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1. INTRODUCTION

Let Y(t) be the set of functions computable by some machine using

no more than t(x) machine steps on all but finitely many arguments x.

If we order the F-classes under set inclusion as t varies over the

recursive functions, then it is natural to ask how rich a structure

is obtained. We show that this structure is very rich indeed. If R

is any countable partial order and F is any total effective operator,

then we show that there is a recursively enumerable sequence of

recursive machine running times { s(k)IkEN such that if jRk, then

s(F( sg) ) (s(k))' and if j and k are incomparable, then F( SO)<

s k) on infinitely many arguments, and F( s(k) < on infinitely

many arguments.

An interesting feature of our proof is that we avoid appealing

explicitly to the continuity of total effective operators; indeed our

proof follows directly from a single appeal to the recursion theorem.

Several investigators have considered this and related problems, and

in Section 4 we briefly summarize these investigations and compare them

to our own.
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2. PRELIMINARIES

For notation from recursive function theory we follow Rogers [2 ].

For each n E N, P stands for the partial recursive functions of

n-variables, and R stands for the total recursive functions of n

variables.

We use (a.e.) to denote "almost everywhere", which for our

purposes stands for "all but finitely many". Similarly (i.o.) stands

for "infinitely often".

Suppose (co 0 ' 1,. ..) is a Godel numbering of P . A measure on

Computation [1] = (' . is a sequence of functions in P1

satisfying

1. Vi E N [dom(ca) = dom(§.)]

2. Xixy[ .(x) = y] is a recursive predicate.

If we think of our Godel numbering in the usual one-tape Turing machine

formalism, then

th
.(x) = "the number of steps in the computation of the i Turing
1

machine on argument x" is a measure on computation.

Henceforth let be some fixed measure on computation. Then we

define for any total function t

F(t) = (i E N! . ER , and . t (a.e.)},

and

Y(t) = (CD. I i E F(t)}.
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That is, F(t) is the set of (indices of ) total machines which run

in time t, and 7(t) is the set of total functions computable within

time t. Y(t) is called a complexity class.

A sequence of partial functions? = {$0'1,....I is said to be

an r.e. sequence of partial functions if \ixf[ l(x)] E P2'

The following theorem of Blum [ 1 ] shows that we can uniformly

enlarge complexity classes 7(t) if t is a sufficiently well-behaved

function.

Theorem. (Compression Theorem) There is a g E R2 such that for every

4. E R1 , ((Axg(x, I(x)). g is called a compression function

for .

An operator is a map which takes functions to functions; we

write F(f)(x) to mean the value of the operator F applied to the

function f, evaluated at x. An operator F: D E P 1 P 1 is called an

effective operator if there is an s E R1 such that F(0 e)(x) = D (x).

An effective operator F is total effective if for every f E R,

F(f) is defined and F(f) E

3. THE EMBEDDING THEOREM

Theorem. Let F be any total effective operator, and let R be any recursive

countable partial order on N. Then there exists an r.e. sequence of

recursive functions p0 pl, ''' ... such that if jRk, then F(p.) <

p (a.e.), and if j and k are incomparable, then F(p,) < pk(i.o.), and

pk < j
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Proof. We assume without loss of generality that R orders N-{0)

rather than N, and in addition that R contains kRO for each k > 0.

Let < i, k0 >, a1  < i1, k > , .-- 'an < < n, k >, ... be a

recursive listing of all incomparable pairs in R such that if x and

y are incomparable, then < x, y > and < yI x > both appear infinitely

often in the list. As a technical convience we define max[O] = 0.

1
Let s E 92 be the s function of the s-m-n theorem defined by the

'21

equation

De x y >) = 0 s(e,x)(y)'

Define 4 E P2 as follows:

0 if x < k or Sn < k such that f (< 0, n >) > x, (1)

max [ s(e. (x) + F(co s(ej))(x)]) + (2)(J)

jsx
jRk

[s(e,i) (x) + F(co . )(x)], (2)(ii)

where n = pm x[((m = 0) and (x = k0 )) or

*(e, <k,x >) =

[(m > 0) and (k = km) and [(Vi (0 i m))

(az ! x) such that (z0 = k0) and

(z +1= z + s(e,k )(z.)) and (zm = x)], if

such an n exists and (1) is not true, and

max [cD (x) + F(o . )(x)] otherwise. (3)

jRk
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P since all the test computations in clauses (1) and (2) are

recursive by the second measure on computation axiom. By the recursion

theorem there is an e such that 1 (e, <k,x >) = Me (<k,x>); we apply the

s-1-1 version of the s-m-n theorem to obtain *(e, <k,x>) = s(e,k) '

To simplify our notation we now suppress mention of e and write pk(x)

e (x). Similarly we write k (x) for § (x). Our definition
s(e,k) s(e,k)

now becomes

0 if x < k or 7n < k such that § (n) < x,
P0

map (x) + F (p )(x)]) +

jRk [p.(() + )p ) o he s],
n n

where n = pm s h x[((m 0) and. (x m o h c o

c be) [(m > 0) and (k = k )and [(Vi(O i s m))(

such that (z0 = k 0 ) and (z +1 = z + k.(z
1

(zm = x)]]], if such an n exists and (1) is

max [p(x) + F (p (x) ] otherwise.

j0 -

jRk

We first establish that at most finitely many of the functions

(Pk~kEN can be non-total. Suppose p k(x) diverges. Since po is defined

by (3) at all arguments, p 0(x) must diverge, and so by (1) p (x) = 0

for all j > x.

(1)

2) (i)

2) (ii)

x)

and

(3)

not
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We now prove that for all k pk is total.

Say that an is serviced at x if pk (x) is defined by (2), and if

n
n is the least m x satisfying the body of (2) in the definition of

Pk (x). We allow the possibility that Pk (x) may diverge. If a is

n 'n n-I
serviced at x, (2) guarantees that x = z . + (z.), and so

n i=1 k.
I

a is serviced at no other argument. Moreover, if a is serviced at x
n n

and pk(x) diverges, then for n' > n a, will never be serviced, since

n

a n is serviced at y only when y bounds the computation of , k .

n

Let k be an R-minimal element in the finite set (k' pk' non-total}

Then if pk x) diverges, it must do so because of (2)(ii). That is, an

is serviced at x for some n, and p. must be non-total.

n

But suppose p. (y) diverges by an instance of (2)(ii) for some y.

n
This means that i = k for some j and a. is serviced at y. If j < n,

n j
then y must equal z., but since a is serviced x, 5 (z.) < x and hence

p (z.) must converge. If j > n, then since a is serviced at x and
k. J n

pk(x) is assumed to diverge, a is never serviced. Moreover j cannot

equal n, for then i would equal k . Hence p. must be non-total because
n n1

n

of (2)(i) or (3),_and so some function pi, such th -at i'Ri nis non-total.
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Let i be R minimal among (i' I i'R i and i' non-total}. Then

pi must be non-total by an instance of (2)(ii), say at argument y.

j-i
Hence i = k for some j, and a. must be serviced at y = J E z +

jT=o

P (z ). If j < n, Pk (y) must converge since a is serviced at x
km n

by assumption; and if j = n, then i and k are comparable, a contra-
n n

diction. Furthermore if j > n, then a. will never be serviced. Hence

p is total, and we conclude that for every k E R'1 Pk V

If jRk, then F(p )(z) : pk(z) for all z > m0 = max[k,j,PO (0),

PO (1), .. PO( -1 )
O p0

If j and k are incomparable, then < j,k > = at , a , .. a , .
n0 n1  n

for some infinite sequence n0 < n 1 < n2 ••• n *• .

For arguments z m0 pk(z) is defined by (2) or (3). Since the

sequence of z*'s is strictly increasing, there is an i0 such that for

i > io,z m0. At those arguments z. for i > io, i = n pk(zi) will

be defined by clause (2) and pk(zi) > F(p )(z ). A symmetric argument

shows that p. > F(Pk)(i.o.), and the theorem is proved.

Corollary. Let F be any total effective operator, and let R be any

countable partial order on N. Then there exists an r.e. sequence of

recursive measure functions fr(0)' r(l)' ... such that if jRk, then

F( j ) < (a.e.) and Y(F(f )) -j (k), and if j and k are
Sr(j) r(k) <r(j) r(k)'' if i and k are

incomparable, then F(fr(j)) <r(k)(i~o.), and F~fr(k)~ r( .
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Proof. Mostowski [ 3 ] has shown that there is a countable partial

order R into which any countable partial order may be embedded.

Moreover, Sacks [ 4 ] has shown that R is recursive.

We assume without loss of generality that F is at least as large

as the identity operator, and that the compression function for , g,

is strictly increasing in its second argument. Blum [ 1 ] has shown

that there is an h E R2 such that for all i e i (x) : h(x, .(x))(a.e.). We

assume that h is strictly increasing in its second argument. To prove

the corollary, apply the theorem to R , rewrite clause (2) as

max [p.(x)-h(x,g(x,F(& )(x)))] + [p,. (x) + h(x,g(x,F( )(x)))],
~-~~ p 'n ~pi

jsx n
iRk

and we rewrite clause (3) as

max[p .(x) + h(x,g(x,F( )(x)))].
-- r- j p.js x
jRk

It is easy to see that the theorem goes through as before, and the

monotonicity restrictions on g and h guarantee that the functions

(§Pk kEN satisfy 
the corollary.
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4. REIATION TO OTHER WORK, AND OPEN PROBLEMS

McCreight [5] is the first investigator to prove an embedding

theorem for subrecursive classes. He shows that any countable partial

order can be embedded in the complexity classes ordered under set

inclusion. However, his theorem is weaker than our results in that

the functions of his partial order are "separated" by composition

with a fixed recursive function, whereas our functions are separated

by a total effective operator. In [6] Enderton also proves a universal

embedding theorem for subrecursive classes. His notion of a sub-

recursive class is quite weak, however, and his result is an immediate

corollary of McCreight's theorem.

Early work on the structure of subrecursive classes was done by

Feferman [12], Meyer and Ritchie [7], and Basu [8]. Feferman shows

that dense chains exist for various notions of subrecursive classes.

Meyer and Ritchie define what they call elementary honest classes, and

they show the existence of dense chains and infinite anti-chains for

such classes. Moreover, they are able to exhibit certain functions f

such that dense chains of classes will exist between f and the iterate

of f, \x[f (x)]. Basu builds dense chains of subrecursive classes, where

these classes are closed under the application of a fixed recursive operator.

Machtey [11] has announced universal embedding theorems for both

the "honest" primitive recursive degrees and the "dishonest" primitive

recursive degrees. Both of these theorems follow immediately from our

results.
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We also note that Altond[ has penges 1 anounced gur

embedding theorem.

We leave open the question of the size of the functions in our

embedding theorem. That is, given F, what is a reasonable upper bound

on the size of p0 in terms of F(recall that p0 bounds all the functions

{pkakEN on all arguments).

The author wishes to acknowledge the generous assistance of Professor

Albert R. Meyer in the conception and preparatioi of this paper.
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