MIT/LCS/TM-32

AN OPERATOR EMBEDDING THEOREM FOR COMPLEXITY CLASSES OF RECURSIVE FUNCTIONS

Robert Moll

May 1973

This blank page was inserted to preserve pagination.

MAC TECHNICAL MEMORANDUM 32

AN OPERATOR EMBEDDING THEOREM FOR COMPLEXITY CLASSES

OF RECURSIVE FUNCTIONS

Robert Mo11

May 1973

This research was supported in part by the National Science Foundation under research grant GJ34671, and in part by the Advanced Research Projects Agency of the Department of Defense under ARPA Order No. 433 which was monitored by ONR Contract No. N00014-70-A-0362-0001.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

This empty page was substituted for a blank page in the original document.

AN OPERATOR EMBEDDING THEOREM FOR COMPLEXITY CLASSES
 OF RECURSIVE FUNCTIONS
 Robert Moll^{\dagger}
 Massachusetts Institute of Technology
 Spring 1973

1. INTRODUCTION

Let $\mathcal{F}(t)$ be the set of functions computable by some machine using no more than $t(x)$ machine steps on all but finitely many arguments x. If we order the \mathscr{F}-classes under set inclusion as t varies over the recursive functions, then it is natural to ask how rich a structure is obtained. We show that this structure is very rich indeed. If R is any countable partial order and $\underset{\sim}{F}$ is any total effective operator, then we show that there is a recursively enumerable sequence of recursive machine running times $\left\{\Phi_{s(k)}\right\}_{k \in N}$ such that if $j R k$, then $\mathscr{F}\left(\underset{\sim}{F}\left(\Phi_{S(j)}\right)\right) \mathcal{F}_{\mathcal{F}}\left(\Phi_{s(k)}\right)$, and if j and k are incomparable, then $\underset{\sim}{F}\left(\Phi_{S}(j)<\right.$ $\Phi_{s(k)}$ on infinitely many arguments, and $\underset{\sim}{F}\left(\Phi_{s(k)}\right)<\Phi_{s(j)}$ on infinitely many arguments.

An interesting feature of our proof is that we avoid appealing explicitly to the continuity of total effective operators; indeed our proof follows directly from a single appeal to the recursion theorem.

Several investigators have considered this and related problems, and in Section 4 we briefly summarize these investigations and compare them to our own.

2. PRELIMINARIES

For notation from recursive function theory we follow Rogers [2].
For each $n \in N, P_{n}$ stands for the partial recursive functions of n-variables, and Ω_{n} stands for the total recursive functions of n variables.

We use (a.e.) to denote "almost everywhere", which for our purposes stands for "all but finitely many". Similarly (i.o.) stands for "infinitely often".

Suppose $\left\{\omega_{0}, \varphi_{1}, \ldots\right\}$ is a Godel numbering of P_{1}. A measure on Computation $[1] \Phi=\left\{\Phi_{0}, \Phi_{1}, \ldots\right\}$ is a sequence of functions in P_{1} satisfying

1. $\quad \forall i \in N\left[\operatorname{dom}\left(\varphi_{i}\right)=\operatorname{dom}\left(\Phi_{i}\right)\right]$
2. $\quad \lambda \operatorname{ixy}\left[\Phi_{i}(x)=y\right]$ is a recursive predicate.

If we think of our Gödel numbering in the usual one-tape Turing machine formalism, then
$\Phi_{i}(x)=$ "the number of steps in the computation of the $i^{\text {th }}$ Turing machine on argument $x^{\prime \prime}$ is a measure on computation.

Henceforth let Φ be some fixed measure on computation. Then we define for any total function t

$$
F(t)=\left\{i \in N \mid \omega_{i} \in R, \text { and } \Phi_{i} \leq t(\text { a.e. })\right\}
$$

and

$$
\mathscr{F}(t)=\left\{\varphi_{i} \mid \quad i \in F(t)\right\}
$$

That is, $F(t)$ is the set of (indices of) total machines which run in time t, and $\mathscr{F}(t)$ is the set of total functions computable within time t. $\mathscr{F}(\mathrm{t})$ is called a complexity class.

A sequence of partial functions $\Psi=\left\{\psi_{0}, \psi_{1}, \ldots\right\}$ is said to be an r.e. sequence of partial functions if $\lambda_{i x}\left[\psi_{i}(x)\right] \in P_{2}$.

The following theorem of Blum [1] shows that we can uniformly enlarge complexity classes $\mathscr{F}(t)$ if t is a sufficiently well-behaved function.

Theorem. (Compression Theorem) There is a $g \in R_{2}$ such that for every $\Phi_{i} \in \mathcal{R}_{1}, \mathscr{F}_{\mathcal{F}}\left(\Phi_{\neq}\right) \mathscr{F}_{\mathscr{F}}\left(\lambda \mathrm{xg}\left(\mathrm{x}, \Phi_{\mathrm{i}}(\mathrm{x})\right) . \mathrm{g}\right.$ is called a compression function for Φ.

An operator is a map which takes functions to functions; we write $\underset{\sim}{F}(f)(x)$ to mean the value of the operator $\underset{\sim}{F}$ applied to the function f, evaluated at x. An operator $\underset{\sim}{F}: D \subseteq P_{1} \rightarrow P_{1}$ is called an effective operator if there is an $s \in \mathcal{R}_{1}$ such that $\underset{\sim}{F}\left(\omega_{e}\right)(x)=\varphi_{S(e)}(x)$.

An effective operator $\underset{\sim}{F}$ is total effective if for every $f \in R 1$, $\underset{\sim}{F}(f)$ is defined and $\underset{\sim}{F}(f) \in R_{1}$.

3. THE EMBEDDING THEOREM

Theorem. Let $\underset{\sim}{F}$ be any total effective operator, and let R be any recursive countable partial order on N. Then there exists an r.e. sequence of recursive functions $p_{0}, P_{1}, \ldots p_{n} \ldots$ such that if $j R k$, then $\underset{\sim}{F}\left(p_{j}\right)<$ p_{k} (a.e.), and if j and k are incomparable, then $\underset{\sim}{F}\left(p_{j}\right)<p_{k}(i .0$.$) , and$ $\mathrm{p}_{\mathrm{k}}<\underset{\sim}{\mathrm{F}}\left(\mathrm{p}_{\mathrm{j}}\right)\left(\mathbf{i} . \mathrm{O}_{\mathbf{o}}\right)$.

Proof. We assume without loss of generality that R orders $\mathrm{N}-\{0\}$ rather than N, and in addition that R contains kRO for each $k>0$. Let $\mathbf{a}_{0}=\left\langle\mathbf{i}_{0}, k_{0}\right\rangle, a_{1}=\left\langle i_{1}, k_{1}\right\rangle, \ldots a_{n}=\left\langle i_{n}, k_{n}\right\rangle, \ldots$ be a recursive listing of all incomparable pairs in R such that if x and y are incomparable, then $<x, y>$ and $<y_{i} x>$ both appear infinitely often in the list. As a technical convience we define max $[\phi]=0$. Let $s \in R_{2}$ be the s_{1}^{1} function of the $s-m-n$ theorem defined by the equation

$$
\omega_{e}(<x, y>)=\omega_{s(e, x)}(y)
$$

Define $\psi \in \mathbb{P}_{2}$ as follows:

$\psi \in \mathbb{P}_{2}$ since all the test computations in clauses (1) and (2) are recursive by the second measure on computation axiom. By the recursion theorem there is an e such that $\psi\left(e,\langle k, x>)=\varphi_{e}(\langle k, x\rangle)\right.$; we apply the s-1-1 version of the $s-m-n$ theorem to obtain $\psi\left(e,\langle k, x>)=\omega_{s(e, k)}(x)\right.$. To simplify our notation we now suppress mention of e and write $p_{k}(x)=$ $\varphi_{s(e, k)}(x)$. Similarly we write $\Phi_{p_{k}}(x)$ for $\Phi_{s(e, k)}(x)$. Our definition now becomes

We first establish that at most finitely many of the functions $\left\{\boldsymbol{p}_{k}\right\}_{k \in N}$ can be non-total. Suppose $p_{k}(x)$ diverges. Since p_{0} is defined by (3) at all arguments, $p_{0}(x)$ must diverge, and so by (1) $p_{j}(x) \equiv 0$ for all $\mathbf{j}>\mathrm{x}$.

$$
-6-
$$

We now prove that for all $k \quad p_{k}$ is total.
Say that a_{n} is serviced at x if $p_{k_{n}}(x)$ is defined by (2), and if n is the least $\mathrm{m} \leq \mathrm{x}$ satisfying the body of (2) in the definition of $p_{k}(x)$. We allow the possibility that $P_{k_{n}}(x)$ may diverge. If a_{n} is serviced at x, (2) guarantees that $x=z_{n}=\sum_{i=1}^{1} z_{i}+\Phi_{p_{k_{i}}}\left(z_{i}\right)$, and so a_{n} is serviced at no other argument. Moreover, if a_{n} is serviced at x and p_{k} (x) diverges, then for $n^{\prime}>n_{n} \quad a_{n^{\prime}}$ will never be serviced, since a_{n}, is serviced at y only when y bounds the computation of $\Phi_{p_{k}}(x)$.

Let k be an R-minimal element in the finite set $\left\{k^{\prime} \mid P_{k^{\prime}}\right.$ non-total $\}$. Then if $p_{k}(x)$ diverges, it must do so because of (2)(ii). That is, a_{n} is serviced at x for some n, and $\dot{\rho}_{i_{n}}$ must be non-total.

But suppose $p_{i_{n}}(y)$ diverges by an instance of (2) (ii) for some y. This means that $i_{n}=k_{j}$ for some j and a_{j} is serviced at y. If $j<n$, then y must equal z_{j}, but since a_{n} is serviced $x, \Phi_{p_{k}}\left(z_{j}\right)<x$ and hence $P_{k_{j}}\left(z_{j}\right)$ must converge. If $j>n$, then since a_{n} is serviced at x and $p_{k}(x)$ is assumed to diverge, a_{j} is never serviced. Moreover j cannot equal n, for then i_{n} would equal k_{n}. Hence $p_{i_{n}}$ must be non-total because of (2) (i) or (3), and so some function p_{i}, such that $i^{\prime} R_{i}$ is non-total.

Let i be R minimal among $\left\{i^{\prime} \mid i^{\prime} R i_{n}\right.$ and i^{\prime} non-total\}. Then p_{i} must be non-total by an instance of (2)(ii), say at argument y. Hence $i=k_{j}$ for some j, and a_{j} must be serviced at $y=\sum_{m_{1}=0}^{j-1} z_{m}+$ $\Phi_{p_{k}}\left(z_{m}\right)$. If $j<n, p_{k_{j}}(y)$ must converge since a_{n} is serviced at x by assumption; and if $j=n$, then i_{n} and k_{n} are comparable, a contradiction. Furthermore if $j>n$, then a_{j} will never be serviced. Hence p_{i} is total, and we conclude that for every $k \dot{p}_{k} \in R_{1}$. If $j R k$, then $\underset{\sim}{F}\left(p_{j}\right)(z) \leq p_{k}(z)$ for $a 11 z \geq m_{0}=\max \left[k, j, \Phi_{p_{0}}(0)\right.$, $\left.{ }^{\Phi} p_{0}(1), \ldots{ }^{\Phi} p_{0}(k-1)\right]$.

If j and k are incomparable, then $<j, k>=a_{n_{0}}, a_{n_{1}}, \cdots a_{n_{q}}, \cdots$ for some infinite sequence $n_{0}<n_{1}<n_{2} \cdots n_{q} \cdots$.

For arguments $z \geq m_{0} p_{k}(z)$ is defined by (2) or (3). Since the sequence of z_{i} 's is strictly increasing, there is an i_{0} such that for $i>i_{0}, z_{i} \geq m_{0}$. At those arguments z_{i} for $i>i_{0}, i=n_{q}, p_{k}\left(z_{i}\right)$ will be defined by clause (2) and $p_{k}\left(z_{i}\right)>F\left(p_{j}\right)\left(z_{i}\right)$. A symmetric argument shows that $p_{j}>F\left(\mathbf{q}_{k}\right)(\mathbf{i . o .})$, and the theorem is proved.

Corollary. Let $\underset{\sim}{F}$ be any total effective operator, and let R be any countable partial order on N. Then there exists an r.e. sequence of recursive measure functions $\Phi_{r(0)}{ }^{\prime} \Phi_{r(1)}, \ldots$ such that if $j R k$, then $\underset{\sim}{F}\left(\Phi_{r(j)}\right)<\Phi_{r(k)}($ a.e. $)$ and $\mathscr{F}\left(\underset{\sim}{F}\left(\Phi_{r(j)}\right)\right){\underset{F}{F}}_{\mathscr{F}\left(\Phi_{r(k)}\right)}$, and if j and k are incomparable, then $F\left(\Phi_{r(j)}\right)<\Phi_{r(k)}($ i.o. $)$, and $\left.\underset{\sim}{F}{ }_{r(k)}\right)<\Phi_{r(j)}$ (i.o.).

Proof. Mostowski [3] has shown that there is a countable partial order R^{*} into which any countable partial order may be embedded. Moreover, Sacks [4] has shown that R^{*} is recursive.

We assume without loss of generality that $\underset{\sim}{F}$ is at least as large as the identity operator, and that the compression function for Φ, g, is strictly increasing in its second argument. Blum [1] has shown that there is an $h \in \Omega_{2}$ such that for all i $\varphi_{i}(x) \leq h\left(x, \Phi_{i}(x)\right)$ (a.e.). We assume that h is strictly increasing in its second argument. To prove the corollary, apply the theorem to R^{*}, rewrite clause (2) as
and we rewrite clause (3) as

$$
\max _{j \leq x}^{j R k}\left[p_{j}(x)+h\left(x, g\left(x, \underset{\sim}{F}\left(\Phi p_{j}\right)(x)\right)\right)\right] .
$$

It is easy to see that the theorem goes through as before, and the monotonicity restrictions on g and h guarantee that the functions $\left\{\Phi_{p_{k}}\right\}_{k \in N}$ satisfy the corollary.
4. REIATION TO OTHER WORK, AND OPEN PROBLEMS

McCreight [5] is the first investigator to prove an embedding theorem for subrecursive classes. He shows that any countable partial order can be embedded in the complexity classes ordered under set inclusion. However, his theorem is weaker than our results in that the functions of his partial order are "separated" by composition with a fixed recursive function, whereas our functions are separated by a total effective operator. In [6] Enderton also proves a universal embedding theorem for subrecursive classes. His notion of a subrecursive class is quite weak, however, and his result is an immediate corollary of McCreight's theorem.

Early work on the structure of subrecursive classes was done by Feferman [12], Meyer and Ritchie [7], and Basu [8]. Feferman shows that dense chains exist for various notions of subrecursive classes. Meyer and Ritchie define what they call elementary honest classes, and they show the existence of dense chains and infinite anti-chains for such classes. Moreover, they are able to exhibit certain functions f such that dense chains of classes will exist between f and the iterate of $f, \lambda x\left[f^{(x)}(x)\right]$. Basu builds dense chains of subrecursive classes, where these classes are closed under the application of a fixed recursive operator.

Machtey [11] has announced universal embedding theorems for both the "honest" primitive recursive degrees and the "dishonest" primitive recursive degrees. Both of these theorems follow inmediately from our results.

We also note that Alton [9] henandependentlyannounced our embedding theorem.

We leave open the question of the size of the functions in our embedding theorem. That is, given $\underset{\sim}{F}$, what is a reasonable upper bound on the size of p_{0} in terms of $\underset{\sim}{F}$ (recall that p_{0} bounds all the functions $\left\{p_{k}\right\}_{k \in N}$ on all arguments).

The author wishes to acknowledge the generous assistance of Professor Albert R. Meyer in the conception and preparation of this paper.

:+15
\qquad

1. M. Blum, A machine-independent theory of the complexity of recursive functions, JACM 14, 1967, 322-336.
2. H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill, 1967.
3. A. Mostowski, Über gewisse universelle relationen, Ann. Soc. Polon. Math. 17, 1938, 117-118.
4. G. Sacks, Degrees of unsolvability, Annuals of Math. Studies, No. 55, Princeton, N.J. 1963.
5. E. McCreight, Classes of computable functions defined by bounds on computation, Doctoral Dissertation, Carnegie-Mellon University, Department of Computer Science, 1969.
6. H. Enderton, Degrees of computational complexity, JCSS No. 6, 1972, 389-396.
7. A. Meyer and D. Ritchie, Classification of functions by computational complexity, Proc. of the Hawaii Internat' 1 Conf. on Sys. Sciences, 1968, 17-19.
8. S.K. Basu, On classes of computable functions, ACM Symp. on Theory of Computing, 1969, 55-61.
9. D. Alton, Operator embeddability in computational complexity, Notices of the AMS, 1972, A-763.
10. A. Meyer and P. Fischer, Computational speed-up by effective operators, JSL No. 37, 1972, 55-68.
11. M. Machtey, Augmented loop languages and classes of computable functions, JCSS, to appear.
12. S. Feferman, Classifications of recursive functions by means of hierarchies, Trans. of the AMS, No. 104, 1962, 101-122.

DOCUMENT CONTROL DATA.R\&D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)	
1. ORIGINATING ACTIVITY (Corporate author) MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC	
AN OPERATOR EMBEDDING THEOREM FOR COMPLEXITY CLASSES OF RECURSIVE FUNCTIONS	
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) INTERIM SCIENTIFIC REPORT	
5. AU THOR(S) (First name, middle initial, last name) ROBERT MOLL	
$\begin{aligned} & \text { 6. REPORT DATE } \\ & \text { MAY } 17,1973 \end{aligned}$	7a. TOTAL NO. OFPAGES Tb. NO. OF REFS 11 12
8a. CONTRACT ORGRANTNO. N00014-70-A-0362-0006 b. PROJECT NO.	9a, ORIGINATOR'S REPORT NUMBER(S) MAC TM-32
c. d.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) NONE
10. DISTRIBUTION STATEMENT DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED	
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY OFFICE OF NAVAL RESEARCH

Let $\mathscr{F}(\mathrm{t})$ be the set of functions computable by some machine within time bound $t(x)$ for all but finitely many arguments. If
$\underset{\sim}{F}$ is any total effective operator and R is any recursive countable partial order, then there is an r.e. sequence of recursive machine running times $T_{0}, T_{1}, \ldots, T_{k}, \ldots$ such that if $i R j$ then $\left.\mathscr{F} \underset{\sim}{F}\left(T_{i}\right)\right) \varsubsetneqq$
$\mathscr{F}\left(T_{j}\right)$, and if i and j are incomparable, then $\underset{\sim}{\underset{\sim}{F}}\left(T_{i}\right)<T_{j}$ (i.o.), and $F\left(T_{j}\right)<T_{i}$ (i.o.).

