MAC TECHNICAL MEMORANDUM 36

A USER'S GUIDE TO THE MACRO CONTROL LANGUAGE

Steven P. Geiger

December 1973

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

L

INTRODUCTION

Although there currently exist many languages used for
process-control, they are restricted to special-purpose
applications. The Macro Control Language is the base of a new
language approach which combines the advantages of compilation
from a higher-level language with the automatic scheduling of a
pre-programmed real-time system. This language has “een
implemented on the M.I.T. Electrical Zngineering Cepartment's
PDP-11/45 DELPHI system, located in Luilding 33-473. The
primitives of the language are structured as macros for the

conmputer's assembly language.

The purpose of this quide is to explain the syntax and
semantics of the statements in the Macro Control Language. The
guide assumes that the reader is familiar with the assembly
language for the PDP-11. Although this guide gives step-by-step
instructions on how to write and run Macro Control Language
programs, it assumes that the reader is familiar with certain
aspects of the DELPHI system. 1In particular, it is assumed that
the reader can log in and out of the system, knows how to use the
editor, and is somewhat familiar with the "nm" sub-system of

DELPHI (see DELPHI User's Manual) .

DALMONS

The purpose of this section is to consider "daemons",

explain what they are and how to use themn.

2.1) Introduction to Daemons

The central concept of this language is the "daemon" - LsBa 5
@ user-specified process exhibiting some "continuity", A daenmon
is composed of two parts, each with its own user-declared measure
of "continuous performance". The first pPart is some condition to
be monitored. 1If this condition is "true", then the second part
of the daemon will take some course of action. For example, in
moving a robot arm whose hand is holdingy a glass of water, it is
desirable to keep the hand's angle with the horizontal, o, equal
to zero so as to avoid spilling the water. To accomplish this, a
daemon would be Created to monitor the angle 8, and to take
appropriate action if the glass begins to tilt, In English, the
body of the daenon might read as follows: "Recognize within 25
milliseconds if 181>0.1; and within 100 milliseconds complete the
corrective action of applying procedure P to the actuator
controlling the robot's hand." Here, for angle monitoring, the
measure of continuity is 25 msec - that is, due to the dynamics
of the robot arm, recognition of the angle error within 25 msec
of its actual occurrence will produce essentially the same
results as if the angle were nonitored continuously. If a more

sluggish arm were used, the daemon could monitor less frequently

than every 25 msec and still have the same Hegree of

"continuity",

Similar comments can be made about the declared

time of 100 msec for corrective action at the actuator end of the

system,

Thus, the

daemon is the heart of a user-defined control

loop. The programmer can specify as many daemons as he wishes,

and in any order. To his eyes, all daemons run simultaneously,

independent of

the implementation details of the language.

2.2) Creating Daemons

A daemon is created with the following statement:

DAEMON

dest -

cond -

expr -

dest,cond,expr,rec—within,serv—within

specifies the destination for the unique address
or "name" of the daemon. After creating the
daemon as specified, the system will put the
daemon's name into this destination. This
destination should be specified using the normal
assembler destination addressing modes. That is,
"R5" specifies that the name will be put into
register 5; "DLOC" specifies that the name will be
put into the location "DLOC".

specifies the address of the code for the daemon
condition to be monitored. The format for a
daemon condition will be discussed later. ©Normal
assembler source addressing modes are to be used
for this argument. That is, "R5" specifies that
the condition address is contained in register 5;
"DCOND" specifies that the address is contained in
location "DCOND"; and "#DCOND" specifies that
"DCOND" is the address of the condition.

specifies the address of the code to be executed
when the daemon condition is "true". This code,
called the daemon's "expression", will be
discussed in Section 2.4. Like cond, expr should

be specified using the assembler's source
addressing modes.

rec-within - specifies the measure of continuity for the
daemon condition. This measure is referred to as
the "recognize-within" time and will be discussed
in Section 2.5. The "recognize-within" should be
specified using the TIME FORMAT discussed in
Section 3,

serv-within - specifies the measure of continuity for the
daemon expression. This measure is referred to as
the "service-within" time and will be discussed in
Section 2.6, Like the recognize-within time, the
"service-within" should be specified in TIME
FORMAT.

2.3) Daemon Conditions

It is up to the daemon condition to perform the appropriate
monitoring tasks, and to reply either "true", the daernon
expression should be run, or "false", the daemon expression
should not be run. There is no special entry format for the
actual code of the condition. The user is free to change
registers 0 thru 5 at will - they need not be saved upon entry or
restored upon exit from the condition. The use of register 6
(the stack pointer) will be discussed in the section on STACKS.
The condition can execute any Macro Control Language statement
except START, WAIT, or ENDEXPR. .To exit from the condition, the
NDCOND statement should be used. The format for this statement

is simply:

ENDCOND

At this time, the system will test register 0 to determine its
action. If RO is positive, this means the condition has returned
"true". If RO is negative, this means the condition has returned
"false". Whenever a condition has returned "false", it will be
rescheduled to run at a later time.

Users should obey the discipline just outlined. They should
not attempt to execute the daemon expression themselves. They
should not attempt to re-execute the condition by branching to
its beginning. It is desirable that all daemon conditions be
short and take little time to execute. Any "work" that takes an
appreciable amount of time should be left for the daemon

expression.

2.4) Daemon Expressions

The expression is the "workhorse" of the daemon. It is here
where "corrective" actions are performed before control is again
returned to the daemon condition. Like the condition, the
expression has no special entry format and registers 0 thru 5 may
be used freely. The STACK restrictions that apply to conditions
also apply to expressions. The only Macro Control Language
statements that expressions may not execute are START and
ENDCOND. Although the expression returns no truth value, its
exit format is similar to the condition. That is, to terminate

an expression's execution, use the ENDEXPR statement. The format

for this statement is simply:

ENDEXPR

255 Recognize-within

The recognize-within time specifies the measure of
continuity for the daemon condition. Very simply, it directs the
system to recognize the occurrence of the "true" condition within
the specified time afte:-the condition actually hecomes true.
Practically, this time séecifies the frequency of the condition
eXecution. For this specification to be meaningful, it is
Neécessary that the time be larger than the actual code execution
time of the daemon condition. If the user does not wish to
declare any specific amount of time, he may instruct the system
to use a default for the recognize-within time. Default is
indicated by specifying a recognize-within time of "zero". The
length of default recognize-within time varies dynamically,
depending on the number of daemons that need their conditions
evaluated. The larger the number of such daemons, the larger the

default time.

2.6) Service-within

The service-within time specifies the measure of continuity

for the daemon exXpression. That is, it says to fully service (or
execute) the daemon eXpression within the specified amount of
time after the recognition of a "true" condition. 1In a sense,
this time can be used to specify how "important" a particular
eéxpression is, with respect to other daeron expressions. This
service-within time should be larger than the actual code
exXecution time of the daemon expression. The user can specify a
default for the service-within time in the same manner as for the
recognize-within., In this case, the length of the default time
depends on the number of daemons that need their expressions

executed.,

2.7) Controls over Daemons

As created with the DAEMON statement, a daemon is an idle
process which will do nothing until “activated”., It is said to
be in a "deactivated" state. The usefulness in having control
over daemon "activation" can be seen with the earlier example of
a daemon keeping a robot's hand level, Suppose one wished to
direct the robot to pour the water out of its glass. Aall
attempts would be in vain unless there were some way to
"deactivate" the daemon that keeps the hand level,. It would be
desirable to keep the hand-leveling daemon in a "library" of
daemons to he "activated" when wanted, and "deactivated" when no

longer needed. Thus, all daemons in the Macro Control Language

are created in the "deactivated" state.

To activate a daemon, the following statement should be

used:

ACTIVATE name
name - specifies which daemon should be "activated".
This argument uses the assembler's source
addressing modes to reference the value returned
through the "dest" argument of the DAENMON
statement.
The action taken by the ACTIVATE statement depends on the state
or "status" of the specified daemon. If the daeinon is
"deactivated" and idle (for example, after creation), its status
becomes "activated" and its condition is scheduled to ecxecute
immediately. If the daemon is already "activated", then the
ACTIVATE statement performs no useful work. If the daemon has
been "deactivated" but has not yet finished executing its code,
the statement will set the status to "activated", but will not

interrupt the current execution of the daemon; the daemon will

proceed as if it never had been "deactivated" in the first place.

To "deactivate" a daemon, the following statement should be

used:

DEACTIVATE name
name - specifies which daemon should be "deactivated".
This argument has the same format as in the
ACTIVATE statement.
The action taken by the DEACTIVATE statement is guite simple.

This statement sets the "status" of the daemon to "deactivated".

If the specified daemon were already "deactivated", tihis
statement performs no useful action. If the daemon were
eXecuting either its condition or expression, this execution
Proceeds uninterrupted. However, both the ENDCOND and ELDLXPR
statements check the daemon's "status"., If either statement
discovers that the daemon has been "deactivateu", it will return

the daemon to its original "idle" state.

2.8) Daemon Status

In the previous section it was mentioneg that daemons have a
"status", and that this "status" can be "activated",
"deactivated“, or "idle". The status of a daemon can be accessed
by a user since it may influence the contreol strategy to be

followed. Thus the following statement is provided:

STATUS name,dest
name = specifies which daenon the user is interested i
This argument has the same format as in the
ACTIVATE statement.
dest - specifies the destination for the value of the
daemon's current status. The format of this
argument is similar to that of the "dest" argument
of the DAEMON statement.
The value returned by the STATUS statement is coded in bits. Bit
0 (the lowest order bit) being 1/0 specifies that the daemon is

activated/deactivated. If bit 1 is set, the daemon's condition

is scheduled to run. If bit 2 is set, the daemon's expression is

scheduled to run.

-, -

If the user doesn't wish to test individual

bits, the following table can be used to understand the daemon's

status:

value

meaning

0
1
2

deactivated and idle, as after creation
impossible, system error

the daemon's condition is scheduled to run.
However, after its execution, the daemon will
to the "idle" state since it is deactivated.
the daemon is activated and its condition is
scheduled to run normally.

the daemon's expression is scheduled to run.
However, after its execution, the daenon will
to the "idle" state since it is deactivated.
the daemon is activated and its expression is
scheduled to run normally.

return

return

-1l-

TIME - A DISCUSSION

A few statements in the Macro Control Language use the
concept of "time", The purpose of this section is to explain the
representation of time to the user, explain how to access the
time-of-day, and to describe the TIME FORMAT ana its various

options,

3.1) Internal Representation of Time

The Macro Control Language works with 10 nicroseconds as its
basic unit of tine. Two consecutive words inside the system
T'epresent the current time-of-day. The first word (lower
address) contains the high order bits of the time-of-day, while
the second word contains the lower order bits of the time-of-day.
The representation is @ 32-bit unsigned number. This two word
Slze accomodates approximately 12 hours of real time. The
time-of-day is initialized to zero and begins counting with the
eXecution of the START Statement (see Section 6.,2). It is
assumed that no user will be running for more than 12 hours at a
time. If this should happen, an error message will notify the

user that a "TIME OVERFLOW" has occurred.

3:2) Accessing Time

During the course of his program's exXecution, the user may
g

-] P

wish to access the current time-of-day kept by the system. Such
an access of time would be useful for timing events external to
the computer. For example, consider a researcher who wishes to
determine the time required for a human subject to blink in
response to a flash of light. Such a calculation is teivial 1f
the computer can record the time at which it flashed the light
and the time at which the subject blinked. Thus, the following
statement is provided to give the user a copy of the current two

word time-of-day:

TIME dest

dest - specifies where the two words of the time-of~-day
are to be placed. The addressing modes are
restricted to the following subset: "Rn" specifies
that the time-of-day is to be put into registers
Rn and Rn+l; "X(Rn)" specifies that the
time-of-day is to be put into locations X(Rn) and
X+2(Rn); finally, "DLOC" specifies that the
time-of-day is to be put into locations DLOC and
DLOC+2,

In all cases, the first word (lower address) will contain the
higher order bits of the time-of-day. 1In the second option for
dest, "X" may be blank. The user is reminded to program carries

if doing arithmetic operations on the time-of-day, and to use the

unsigned conditional branches after any comparisons of "times".

3.3 TIME TFORMAT

Certain statements, e.g. DAEMON, require the use of

=] 3=

arguments in "TIME FORMAT". Since the user must specify two
words worth of time to the system, the TIME FORMAT was developed
to aid him. There are three acceptable TINME FORMATS which can be
used. In the first two formats, the user must specify two words
of "time" data. 1In the last format, the user can forgyet that
time consists of two words, specifying time in convenient units.

The three formats are as follows:

(1) {p>
(2) <{p,q>
(3) {amount, :unit)

In the above formats, the characters "M, "O", ™", and "corma"

are required,

In the first format, "p" is used as a pointer to a two-word
time specified by the user. It is assumed that this "time" is
given in two consecutive locations, with the lower address word
containing the high order bits of the time. The high order word
will be accessed first (in case auto-incrernent mode is used) .
There are two notable exceptions to this rule. Pirst, if "p" is
of the format "#var", the system assumes a high order word of
zero and a lower order word of the number "var". Second, if "p"
is auto-decrement mode, it is assumed that the first word
"popped" is the higher order word, while the second word "popped"

is the lower order word.

In the second TIME FORMAT, the user exXplicitly specifies

=-14-

both words of the time. That is, "p" specifies the higher order

word while "q" specifies the lower order word. Any assembler

addressing modes may be used for "p" and "a". The higher order

word will be accessed first.

The third TIME TFORMAT allows the user to work with
conventional time units. That is, if "unit" is USEC, ASEC, SLEC,
MIN, or HR, then the user is specifying his time in microscconds,
milliseconds, seconds, minutes, or hours, respectively. IHere,
"amount" specifies the tire to be convertec, using any legal
assembler source addressing mode. This third format shifts the
burden of generating a two word time to the system. If "amount"
is specified using the immediate addressing mode, this format is
as efficient (in execution time and space) as the first two
formats, since the conversion is done by the assembler itself.
However, if any other mode is used, the conversion must be done
at the expense of a larger physical program size and a longer

execution time for the statement.

example - meaning
¢1acy - the two words of time are in LOC and LOC+2
{#10.> - the two words of time are: 000000 000012
<(R1)+> - access high order word first using mode (R1l)+,
then access lower order word using mode (R1l)+
{R3> - the two words of time are in R3 and R4

the two words are: 000002 000144

the first word is in Rl and the second word
will be "popped" using R3

the two words equivalent to 10 (decimal)
milliseconds will be calculated by the
assembler

at execution time, the data located in
location "AMOUNT" is assumed to specify
minutes and will be converted to a two-word
time for the systen.

{#2,#100.>
€R1,;~{R3) >

<#10.,:MSLC>

{AMOUNT, :MIN>

-

4. PROGRAM CONTROL STATEMENTS

The purpose of this section is to describe some statements

which help control the execution of a program.

4,1) PAUSL Statement

When writing time dependent code a user nay wish to suspend
the execution of this code for a specified amount of time, and
then have its execution resume. For example, consider someone
trying to balance an inverted pendulum who needs to know its rate
of fall. If angle position is the only value the computer can
sample, then the rate of fall must be determined by taking two
angle samples spaced in time. Thus, if the user samples the
angle, pauses for a period of time, and then makes another angle
sample, he can approximate the rate of fall by dividing the
difference between the samples by the arwount of tine paused.
This task can be accomplished with the PAUSE statement, whose

format is as follows:

PAUSE length
length - specifies the "length" of time the code will
remain idle before execution resumes. This
argument should be specified using TIME FORMAT.
Phrased more precisely, "length" is the amount of time the
processor will ignore the code stream which executed the PAUSE

statement. The PAUSE statement has one very important

restriction: When it is executed, the Ré stack should be free of

-]16=

important information since that information will be destroyeod

(see the section on STACKS).

4.2) WAIT Statement

The WAIT statement is a more general means to susvenc

eXecution of a sequential program. It is similar to a PAUSL i

-
-

that normal execution of code is suspended. But while PLUSL
"pauses" for a specified amount of time, WAIT "waits" until some
specified condition becomes true. The following exarple will

demonstrate the usefulness of the WAIT statement.

Suppose one is interested in controlling the tenperature of
an oil bath. Using only a thermistor and a heater, a simple
control strategy involves turning the heater on when the
temperature is too low, and turning the heater off when the
temperature is too high. What follows are three sample

programming approacnes to implement this ¢general strategy.

l) Create two daemons. Tine first daemon will recognize
when the temperature is too low, and then turn on the
heater. The second daemon will recognize when the
temperature is too high, and turn off the heater. This
approach will work, but may cause the computer to
thrash. For example, as soon as the first daenon turns
the heater on, the temperature will not change
noticeably. Thus, the daemon will again turn the
heater on (even though it was already on).

2) Create one daemon that will recognize wheéen the
temperature is outside an acceptable zone. When this
occurs, apply a procedure that turns the heater on if
the temperature 3s .low, or torns it off if the
tenperature is high. Unfortunately, this approach may

] P

also cause thrashing.

3) Create one daemon that will recoygynize when the
temperature is too low. When this occurs, apply the
following procedure: turn the heater on; wait until the
temperature gets too high; turn the heater off. Such a
daemon cannot thrash. It uses a WAIT staterent whose
condition recognizes when the temperature is too nigh.
This approach requires that the heater is ifnitially off
when the daemon is activated.

Example 3) above used a WAIT statenent. The format of this

statement is as follows:

WAIT cond,rec-within
cond - specifies the condition to be tested, and uses the
same addressing modes as the "cond" argument of
the DAEMON statement.
rec-within - specifies the measure of continuity for the
WAIT condition. Its meaning and format are
similar to that of the daemon "recoynize-within".
The code for the WAIT statement condition is similar to the
DAEMON's condition. That is, there is no special entry format,
and it is terminated with an ENDCOWD statement. At that time RO
is tested for "true" or "false". If "false", the condition will
get rescheduled for execution at a later time. If "true",

execution will return to the instruction located physically after

the WAIT statement.

The "recognize-within" for the WAIT staterent is completely
analogous to the "recognize-within" of the DAEMON statement.
That is, it specifies the measure of continuity to be used for

the WAIT condition. As before, the user can instruct the systen

=i

to use a default for this value, by specifying the value zero.

Like PAUSE, execution of WAIT restricts the R6 Stack to be
empty. There is an additional restriction on the WAIT statenent,
in that conditions cannct be nested. Thus, neither daeron
conditions nor other wait conditions may execute a W,.IW
statement. If such an attempt is made, program execution will
terminate. Thus, only daerion expressions and the main proaran

(sce Section 6) may execute a WAIT statement.

D

-} G

INPUT/OUTPUT

The purpose of this section is to describe the I/0

statements of the Macro Control Language.

5.1) Teletype I1/0

Any daemon can output to the teletype at anv time. However,
if more than one daemon outputs messages, they may appear
intermixed at the console due to the scheduling process for the
daemons. The user lwust do his own queuing for teletype use arong
his own daemons. It is also recommended that large messages not
be output to the teletype. After the output buffer (50
characters) is full, the Delphi system puts the whole job into
I/O wait until at least 15 new characters will fit into the
buffer. The daemon scheduler does not know when such I/0 waits

occur, and thus the response of the system may become sluggish.

Any daemon can input from the teletype at any time; again,
gueueing must be done by the user. The scheduler does not know
when the user intends to do teletype input. An instruction such
as READCH puts the system into I/0 wait if there are no
characters in the buffer.yet. Such I/0 may degrade the system's
response. Thus, the user is advised to check for characters in
the input buffer before executing teletype input instructions.
Such checking may be done by using NUMCH or interrupts when input

appears in the buffer (See Delphi documentation).

-20-

5.2) Real World Input

Input from the physical process being controlled is obtained
using the SENSE instruction. The format of this instruction is

as follows:

SENSE line,dest
line - specifies the input port number whose value is to
be sampled. This argument uses the normal
assembler source addressing modes.
dest - specifies where the input value is to be put.
Like all other "dest" arguments, this uses the
assembler destination addressing modes.
This single statement is used regardless of what kind of device
is connected to the specified input port. If the port has a
digital input, it will be read immediately. 1If the port has an
analog input going through an A/D converter, a value is still
read immediately. However, in the current hardware configuration
(September, 1973) the A/D converter is being multiplexed with "n"
input ports (n=4). Thus, due to single convert times of

approximately 60 microseconds, the data read will be somewhere

from zerc to 60n microseconds old.

The system uses only the lower 5 bits of "line" as the port
address. Higher order bits will be ignored., Port zero is
reserved for the system's programmable clock. This clock may be
read by the curious user, but it cannot be set. In the current
interface, an input port consists of ten data bits which will be

sampled upon command. For example, port #4 corresponds to one of

-2~

the motor position sensors on the existing pendulum hardwarc.
This port is sharing an A/D converter with three other input
ports. Sensing an unused port will return the value "zero". A

list of legal input ports will be kept in 38-473.

5.3) Real World Qutput

Output to the real world is accomplished with the SEND

Statement. The format of this statement is as follows:

SEND line,value
line - specifies the output port number to which "value"

is to be sent. As in the SENSE statement, this
argument uses the assembler's source addressing
modes.

value - specifies the data to be sent to the specified
output port. The format for this argument is
specified in the following BNF-like statement:

value:= data | <PAUSE,time) |

<rcount,<value(l),value(2),...,value(n)>>

In the first option for "value", "data" specifies the actual
output data, using normal assembler source addressing modes. For
this case, the data is output to the appropriate port and control

is returned to the instruction following the SEND statement.

In the second option for "value", "time" specifies the
amount of time that the SEND statement will "pause" before

control is returned to the next instruction. The argument "time"

g

is specified using TIME FORMAT. The effect of this statement is
the execution of a "PAUSE time" statement. No actual cata gets

sent to the output port.

The third option lets the user specify a string of output

values, "value(l),...,value(n)", to be output sequentially, and a
repetition count, "rcount", governing how many times the string
will be output. The argument "rcount" is normally specified
using the assembler's source addressing modes. If the count is
zero, the string will not be output. If the count is one, the
string will be output once. Any argument of the string,
"value (i)", must be in the format of a legal "value". These
values will be output starting with value(l) and ending with
value(n). The effect is similar to that of execution of the
sequence:

SEND line,value(l)
SEND line,value (2)

SEND line,value(n)

If the count is two, after value(n) is output, the string will be
repeated immediately with value(l) for a second pass. Thus, if

the count is "m", the string will be output m times. The
exception for the argument "rcount" is the option to repeat
"forever". This option is specified by putting the single

character "*" in place of the argument "rcount". Since the

definition of "value" is recursive, a repeated string of values

-2 3=

can be used for any "value(i)". MNesting may be to any level,

provided of course that the source statement fits on one line,

It was mentioned that the effect of a "value" in this third
form was "similar" to the execution of a sequence of SLID
statements. As far as the world can tell, the effect is the
same., However, there is a difference to the programmer.
Executing a sequence of SEND statements will prohibit the
particular daemon from doing anv other useful work. However,

his third output option actually creates a "temporary output
daemon" for the specified line number. Once the temporary daeron
is created and activated, control returns to the instruction
following the SEND statement. Thus, useful work can be done
while a string of data is sent to a device. The daemon is called
"temporary" because once the repetition count has decremented to
zero, the daemon "disappears". This is important because only
one temporary daemon can exist for a given output line at a time.
Attempts to send two strings to the same port sinmultaneously will

result in an error.

In the current interface, an output port consists of a
ten-bit data register. A port's register will be changed
whenever output is directed to tﬁat specific port. Currently,
port #4 is used to control the motors on the inverted pendulum.

A list of legal output ports will be kept in 38-473.

6.

-4 -

PROGRAM FORMAT

The purpose of this section is to explain the format for a
complete program with several daemons, and discuss a few related

statements.

6.1) Stacks

The PDP-11/45 is built around a stack orientation. All the
Macro Control Language statements use the main stack governed by
the stack pointer - register 6. For its use, the system reserves
stack space and sets up R6 to point to this stack. Throughout
the execution of his program, the user is free to use this stack,
provided he obeys the following restrictions. First, he may not
specify any use of R6é in any Macro Control Language statement.
This restriction comes from the simple fact that the Macro
Control Language statements "push" items into the stack. Thus,
any specification using R6 will cause unknown errors. Second, he
must not have anything remaining in the stack at the time he
executes either a PAUSE, WAIT, ENDCOND, or ENDEXPR statement. At
these times, the stack pointed must point to the same location
that it pointed to upon entry to the daemon condition or
expression. All Macro Control Lénguage statements obey this
discipline, and "pop" the stack when their execution is finished.
If the user forgets this restriction and leaves something in the
stack while executing one of the above statements, unpredictable

effects will generally occur. The user is reminded that the JSR

=

instruction "pushes" onto R6's stack. This item nust be "popped"

before execution of one of the above statements.

The user may use stacks without any of the above
restrictions, provided that he reserves his own stack space and
uses one of the first six registers (0 thru 5) as a stack
pointer. He must initialize his stack pointer upon entry to ais
condition or expression. All sharing of stack space by multiple

daemons must be managed by the user.

6.2) Starting a Program

Somewhere in his program, a user nust include the following

statement:

START (stack)
stack - an optional argument specifying how much system

stack space should be reserved. The parentheses
are not part of the syntax, but are used to
signify that the argument is optional.

The START statement will be the first executable statement in the

user's program, regardless of its physical location. This

statement reserves space for the system stack governed by R6.

Normally, 100 (octal) bytes are reserved for this stack. However,

the user may override this by specifying the argument "stack".

The DAEMON statement temporarily uses 20 (octal) locations in the

stack. Thus, if more than 4 daemons could be created at the same

-26=

time, a stack overflow would result unless more stack space were

reserved., Similarly, the user could specify less stack space,

The START statement initializes the system and defines the
label "START". This statement belongs to the "MAI:N" program, and
it creates a "daemon", with no condition, to represent this
"MAIN" body of executable code. The service-within time for thnis
"daemon" is infinity, making the code "low priority" compared to
real daemons. The START statement also initializes the

time-of-day to zero, and starts the system clock.

The statement located physically after the START statement
will be the second statement to be eXecuted. If the user should
ever forget the START statement, address errors will occur on
".CONTRL", as it will be an undefined syrmbol. If the START
statement is executed a second tire (by branching to the label
"START") the system will reset itself to its original internal
state. That is, no daemons will exist and the time-of-day will
be reset to zero. Multiple-definition errors will occur if more

than one START statement exists per program.

6.3) Finishing a Program

Since the system treats the MAIN program as a daemon
expression, the last executable statement (in time) of the MAIN

program should be an ENDEXPR statement. The status of a running

B

MAIN program is deactivated; thus, after the ENDEXPR statement is
executed, the MAIN program becomes "idle", and does not affect
the execution of other daemons. The only way to re-activate the

main program is to re-execute the START statement.

The last physical statement of a complete program is tne

FINISH statement, whose format is as follows:

FINISH (num)
num - is an optional argument specifying how many
daemons (ordinary and tennorary) are to be created
by the program.
The FINISH statement is a non-executable pseudo-op. It simply
provides "clean-up" directives to the assembler and replaces the
normal ".END" pseudo-op. One of its tasks is to reserve space
for all the daemon structures to be created. The assembler
counts the number of DAEMON statements expanded, and adds to this
the number of "temporary daemon" expansions (see the SEND
statement). The FINISH statement then reserves space for this
total number of daemons, and for the main program. The user can
override this total by using the argument "num". This procedure
might be necessary if a single DAEHON statement is used to create
more than one daemon, or if a single SEND statement with option 3
for "value" is used for more than one output port.
If the user forgets to include a FINISH statement in his
program, an assembly error will result because the symbol

".FINISH" will be undefined.

¥a

=0 G

RUNNING PROGRAMS

The purpose of this section is to guide the user througn the
necessary steps to create, assemble and execute a program in the
lacro Control Language. In this section the user is provided
with sample command lines. 1In all the command lines shown,

underlined characters are typed by the computer, not bv the user.

Since DELPHI's assembler does not have facilities for
macros, it is necessary to use DEC's HMACRO assembler provided
with their Disk Operating System (DOS). The user will never be
running pure DOS, since DELPHI provides a Virtual DOS sub=system.
To use the MACRO assembler, the user must keep his text files on

the system's DOS disk.

7.1) DOS Directories

To use the Macro Control Language, the user must have
"write" access to DOS directory [40,¢<x>], where <{x> is some
integer greater than one. This guide will refer to the directory
as [40,<x>], but the user should substitute his particular value
for <x> in all the commands shown (i.e., [40,3]). Items in a DOS
directory are of the form <{filename).<{extension>, where
{filename> is a unique one to six character name and <{extension>
consists of one to three characters. The standard extensions
used by DOS are ".MAC" for macro source files, ".BAK" for backup

source files, ".LST" for assember listing files, ".0OBJ" for

- T

object files, and ".LDA" for load files.

To determine what files exist in his directory, the user

should give the Delphi command:
21list [40,¢x))

This command will list the names of all files in directory
[40,<x>]. Following each name will be the file length (in disk

sectors), and the creation date of the file.

To delete a particular file from his directory, the user

should give the Delphi command:
2delete <(filename).<extension)[40,<x)]

This command will delete the file <¢filename).<extension> from the
directory [40,<x>]. Since ".BAK" files are created after
editing, users are encouraged to delete all such files after use.
Similarly, all ".LST" files and ".OBJ" files should be deleted
after they are used. These files take disk space away from other
users. Thus, the user is warned that all "+BAK", ".LETY, and
".OBJ" files may be periodically deleted by system programmers if

the user becomes negligent.

Fnid) Editing

To assemble a program, a user's program text must consist of

-30~-

upper case letters and must reside on the DOS disk with a ", Mac*
extension in directory [40,<x>]. To create and/or edit such a

text file, use the Delphi command:

2edit filename[40,<x>]

where "filename" is a unique one to six character name for the
user's file. Editing is essentially the same as with the normal
Delphi editor. The only difference is an automatic case
conversion of all characters entered from the console. That is,
typing a lower case "a" enters an upper case "A", and vice versa.
This enables the user to enter upper case letters without using
the "SHIFT" key. As usual, ".BAK" files get created when
re-editing a file. However, the ".BAK" files on the DOS disk do
not get automatically deleted when the user logs out. Thus, if
the user has no interest in the old file, he should execute the

command
2delete filename.bak[40,<x)>]

to delete the file.

7.3) Assembling

To assemble his program, the user must use the MACRO
assembler in Virtual DOS. To use the assembler, first enter the

Delphi command:

i Yo

zdos

Once inside Virtual DOS? the system will respond with a "g"
whenever it is at DOS command level (instead of the ">" used at
Delphi command level)., The user should note that DOS will echo
lower case characters as upper case. The first DOS command

should be:
SLO 40 <x»>

This command specifies the user wishes to work in directory
[40,<x>]. The next DOS command to be used calls the MACRO

assembler:

SHMACRO (or $M)

The assembler then types out its current version number, and
responds with a "#". This character signifies that the assembler
wants a command line. A typical command line would be as

follows:
#filename<CTRLM1(40,1],filename

This assembles the user's file, filename.MAC, with the system's
macro file, CTRLMl.MAC[40,l], and creates an output file,
filename.OBJ, to be used by the LINK Editor. If any assembly
errors occur, they will be typed on the console. The user can
abort an assembly by entering "CONTROL B", and the system will

return to DOS command level., Otherwise, the assembler will

-32=-

respond with another "#" when finished. To exit from the
assembler at this time, first enter "CONTROL B", and then "LILL

FEED". This sequence will return the user to DOS comrmand level

To exit from Virtual DOS, enter the following command while at

DOS command level:
SQUIT (or $Q)
This will return the user back to Delphi command level.

If the user is only interested in a source listing and

symbol table, he should use the MACRO directive
#,filename{CTRLM1[40,1],filename

This will create the file "filename.LST" which contains the
program listing and symbol table. To list this file, the user

should use the Delphi command:
>p Anh filename[40,<x>]

After getting his listing, the user should delete this listing

file. To obtain only a symbol table, use the directive
#,filename/NL{CTRLM1[40,1],filename

The "/NL" option will not list the source program. To obtain

both object and listing files, use:

#filename, filename <CTRLM1[40,1] ,filename

-33-

For other listing options, see the documentation on the DL [IACES

assembler,

7.4) Link Editing

Once a user has obtained an error-free object file, ae is
ready to use the link editor. The link editor is called by

giving the following command while at DOS cormand level:
SLINK (oxr SL)

This can be done after leaving the MACRO assembler, or after
re-entering DOS and giving the "LO" command. After LINK is
called, it responds with its current version number and then a
"#", as did MACRO. The only command the user should give to LINK

is as follows:
ifilename(filename,CTRLOl[40,1]/B:O/U/E

This will create a file "filename.LDA" which can be executed at a
later time. If any errors occur, the user has not followed all
the directions up to this point. Normally, only a transfer
address, low limit, and high limit will be typed on the console
by LINK. After LINK gives a new "#", exit to DUS command level
by giving the "CONTROL B", "LINE FEED" sequence as in 1ACRO. The
user should then return to Delphi cormmand level by giving the "Q"

command.

-34=-

7.5) Executing a Program

Once a ".LDA" file has been created, it can be executed by
M, as a normal Delphi program. To specify the ".LDA" file, enter

the command:
>m filename[40,<x>]

Once inside M, the first command should be "a". This will attach
the sensors and actuators to the user's process, locking out
other users. Then after the "a" command, enter the "g" command
and the program will start executing the START statement. If a
program terminates normally, an "END OF JOB" message will be

given.

If the user wishes to set breakpoints in his program, at
least one must be set before starting his program. When the
START statement is executed, the system checks whether or not any
breakpoints are set. If none are set at that time, the system
will prevent tracing from occurring, even if breakpoints are set
at some later time. If one or more breakpoints are set when the
START statement is executed, then the system will trace all user
code, even if breakpoints are reset at some later time. The user
should be warned that tracing sléws the execution time of a

program and may affect time-dependent code.

8.

-

SAMPLE PROGRAM

This concludes the user's guide to the Macro Control
Language. The following is a simplified sample progran to

balance an inverted pendulum,

Assume that the problem can be split in two. That is, the

11} "

x" and "y" axes can be controlled independently. In the code
that follows, the MAIN program creates all daemons, waits for the
operator to press a "start-button", and then activates the axis
daemons. It also activates a "DIFF" daemon which finds the
angular velocities of the pendulum. The axis daemons use routine
"CHECK" to determine if the absolute value of the angle is less
than two degrees, If correction is necessary, these daemons use
routine "FIX" to control the motdrs. The code supplied is
simplified so that the reader can see a sample Macro Control
Languade program, without being bored by the details of balancing

a pendulum.

;DEFINITIONS

XANGLE=14 ; SENSOR PORT # FOR THE "X" ANGLE
YANGLE=3 ; SENSOR PORT . # FOR THE "Y" ANGLE
XPOSITION=4 ; SENSOR PORT # FOR THE "X" POSITION
YPOSITION=7 ; SENSOR PORT # FOR THE "Y" POSITION
XMOTOR=4 ;ACTUATOR PORT # FOR THE "X" MOTOR
YMOTOR=1 ;ACTUATOR PORT # FOR THE "¥Y" MOTOR
BUTTON=1 ; SENSOR PORT # FOR THE "START" BUTTON

=-36=

MAIN PROGRAM
START
;CREATE "X" AND "Y" DAEMONS
DAEMON XDAEMON,#XCOND,#XEXPR,(#5,:MSEC>,<#IO.,:MSEC)
DAEMON YDAEMON,#YCOND,#YEXPR,<#5,:MSEC),(#lO.,:MSEC)
i CREATE AND ACTIVATE DAEMON TO FIND FALLING RATES
DAEMON DIFF,#CONDI,#EXPRl,(#l,:MSEC),(#S,:HSLC)
ACTIVATE DIFF
sWAIT FOR OPERATOR TO PRESS START BUTTON
WAIT #WCOND, <#1, :SEC>
;ACTIVATE DAEMONS
ACTIVATE XDAEMON
ACTIVATE YDAEMON
i END MAIN PROGRAM
ENDEXPR

iWAIT CONDITION
WCOND : SENSE #BUTTON, RO

LSH RO

BEQ WFALSE

ENDCOND i RETURN "TRUE"
WFALSE: Mov #=1,R0

ENDCOND ¢ RETURN "FALSL"

i CONDITION FOR DIFF
COND1: CLR RO 7SET “TRUE"
ENDCOND

; EXPRESSION FOR DIFF

EXPR1: SENSE #XANGLE ,XTEMP ;GET VALUES
SENSE #YANGLE , YTEMP
PAUSE <{T, :USEC> ; PAUSE
SENSE #XANGLE,R1 ;GET VALULS
SENSE #YANGLE,R3

SUB XTEMP,R1 ;CALCULATE DIFF'S
DIV RO, T

MOV RO,XDIFF

SUB YTEMP,R3

DIV R2,T

MOV R2,YDIFF

PAUSE <T,:USEC> ;DON'T THRASH
ENDEXPR

;CONDITION FOR YDAEMON
YCOND: KOV #YANGLLE ,R1
JHP CHECK

-37=

{CONDITION I'OR XDAEMON
ZACOND: MoV #XANGLE,R1
JIP CHECK

s EXPRESSION FOR XDAEMON
XEXPR; MOV #XANGLE,R1
MOV~ #XPOSITION,R2
MOV #XMOTOR,R3
JMP FIX ;GO TO FIX ROUTIIIE

s EXPRESSION FOR YDAEMON
YEXPR: MOV #YANGLE, R1
oV #4YPOSITION,R2
MOV #YMOTOR,R3
JMP FIX GO TO FIX ROUTINE

;CHECK ROUTINE

CHECK: SENSE R1,R0 : GET ANGLE
TST RO
BPL 1s ; TAKE ABSOLUTE VALUE
NEG RO
152 SUB #2,R0 ;CONDITION "FALSE" IF R0 NEGATIVE
ENDCOND

;FIX ROUTINE

FIX: SENSE R1,R0 ;GET ANGLE
SENSE R2,R4 ;GET POSITION

i CALCULATE *OTOR RESPONSE

; CONTROL MOTOR

SEND R3,R5 sR5 HAS CONTROL VALUE
PAUSE <#200.,:USEC)
ENDEXPR

; DAEMON "NAMES"™

XDAE!ON : . WORD 0
YDALEMON : . WORD 0
DIFF: « WORD 0

: STORAGE LOCATIONS
XTE!P: - WORD 0

YTEMP:
XDIFF:
YDIFF:

; PAUSE
i

=38=

« WORD 0
« WORD 0
« WORD 0

TIME FOR DIFF
« WORD 500.

FINISH ; END PROGRAM

