
MIT /LCS/TM-34

POLYNOMIAL EXPONENTIATION:

THE FAST FOURIER TRANSFORM REVISITED

Richard J. Bonneau

June 1973

t-:AC 'IECITIC.i.J t•'.It:ORJ :.:rnJ; :J

PCL)'.I;cr=AL ::..XP01 ENTIJ..'.IIC1· :

Jt.E JP..ST FOUI-IER 'IHAl.SFOrr El-VISDbD

ficr.ard J. Ionncau

Jure 1S73

1Lis reset rch is suprorted in }:2.rt 1:-;y the fa,.·thecn
Ac'v2.r:cec. Depree Pro[-ram and by the Natioru:l Science
}cund[tio1 uncer resenrch crant G~- 34671 .

: ASS.' cru~ITI~ IN:..,TITLTE CF TEC1-1l:CLOG~

PROC.:ECT MAC

Cl 1.:r;.-:JDGL

Introduction.

Section 1.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Section 7.

Section 8.

Section 9-

Section 10.

Appendix 1.

Appendix 2.

Bibliography

Table Of Contents

Discrete Fourier Transform

Fast Fourier Transform

Structures Supporting the FPr

FFT and Algebraic Manipulation

Problem of Large Coefficients

Multivariate Polynomials

Timing Analysis for the FFr

Implementation Problems

Testing Results and Conclusions

Future Work

Numerical Tables

Timing Charts

PAGE 2

PAGE 3

Introduction

The Fast Fourier Transform (EFT) is a method propos ed f'or
the corapu t2 tion of powers of symbolic multi variate poJ.ynomi0.J.~,
over the integers. Despite its acknowledged superiori t:7 in
performing polynomial exponentiation, the FFT has "te8n labelled
2.s inefficient for practical systems. This report pr esents
concrete evidence to support the claim that the FFT method is a
highly efficient algorithm for the practical computation of the
powers of polynomials.

The report proceeds by defining the Discrete Fourier
Transform (DFT) and its inverse, and detailing the rela tionship
between the D.FT and the FFT. The convolution property of the i 'FT
is then stated, along with its applications to univariate
polynomial multiplication and exponentiation. These applications
are then extended to include multivariate polynomials b;.r
considering the computation structures in which the FFT m2,y be
performed. Several problems concerned with the implementation of
the :F.FT are discussed and solutions are given for the actual
system implementation. Finally, conclusions on the efficiency of
the FFT algorithm are drawn from timing results obtained f r om
extensive testing of the .FFT and other proposed methods.

Section 1

The Discrete Fourier Transform

Definition: Let R be a commutative ring with unity,
1, Kan integer> 1, and WK an element of R of order
DISCRETE FOURIER TRANSFORM (DFT) of the
(aO,a1, ••• ,a(K-1)) is the K-sequence

(AO,A1, ••• ,A(K-1))

given by the following equations:

i j

PAGE 4

written as
K. Then the

K-sequence

t ~ = a w
j i

O<j<K-1 (1)
K

i = 0

Definition: Assuming the same conditions as above, and also,
that K possesses an inverse in R (i.e. 1/K), then the INVERSE
DISCRETE FOURIER TRANSFORM (IDFT) of the K-sequence
(aO,al, ••• ,a(K-1)) is the K-sequence

(AO,A1, ••• ,~(K-1))

given by the following equations:

Aj = (1/K) ~~: a
i

w
- i j

K
(2)

If we consider the term ai*WK (-i*j) to be rewritten as the
equivalent term

ai*WK**((K-i)*j)

then we can rewrite the above equation as

PAGE 5

1l. = (1/K) ~
j '---.

i = 0

i j
a W

K-i K
(2a)

If we now define a(K) = a(O), then the inverse DET can be
computed from the DFT by merely "flipping0 the input sequence.
Here, flipping consists in replacing the i-th term by the (K-i)­
th term. Thus the same computational algorithm (for the D .. F'l') can
be used to compute both the DFT and the ID.FT. As might be
expected from the terminology, under the right conditions (see
section 3) , the two transforms are inverses of each other, and
thus provide different representations of K-sequences. Note,
also, that the DFT (and the IDFT) are linear transformations from
R**K to R**K, since the quantities WK**(i*j) are all "constants"
for each application of the DF'l'. For more information on this
approach to the phenomenon of the FF:r, see Nicholson [14].

The particular virtue of the DFT in many applications results
from the following:

Definition: Let A= (a0,a1, ••• ,a(K-1)) and B = (b0,b1, ••• ,b(K-
1)) be two K-sequences in R. Then the CONVOLUTION OF A AND B,
written A*B, is the K-sequence C = (c0,c1, ••• ,c(K-fTJ where tne
cj are defined as follows:

C = t:: a b O<j<K-1 (3)
j i j-i

where bn for n < 0 is defined as b(n+K).

Convolution Property of the DFT:

Let A and B be as in the preceding definition. Let A' and B' be
the DFT's of A and B respectively. Then the following equation
is true:

(A*B)' = A'xB' (4)

where "x" means component-wise multiplication of K-sequences. In
other words, the DFT transforms the convolution operation in R~K

PAGE 6

into the component-multiplication in R**K, according t o t he
following commutative diagram:

DFT x DFT
R**K x R**K

l"*" R**K

Proof:

-
J t

_ ~ ~.t r ~ , i· ~,.1] ~l ,.t"
~ ai. w\(. L ~ b~-~ w"" -=- ~ Q,·wic. b.1
' ~ '
,.,.. " CA...t b .1 Q.e ."b. -

As a result of (4), the convolution of two K-sequences can be
computed in the following way:

1)compute the transforms A' and B' of A and B
respectively.

2)perform componentwise multiplication on A' and B'
to obtain a K-sequence C'.

3)perform the inverse DFT on C' to obtain the
convolution sequence C.

Thus, the DFI' provides a method (though not an intuitive one) for
computing the convolution of sequences.

PAGE 7

Section 2

The Fast Fourier Transform

In this section, a method for rapid evaluation of the Di screte
Fourier Transform is presented. This method is known as t he FAST
FOURIER TRANSFORM (FFT) and represents a consideraoie
breakthrough in reducing the computational complexity of many
problems. The analysis begins with the assumption tha t the
number of points to be transformed (in our case, K) is a
composite number; e.g., K is divisible by 2. Then we have the
identity:

Lai til K/2-1
il b 2jl §. = WK = WK WK O<l<K-1 (5)

1 2j+i
i==O i=O j=O

If we define two K/2-sequences B(O,l) and B(1,l) by

K/2-1

b
i,l = L a2j+i

j==O

WK
2jl

O<l<K-1 i=0,1 (6)

then we have the final relationship

A
1

= b

i=O

il
WK O<l<K-1 (7)

i,l

If we realize that Wl{iHl-2 is a K/2-th root of tmity in (6) , then
the computation of a K-point FFT involves the following steps:

1) split the input sequence into 2 sequences consi s ting
of t he even-numbered and odd-numbered :parts of
the sequence, corresponding to i = 0 and 1
in (6).

2) perform K/2-point F.FT's on the two sequences,
using the square of WK as the K/2-th
root of unity, yielding BO and l31.

3) "splice" the results according to equation (7) a bove.

PAGE 8

As a result of this partitioning of the original s equence , t he
cost of performing a K-point FFT has been reduced t o t ha t of
computing two K/2 FFT's plus K multiplications for the s plicing
operations performed in equation 7 above. Now, if K/2 is also
even, then we can perform the same splitting operation on t he
subsequences. This will reduce the problem of computation of one
K-point FFT to that of computing 4 K/4-point FFr's plus t he
splicing costs. For Ka power of 2,(i.e., K = 2-iHt-k) the ultimate
result is that the K-point FFT can be performed using O(K log K)
operations (where an operation is either an addition or a
multiplication by a power of the K-th root WK). This represents
a tremendous savings over the traditional methods which take
something like O(K**2).

It should be noted here, that the Fast Fourier Transform a pproach
can be made to speed up the computation of K-point D.Fr's for any
value of K, but the efficiency of the algorithm is maximized for
K a large power of a small prime. Note, also, that the same
general algorithm can be used for computation of the inverse DFT
with the only changes being a "flip" of the input sequence before
applying the FFT and a multiplication by the inverse of K after
the .F.FT. (See section 1.)

Finally, some mention should be made concerning alternative
schemes for implementing the FFT. The method described above and
attributed to Cooley and Tu.key [5] is only one of many ways of
performing the computation of the DFT. Nicholson in [147 and his
thesis describes algebraically the forms wich will perform the
correct computations. Included in this analysis is the Cooley­
Tukey method and also one described by Good f7]. This
computation relies on the fact that K is factoraole into a
product of relatively prime numbers. As yet, the numerous other
techniques have not been investigated thoroughly.

Section 3

Structures Supporting the FFr

PAGE 9

The question naturally arises as to which computation struc tures
are able to support the computation of FFT's. The criteria for
the SUPJX>rt of a K point FFT reduce to the existence of a K-th
root of unity, the inverse of K, and the invertibility of the
.FFT. In a technical memo by this author [2], it has been shown
that the following theorem characterizes a class of rine:s able to
support FFT's :

Theorem: Let R be a commutative ring with unity. Let I (R) be
the "Integers of R" ;i.e., the smallest subring of R containing 1.
It is known that I(R) is isomorphic to either the integers Z or
the integers modulo M (Z/MZ) where Mis the characteristic of t he
ring R. We assume here that the characteristic is finite and non­
zero. Then R supports K-point FFT's if the following holds :

K divides p-1 for every prime p which divides M.

As a result of the above theorem, the following rings will
support K-point FFT's:

11 (Z/MZ) where M = p = cK+1 some c such that pis prime.
2 !Z/MZl where M = piHtn for any pas in (1),for any n
3 Z/MZ where M = product of p**n for any p's as in (1)
4 Z/MZ (x1 , x2, ••• ,xn] for any Mas in 1,2, or 3.
5 GF(p) [x1,x2, •••] for any prime p = cK +1

We will make use of several of these rings in our applications of
the FFT. Note that the fifth example above yields an answer to
the question of when can we use F.FT's over finite fields; i .e.,
when the number of -r:oints of the FFT divides ir1. This fact has
a pplications to schemes involving modular arithmetic and the
possible use of the FFT, especially for those algorithms
requiring the choice of large but otherwise random primes. (See
Horowitz [11] for uses of modular algorithms for -r:olynomial
exponentiation and Yun. [16] for applications to the gcd problem.)

PAGE 10

Section 4

fl'T ~ Algebraic Manipulation

Algebraic manipulation systems provide numerous opportunities for
application of the .FFT. In particular, the area of rational
polynomial computations supplies several instances in which the
.FFT approach can be of considerable benefit. As described by
Pollard [15], Fateman [6], and Horowitz [11], the FFT can be
invoked to perform symbolic multiplication and exponentiation of
multivariate polynomials over the integers or finite fields of
the form GF(p) for some prime p. (Also mentioned in Pollard
[15], is the possibility of using FFT's to perform exact
polynomial division. This application has yet to be studied with
regards to the feasibility of its implementation.) Easically, it
is because of the convolutional aspect of the operations of
multiplication and exponentiation on the coefficients that the
FFT is applicable. More particularly, if f(x) is a univariate
polynomial of degree m, then it can be represented by a sequence
of m+1 coefficients; e.g., (a0,a1, ••• ,am), where ai is the
coefficient of x-it-it-i in f(x). If we wish to square this
polynomial, the answer would contain 2m+1 terms of the form:

(c0,c1,c2, ••• ,c(2m))

where, in fact, the ci are the terms of the convolution of the
sequence A with itself where A has been zero-extended to be of
length 2m+1. Therefore, to square f(x), the following could be
done:

1) form the extended sequence of 2m+1 terms
(aO,a1, ••• ,am,O,O, ••• ,o)

2) perform a 2m+1-point FFl' on the sequence A, obtaining
the sequence

(b0,b1, ••• ,b(2m))
3
4

) square each of the terms in the above sequence
) perform the 2m+1-inverse F.FT to obtain the

answer sequence
(co,c1, ••• ,c(2m))

In order to avoid the use of complex arithmetic and inaccurate
computations, it is desirable that the ring to be used as a base
for the .FFT computation be a finite computation structure. By
such a structure, we mean a ring with finite characteristic.
Examples of such rings were given in the preceding section. In
particular, our system will be based on modular arithmetic
schemes, in which we are dealing with the integers modulo some
particular integer (the modulus).

PAGE 11

In order to guarantee the correctness of the answer sequence, the
following restriction is needed on the modulus of the sys tem in
which the E'FT is to be performed: the modulus M must be greater
than twice the absolute value of the maximum coefficient
appearing in either a or c.

This restriction is required since operations in modular systems
guarantee results only to be congruent to the "actual" answer;
i.e., if we compute a form using the integers and then using
modular arithmetic, then the latter answer will be only
"congruent" to the former. If, however, we can be assured that
the "true" answer is in fact less than the modulus, then the
modular answer is the "actual answer". The factor of 2 is needed
for the bound on M because of the need for a "balanced"
representation for the integers modulo M, i.e., we allow positive
and negative numbers whose absolute value is less than M/2. We
will see more on this subject in section 5 on large coefficients.
For now, let us be content with the result that, except for
considerations of the modulus, the FFT and inverse F.FT can be
used to multiply univariate polynomials and raise them to powers.
Also, as seen in section 6, the same approach can be utilized to
deal with multivariate polynomials.

Thus the .FFT's reduce the computation of products of polynomials
(or powers of polynomials) to the computation of the products of
coefficients (or powers of coefficients).

PAGE 12

Section 5

Problem of Large Coefficients

Inasmuch as the modulus to be used for FFT computation must bound
the maximum coefficient in either the inputs or outputs (see
section 4), we need some estimates on this quantity.
Accordingly, we define ·

Definition: Let f be a multivariate _{)?lynomial over
integers. Then the NORM off (written n(fJ) is the sum of
absolute values of all-uie numerical coefficients inf.

the
the

Definition: Let f be a multivariate polynomial over the
integers. Then the MAXIMUM COEFFICIENT of f (written
maxcoeff(f)) is the largest numerical coef'i'1cient of any term of
f, regardless of sign.

Note that n(f) > maximum coefficient in f. Also, n(f*g) <
n(f)*n(g).

The following result provides a minimum bound for the choice of
moduli for FTI'.

ProE9sition: The maximum coefficient of f1t-1tn , where f is a r­
variate polynomial with maximal degree m, is less than or equal
to the minimum of

(n (f)) **n and

maxcoeff(f)it-itn * (maxcoeff((1+x+ ••• +x**m)**n)) **r

Inasmuch as the second term is difficult to compute (quickly),
the first term has been utilized as a bound for determination of
the modulus. However, there may be indications that the second
term is significantly smaller than the first for many cases. See
section 10 for more details on possible further work on this
topic.

As a result of the above proposition, the minimum modulus for a
given problem may be quite large and may wel l exceed the
precis i on of a single computer word. There are two methods which
can be used to handle this situation:

PAGE 13

1) invoke an arbitrary precision integer arithmetic
package, which is found on many systems today.

2) perform the DFT on the inputs for a set of moduli
consisting of several single-precision primes
pi satisfying the inequality t.hat the product
of all the single-precision primes pi is
greater than twice the minimum modulus. Once all
the answers have been obtained, use the Chinese
Remainder Algorithm to re-assemble the final
answer from the pi-residues.

The ultimate trade-off between these two methods is the relation
of cost of performing a single FFT using multi~le-precision
arithmetic versus the cost of performing several TIT sin single
precision plus the cost of reconstructing numbers from residues.
From our results to date, the second approach appears to be much
more advantageous for large problems. See section 9 for results
actually produced by our experimental system and for conclusions
based on these results.

PAGE 14

Section 6

Multivariate Polynomials

The application of the FFT to univariate polynomial problems is
quite natural as to each polynomial we can assign a sequence
consisting of its coefficients. Then the computations ~to be
performed on the polynomials can be performed by suitable
manipulation on the coefficient sequences. When one considers
the problem of dealing with multivariate polynomials, there are
several ways of proceeding. We will discuss here three methods
which might be used for utilizing FFT's with multivariate
polynomials.

1) Multi-dimensional FFT: Similar to the univariate case, to
each multivariate polynomial we can assign an r-dimensional array
consisting of the numerical coefficients of the polynomial (where
r = number of variables). On this array we can perform an r­
dimensional FFT which , intuitively, consists in performing
iterative one-dimensional .FFT's on consecutive rows, faces, etc.
of the coefficient array. Some programming difficulties inherent
in this method have prevented the author from implementing it in
this study.

2) Non-recursive FFT: In this method, we use polynomial
arithmetic with the one-dimensional FFT, where the elements to be
transformed are the coefficients of the polynomial in some fixed
(but otherwise) arbitrary "main" variable. In other words, we
rewrite a polynomial fas follows:

'
f(x,y,z, •••) = t. o_., '1ot~ .J

&.

where, now, the ai are :polynomials in y,z,.. • • Then another
method for computing the products or :powers of the transformed
coefficients is used before taking the inverse FF.r, again using
polynomial arithmetic. Note that in this system, the only
polynomial arithmetic required is that of polynomial addition and
multiplication of a polynomial by a constant (plus the "other"
method for multiplication or powering). This method may cause
some reduction of the time for computation, but is inherently
dependent on the characteristics of the other algorithm which is
used on the lower level problem. For this reason, this method
was not implemented, but rather emphasis was concentrated on the
following, "pure" ITT method.

PAGE 15

3) Recursive ITT: In this method, we proceed as in the rr.e t hod
described above but when it is necessary to perform co~putations
using the transformed (polynomial) coefficients, we now
recursively call the FFT method. For example, in the
exponentiation of polynomials in two variables, the flow of the
computation would be as follows:

1) Perform an FF.I' on the single-dimension array
consisting of the (polynomial) coefficients
of the polynomial in one of the two variabl es.
The resulting sequence will have
elements which are univariate polynomials.

2) To raise each of these coefficients to a power, call
the FFT method which will operate on
the numerical coefficients of these
polynomials, returning the powers of the
polynomials.

3) Perform the inverse FFT on these polynomial
coefficients, yielding the (polynomial)
coefficients of the "main" variable
of the desired power of the given polynomial.

There are some problems inherent in the recursive aspects of this
method including the optimal way of reducing the problem to a
smaller problem, choice of modulus, use of K-th roots of unity,
etc. In the implemented system, some assumptions are ma.de as to
the structure of the polynomials being dealt with. (See section
9) However, the method can be used in the general case, with a
small amount of added expense.

PAGE 16

Section 7

Timing Analysis for the F.FT

The purpose of this section is to present a detailed timing
analysis of the TI'T method for p:>lynomial exponentiation. This
timing analysis will be derived in terms of the number of integer
operations of multiplication required.

In order to make the derivation tractable and readable, we
assume that the polynomial we are dealing with, f(x1, ••• ,xr), is
dense in all of its r variables and of degreed in each variable.
As a result, f has (d+1)it-it-r terms. Letting K = nd+1, we also
assume that the cost of performing a K-point F.FT is given by K
log K "coefficient operations." By a coefficient operation, we
mean either an addition of sequence elements, or multiplication
of a sequence element by a "constant"; i.e., an integer.
Because of the recursive nature of the application of the F.Fl',
the sequence elements can be integers or polynomials. In either
case, however, the cost of the coefficient operation is
proportional to the number of terms in the coefficient. Thus,
for example, the cost of performing a K-point FF.I' on a sequence
of r-1-variate polynomials, all having common degreed in each
variable, is given by K log K * (d+l)**(r-1) integer operations.
Also, we make the additional assumption that the Chinese
Remainder Algorithm is not invoked and thus only one prime is
needed.

Having made the above assumptions, we now proceed to compute
the costs of the algorithm as given by the steps below:

Inputs:

Output:

f: an r-variate, dense polynomial of common degreed
n: an integer> 1.
f**n.

1) Writing fas
form a sequence of length K from the r-1-variate
polynomial coefficients off by extending the
coefficients with zeros.

2) Apply a K-point FFT to this sequence, yielding the
sequence

3) Raise each transformed element to then-th power by
calling this routine recursively.

4) Apply the inverse FFT to this new sequence of r-1-variate
polynomials, all of common degree nd in each variable.

5) The coefficients of f*'*'n are precisely the elements in
the sequence computed in step 4.

In order to terminate the recursion, we insert the following
step:

PAGE 17

0) If r = O, compute f**n by repeated squaring and return.

Let M(r) = cost of performing polynomial exponentiation on
r-variate polynomials of common degreed. Then, we can write

M(r) = K log K * (d+1):1Ht(r-1) + K * M(r-1) + K log K * (nd+1)~*(r-1)

Recalling that K was chosen as nd+1, the cost now becomes

M(r) < 2 K**r log K + K * M(r-1)

At the i-th level of recursion, we can show that

M(r) < 2 i K**r log K + K**i * M(r-i)

Finally, at the last level of recursion (i=r), we execute
step O, which costs O(log n) operations. Thus, we obtain

M(r) ~ 2 r K...,r log K + K**r * log n,

which can be rewritten as

M(r) = O(K"**r log (n K**r)).

Finally, replacing K by nd+1 and simplifying the expression,
we obtain the final result for the cost of the FFI' method:

M(r) = 0((nd)**r * log (n * (nd)**r)).

This compares quite favorably with the other methods proposed
such as repeated multiplication, repeated squaring, binomial
expansion, an evaluation-interpolation method. (See section 9
for a brief description of these methods and consult Fatema.n [6]
and Horowitz [11] for more complete details on the computing time
for all the methods). It is the contention of the author that
the "difficulty of programming" aspects of the FFT method
mentioned by both authors cited above, are not as difficult as
first anticipated. In fact, a very reasonable implementation of
the FFT approach has been developed on the MACSYMA system at MIT
(1] and has been used to produce data by which comparisons can be
made with the other proposed methods of computing the powers of
polynomials. The results of section 9 will demonstrate the
efficiency of the FFT over the other methods and that the added
costs incurred by the FFr are well worth it in the long run.

PAGE 18

Section 8

Implementation Problems

The implementation problems associated with the Fast Fourier
Transform are well known (as mentioned by Fatema.n [5], Horowitz
[11] and Borodin & Moenck f3]), but they are not insurmou~table
as might be inferred from their gloomy statements. Easically,
the problems break down into the following categories:

11 finding moduli supporting the F.FT
2 given a modulus, determining a primitive root
3 given a primitive root, computing a K-th root of unity
4 computing the inverse of K
5 in the case of the Chinese Remainder Algorithm,

precomputing various constants

For ease of programming and demonstration, FFT's were implemented
for the cases of Ka power of 2 or a power of 3. Another reason
for doing so is mentioned in the classic paper of Cooley-Tukey
(5], wherein the statement is made that the optimal choice for a
basis is 3 with 2 (and 4) next optimal.

The problems mentioned above will be considered one by one.

1. As has been noted in an earlier section, the choice of the
modulus is dependent on K, the size of the transform to be
performed. Inasmuch as we have only considered Ka power of 2 or
a power of 3, our problem reduces to the following:

find primes p such that K divides p-1.

Once we have a set of such primes, then (theoretically) we can
use as a modulus for the K-point .FFI' any number whose prime
factors lie in the given set of primes. Another consideration in
this regard was that of the Chinese Remainder Algorithm and the
single-precision/multiple-precision arithmetic trade-off. In the
actual system, the six largest single-precision primes were
computed for each K (where K went up to 2**8 and 3**8). (See
Appendix 1). Actually, in the system, use was made of the fact
that if K divides p-1 for some prime p and hence p can be used as
a modulus, then it also serves as a modulus for K'-point .FFI''s
for all K' dividing K. In other words, if we choose large enough
Kand then choose the pas a function of this large K, we only
need one prime. This is precisely what has been done in the
system. The six largest single precision primes were chosen such
that they could support both 512 and 729-point FF.r's. As a
result, with these primes, FFT's can be performed for all K

PAGE 19

dividing 512 or 729; i.e., powers of 2 or :rowers of 3. This use
of a single list of primes (and hence of Chinese Remainder
Algorithm constants) reduces the storage required and allows use
of FFT's for all ~ractical problems. Using these primes, we
could perform 1'7.FT s for arbitrary minimum modulus by t~k~ng
powers of the given primes and working in multiple precision
arithmetic or for minimum modulus less than sextuple-precision
using the 6 primes and the Chinese Remainder Algorithm. In the
experience of the implemented system, these bounds are quite
practical.

2. Once a modulus has been computed, a K-th root must be
computed for this modulus. Inasmuch as we have produced moduli
which are primes, the problem reduces to that of finding a
primitive root in the modulus. In order to facilitate the use of
this primitive root for powers of the prime as modulus, it is
necessary to find a special primitive root. The criterion for
this root is:

Definition: A primitive root g modulo pis a SPECIAL PRIMITIVE
ROOT iff g is a primitive root modulo p**n for all n iff

g**(p-1) not congruent to 1 modulo p**2.

(See Grosswald, Chapter 4, Exercise 32 [8].) Based on empirical
evidence obtained from many test cases, it is the author's
conjecture that the smallest primitive root modulo any prime is
also a special primitive root modulo that prime. The author has
learned of several counterexamples to the conjecture above, but
has verified that all of the primes used in the system satisfied
the conjecture. Thus, in the system implementation, for each
prime modulus computed from problem 1 discussed above, the
smallest primitive root was also computed.

3. Now that we have computed a special primitive root for each
modulus which might be used in the system, what is needed is the
K-th root of unity in that modulus. This is obtained from the
special primitive root g modulo p by computing:

WK= g**(p-1)/K modulo p.

If we desire the K-th root modulo a power of p (p**n), then the
formula becomes:

WK= g**((p-1)p**(n-1))/K modulo p**n.

Again, there has been much empirical evidence pointing to the
conjecture that the K-th root modulo p**n can be computed
directly from a K-th root modulo p by the following:

PAGE 20

WK**(p**(n-1)) (modulo p**n)

where WK is the K-th root modulo p. Again, it can be shown that
if the underlying prime p satisfies the condition given in the
above discussion, then for n<p, the above conjecture concerning
the computation of K-th roots modulo p**n is valid. Inasmuch as
all the primes used by the system did indeed satisfy the original
conjecture, the computation of K-th roots was accurate. As a
result, it was only necessary to compute K-th roots modulo the
primes in the system. A list of such K-th roots were computed
for the moduli used in the system and were made available to the
FFT's.

4. The inverse of K is needed for computation of the inverse
FFT, and hence was computed for the moduli and the K's used in
the system. The value of the inverse of K modulo pis computed
from

"1 /K" = K**(p-2) modulo p.

For a power of p (e.g. p**n), the following formula is used

"1/K" = K**((p-1)*p,...(n-1)-1) modulo p**n.

Again, these values were computed for all the cases considered
above. This method for computing inverses is included in the
paper by Collins [4].

5. In order to use the Chinese Remainder Algorithm (CRA), it is
convenient to compute certain constants beforehand. In
particular, the CRA algorithm utilizes the following
computational formula:

a= a1 + (a2 - a1) * (p,....(-1) mod q) * p (mod p*q)

for finding the unique (un to modulus p*q) value of a satisfying
a= a1 (mod p) and a= a2 tmod q). Thus, in order to apply the
CRA to our circumstances, it was advantageous to compute the
constants (p**(-1) mod q) * p (mod p*q) for the possible cases in
which the CRA was to be applied. In fact, this was done for the
case of the primes computed above for the support of the FP.r. A
table of such values is in Appendix 1.

PAGE 21

Section 9

Testing Results and Conclusions

The goal of this section is to present the results of exhaustive
testing of the FFT methods of exponentiation and to provide
conclusions based on these results. Before these tasks can be
performed, however, some mention should be made about certain
system assumptions, the testing environment, and some of the
other methods used in the tests. The following paragraphs will
be concerned with these topics.

SYSTEM ASSUMPTIONS: The system assumptions can be broken down
into two classes: those concerned with the implementation of the
FFT itself, and those concerned with the overall system in which
the tests were performed. Two of the assumptions from the former
class have already been mentioned in section 8 on implementation
problems. In particular, the methods used for computing
primitive roots of unity and K-th roots of unity are based on
conjectures put forth in parts 2 and 3 of that section. Next, it
should be mentioned that, although it is theoretically possible
to program the FFT for the number of points being the power of
any prime, it was only feasible in the testing to program two
versions of the FFT; one for the number of points being a power
of 2 and one for powers of 3. As mentioned previously, these
prime numbers are considered to be optimal by Cooley and Tukey
[5]. The result of this decision is that the running times for
the F.FT's follow a pattern which is very much like a steJ;>­
function. Finally, two versions of each of these FET's were
programmed; one using multiple-precision arithmetic for large
coefficients, and the other using a Chinese Remainder Algorithm
approach. See section 5 for more details on this topic.

The system assumptions which were independent of the FFT itself
included the following: all the methods tested were timed on the
basis of CPU time elapsed and did not include the time spent in
"garbage-collection", all the methods were given exactly the same
inputs and were required to produce identical outputs (i.e.;
time for "translation" from one polynomial representation to
another was included in the timing), the choice of moduli for the
modular algorithms was cased on the largest prime numbers which
could fit into a single computer word, which is 35 bits plus sign
bit on the DEC PDP-1O.

TEST ENVIRONMENT: The test environment was the MACSYMA system of
Project MAC located at MIT. See Bogen [1] for more detail on the
actual system. The test code was written in the LISP programming

PAGE 22

language and was compiled prior to its execution in the tests.
The rational polynomial package, developed primarily by R.
Fateman, provided the author with much of the software necessary
to deal easily with multivariate polynomials. This fact made the
efficient programming of the .F.FT much simpler.

METHODS TESTED: The actual tests performed for polynomial
exponentiation included nine different algorithms. The TIT
methods were the power of 2, multiple precision (TIT2); the
power of 2, Chinese Remainder Algorithm (CRAF.?J.'2); the power of
3, multiple-precision (TI'T3); and the power of 3, Chinese
Remainder Algorithm (CRAFFT3). The remaining 5 algorithms were
devised by several people including Horowitz and Fateman, and the
code for all these algorithms was coded by Fatema.n for the
MACSYMA system. It should be noted that all of these algorithms
have been closely studied by Fateman (6] with respect to
asymptotic behavior and running "cost"; i.e., number of
numerical coefficient operations performed during the exectution
of each algorithm. On this basis, the FFr is the best in theory
for the general problem of polynomial exponentiation, but it is
of interest to see at what point the FFT algorithms take over in
practice.

At this point, it would be beneficial to briefly review the other
methods tested. The reader is warned that these descriptions
have been made with respect to the salient aspects of each
algorithm, and do not mention many details which may have
significant bearing on the actual running times. For more
details, the reader is directed to the references mentioned for
each method.

Method 1: RMUL This algorithm computes a power of a polynomial by
repeated muITiplication by the polynomial. [6, 8, 10]

Method 2: RSQ This algorithm uses the binary decomposition of the
exponent to"' form the correct sequence of multiplications and
squarings to obtain the power of the polynomial. (6, 8, 10]

Method 3: BINOM This method invokes a property of the binomial
expansion to compute powers of µ:>lynomials. [6]

Method 4: SUMS This method computes powers of a polynomial by
computing successive coefficients using recurrence relations
involving previously computed coefficients. (13, p. 445]

Method 5: MOD This method utilizes a scheme involving modular
arithmetic, polynomial evaluation and polynomial interpolation in
order to find the powers of a polynomial. [11]

PAGE 23

The testing itself proceeded in the following fashion: the user
chose the number of variables, the degree of the polynomial in
each variable, the maximum size of the coefficients and a ranee
of powers to be computed. The system then produces a random
polynomial of the correct specifications, applies each aleorithm
to this polynomial, computes the run time for each algorithm, and
then prints the results. The results were given in the following
form: the minimum time was determined, then divided into ail the
run times yielding normalized run times. These normalized times
were printed in tabular form, along with the best time in
milliseconds. Many different tests were performed in order to
judge the performance of the various methods under different
circumstances such as large polynomials, high powers,
multivariate polynomials, and coefficient size. The results of
this testing are presented in Appendix 2. In the discussion
below, we will refer to the numbered charts in the Appendix.

CHARTS 1,2: We can see from Charts 1 and 2 for i:olynomials of
degree 30 and 50 respectively that the FFI' methods quickly become
the most efficient methods for exponentiation, at least for the
univariate case. Also, it should be noted here that similar
tests with use of the multiple precision version of the .F.FT
revealed it to be much less efficient than the Chinese Remainder
Algorithm version. For this reason, the timing results for this
version is not included in this appendix.

CHART 3: We now turn to the problem of coefficient growth. In
Chart 3-we have tested the various methods on polynomials of the
same size but with the numerical coefficients growing as
indicated by the first column "COEFF". Here we see that the TIT
routines are best when the coefficients are small but as they
grow, the maximum possible coefficient in the answer also grows,
requiring either large multiple-precision arithmetic or repeated
applications of the F.FT followed by applications of the Chinese
Remainder Algorithm. Thus, by the time the coefficients are of
the size of 10A9, the 2 FFT methods are losing quite badly to all
of the other algorithms. Thus, we conclude that the presence of
large coefficients in the input polynomial degrades the overall
performance of the ITT.

CHARTS 4,5: The next charts are devoted to the results of
testing the algorithms on multivariate polynomials. The rapid
growth of the size of powers of multivariate polynomials places
limitations on the practical aspects of testing. As we can see
from Chart 4, the bivariate polynomials of degree 5 exhibit the
efficiency of the .F.FT methods. This is due primarily to the fact
that for a bivariate polynomial of degree 5 in both variables,
the transformed sequence of coefficients has univariate
polynomials of deGI'ee 6, each of which must be raised to a power.
Reverting back to charts 1 and 2, it is seen that the larger

PAGE 24

these polynomials are, the more efficient is the FFr algorithms.
We can thus conclude that for "larger" problems in the bivariate
cases, the FFT is the best method. The case for tri-variate
polynomials is not as easy to assess, a s the testine was not very
extensive. We can see from Chart 5 that the FFT appears to be
coming to the fore as far as the trivariate polynomials are
concerned. However, the lack of more evidence leaves the
conclusions concerning trivariate polynomials in doubt.

CHART 6: For the case of high powers of a polynomial we once
again - run into the problem of large coefficients and hence the
proble ms of multiple-precision versus CRA FFT's. In Chart 6, we
see that the FFT methods not faring very well. One reason is the
overhead incurred by multiple-precisi on arithmetic or Chinese
Remainder Al gorithm. Another r eason is that the SUMS algorithm
has been shown to be a linear time algorithm in the power cf the
pol ynomial for univariate polynomials.(See Fateman [6].) As a
r esult, we see that the .FFT does not appear to be a winner for
this particular problem. Again, prac tical constraints prevented
any testing of the case of multivariate polynomials for high
powers. Note, however, that most of the other algorithms are
performing quite poorly in relation to SUMS. The next aspect of
the problem to be considered is that of the relative densenes of
t he input polynomials. It can easily be shown that the FFr
method does not take advantage of the density of the polynomial,
as for example, the same FFT cost are incurred for the polynomial
xilrlt-7 as for any dense polynomial of degree 7. Since most of the
other methods rely somewhat on the actual non-zero coefficients
of the polynomial, it is safe to conclude that they will run more
quickly on sparse polynomials. There are some "tricks" which can
be added into the FFT algorithm to take advantage of zero
coeffic ients, but the effect of thes e tests on the overall run
time has not yet been fully analyzed. Thus, it may be concluded
that the J'.FT methods profit more from the greater density of
polynomials than the other methods.

From the above analysis and the data referred to in the appendix,
we can draw several conclusions concerning the types of problems
on which the FFT methods appear to perform the best:

2 Bivariate and trivariate polynomials.
1l High degree univariate polynomials

3 Polynomials with small numerical coefficients.
4 Dense polynomials.

The author has performed extensive tests on smaller univariate
polynomials, bivariate and trivariate polynomials and has found
that the above conclusions apply to these test results as well as
those presented in Appendix 2.

PAGE 26

Section 10

Future Work

There is still room for much work in this area in that many
alternative solutions might be used in place of those used in the
system described in this paper. Most prominently, the use of
arrays instead of lists for FFT computations might permit an
implementation of multi-dimensional FFT's for multivariable
polynomials. This method would avoid the "recursive" FFT method.
However, there are numerous programming and theoretical obstacles
to overcome in this approach to the problem.

Another possible area for future work includes the possibility of
using alternative schemes for the actual programming of the FFT.
The most well-known alternate is the Good algorithm which enables
the efficient programming of a K-point DFT where K factors into a
product of relatively prime factors(see [7]). This method is
most efficient for those values of K where the Cooley-Tukey
method is least efficient. It is my hypothesis that some
combination of the two would be optimal for all computations.

Inasmuch as the main failing of the FFT occurs due to the problem
of coefficient growth and use of the Chinese Remainder Algorithm,
it would seem most advantageous to obtain tighter bounds on the
maximum coefficient as discussed in section 5. Thus, some work
could profitably be done on the problem of determining more
closely the minimum modulus required for the correct operation of
the F.FT.

The results obtained thus far in the study once again renew
original optimism vis-a-vis the computational efficiency of
FFT. As a result, it may now be feasible to use the FFT for
multiplication of multivariate polynomials, as suggested
Pollard f15]. Again, the main reason it was rejected there
its implementation problems. However, it is my belief that
FFT can be effectively used for polynomial multiplication
cases when the polynomials are large. Work has begun
verifying this conjecture.

the
the
the
in

was
the
for

on

Finally, it is conceivable that there are applications of the FFT
to other computation structures currently under investigation in
the area of symbolic and algebraic manipulation. Such structures
include polynomial rings, Galois fields, algebraic number fields.
Inasmuch as these types of structures may very well support ·F.Pl'
computations, it might be desirable to investigate the
ramifications of the efficiency of the FF.I' on computations to be
done in these structures.

PAGE 25

As a final note, it should be noted that while the FET me t hods
may not be the best for all the types of problems tested, it is
usually second or third, and that the algorithms bieating t hem are
not the same. For example, SUMS is best for high powers of
polynomials, but far from best for bivariate polynomials, while
BINOM is best for trivariate polynomials, but extremely poor for
high powers. Note that in the cases mentioned above, FFT methods
were very close to best. In this sense, it can be stated that
the FFT method for multivariate polynomial exponentiation
provides the optimal single algorithm for the widest class of
polynomials. However, it should be noted that the optimal method
would be to provide several algorithms and a scheme f or choosing
the appropriate method depending on the characterization of the
input polynomial and the power td which it is to be raised .

PAGE 27

Appendix..!

Numerical Tables

This appendix contains tables used by the FFr routines while
testing of the various methods of polynomial exponentiation was
performed. These tables include values for prime moduli which
will support the computation of K-point FFT's for K being a power
of 2 or of 3, values of K-th roots of unity, the inverse of K
used by the inverse FFT, and constants needed by the Chinese
Remainder Algorithm. For more information on the computation of
these tables see sections 6 and 8.

PAGE 28

Implementation Constants for K = k-th Power of 2

k Prime K-th Root Inverse of K

1 3435747t401 -1 -17178739200
34355238913 -1 -17177619456
34353372673 -1 -171766f36336
34348893697 -1 -17174446848
34347773953 -1 -17173886976

2 34357478401 9891852171 25768108801
34355985409 19811282838 25766989057
34355238913 4927062827 25766429185
34353372673 4951275475 25765029505
34348893697 5709113108 25761670273
34347773953 21761134509 25760830465

3 34357478401 32682092207 30062793601
34355985409 15131840309 30061487233
34355238913 33303674156 30060834049
34353372673 29927889522 30059201089
34348893697 18569911987 30055281985
34347773953 24411524499 30054302209

4 34357478401 34308022287 32210136001
34355985409 3547587927 32208736321
34355238913 1661 0034046 32208036481
34353372673 2310845740 32206286881
34348393697 9215285218 32202087841
34347773953 17539867326 32201038081

5 34357478401 25761471905 33283807201
34355238913 9120821392 33281637697
34353372673 12655411921 33279829777
34348893697 259396819 33275490769
34347773953 7440474820 33274406017

6 34357478401 6646977762 33820642801
34355985409 34277845374 33819173137
34355238913 4601325225 33818438305
34353372673 6024103 33816601225
34340093697 8823147390 33812192233
34347773953 31586785258 33811089985

PAGE 29

k Prime K-th Root Inverse of K

7 34357478401 225ITT462373 34089060601
34355985409 25301099943 34087579273
34355238913 7616143182 34086838609
34353372673 31417233872 34084986949
34348893697 19801476384 34080542965
34347TI3953 26520592997 34079431969

8 3435747E401 24034500045 34223269501
34355985409 3243609365 34221782341
34355238913 5540034754 34221038761
34353372673 32127020682 34219179811
34348:393697 12027032227 34214718331
34347TI3953 30116982508 34213602961

9 343574 78401 27916816253 34290373951
34355985409 14736327539 34288883875
34355238913 3313297198:3 34288138837
34353372673 16000368730 34286276242
34348:393697 25T/0368986 34281806014
34347TI3953 15051603591 34280600457

PAGE 30

Implementation Constants for K = k-th Power of 3

k Prime K-th Root Inverse of K

1 34357478401 11038728257 -11452492800
34355985409 -11530751209 -11451995136
34355238913 7592415340 -11451746304
34353372673 -6446892571 -11451124224
34340093697 -16448427828 -11449631232
34347T/3953 -6746631931 -11449257984

2 34357478401 32978710811 30539980801
34355985409 20601174901 30538653697
34355238913 23497694187 30537990145
34353372673 1064 7751358 30536331265
34348893697 27497752985 30532349953
34 34 7773953 14101174432 30531354625

3 34357478401 14476663079 33084979201
34355985409 10394425823 33083541505
34355238913 12290146715 33082822657
34353372673 5927656286 33081025537
34348893697 31973225865 33076712449
34347773953 11448793429 33075634177

4 3435747c?401 5089336041 33933312001
34355985409 33024784276 33931837441
34355238913 20939201693 33931100161
34353372673 14083970947 33929256961
34348993697 14803753625 33924833281
34347773953 30762734906 33923727361

5 34357472401 2624266140 34216089601
34355985409 79S7108064 34214602753
34355238913 11015976334 34213859329
34353372673 3390565065 34212000769
34348893697 18664094272 34207540225
3434 7'TT3953 12869631580 34206425089

6 34357478401 10402372247 34310348801
34355985409 15090413300 34308857857
34355238913 15473845574 34308112385
34353372673 23 TI 9923705 34306248705
3434&393697 770594219 34301775873
34347773953 15091683908 34300657665

Primes

34357478401
34355985409
34355238913
343?3372673
34340093697
34347773953

Constants for Chinese Remainder Algorithm

CRA Constant

NIL
5901917227002801(X)893

PAGE 31

-12684108404135519337890926736287
315379960749499628652231659795052874747688
-13959780266038216528668844366249205596533625869043591
607740804817197067441373401894506068454545491803651;,:;9897317521

PAGE 32

Appendix 2

Timing Charts

This section contains several charts of timings computed during
extensive tests on various methods for polynomial exponentia tion.
Included in this section are results for large univariate
polynomials, bivariate and trivariate polynomials, large
numerical coefficients and high powers of µ:>lynomials. The
charts are arranged so that all the running times are presented
as a ratio with respect to the best running time. This best time
is then included in order to obtain actual running times, i f
desired. Note that these times do not include "garbage
collection" time, but include all other overhead. Timi ng was
done on a PDP-10 computer with 2 microsecond memory cycle t i me.
Average instruction execution time is about 3 microseconds. See
section 9 for discussion of the various methods tested and f or
conclusions f ollowing from these results.

CHART 1: LARGE UNIVARIATE POLYNOMIAL

DEGREE= 30 MAXIMUM COEFFICIENT = 10

POWER SUMS MOD BINOM RMUL RSQ CRAFFT2 CRAF}'r3 13.EST(MS)
2 4.108 1. T/6 1.0 1.812 1.815 1.295 1. 723 690.196
3 2.506 1.964 1.682 2.026 2.028 1.0 2.134 1337.72
4 3-438 3.908 3.626 4.026 3-352 1.0 2.14 1856.856
5 1.06;2 3.04 1.444 1.555 1.395 1.0 1.024 8033. 314
6 1. 737 4-532 2.183 2.327 2.006 1.0 1.018 8056.669
7 2.154 5.913 2.936 3.093 2.839 1.0 1.015 0671.838

CHART 2: LARGE UNIVARIATE POLYNOMIAL

DEGREE = 50 MAXIMUM COEFFICIENT = 20

POWER SUMS MOD BINOM RMUL RSQ CRAFFI'2 CRAFF.1'3 BEST(MS)
2 4-493 1.932 1.0 1.931 1.992 1.16 2.486 1710.302
3 3.09 2.434 2.063 2.509 2.514 1.0 1.046 4067.266
4 2.3 4. 771 2.206 2.455 2.036 1.0 1.041 8487.418
5 4.186 7-96 3.006 4.081 3.668 1.0 3.349 8487.585
6 2.362 5-352 2.007 2.964 2.628 1.0 1.567 19014.763
7 2.693 7.222 4.308 4.487 4.583 1.0 1.545 19756.631 8 1.866 8.751 3.763 3.905 3.339 1.0 1.504 32596.178

CHART 3: COEFFICIENT GROWTH FOR UNIVARIATE POLYNOMIAL

DEGREE = 10 POWER = 10

COEFF SUMS MOD BINOM RMUL
~~42

CRAFFT2 CRAF.FT3 BEST(MS) 10 1.304 1.848 1. 728 1.901 1.0 1.379 760.923 10 2 1.097 2.019 1.0 1.124 1.023 1.242 1.647 1494.588 10 3 1.0 1.877 1.171 1.277 1.232 1.176 1.549 1621.639
10"'4 1.0 2.583 1.145 1.261 1.139 1.786 2.29 1004.3 10"'5 1.0 2.538 1.147 1.261 1.141 1.739 2.228 1871.39 10"'6 1.0 3.209 1.133 1.277 1.167 2.355 2.971 1985.628 10"'7 1.0 3.056 1.102 1.233 1.132 2.235 2.814 2118.297 10"'8 1.0 3-757 1.12 1.252 1.132 2.916 3.633 2151.532 10 9 1.0 3.484 1.075 1.198 1.094 2.691 3.344 2359.455 10A10 1.0 4.054 1.036 1.155 1.053 3.328 4.091 2432.368

DEGREE=

POWER SUMS
2 4.014
3 3.693
4 2.403
5 4.201
6 3.04

DEGREE =

POWER
2
3
4

SUMS
2.177
1.645
1.392

DEGREE =

POWER SUMS
20 1.0
21 1.0
22 1.0
23 1.0
24 1.0
25 1.0
26 1.0
2.7 1.0
28 1.0
29 1.0
30 1.0

CHART 4: BIVARIATE POLYNOMIAL

5

MOD BINOM
1.626 1.0
1.979 1.586
1.548 1.329
3.023 2.694
4.716 2.151

CHART 5:

2

MOD
1.56
1.316
1.263

BINOM
1.0
1.0
1.0

MAXIMUM COEFFICIENT= 3

RMUL RSQ CRAFFT2 CRA:FFT3 BEST(MS)
1.652 1.651 3. 111 9.994 1007.224
2.042 2.042 1.0 3.196 3423.502
1.6 1.561 1.08 1.0 11836.1 32
3.139 3.093 1.06 1.0 12746.566
2.423 2.837 1.0 6.66 29859.483

TRIVARIATE POLYNOMIAL

MAXIMUM COEFFICIENT= 3

RMUL
1.552
1.356
1.308

RSQ
1.558
1.357
1.413

CRAFFI'2 CRAFPr3 BEST(MS)
8.976 15.265 632.006
1.752 3.026 3750.7
3.341 1.04 12970.906

CHART 6: HIGH POWERS OF UNIVARIATE POLYNOMIAL

2 MAXIMUM COEFFICIENT = 3

MOD BINOM RMUL RSQ CRAFFr2 CRAFFI'3 BEST(MS)
7.164 2.828 3.TI3 2.527 4.007 5-394 371.495
7.365 2.942 3-976 2.833 3.784 5.062 400.354
7-548 3.012 4.177 3.061 3.594 4.785 429.54
7.853 3.168 4.465 3.34 3.492 4.633 452.253
8.176 3.305 4.769 3.103 3.379 4.479 473.497
8.45 3-446 5.039 3.69 3.273 4.302 497.122
8.767 3-593 5-349 3.923 3.189 4.181 518.752
9.114 3.751 5.678 4.119 5.219 6.675 538.26
14.213 3.906 5.979 4.378 5.076 6.485 558.601
14.656 4.043 6.271 4.6 4.941 6.2f,3 500.773
15.063 4.204 6.543 4.273 4.856 6.163 604 .218

PAGE 35

Bibliography

[1] Bogen et al. MACSYMA User's Manual. Project MAC.
Massachusetts Institute of Technology, Cambridge, Mass.
September 1972.

[2] Bonneau. "A Class of Finite Computation Structures
Supporting the Fast Fourier Transform." Technical Memo No.
31, Project MAC, Mass. Institute of Technoloey,
Cambridge, Mass. 1973.

[3] Borodin & Moenck. "Fast Modular Transforms Via Division."
Proceedin~s of the 13th Conference on Switching and
Automata heory, T972.~. 90- 96. - -

[4] Collins. "On Computing Multiplicative Inverses in GF(p)."
Mathematics of Computation, vol. 23, January 1969, pp.
197-200. -

[5] Cooley & Tukey. "An Algorithm for the Machine Calculation of
Complex Fourier Series." Mathematics of Computation, vol.
19, April 1965. pp. 297-301. -

[6] Fatema.n. "On the Computation of Powers of Polynomials."
Department of Mathematics, Mass. Institute of Technology,
Cambridge, Mass. 1972. {Unpublished)

[7] Good. "The Interaction Algorithm and Practical Fourier
Analysis," Journal ~7;a1 Statistical Society. Series B.
vol. 20, pp. 361- •

(8] Grosswald. Topics from the Theory of Numbers. Macmillan
Company, New York.---,-g~ Chapter 4.

[9] Heindel. "Computation of Powers of Multivariate Polynomials
Over the Integers." Journal of Computer and System
Sciences, vol 6, 1972. pp. 1 -"t5.

[10] Heindel & Horowitz. "On Decreasing the Computing Time for
Modular Arithmetic." Proceedings of the 12th Conference on
Switching and Automata Theory, 19TI.pp:---f~6-128. -

[11] Horowitz. ""The Efficient Calculation of Powers of
Polynomials." Proceedi~s of the 13th Conference on
Switching and Automata T eory-;197~ p~9"7 - 104.

[12] Horowitz & Sahni. "On the Computation of Powers of a Class
of Polynomials." Department of Computer Science, Cornell
University, Ithaca, New York, tr 72-143.

[13] Knuth. The Art of Com~uter Programming, Vol. 2, "Semi­
numericar- Algorithms. Addison-Wesley, Reading, Mass.
1969.

[14] Nicholson. "Algebraic Theory of Finite Fourier Transforms."
Journal of Computer and System Sciences, vol. 5, 1971.
pp. 524 - 547. -

[15] Pollard. "The Fast Fourier Transform in a Finite Field."
Mathematics of Com3utation, vol. 25, number 114, April,
19'71 • pp. 3b 5 - '74 •

