND: :1ov #XANGLE, Rl 

,JilP CHECK 

; EXPRESS IO!, FOR 
XEXPR: '.·10V 

:10v 
:-1ov 
J~1P 

;EXPRESSION FOR 
YEXPR: MOV 

;CHECK 
CHECK: 

1$: 

:10v 
~ov 
J:•1P 

ROUTIHE 
SENSE 
TST 
BPL 
NEG 
SUB 

XDAEMON 
#XANGLE,Rl 
#XPOSITION,R2 
#Xi,1OTOR, R3 
FIX 

YDAENON 
#YANGLE ,Rl 
#YPOSITIO,..J, R2 
#YrlOTOR ,RJ 
FIX 

Rl ,R0 
RO 
1$ 
RO 
#2,RO 

I:NDCO:m 

;FIX ROUTINE 
FIX: S:CNSE 

SENSE 
; CALCULATE :-1OTOR 

; CONTROL i10TOR 

Rl,RO 
R2,R4 
RESPONSE 

;GO TO FIX ROUTLIS 

;GO TO FIX ROUTINI: 

; GI::'11 lt1'1GLE 

;TAKE ABSOLl.iTE VALUE 

;CONDI?IOI-l "FALSE" IF 

;GET ANGLE 
; GET POSITIO~'1 

SEND R3, RS ; RS HAS CO!1TROL VALUE 
PAUSE (#200.,:USEC) 
ENDEXPR 

; DAE~·lON "NA.:tES II 

XDAEI·ION: • HORD 0 
YDAEHON: .HORD 0 
DIFF: • \JORD 0 

; STORAGE LOCATIOLiS 
XTE.1P: • \·JORD 0 

RO Nl:.Gl\TIVE 



YTEMP: 
XDIFF: 
YDIFF: 

.WORD 

.WORD 

.WORD 

0 
0 
0 

;PAUSE TIME FOR DIFF 
T: .WORD 500. 

FINISH 

-38-

;END PROGRAM 




