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Introduction 

The Fast Fourier Transform (EFT) is a method propos ed f'or 
the corapu t2 tion of powers of symbolic multi variate poJ.ynomi0.J.~, 
over the integers. Despite its acknowledged superiori t:7 in 
performing polynomial exponentiation, the FFT has "te8n labelled 
2.s inefficient for practical systems. This report pr esents 
concrete evidence to support the claim that the FFT method is a 
highly efficient algorithm for the practical computation of the 
powers of polynomials. 

The report proceeds by defining the Discrete Fourier 
Transform (DFT ) and its inverse, and detailing the rela tionship 
between the D.FT and the FFT. The convolution property of the i 'FT 
is then stated, along with its applications to univariate 
polynomial multiplication and exponentiation. These applications 
are then extended to include multivariate polynomials b;.r 
considering the computation structures in which the FFT m2,y be 
performed. Several problems concerned with the implementation of 
the :F.FT are discussed and solutions are given for the actual 
system implementation. Finally, conclusions on the efficiency of 
the FFT algorithm are drawn from timing results obtained f r om 
extensive testing of the .FFT and other proposed methods. 



Section 1 

The Discrete Fourier Transform 

Definition: Let R be a commutative ring with unity, 
1, Kan integer> 1, and WK an element of R of order 
DISCRETE FOURIER TRANSFORM (DFT) of the 
(aO,a1, ••• ,a(K-1)) is the K-sequence 

(AO,A1, ••• ,A(K-1)) 

given by the following equations: 

i j 
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written as 
K. Then the 

K-sequence 

t ~ = a w 
j i 

O<j<K-1 (1) 
K 

i = 0 

Definition: Assuming the same conditions as above, and also, 
that K possesses an inverse in R (i.e. 1/K), then the INVERSE 
DISCRETE FOURIER TRANSFORM (IDFT) of the K-sequence 
(aO,al, ••• ,a(K-1)) is the K-sequence 

(AO,A1, ••• ,~(K-1)) 

given by the following equations: 

Aj = (1/K) ~~: a 
i 

w 
- i j 

K 
(2) 

If we consider the term ai*WK .... (-i*j) to be rewritten as the 
equivalent term 

ai*WK**((K-i)*j) 

then we can rewrite the above equation as 
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1l. = (1/K) ~ 
j '---. 

i = 0 

i j 
a W 

K-i K 
(2a) 

If we now define a(K) = a(O), then the inverse DET can be 
computed from the DFT by merely "flipping0 the input sequence. 
Here, flipping consists in replacing the i-th term by the (K-i)­
th term. Thus the same computational algorithm (for the D .. F'l') can 
be used to compute both the DFT and the ID.FT. As might be 
expected from the terminology, under the right conditions (see 
section 3) , the two transforms are inverses of each other, and 
thus provide different representations of K-sequences. Note, 
also, that the DFT (and the IDFT) are linear transformations from 
R**K to R**K, since the quantities WK**(i*j) are all "constants" 
for each application of the DF'l'. For more information on this 
approach to the phenomenon of the FF:r, see Nicholson [14]. 

The particular virtue of the DFT in many applications results 
from the following: 

Definition: Let A= (a0,a1, ••• ,a(K-1)) and B = (b0,b1, ••• ,b(K-
1)) be two K-sequences in R. Then the CONVOLUTION OF A AND B, 
written A*B, is the K-sequence C = (c0,c1, ••• ,c(K-fTJ where tne 
cj are defined as follows: 

C = t:: a b O<j<K-1 (3) 
j i j-i 

where bn for n < 0 is defined as b(n+K). 

Convolution Property of the DFT: 

Let A and B be as in the preceding definition. Let A' and B' be 
the DFT's of A and B respectively. Then the following equation 
is true: 

(A*B)' = A'xB' (4) 

where "x" means component-wise multiplication of K-sequences. In 
other words, the DFT transforms the convolution operation in R~K 
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into the component-multiplication in R**K, according t o t he 
following commutative diagram: 

DFT x DFT 
R**K x R**K 

l"*" R**K 

Proof: 

-
J t 

_ ~ ~.t r ~ , i· ~,.1] ~l ,.t" 
~ ai. w\(. L ~ b~-~ w"" -=- ~ Q,·wic. b.1 
' ~ ' 
,.,.. " CA...t b .1 Q.e ."b. -

As a result of (4), the convolution of two K-sequences can be 
computed in the following way: 

1)compute the transforms A' and B' of A and B 
respectively. 

2)perform componentwise multiplication on A' and B' 
to obtain a K-sequence C'. 

3)perform the inverse DFT on C' to obtain the 
convolution sequence C. 

Thus, the DFI' provides a method (though not an intuitive one) for 
computing the convolution of sequences. 
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Section 2 

The Fast Fourier Transform 

In this section, a method for rapid evaluation of the Di screte 
Fourier Transform is presented. This method is known as t he FAST 
FOURIER TRANSFORM (FFT) and represents a consideraoie 
breakthrough in reducing the computational complexity of many 
problems. The analysis begins with the assumption tha t the 
number of points to be transformed (in our case, K) is a 
composite number; e.g., K is divisible by 2. Then we have the 
identity: 

Lai til K/2-1 
il b 2jl §. = WK = WK WK O<l<K-1 (5) 

1 2j+i 
i==O i=O j=O 

If we define two K/2-sequences B(O,l) and B(1,l) by 

K/2-1 

b 
i,l = L a2j+i 

j==O 

WK 
2jl 

O<l<K-1 i=0,1 (6) 

then we have the final relationship 

A 
1 

= b 

i=O 

il 
WK O<l<K-1 (7) 

i,l 

If we realize that Wl{iHl-2 is a K/2-th root of tmity in (6) , then 
the computation of a K-point FFT involves the following steps: 

1) split the input sequence into 2 sequences consi s ting 
of t he even-numbered and odd-numbered :parts of 
the sequence, corresponding to i = 0 and 1 
in ( 6). 

2) perform K/2-point F.FT's on the two sequences, 
using the square of WK as the K/2-th 
root of unity, yielding BO and l31. 

3) "splice" the results according to equation (7) a bove. 
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As a result of this partitioning of the original s equence , t he 
cost of performing a K-point FFT has been reduced t o t ha t of 
computing two K/2 FFT's plus K multiplications for the s plicing 
operations performed in equation 7 above. Now, if K/2 is also 
even, then we can perform the same splitting operation on t he 
subsequences. This will reduce the problem of computation of one 
K-point FFT to that of computing 4 K/4-point FFr's plus t he 
splicing costs. For Ka power of 2,(i.e., K = 2-iHt-k) the ultimate 
result is that the K-point FFT can be performed using O( K log K) 
operations (where an operation is either an addition or a 
multiplication by a power of the K-th root WK). This represents 
a tremendous savings over the traditional methods which take 
something like O(K**2 ). 

It should be noted here, that the Fast Fourier Transform a pproach 
can be made to speed up the computation of K-point D.Fr's for any 
value of K, but the efficiency of the algorithm is maximized for 
K a large power of a small prime. Note, also, that the same 
general algorithm can be used for computation of the inverse DFT 
with the only changes being a "flip" of the input sequence before 
applying the FFT and a multiplication by the inverse of K after 
the .F.FT. (See section 1. ) 

Finally, some mention should be made concerning alternative 
schemes for implementing the FFT. The method described above and 
attributed to Cooley and Tu.key [5] is only one of many ways of 
performing the computation of the DFT. Nicholson in [147 and his 
thesis describes algebraically the forms wich will perform the 
correct computations. Included in this analysis is the Cooley­
Tukey method and also one described by Good f7]. This 
computation relies on the fact that K is factoraole into a 
product of relatively prime numbers. As yet, the numerous other 
techniques have not been investigated thoroughly. 



Section 3 

Structures Supporting the FFr 

PAGE 9 

The question naturally arises as to which computation struc tures 
are able to support the computation of FFT's. The criteria for 
the SUPJX>rt of a K point FFT reduce to the existence of a K-th 
root of unity, the inverse of K, and the invertibility of the 
.FFT. In a technical memo by this author [2], it has been shown 
that the following theorem characterizes a class of rine:s able to 
support FFT's : 

Theorem: Let R be a commutative ring with unity. Let I (R) be 
the "Integers of R" ;i.e., the smallest subring of R containing 1. 
It is known that I(R ) is isomorphic to either the integers Z or 
the integers modulo M (Z/MZ) where Mis the characteristic of t he 
ring R. We assume here that the characteristic is finite and non­
zero. Then R supports K-point FFT's if the following holds : 

K divides p-1 for every prime p which divides M. 

As a result of the above theorem, the following rings will 
support K-point FFT's: 

11 (Z/MZ) where M = p = cK+1 some c such that pis prime. 
2 !Z/MZl where M = piHtn for any pas in (1),for any n 
3 Z/MZ where M = product of p**n for any p's as in (1) 
4 Z/MZ (x1 , x2, ••• ,xn] for any Mas in 1,2, or 3. 
5 GF(p) [x1,x2, ••• ] for any prime p = cK +1 

We will make use of several of these rings in our applications of 
the FFT. Note that the fifth example above yields an answer to 
the question of when can we use F.FT's over finite fields; i .e., 
when the number of -r:oints of the FFT divides ir1. This fact has 
a pplications to schemes involving modular arithmetic and the 
possible use of the FFT, especially for those algorithms 
requiring the choice of large but otherwise random primes. (See 
Horowitz [11 ] for uses of modular algorithms for -r:olynomial 
exponentiation and Yun. [16] for applications to the gcd problem.) 
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Section 4 

fl'T ~ Algebraic Manipulation 

Algebraic manipulation systems provide numerous opportunities for 
application of the .FFT. In particular, the area of rational 
polynomial computations supplies several instances in which the 
.FFT approach can be of considerable benefit. As described by 
Pollard [15], Fateman [6], and Horowitz [11], the FFT can be 
invoked to perform symbolic multiplication and exponentiation of 
multivariate polynomials over the integers or finite fields of 
the form GF(p) for some prime p. ( Also mentioned in Pollard 
[15], is the possibility of using FFT's to perform exact 
polynomial division. This application has yet to be studied with 
regards to the feasibility of its implementation.) Easically, it 
is because of the convolutional aspect of the operations of 
multiplication and exponentiation on the coefficients that the 
FFT is applicable. More particularly, if f(x) is a univariate 
polynomial of degree m, then it can be represented by a sequence 
of m+1 coefficients; e.g., (a0,a1, ••• ,am), where ai is the 
coefficient of x-it-it-i in f(x). If we wish to square this 
polynomial, the answer would contain 2m+1 terms of the form: 

(c0,c1,c2, ••• ,c(2m)) 

where, in fact, the ci are the terms of the convolution of the 
sequence A with itself where A has been zero-extended to be of 
length 2m+1. Therefore, to square f(x), the following could be 
done: 

1) form the extended sequence of 2m+1 terms 
(aO,a1, ••• ,am,O,O, ••• ,o) 

2) perform a 2m+1-point FFl' on the sequence A, obtaining 
the sequence 

(b0,b1, ••• ,b(2m)) 
3
4

) square each of the terms in the above sequence 
) perform the 2m+1-inverse F.FT to obtain the 

answer sequence 
(co,c1, ••• ,c(2m)) 

In order to avoid the use of complex arithmetic and inaccurate 
computations, it is desirable that the ring to be used as a base 
for the .FFT computation be a finite computation structure. By 
such a structure, we mean a ring with finite characteristic. 
Examples of such rings were given in the preceding section. In 
particular, our system will be based on modular arithmetic 
schemes, in which we are dealing with the integers modulo some 
particular integer (the modulus). 
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In order to guarantee the correctness of the answer sequence, the 
following restriction is needed on the modulus of the sys tem in 
which the E'FT is to be performed: the modulus M must be greater 
than twice the absolute value of the maximum coefficient 
appearing in either a or c. 

This restriction is required since operations in modular systems 
guarantee results only to be congruent to the "actual" answer; 
i.e., if we compute a form using the integers and then using 
modular arithmetic, then the latter answer will be only 
"congruent" to the former. If, however, we can be assured that 
the "true" answer is in fact less than the modulus, then the 
modular answer is the "actual answer". The factor of 2 is needed 
for the bound on M because of the need for a "balanced" 
representation for the integers modulo M, i.e., we allow positive 
and negative numbers whose absolute value is less than M/2. We 
will see more on this subject in section 5 on large coefficients. 
For now, let us be content with the result that, except for 
considerations of the modulus, the FFT and inverse F.FT can be 
used to multiply univariate polynomials and raise them to powers. 
Also, as seen in section 6, the same approach can be utilized to 
deal with multivariate polynomials. 

Thus the .FFT's reduce the computation of products of polynomials 
(or powers of polynomials) to the computation of the products of 
coefficients (or powers of coefficients). 
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Section 5 

Problem of Large Coefficients 

Inasmuch as the modulus to be used for FFT computation must bound 
the maximum coefficient in either the inputs or outputs (see 
section 4), we need some estimates on this quantity. 
Accordingly, we define · 

Definition: Let f be a multivariate _{)?lynomial over 
integers. Then the NORM off (written n(fJ) is the sum of 
absolute values of all-uie numerical coefficients inf. 

the 
the 

Definition: Let f be a multivariate polynomial over the 
integers. Then the MAXIMUM COEFFICIENT of f (written 
maxcoeff(f)) is the largest numerical coef'i'1cient of any term of 
f, regardless of sign. 

Note that n(f) > maximum coefficient in f. Also, n(f*g) < 
n(f)*n(g). 

The following result provides a minimum bound for the choice of 
moduli for FTI'. 

ProE9sition: The maximum coefficient of f1t-1tn , where f is a r­
variate polynomial with maximal degree m, is less than or equal 
to the minimum of 

( n ( f ) ) **n and 

maxcoeff(f)it-itn * (maxcoeff((1+x+ ••• +x**m)**n)) **r 

Inasmuch as the second term is difficult to compute (quickly), 
the first term has been utilized as a bound for determination of 
the modulus. However, there may be indications that the second 
term is significantly smaller than the first for many cases. See 
section 10 for more details on possible further work on this 
topic. 

As a result of the above proposition, the minimum modulus for a 
given problem may be quite large and may wel l exceed the 
precis i on of a single computer word. There are two methods which 
can be used to handle this situation: 
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1) invoke an arbitrary precision integer arithmetic 
package, which is found on many systems today. 

2) perform the DFT on the inputs for a set of moduli 
consisting of several single-precision primes 
pi satisfying the inequality t.hat the product 
of all the single-precision primes pi is 
greater than twice the minimum modulus. Once all 
the answers have been obtained, use the Chinese 
Remainder Algorithm to re-assemble the final 
answer from the pi-residues. 

The ultimate trade-off between these two methods is the relation 
of cost of performing a single FFT using multi~le-precision 
arithmetic versus the cost of performing several TIT sin single 
precision plus the cost of reconstructing numbers from residues. 
From our results to date, the second approach appears to be much 
more advantageous for large problems. See section 9 for results 
actually produced by our experimental system and for conclusions 
based on these results. 
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Section 6 

Multivariate Polynomials 

The application of the FFT to univariate polynomial problems is 
quite natural as to each polynomial we can assign a sequence 
consisting of its coefficients. Then the computations ~to be 
performed on the polynomials can be performed by suitable 
manipulation on the coefficient sequences. When one considers 
the problem of dealing with multivariate polynomials, there are 
several ways of proceeding. We will discuss here three methods 
which might be used for utilizing FFT's with multivariate 
polynomials. 

1) Multi-dimensional FFT: Similar to the univariate case, to 
each multivariate polynomial we can assign an r-dimensional array 
consisting of the numerical coefficients of the polynomial (where 
r = number of variables). On this array we can perform an r­
dimensional FFT which , intuitively, consists in performing 
iterative one-dimensional .FFT's on consecutive rows, faces, etc. 
of the coefficient array. Some programming difficulties inherent 
in this method have prevented the author from implementing it in 
this study. 

2) Non-recursive FFT: In this method, we use polynomial 
arithmetic with the one-dimensional FFT, where the elements to be 
transformed are the coefficients of the polynomial in some fixed 
(but otherwise) arbitrary "main" variable. In other words, we 
rewrite a polynomial fas follows: 

' 
f(x,y,z, ••• ) = t. o_., '1ot~ .J 

&. 

where, now, the ai are :polynomials in y,z,.. • • Then another 
method for computing the products or :powers of the transformed 
coefficients is used before taking the inverse FF.r, again using 
polynomial arithmetic. Note that in this system, the only 
polynomial arithmetic required is that of polynomial addition and 
multiplication of a polynomial by a constant (plus the "other" 
method for multiplication or powering). This method may cause 
some reduction of the time for computation, but is inherently 
dependent on the characteristics of the other algorithm which is 
used on the lower level problem. For this reason, this method 
was not implemented, but rather emphasis was concentrated on the 
following, "pure" ITT method. 
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3) Recursive ITT: In this method, we proceed as in the rr.e t hod 
described above but when it is necessary to perform co~putations 
using the transformed (polynomial) coefficients, we now 
recursively call the FFT method. For example, in the 
exponentiation of polynomials in two variables, the flow of the 
computation would be as follows: 

1) Perform an FF.I' on the single-dimension array 
consisting of the (polynomial) coefficients 
of the polynomial in one of the two variabl es. 
The resulting sequence will have 
elements which are univariate polynomials. 

2) To raise each of these coefficients to a power, call 
the FFT method which will operate on 
the numerical coefficients of these 
polynomials, returning the powers of the 
polynomials. 

3) Perform the inverse FFT on these polynomial 
coefficients, yielding the (polynomial) 
coefficients of the "main" variable 
of the desired power of the given polynomial. 

There are some problems inherent in the recursive aspects of this 
method including the optimal way of reducing the problem to a 
smaller problem, choice of modulus, use of K-th roots of unity, 
etc. In the implemented system, some assumptions are ma.de as to 
the structure of the polynomials being dealt with. (See section 
9) However, the method can be used in the general case, with a 
small amount of added expense. 
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Section 7 

Timing Analysis for the F.FT 

The purpose of this section is to present a detailed timing 
analysis of the TI'T method for p:>lynomial exponentiation. This 
timing analysis will be derived in terms of the number of integer 
operations of multiplication required. 

In order to make the derivation tractable and readable, we 
assume that the polynomial we are dealing with, f(x1, ••• ,xr), is 
dense in all of its r variables and of degreed in each variable. 
As a result, f has (d+1)it-it-r terms. Letting K = nd+1, we also 
assume that the cost of performing a K-point F.FT is given by K 
log K "coefficient operations." By a coefficient operation, we 
mean either an addition of sequence elements, or multiplication 
of a sequence element by a "constant"; i.e., an integer. 
Because of the recursive nature of the application of the F.Fl', 
the sequence elements can be integers or polynomials. In either 
case, however, the cost of the coefficient operation is 
proportional to the number of terms in the coefficient. Thus, 
for example, the cost of performing a K-point FF.I' on a sequence 
of r-1-variate polynomials, all having common degreed in each 
variable, is given by K log K * (d+l)**(r-1) integer operations. 
Also, we make the additional assumption that the Chinese 
Remainder Algorithm is not invoked and thus only one prime is 
needed. 

Having made the above assumptions, we now proceed to compute 
the costs of the algorithm as given by the steps below: 

Inputs: 

Output: 

f: an r-variate, dense polynomial of common degreed 
n: an integer> 1. 
f**n. 

1) Writing fas 
form a sequence of length K from the r-1-variate 
polynomial coefficients off by extending the 
coefficients with zeros. 

2) Apply a K-point FFT to this sequence, yielding the 
sequence 

3) Raise each transformed element to then-th power by 
calling this routine recursively. 

4) Apply the inverse FFT to this new sequence of r-1-variate 
polynomials, all of common degree nd in each variable. 

5) The coefficients of f*'*'n are precisely the elements in 
the sequence computed in step 4. 

In order to terminate the recursion, we insert the following 
step: 
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0) If r = O, compute f**n by repeated squaring and return. 

Let M(r) = cost of performing polynomial exponentiation on 
r-variate polynomials of common degreed. Then, we can write 

M(r) = K log K * (d+1):1Ht(r-1) + K * M(r-1) + K log K * (nd+1)~*(r-1) 

Recalling that K was chosen as nd+1, the cost now becomes 

M(r) < 2 K**r log K + K * M(r-1) 

At the i-th level of recursion, we can show that 

M(r) < 2 i K**r log K + K**i * M(r-i) 

Finally, at the last level of recursion (i=r), we execute 
step O, which costs O(log n) operations. Thus, we obtain 

M(r) ~ 2 r K...,r log K + K**r * log n, 

which can be rewritten as 

M(r) = O(K"**r log (n K**r)). 

Finally, replacing K by nd+1 and simplifying the expression, 
we obtain the final result for the cost of the FFI' method: 

M(r) = 0( (nd)**r * log (n * (nd)**r)). 

This compares quite favorably with the other methods proposed 
such as repeated multiplication, repeated squaring, binomial 
expansion, an evaluation-interpolation method. (See section 9 
for a brief description of these methods and consult Fatema.n [6] 
and Horowitz [11] for more complete details on the computing time 
for all the methods). It is the contention of the author that 
the "difficulty of programming" aspects of the FFT method 
mentioned by both authors cited above, are not as difficult as 
first anticipated. In fact, a very reasonable implementation of 
the FFT approach has been developed on the MACSYMA system at MIT 
(1] and has been used to produce data by which comparisons can be 
made with the other proposed methods of computing the powers of 
polynomials. The results of section 9 will demonstrate the 
efficiency of the FFT over the other methods and that the added 
costs incurred by the FFr are well worth it in the long run. 
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Section 8 

Implementation Problems 

The implementation problems associated with the Fast Fourier 
Transform are well known (as mentioned by Fatema.n [5], Horowitz 
[11] and Borodin & Moenck f3] ), but they are not insurmou~table 
as might be inferred from their gloomy statements. Easically, 
the problems break down into the following categories: 

11 finding moduli supporting the F.FT 
2 given a modulus, determining a primitive root 
3 given a primitive root, computing a K-th root of unity 
4 computing the inverse of K 
5 in the case of the Chinese Remainder Algorithm, 

precomputing various constants 

For ease of programming and demonstration, FFT's were implemented 
for the cases of Ka power of 2 or a power of 3. Another reason 
for doing so is mentioned in the classic paper of Cooley-Tukey 
(5], wherein the statement is made that the optimal choice for a 
basis is 3 with 2 (and 4) next optimal. 

The problems mentioned above will be considered one by one. 

1. As has been noted in an earlier section, the choice of the 
modulus is dependent on K, the size of the transform to be 
performed. Inasmuch as we have only considered Ka power of 2 or 
a power of 3, our problem reduces to the following: 

find primes p such that K divides p-1. 

Once we have a set of such primes, then (theoretically) we can 
use as a modulus for the K-point .FFI' any number whose prime 
factors lie in the given set of primes. Another consideration in 
this regard was that of the Chinese Remainder Algorithm and the 
single-precision/multiple-precision arithmetic trade-off. In the 
actual system, the six largest single-precision primes were 
computed for each K (where K went up to 2**8 and 3**8). (See 
Appendix 1). Actually, in the system, use was made of the fact 
that if K divides p-1 for some prime p and hence p can be used as 
a modulus, then it also serves as a modulus for K'-point .FFI''s 
for all K' dividing K. In other words, if we choose large enough 
Kand then choose the pas a function of this large K, we only 
need one prime. This is precisely what has been done in the 
system. The six largest single precision primes were chosen such 
that they could support both 512 and 729-point FF.r's. As a 
result, with these primes, FFT's can be performed for all K 
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dividing 512 or 729; i.e., powers of 2 or :rowers of 3. This use 
of a single list of primes (and hence of Chinese Remainder 
Algorithm constants) reduces the storage required and allows use 
of FFT's for all ~ractical problems. Using these primes, we 
could perform 1'7.FT s for arbitrary minimum modulus by t~k~ng 
powers of the given primes and working in multiple precision 
arithmetic or for minimum modulus less than sextuple-precision 
using the 6 primes and the Chinese Remainder Algorithm. In the 
experience of the implemented system, these bounds are quite 
practical. 

2. Once a modulus has been computed, a K-th root must be 
computed for this modulus. Inasmuch as we have produced moduli 
which are primes, the problem reduces to that of finding a 
primitive root in the modulus. In order to facilitate the use of 
this primitive root for powers of the prime as modulus, it is 
necessary to find a special primitive root. The criterion for 
this root is: 

Definition: A primitive root g modulo pis a SPECIAL PRIMITIVE 
ROOT iff g is a primitive root modulo p**n for all n iff 

g**(p-1) not congruent to 1 modulo p**2. 

(See Grosswald, Chapter 4, Exercise 32 [8].) Based on empirical 
evidence obtained from many test cases, it is the author's 
conjecture that the smallest primitive root modulo any prime is 
also a special primitive root modulo that prime. The author has 
learned of several counterexamples to the conjecture above, but 
has verified that all of the primes used in the system satisfied 
the conjecture. Thus, in the system implementation, for each 
prime modulus computed from problem 1 discussed above, the 
smallest primitive root was also computed. 

3. Now that we have computed a special primitive root for each 
modulus which might be used in the system, what is needed is the 
K-th root of unity in that modulus. This is obtained from the 
special primitive root g modulo p by computing: 

WK= g**(p-1)/K modulo p. 

If we desire the K-th root modulo a power of p (p**n), then the 
formula becomes: 

WK= g**((p-1)p**(n-1))/K modulo p**n. 

Again, there has been much empirical evidence pointing to the 
conjecture that the K-th root modulo p**n can be computed 
directly from a K-th root modulo p by the following: 
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WK**(p**(n-1)) (modulo p**n) 

where WK is the K-th root modulo p. Again, it can be shown that 
if the underlying prime p satisfies the condition given in the 
above discussion, then for n<p, the above conjecture concerning 
the computation of K-th roots modulo p**n is valid. Inasmuch as 
all the primes used by the system did indeed satisfy the original 
conjecture, the computation of K-th roots was accurate. As a 
result, it was only necessary to compute K-th roots modulo the 
primes in the system. A list of such K-th roots were computed 
for the moduli used in the system and were made available to the 
FFT's. 

4. The inverse of K is needed for computation of the inverse 
FFT, and hence was computed for the moduli and the K's used in 
the system. The value of the inverse of K modulo pis computed 
from 

"1 /K" = K**( p-2) modulo p. 

For a power of p (e.g. p**n), the following formula is used 

"1/K" = K**((p-1)*p,...(n-1)-1) modulo p**n. 

Again, these values were computed for all the cases considered 
above. This method for computing inverses is included in the 
paper by Collins [4]. 

5. In order to use the Chinese Remainder Algorithm (CRA), it is 
convenient to compute certain constants beforehand. In 
particular, the CRA algorithm utilizes the following 
computational formula: 

a= a1 + (a2 - a1 ) * (p,....(-1) mod q) * p (mod p*q) 

for finding the unique (un to modulus p*q) value of a satisfying 
a= a1 (mod p) and a= a2 tmod q). Thus, in order to apply the 
CRA to our circumstances, it was advantageous to compute the 
constants (p**(-1) mod q) * p (mod p*q) for the possible cases in 
which the CRA was to be applied. In fact, this was done for the 
case of the primes computed above for the support of the FP.r. A 
table of such values is in Appendix 1. 
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Section 9 

Testing Results and Conclusions 

The goal of this section is to present the results of exhaustive 
testing of the FFT methods of exponentiation and to provide 
conclusions based on these results. Before these tasks can be 
performed, however, some mention should be made about certain 
system assumptions, the testing environment, and some of the 
other methods used in the tests. The following paragraphs will 
be concerned with these topics. 

SYSTEM ASSUMPTIONS: The system assumptions can be broken down 
into two classes: those concerned with the implementation of the 
FFT itself, and those concerned with the overall system in which 
the tests were performed. Two of the assumptions from the former 
class have already been mentioned in section 8 on implementation 
problems. In particular, the methods used for computing 
primitive roots of unity and K-th roots of unity are based on 
conjectures put forth in parts 2 and 3 of that section. Next, it 
should be mentioned that, although it is theoretically possible 
to program the FFT for the number of points being the power of 
any prime, it was only feasible in the testing to program two 
versions of the FFT; one for the number of points being a power 
of 2 and one for powers of 3. As mentioned previously, these 
prime numbers are considered to be optimal by Cooley and Tukey 
[5]. The result of this decision is that the running times for 
the F.FT's follow a pattern which is very much like a steJ;>­
function. Finally, two versions of each of these FET's were 
programmed; one using multiple-precision arithmetic for large 
coefficients, and the other using a Chinese Remainder Algorithm 
approach. See section 5 for more details on this topic. 

The system assumptions which were independent of the FFT itself 
included the following: all the methods tested were timed on the 
basis of CPU time elapsed and did not include the time spent in 
"garbage-collection", all the methods were given exactly the same 
inputs and were required to produce identical outputs (i.e.; 
time for "translation" from one polynomial representation to 
another was included in the timing), the choice of moduli for the 
modular algorithms was cased on the largest prime numbers which 
could fit into a single computer word, which is 35 bits plus sign 
bit on the DEC PDP-1O. 

TEST ENVIRONMENT: The test environment was the MACSYMA system of 
Project MAC located at MIT. See Bogen [1] for more detail on the 
actual system. The test code was written in the LISP programming 
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language and was compiled prior to its execution in the tests. 
The rational polynomial package, developed primarily by R. 
Fateman, provided the author with much of the software necessary 
to deal easily with multivariate polynomials. This fact made the 
efficient programming of the .F.FT much simpler. 

METHODS TESTED: The actual tests performed for polynomial 
exponentiation included nine different algorithms. The TIT 
methods were the power of 2, multiple precision (TIT2); the 
power of 2, Chinese Remainder Algorithm (CRAF.?J.'2); the power of 
3, multiple-precision (TI'T3); and the power of 3, Chinese 
Remainder Algorithm (CRAFFT3). The remaining 5 algorithms were 
devised by several people including Horowitz and Fateman, and the 
code for all these algorithms was coded by Fatema.n for the 
MACSYMA system. It should be noted that all of these algorithms 
have been closely studied by Fateman (6] with respect to 
asymptotic behavior and running "cost"; i.e., number of 
numerical coefficient operations performed during the exectution 
of each algorithm. On this basis, the FFr is the best in theory 
for the general problem of polynomial exponentiation, but it is 
of interest to see at what point the FFT algorithms take over in 
practice. 

At this point, it would be beneficial to briefly review the other 
methods tested. The reader is warned that these descriptions 
have been made with respect to the salient aspects of each 
algorithm, and do not mention many details which may have 
significant bearing on the actual running times. For more 
details, the reader is directed to the references mentioned for 
each method. 

Method 1: RMUL This algorithm computes a power of a polynomial by 
repeated muITiplication by the polynomial. [6, 8, 10] 

Method 2: RSQ This algorithm uses the binary decomposition of the 
exponent to"' form the correct sequence of multiplications and 
squarings to obtain the power of the polynomial. (6, 8, 10] 

Method 3: BINOM This method invokes a property of the binomial 
expansion to compute powers of µ:>lynomials. [6] 

Method 4: SUMS This method computes powers of a polynomial by 
computing successive coefficients using recurrence relations 
involving previously computed coefficients. (13, p. 445] 

Method 5: MOD This method utilizes a scheme involving modular 
arithmetic, polynomial evaluation and polynomial interpolation in 
order to find the powers of a polynomial. [11] 
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The testing itself proceeded in the following fashion: the user 
chose the number of variables, the degree of the polynomial in 
each variable, the maximum size of the coefficients and a ranee 
of powers to be computed. The system then produces a random 
polynomial of the correct specifications, applies each aleorithm 
to this polynomial, computes the run time for each algorithm, and 
then prints the results. The results were given in the following 
form: the minimum time was determined, then divided into ail the 
run times yielding normalized run times. These normalized times 
were printed in tabular form, along with the best time in 
milliseconds. Many different tests were performed in order to 
judge the performance of the various methods under different 
circumstances such as large polynomials, high powers, 
multivariate polynomials, and coefficient size. The results of 
this testing are presented in Appendix 2. In the discussion 
below, we will refer to the numbered charts in the Appendix. 

CHARTS 1,2: We can see from Charts 1 and 2 for i:olynomials of 
degree 30 and 50 respectively that the FFI' methods quickly become 
the most efficient methods for exponentiation, at least for the 
univariate case. Also, it should be noted here that similar 
tests with use of the multiple precision version of the .F.FT 
revealed it to be much less efficient than the Chinese Remainder 
Algorithm version. For this reason, the timing results for this 
version is not included in this appendix. 

CHART 3: We now turn to the problem of coefficient growth. In 
Chart 3-we have tested the various methods on polynomials of the 
same size but with the numerical coefficients growing as 
indicated by the first column "COEFF". Here we see that the TIT 
routines are best when the coefficients are small but as they 
grow, the maximum possible coefficient in the answer also grows, 
requiring either large multiple-precision arithmetic or repeated 
applications of the F.FT followed by applications of the Chinese 
Remainder Algorithm. Thus, by the time the coefficients are of 
the size of 10A9, the 2 FFT methods are losing quite badly to all 
of the other algorithms. Thus, we conclude that the presence of 
large coefficients in the input polynomial degrades the overall 
performance of the ITT. 

CHARTS 4,5: The next charts are devoted to the results of 
testing the algorithms on multivariate polynomials. The rapid 
growth of the size of powers of multivariate polynomials places 
limitations on the practical aspects of testing. As we can see 
from Chart 4, the bivariate polynomials of degree 5 exhibit the 
efficiency of the .F.FT methods. This is due primarily to the fact 
that for a bivariate polynomial of degree 5 in both variables, 
the transformed sequence of coefficients has univariate 
polynomials of deGI'ee 6, each of which must be raised to a power. 
Reverting back to charts 1 and 2, it is seen that the larger 
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these polynomials are, the more efficient is the FFr algorithms. 
We can thus conclude that for "larger" problems in the bivariate 
cases, the FFT is the best method. The case for tri-variate 
polynomials is not as easy to assess, a s the testine was not very 
extensive. We can see from Chart 5 that the FFT appears to be 
coming to the fore as far as the trivariate polynomials are 
concerned. However, the lack of more evidence leaves the 
conclusions concerning trivariate polynomials in doubt. 

CHART 6: For the case of high powers of a polynomial we once 
again - run into the problem of large coefficients and hence the 
proble ms of multiple-precision versus CRA FFT's. In Chart 6, we 
see that the FFT methods not faring very well. One reason is the 
overhead incurred by multiple-precisi on arithmetic or Chinese 
Remainder Al gorithm. Another r eason is that the SUMS algorithm 
has been shown to be a linear time algorithm in the power cf the 
pol ynomial for univariate polynomials.(See Fateman [6].) As a 
r esult, we see that the .FFT does not appear to be a winner for 
this particular problem. Again, prac tical constraints prevented 
any testing of the case of multivariate polynomials for high 
powers. Note, however, that most of the other algorithms are 
performing quite poorly in relation to SUMS. The next aspect of 
the problem to be considered is that of the relative densenes of 
t he input polynomials. It can easily be shown that the FFr 
method does not take advantage of the density of the polynomial, 
as for example, the same FFT cost are incurred for the polynomial 
xilrlt-7 as for any dense polynomial of degree 7. Since most of the 
other methods rely somewhat on the actual non-zero coefficients 
of the polynomial, it is safe to conclude that they will run more 
quickly on sparse polynomials. There are some "tricks" which can 
be added into the FFT algorithm to take advantage of zero 
coeffic ients, but the effect of thes e tests on the overall run 
time has not yet been fully analyzed. Thus, it may be concluded 
that the J'.FT methods profit more from the greater density of 
polynomials than the other methods. 

From the above analysis and the data referred to in the appendix, 
we can draw several conclusions concerning the types of problems 
on which the FFT methods appear to perform the best: 

2 Bivariate and trivariate polynomials. 
1l High degree univariate polynomials 

3 Polynomials with small numerical coefficients. 
4 Dense polynomials. 

The author has performed extensive tests on smaller univariate 
polynomials, bivariate and trivariate polynomials and has found 
that the above conclusions apply to these test results as well as 
those presented in Appendix 2. 
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Section 10 

Future Work 

There is still room for much work in this area in that many 
alternative solutions might be used in place of those used in the 
system described in this paper. Most prominently, the use of 
arrays instead of lists for FFT computations might permit an 
implementation of multi-dimensional FFT's for multivariable 
polynomials. This method would avoid the "recursive" FFT method. 
However, there are numerous programming and theoretical obstacles 
to overcome in this approach to the problem. 

Another possible area for future work includes the possibility of 
using alternative schemes for the actual programming of the FFT. 
The most well-known alternate is the Good algorithm which enables 
the efficient programming of a K-point DFT where K factors into a 
product of relatively prime factors(see [7]). This method is 
most efficient for those values of K where the Cooley-Tukey 
method is least efficient. It is my hypothesis that some 
combination of the two would be optimal for all computations. 

Inasmuch as the main failing of the FFT occurs due to the problem 
of coefficient growth and use of the Chinese Remainder Algorithm, 
it would seem most advantageous to obtain tighter bounds on the 
maximum coefficient as discussed in section 5. Thus, some work 
could profitably be done on the problem of determining more 
closely the minimum modulus required for the correct operation of 
the F.FT. 

The results obtained thus far in the study once again renew 
original optimism vis-a-vis the computational efficiency of 
FFT. As a result, it may now be feasible to use the FFT for 
multiplication of multivariate polynomials, as suggested 
Pollard f15]. Again, the main reason it was rejected there 
its implementation problems. However, it is my belief that 
FFT can be effectively used for polynomial multiplication 
cases when the polynomials are large. Work has begun 
verifying this conjecture. 
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Finally, it is conceivable that there are applications of the FFT 
to other computation structures currently under investigation in 
the area of symbolic and algebraic manipulation. Such structures 
include polynomial rings, Galois fields, algebraic number fields. 
Inasmuch as these types of structures may very well support ·F.Pl' 
computations, it might be desirable to investigate the 
ramifications of the efficiency of the FF.I' on computations to be 
done in these structures. 
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As a final note, it should be noted that while the FET me t hods 
may not be the best for all the types of problems tested, it is 
usually second or third, and that the algorithms bieating t hem are 
not the same. For example, SUMS is best for high powers of 
polynomials, but far from best for bivariate polynomials, while 
BINOM is best for trivariate polynomials, but extremely poor for 
high powers. Note that in the cases mentioned above, FFT methods 
were very close to best. In this sense, it can be stated that 
the FFT method for multivariate polynomial exponentiation 
provides the optimal single algorithm for the widest class of 
polynomials. However, it should be noted that the optimal method 
would be to provide several algorithms and a scheme f or choosing 
the appropriate method depending on the characterization of the 
input polynomial and the power td which it is to be raised . 
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Appendix..! 

Numerical Tables 

This appendix contains tables used by the FFr routines while 
testing of the various methods of polynomial exponentiation was 
performed. These tables include values for prime moduli which 
will support the computation of K-point FFT's for K being a power 
of 2 or of 3, values of K-th roots of unity, the inverse of K 
used by the inverse FFT, and constants needed by the Chinese 
Remainder Algorithm. For more information on the computation of 
these tables see sections 6 and 8. 
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Implementation Constants for K = k-th Power of 2 

k Prime K-th Root Inverse of K 

1 3435747t401 -1 -17178739200 
34355238913 -1 -17177619456 
34353372673 -1 -171766f36336 
34348893697 -1 -17174446848 
34347773953 -1 -17173886976 

2 34357478401 9891852171 25768108801 
34355985409 19811282838 25766989057 
34355238913 4927062827 25766429185 
34353372673 4951275475 25765029505 
34348893697 5709113108 25761670273 
34347773953 21761134509 25760830465 

3 34357478401 32682092207 30062793601 
34355985409 15131840309 30061487233 
34355238913 33303674156 30060834049 
34353372673 29927889522 30059201089 
34348893697 18569911987 30055281985 
34347773953 24411524499 30054302209 

4 34357478401 34308022287 32210136001 
34355985409 3547587927 32208736321 
34355238913 1661 0034046 32208036481 
34353372673 2310845740 32206286881 
34348393697 9215285218 32202087841 
34347773953 17539867326 32201038081 

5 34357478401 25761471905 33283807201 
34355238913 9120821392 33281637697 
34353372673 12655411921 33279829777 
34348893697 259396819 33275490769 
34347773953 7440474820 33274406017 

6 34357478401 6646977762 33820642801 
34355985409 34277845374 33819173137 
34355238913 4601325225 33818438305 
34353372673 6024103 33816601225 
34340093697 8823147390 33812192233 
34347773953 31586785258 33811089985 
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k Prime K-th Root Inverse of K 

7 34357478401 225ITT462373 34089060601 
34355985409 25301099943 34087579273 
34355238913 7616143182 34086838609 
34353372673 31417233872 34084986949 
34348893697 19801476384 34080542965 
34347TI3953 26520592997 34079431969 

8 3435747E401 24034500045 34223269501 
34355985409 3243609365 34221782341 
34355238913 5540034754 34221038761 
34353372673 32127020682 34219179811 
34348:393697 12027032227 34214718331 
34347TI3953 30116982508 34213602961 

9 343574 78401 27916816253 34290373951 
34355985409 14736327539 34288883875 
34355238913 3313297198:3 34288138837 
34353372673 16000368730 34286276242 
34348:393697 25T/0368986 34281806014 
34347TI3953 15051603591 34280600457 
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Implementation Constants for K = k-th Power of 3 

k Prime K-th Root Inverse of K 

1 34357478401 11038728257 -11452492800 
34355985409 -11530751209 -11451995136 
34355238913 7592415340 -11451746304 
34353372673 -6446892571 -11451124224 
34340093697 -16448427828 -11449631232 
34347T/3953 -6746631931 -11449257984 

2 34357478401 32978710811 30539980801 
34355985409 20601174901 30538653697 
34355238913 23497694187 30537990145 
34353372673 1064 7751358 30536331265 
34348893697 27497752985 30532349953 
34 34 7773953 14101174432 30531354625 

3 34357478401 14476663079 33084979201 
34355985409 10394425823 33083541505 
34355238913 12290146715 33082822657 
34353372673 5927656286 33081025537 
34348893697 31973225865 33076712449 
34347773953 11448793429 33075634177 

4 3435747c?401 5089336041 33933312001 
34355985409 33024784276 33931837441 
34355238913 20939201693 33931100161 
34353372673 14083970947 33929256961 
34348993697 14803753625 33924833281 
34347773953 30762734906 33923727361 

5 34357472401 2624266140 34216089601 
34355985409 79S7108064 34214602753 
34355238913 11015976334 34213859329 
34353372673 3390565065 34212000769 
34348893697 18664094272 34207540225 
3434 7'TT3953 12869631580 34206425089 

6 34357478401 10402372247 34310348801 
34355985409 15090413300 34308857857 
34355238913 15473845574 34308112385 
34353372673 23 TI 9923705 34306248705 
3434&393697 770594219 34301775873 
34347773953 15091683908 34300657665 



Primes 

34357478401 
34355985409 
34355238913 
343?3372673 
34340093697 
34347773953 

Constants for Chinese Remainder Algorithm 

CRA Constant 

NIL 
5901917227002801(X)893 
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-12684108404135519337890926736287 
315379960749499628652231659795052874747688 
-13959780266038216528668844366249205596533625869043591 
607740804817197067441373401894506068454545491803651;,:;9897317521 
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Appendix 2 

Timing Charts 

This section contains several charts of timings computed during 
extensive tests on various methods for polynomial exponentia tion. 
Included in this section are results for large univariate 
polynomials, bivariate and trivariate polynomials, large 
numerical coefficients and high powers of µ:>lynomials. The 
charts are arranged so that all the running times are presented 
as a ratio with respect to the best running time. This best time 
is then included in order to obtain actual running times, i f 
desired. Note that these times do not include "garbage 
collection" time, but include all other overhead. Timi ng was 
done on a PDP-10 computer with 2 microsecond memory cycle t i me. 
Average instruction execution time is about 3 microseconds. See 
section 9 for discussion of the various methods tested and f or 
conclusions f ollowing from these results. 



CHART 1: LARGE UNIVARIATE POLYNOMIAL 

DEGREE= 30 MAXIMUM COEFFICIENT = 10 

POWER SUMS MOD BINOM RMUL RSQ CRAFFT2 CRAF}'r3 13.EST(MS) 
2 4.108 1. T/6 1.0 1.812 1.815 1.295 1. 723 690.196 
3 2.506 1.964 1.682 2.026 2.028 1.0 2.134 1337.72 
4 3-438 3.908 3.626 4.026 3-352 1.0 2.14 1856.856 
5 1.06;2 3.04 1.444 1.555 1.395 1.0 1.024 8033. 314 
6 1. 737 4-532 2.183 2.327 2.006 1.0 1.018 8056.669 
7 2.154 5.913 2.936 3.093 2.839 1.0 1.015 0671.838 

CHART 2: LARGE UNIVARIATE POLYNOMIAL 

DEGREE = 50 MAXIMUM COEFFICIENT = 20 

POWER SUMS MOD BINOM RMUL RSQ CRAFFI'2 CRAFF.1'3 BEST(MS) 
2 4-493 1.932 1.0 1.931 1.992 1.16 2.486 1710.302 
3 3.09 2.434 2.063 2.509 2.514 1.0 1.046 4067.266 
4 2.3 4. 771 2.206 2.455 2.036 1.0 1.041 8487.418 
5 4.186 7-96 3.006 4.081 3.668 1.0 3.349 8487.585 
6 2.362 5-352 2.007 2.964 2.628 1.0 1.567 19014.763 
7 2.693 7.222 4.308 4.487 4.583 1.0 1.545 19756.631 8 1.866 8.751 3.763 3.905 3.339 1.0 1.504 32596.178 

CHART 3: COEFFICIENT GROWTH FOR UNIVARIATE POLYNOMIAL 

DEGREE = 10 POWER = 10 

COEFF SUMS MOD BINOM RMUL 
~~42 

CRAFFT2 CRAF.FT3 BEST(MS) 10 1.304 1.848 1. 728 1.901 1.0 1.379 760.923 10 .... 2 1.097 2.019 1.0 1.124 1.023 1.242 1.647 1494.588 10 .... 3 1.0 1.877 1.171 1.277 1.232 1.176 1.549 1621.639 
10"'4 1.0 2.583 1.145 1.261 1.139 1.786 2.29 1004.3 10"'5 1.0 2.538 1.147 1.261 1.141 1.739 2.228 1871.39 10"'6 1.0 3.209 1.133 1.277 1.167 2.355 2.971 1985.628 10"'7 1.0 3.056 1.102 1.233 1.132 2.235 2.814 2118.297 10"'8 1.0 3-757 1.12 1.252 1.132 2.916 3.633 2151.532 10 .... 9 1.0 3.484 1.075 1.198 1.094 2.691 3.344 2359.455 10A10 1.0 4.054 1.036 1.155 1.053 3.328 4.091 2432.368 



DEGREE= 

POWER SUMS 
2 4.014 
3 3.693 
4 2.403 
5 4.201 
6 3.04 

DEGREE = 

POWER 
2 
3 
4 

SUMS 
2.177 
1.645 
1.392 

DEGREE = 

POWER SUMS 
20 1.0 
21 1.0 
22 1.0 
23 1.0 
24 1.0 
25 1.0 
26 1.0 
2.7 1.0 
28 1.0 
29 1.0 
30 1.0 

CHART 4: BIVARIATE POLYNOMIAL 

5 

MOD BINOM 
1.626 1.0 
1.979 1.586 
1.548 1.329 
3.023 2.694 
4.716 2.151 

CHART 5: 

2 

MOD 
1.56 
1.316 
1.263 

BINOM 
1.0 
1.0 
1.0 

MAXIMUM COEFFICIENT= 3 

RMUL RSQ CRAFFT2 CRA:FFT3 BEST(MS) 
1.652 1.651 3. 111 9.994 1007.224 
2.042 2.042 1.0 3.196 3423.502 
1.6 1.561 1.08 1.0 11836.1 32 
3.139 3.093 1.06 1.0 12746.566 
2.423 2.837 1.0 6.66 29859.483 

TRIVARIATE POLYNOMIAL 

MAXIMUM COEFFICIENT= 3 

RMUL 
1.552 
1.356 
1.308 

RSQ 
1.558 
1.357 
1.413 

CRAFFI'2 CRAFPr3 BEST(MS) 
8.976 15.265 632.006 
1.752 3.026 3750.7 
3.341 1.04 12970.906 

CHART 6: HIGH POWERS OF UNIVARIATE POLYNOMIAL 

2 MAXIMUM COEFFICIENT = 3 

MOD BINOM RMUL RSQ CRAFFr2 CRAFFI'3 BEST(MS) 
7.164 2.828 3.TI3 2.527 4.007 5-394 371.495 
7.365 2.942 3-976 2.833 3.784 5.062 400.354 
7-548 3.012 4.177 3.061 3.594 4.785 429.54 
7.853 3.168 4.465 3.34 3.492 4.633 452.253 
8.176 3.305 4.769 3.103 3.379 4.479 473.497 
8.45 3-446 5.039 3.69 3.273 4.302 497.122 
8.767 3-593 5-349 3.923 3.189 4.181 518.752 
9.114 3.751 5.678 4.119 5.219 6.675 538.26 
14.213 3.906 5.979 4.378 5.076 6.485 558.601 
14.656 4.043 6.271 4.6 4.941 6.2f,3 500.773 
15.063 4.204 6.543 4.273 4.856 6.163 604 .218 
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